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Abstract

The Vienna Development Method is a formal language developed at
the IBM laboratories in Vienna. First we give a short overview of the
history of VDM from programming language description to VDM++.
The language and its syntax are described in the following. Since the
invention of VDM lots of tools have been developed. One of them is mural,
a proof framework for VDM. We explain the basic features of mural and
give a short example proof. The most important tool for VDM today
is VDMTools which is still beeing developed. We give an overview of
VDMTools features and present a detailed example of a VDM++ model
in VDMTools. The example includes Java code generation from VDM.
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1 Introduction

The concept of formal methods describes a large number of scientific techniques
for modelling and for rigorous checking of real-world systems. Formal methods
are generally based on mathematical logic. There are many different approaches
of formalization, but one of the longest established formal methods for develop-
ment of computer-based systems is VDM — the Vienna Development Method.

The Vienna Development Method (VDM) is a collection of techniques for the
modeling, specification and design of computer-based systems [5, page 454].
VDM has its roots in the IBM laboratories in Vienna in the mid-1970s. The
corresponding standardized definition language is called VDM-SL. There is also
an object-oriented extension of of VDM, called VDM++. Today VDM is still
very important and will be a topic at the 2009s 16th International Symposium
on Formal Methods which will take place in Eindhoven (Netherlands) from
November 2nd to November 6th, 2009. Of course there are also several in-
dustrial applications of VDM (especially VDMTools), for example Boeing used
VDMTools for reverse engeneering from Java back to VDM++ [9].

There are several books and articles on VDM. A huge collecion of publications
concerning VDM can be found on the VDM web-portal [10]. A few examples
are the book from Derek Andrews and Darrel Ince, Practical Formal Methods
with VDM [2] or D.J. Andrews (el al.), The VDM Specification Language —
Reading the Standard [6]. This paper is mainly based on Peter Gorm Larsen’s
VDM++ Tutorial [9], on C. B. Jones’ Systematic Software Development Using
VDM [8] and on Dines Bjørner’s Logic Of Specification Languages [5].

The paper is a summary of the history and the basic syntax of VDM. Its demand
is to give a first introduction on VDM to the reader. The features of VDMTools
are summarized and the final example of a VDM++ class explains the basics of
VDM++ and VDMTools.

Chapter 2 gives a glimpse into the history of VDM. Chapter 3 describes the
syntax of the VDM-SL and explains different types of functions and operations,
and the use of sets. Chapter 4 introduces the Mural proof framework for VDM
and includes a sample proof. Chapter 5 is about another tool for VDM: VDM-
Tools. Chapter 6 describes an example VDM++ class. In Chapter 7 we present
our conclusion.

5



2 First Overview

The following chapter gives a short overview about the historical development
of VDM. It is mainly based on [5].

2.1 Origins of the Vienna Development Method

The origin of VDM can be found in the 1970s. VDM was at this time used
in programming language description and compiler design. The main goal was
to develop the language’s fundamental features and to establish some formal
semantics. One of the first notable uses of VDM was the attempt to give a
formal definition of the PL/I language semantics. The notation used in this
approach was called VDL — Vienna Definition Language.

Proofs were also an issue at the Vienna group. VDM was used to prove the
equivalence of programming language concepts as part of compiler correctness
arguments. At this stage, many different forms of arguments were explored.
Although there were concerns about the quality and the style of the proofs, full
formalization was not really needed until tool support became feasible.

1975 saw the dispersal of the Vienna group. This led to different approaches in
the subsequent developments such that the modeling language, the methodology
and the associated proof techniques evolved into several directions.

2.2 Rigorous Specification and Proof

In the 1980s, VDM experienced a shift from a definition language to a devel-
opment ”‘method”’1. The method became more and more standardized. This
process was mainly guided by the so called VDM Symposia2. At these meetings,
first held in Brussels in 1987, different speakers reported their work with VDM.
The presentations covered topics from denotational semantics to discharging of
proof obligations, but tool support was not really an issue. The VDM standard-
ization team stated in their report, that its work should be done by 1988 [1]. In
reality, the standard was not approved by ISO till 1996.

1The term ”‘method”’ is — in context of VDM — used to describe a collection of devel-
opment techniques.

2From the ”‘VDM Symposia”’, the ”‘FME”’ (”‘Formal Methods Europe) arose which de-
veloped into the ”‘FM Symposia”’. The so called ”‘International Symposium on Formal
Methods”’ is held till today. [7]
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2.2.1 Rigorous Specification

In Jones’s book ”‘Systematic Software Development Using CDM”’ [8] from 1986
many elements of VDM-SL can be found, which have not actually changed by
now. The focus was on implicit style of operation specification. Below one can
see a definition of a biased queue, taken from [8].

Queueb :: s : Qel*
i : N

where
inv-Queueb(mk-Queueb(s,i)) ∆ i ≤ len s

ENQUEUE(e: Qel)
ext wr s: Qel*
post s = s ↪→ [e]

DEQUEUE() e: Qel
ext rd s : Qel*

wr i : N
pre i < len s
post i = i + 1 ∧ e = s(i)

A biased queue is a ”biased” version of a queue because it stores a history of
all elements ever stored in it. Adding an element to a biased queue appends
the element to the end of the queue. Removing an element from a biased queue
just returns the currently selected element and increases the selection-pointer.
So no element is ever really deleted.

The model above now shows the definition of the described queue in the model-
oriented VDM-SL. Such a model is constructed from basic types. In our case,
these types are the natural numbers and type constructors. The type constructor
X* represents all finite sequences of elements of type X, in our example all
sequences of Qel. So a value of type Queueb is constructed by a sequence of
elements, representing the content of the queue and a natural number i which
represents the last element taken from the queue.

Assignments to these variables are constrained by arbitrary predicates, so called
data type invariants. Each pair of values s and i fulfilling the invariant represents
a valid member of the type Queueb. For example the pair

s = [7, 8, 9] and i = 2

represents a valid member of the type Queueb, whereas

s = [3, 6, 6, 6, 5] and i = 42

7



does not represent any value of Queueb.

Operations are units of functionality capable of modifying the content of the
state [5, page 457]. The given model describes two such operations: ENQUEUE
and DEQUEUE. The operations are defined implicitly by post-conditions. Im-
plicit definitions of course allow multiple implementations. The ext-statement is
used as a framing constraint to define, which fields are accessed (rd) or changed
(wr) by the operation. Note that the post-condition can only be fulfilled if
all pre-conditions are satisfied. The model does not define what happens if an
operation is applied to values that do not satisfy the pre-condition.

2.2.2 Rigorous Proof

VDM-SL with all its invariants, pre-conditions and post-conditions is a very
complex and highly expressive language. Therefore it is not always possible
to determine statically whether a model is consistent. This gives rise to proof
obligations, i.e. conditions that have to be proved in order to ensure the ad-
equacy of the model. An example for such an obligation is the satisfiability
obligation: An operation has to yield a result satisfying the post-condition for
every input that satisfies the pre-condition. The satisfiability obligation for the
DEQUEUE-operation looks like this:

∀qb ∈ Queueb : pre−DEQUEUE(qb)
⇒ ∃qb ∈ Queueb, e ∈ Qel : post−DEQUEUE(qb, qb, e)

A proof for the condition above in style of [8] is shown below.

from qb ∈ Queueb, pre−DEQUEUE(qb)
1 let i = i + 1
2 let qb = mk −Queueb(s, i)
3 i < len s h2
4 i ≤ len s N,3,1
5 inv −Queueb(qb) 4,2,inv −Queueb
6 qb ∈ Queueb 5,Queueb
7 let e = s(i)
8 e ∈ Qel 7,4,len
9 i = i + 1 ∧ e = s(i) ∧ − I(1, 7)
10 post−DEQUEUE(qb, qb, e) post−DEQUEUE(9)
infer ∃qb ∈ Queueb, e ∈ Qel : post−DEQUEUE(qb, qb, e)

∃ − I(6, 8, 10)
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The proof starts with the hypothesis (from) and ends with the conclusion (in-
fer). Between these two lines each step either introduces a new definition,
applies several rules or combines other lines. The justifications at the right of
the lines show which rules were applied or which lines were combined. The
numbers represent the line-numbers from the current proof and hn describes
the nth hypothesis. Other rules, like the inference rule for conjunction shown
below have to be defined somewhere else.

∧ − I :
E1; . . . ; En

E1 ∧ . . . ∧ En

∃ − I :
s ∈ X; E(s/x)
∃x ∈ X : E(x)

Proofs in VDM at this stage were primarily about finding weaknesses in models.
They were often written on paper and meant to be read by other humans. The
proof above is not formal. Some symbols are defined elsewhere, data types are
not defined explicitly and justifications are just roughly specified. Thus it could
not be checked by a machine.

2.3 Formalization and Tools Support

One of the first popular tools for VDM was SpecBox. It was developed by
Bloomfield and Froome in the late 1980s. With these first attempts to give tool
support, the semantic issues became more important. SpecBox already allowed
some basic semantic checking, additionally to the syntax checking and pretty
printing. [11]

Another important tool for VDM was the VDM Toolbox developed by the IFAD
in Denmark. The Toolbox was based on META-IV, the executable part of the
language. VDM Toolbox later evolved into the most most popular tool for VDM:
VDMTools (see chapter 5).

Because of growing industrial interest, additions to VDM were developed. The
so called Afrodite project added some object-orientated and real-time extensions
and invented VDM++.

3 The Language

As a mature and accepted language which has been used in a wide variety of
applications, VDM supports lots of features for creation of formal models and
proofs. The reader of this chapter is assumed to have the basic understanding of
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formal methods, to know about propositions, predicates, operators and inference
rules, and some basic knowledge on proofs. The content of this chapter is mainly
based on [8].

3.1 Functions

Functions can be defined in two ways - either implicit of explicit. Both methods
have advantages and disadvantages and are used in different kinds of situations.

3.1.1 Explicit Functions

An explicitly defined function consists of already known functions, operators,
constants and parameters. The first line of an explicit function definition is the
signature specifying the functions name, the input parameters and the output.
The second line starts again with the name of the function, followed by a pair
of brackets containing names for the input parameters so that they can be used
later on. The Greek delta (∆) is used as definition symbol. The equality sign
(=) is not used to avoid confusion with predicates involving equalities (e.g.
square(2) = 4). The following lines contain the direct definition.

The example below shows the definition for a function calculating the square of
a given value.

square: Z→ N
square(i) ∆ i ∗ i

This definition only uses well known mathematical symbols. It is also possible
to use conditions in explicit function. The next example is a definition for a
function returning the absolute value.

abs: Z→ N
abs(i) ∆ if i < 0 then −i else i

The use of the let-statement allows the user to introduce new local variables.
The last example shows the definition of a function calculating the absolute
value of the product of two given values.

absprod: ZxZ→ N
absprod(i,j) ∆ let k = i ∗ j in (if k < 0 then −k else k)
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3.1.2 Implicit Functions

An implicitly defined function does not specify how to calculate the solution,
but what has to be calculated. The explicit definition can be seen as the imple-
mentation of the implicit specification. The most significant reason to give an
implicit specification is simplicity. Implicit definitions are mostly shorter than
explicit ones. For example it is easy to define a square root function implicitly,
but it’s much harder to implement an algorithm to approximately calculate it.
However it’s not always easier to give an implicit definition. The implicit spec-
ification of the algorithm for the UK income tax is not really shorter than the
actual implementation.

Another reason to give an implicit definition is that they are easier to under-
stand. What the square root function does is easy to understand. How it is
done is much more complicated and in many cases also unimportant. A big ad-
vantage of implicit definitions is that they can not only yield a result for single
values, but that it is also possible to evaluate the range of plausible results.

The danger of implicit with implicit specifications is, that they have to be very
exact. The square root of a function can be either negative or positive. An
implicit definition has to deal with this. It is only ”‘correct”’ if it defines all
properties the user want’s to rely on.

The implicit definition of a function starts similar to an explicit one. The first
line of the specification is the signature: names are given to argument and result
and the names are followed by the type. Names are given as link to pre- and
post-condition. The second contains the precondition and the third one the
postcondition. Pre- and postcondition are arbitrary complex, boolean-valued
functions, specifying the valid input values respectively the possible output.
Since the possible input values for an implicit defined function are limited to
values fulfilling the precondition, such functions can be seen as partial functions.

The following example illustrates the definition of an implicit function. It is the
maximum function, that returns the biggest value of a given field.

maxs(s: N-set) r: N
pre s 6= {}

post r ∈ s ∧ ∀i ∈ s . i ≤ r

The function maxs takes a finite set of natural numbers and returns a single
natural number. In the signature the names s and r are assigned to these
variables. The precondition is a boolean valued function with the following
signature, that could — if needed — also be used outside the function.
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pre-maxs: N-set→ B

The signature of the postcondition looks similar and can be seen below.

pre-maxs: N-set x N→ B

A test value for the function would be the field {6, 8, 1}. Before application of
the function, the precondition has to be checked.

pre-maxs({6, 8, 1})⇔true

The maximum value of the given field is of course 8. Obviously the postcondition
holds for the field and the result.

post-maxs({6, 8, 1}, 1)⇔true

Implicit definitions can also include quantifiers. Quantifiers avoid recursions
which would probably appear in direct definitions. The next example demon-
strates the use of quantifiers in a definition. Also note that the precondition is
always true and could be omitted. The function gcd gets two natural numbers
greater than zero (N1)and returns their greatest common divisor. The used
function is-common-divisor is a boolean function returning true, if r is common
divisor of i and j.

gcd(i: N1, j: N1) r: N1

pre true
post is-common-divisor(i,j,r) ∧ ¬∃s ∈ N1

. is-common-divisor(i,j,s) ∧ s > r

As mentioned above, an implicit specified function may yield different values
fulfilling the postcondition, depending on its implementation. The arbs func-
tion defined below is such a function. The postcondition only states, that the
returned value has to be in the given field. Of course, depending on the imple-
mentation, each value of the field could be returned.

arbs(s: N-set) r: N
pre s 6= {}
post r ∈ s

Summing up, implicit definition has lots of advantages.

12



• It is possible to describe several important directly.

• The set of results is described by the postcondition.

• The valid input-values are determined by the precondition.

• An algorithm solving the problem can be freely chosen.

• A name is assigned to the result via the function header.

If none of the above applies, a direct definition should be written. Of course,
pre- and postconditions are themselves boolean functions and it is clear that
explicit definitions have to be written sometimes or it would come to infinite
regress.

3.2 Operations

While a function yields the same result for the same input values, an operation
might give a different value each time because of a hidden state. The hidden
state can for example be used as a recorder to save subsequent results. The
state consists of all external variables an operation can access and change. For
a function in any programming language this state is the set of the non-local
variables; for a whole program it may be a database.

The subsequent sum shown below is an example of an operation. It sums up
all given values and stores the current result in its state variable. The double
function, which simply doubles the given value, is an example of a function.

sum(2) = 2 double(2) = 4
sum(2) = 4 double(2) = 4
sum(2) = 6 double(2) = 4
...

...

While double always yields 4 for the input value 2, the operation sum yields a
different value (the subsequent sum) at every call.

3.2.1 Example: Simple Calculator

As an exampleof an operation, a simple calculator will be defined bit by bit
below. The state in this case consists of a single value (reg) containing a natural
number. This external variable is the link between the operations. The example
is based on the example given in [8].
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First we introduce a loading operation which simply loads the given value into
the register:

LOAD(i : N)
ext wr reg : N
post reg = i

The first line is similar to a function definition: The name of the operation is
followed by the parameters. Operations should be defined with capital letters.

The second line defines the operations access to the external variables. The ext
keyword begins the line. The access modifiers rd (only read access) or wr (read
and write access) followed by an external variable name and type define the
rights the operation has on the given variable. The load operations of course
needs write access to the register.

The postcondition is again a truth valued function of the parameters and the
external variables. In this case, the simple postcondition only states that the
value has been loaded into the register.

An operation which only needs read access to the register is show which yields
the currently stored value of the register reg :

SHOW () r : N
ext rd reg : N
post r = reg

As the postcondition of the operation references to the value of reg before ex-
ecution, reg is marked with an overline. The overline could also be omitted
because the operation only has read access to reg and is not allowed to change
it anyway.

SHOW () r : N
ext rd reg : N
post r = reg

The equivalent definition of the show operations with write access is a bit more
complicated:

SHOW () r : N
ext wr reg : N

post reg = reg ∧ r = reg

14



The two sample operations given above do not have any precondition i.e. the
preconditions are assumed to be true. The divide operation however requires a
precondition to prevent division by zero. This operation divides reg by a given
value. It returns the result of the division and stores the remainder in reg.

DIVIDE (d : N) r : N
ext wr reg : N

pre d 6= 0
post d ∗ r + reg = reg ∧ reg < d

Note that identifiers in preconditions have no overlines although they refer to
values before execution of the operation. The precondition is placed before the
operation and the postcondition afterwards. So the undecorated values apply
(in both cases) to the values the variables have at the current position.

3.2.2 The State

Just from knowing the state one cannot reconstruct the sequence of operation
executions which led to this state because a single state can be reached in many
different ways. For example, the state where reg has the value 1 can be reached
in the following ways:

LOAD(1)
LOAD(7); DIVIDE(3)

The result of the next application of any operations only depends on the current
value of the state and not on the history. In a mathematical way, each state
creates the equivalence class on histories.

3.3 Set Notations

A set is in VDM a data structure which stores unordered, distinct elements3.
The values contained by a set are bounded by braces. Sets can be formed in
different ways:

• Enumeration of their elements: {9, 6, 42}

• Set comprehension: {i ∈ Z|1 ≤ i ≤ 3} = {1, 2, 3}
3Sets in VDM are basically equivalent to mathematical sets.
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• Intervals: {i, ..., k} = {j ∈ Z|i ≤ j ≤ k}

• Empty set: {}

The number of items in a set (the cardinality) can be determined by the card -
operator:

card{} = 0
card{9, 6, 42} = 3

3.3.1 The ”-set” Constructor

Another way of forming sets it the so-called ”-set” constructor. This constructor
can applied to any known set and yields a set of all finite subsets of the given
set. If the given set is infinite (e.g. the natural numbers) the number of these
subset can also be infinite. For finite sets it yields the power set.

Let B be the set containing the boolean values true and false. The constructor
would yield the following set:

B− set = {{}, {true}, {false}, {true, false}}

3.3.2 Partitions

Partitions are sets fulfilling some special condition. So a set is called partitioned,
if it can be into a set of disjoint subsets.

Partition = {p ∈ (N− set)− set|inv − Partition(p)}

with

inv − Partition : (N− set)− set→ B
inv − Partition(p) ∆ is− prdisj(p) ∧ {} /∈ p

and

is− prdisj : (N− set)− set→ B
is− prdisj(ss) ∆ ∀s1, s2 ∈ ss : s1 = s2 ∨ is− disj(s1, s2)

16



where is-disj means that the two given sets are disjunct i.e. they have no com-
mon elements.

An example for a partition can be seen below. The given set consists of two
sets which are disjunct.

{pa, pb} ⊆ Partition
pa = {{1}, {2}}}
pb = {{1, 2}}

3.4 Composite Objects

Sets are not the only data structures used in VDM. Another kind of collections
are multicomponent objects, so called composite objects. Composite objects can
be compared with structures in C or records in Pascal. Such an object consists
of various fields, each having a (different) value.

3.4.1 Defining Composite Objects

While classes of sets are defined by the -set constructor, composite objects are
defined in another way:

compose [objectname] of
[fieldname] : [fieldtype],
...

end

The objectname defines a name for the composite object. A composite object
can consist of different fields whose name and type are set in the definition and
separated by commas. An example for a composite object is a Date-Object
which consists of two values, the day and the year.

compose Datec of
day : {1, ..., 366},
year : N

end

It is not necessary to give a fieldname if the field is never accessed via its name.
The definition for a Celcius-Object containing the temperature, may be changed
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from

compose Celcius of
v : R

end

to

compose Celcius of R

Another shortcut for defining composite objects is the ’is composed of’-operator
(::). A definition of a Date-Object mentioned above could be written as follows.

Datec :: day : {1, ..., 366}
year : N

This abbreviation composes a Date-Object and gives it the name Datec.

3.4.2 Creating Instances

As distinguished from sets which are written using braces, instances of composite
objects are created by make-functions. Given appropriate values for composite-
objects fields, the make-function yields an instance with the respective values.
The name of the make-function is composed by the prefix mk- and the name of
the object one wants to create. The make-function for the Date-Object has the
following structure: Given two values it creates an instance of Datec.

mk −Datec : {1, ..., 366} × N→ Datec

An important property of a make-function is, that it creates tagged values. If
one takes the Celcius-Object mentioned and a Fahrenheit-Object with the same
fields (only one real number containing the temperature), the according make-
functions will never yield the same values, even if the same temperature is set.

mk − Celsius(0) 6= mk − Fahrenheit(0)

Also if a make-function is called with two different values, it never yields the
same instance.

mk − Celsius(0) 6= mk − Celsius(1)
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3.4.3 Decomposing Objects

There are different ways of decomposing objects, one is by using so called selec-
tors. Selectors are functions which are associated with the fields of a composite-
object. They have to be applied to an object and to yield their current values.
The signatures of the selectors for the day- and the year-field are

day : Datec→ {1, ..., 366}
year : Datec→ N

So for example the following applies:

day(mk −Datec(7, 1979)) = 7
year(mk −Datec(117, 1989)) = 1989

Another way of decomposing composite-object is the let-in-construct which
binds a free variable. For example let i = . . . in . . . i . . . associates the value
right of the equality sign to i and allows the use of i right of in. Obviously this
can be used for decomposing objects. The example below shows the definition
of a function which gets a Datec and yields a boolean value4.

inv −Datec : Datec→ B
inv −Datec(dt) ∆ is− leapyr(year(dt)) ∨ day(dt) ≤ 365

Alternatively the definition could be written as

inv −Datec(dt) ∆
let mk −Datec(d, y) = dt in is− leapyr(y) ∨ d ≤ 365

or even shorter as

inv −Datec(mk −Datec(d, y)) ∆ is− leapyr(y) ∨ d ≤ 365

The cases-construct and the if-then-else-construct also allows decomposition
of composite-objects and should be used, if there are several options to be
resolved. The norm-temp-function yields the temperature in Celsius for a given
Fahrenheit- or Celsius-value. Below it is defined with both, the if-then-else-
construct and the cases-construct.

4In fact, this function may be an invariant for the Datec-Object, stating that a year either
has 365 days or is a leap year.
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norm− temp : (Fahrenheit ∪ Celsius)→ Celsius
norm− temp(t) ∆

if t ∈ Fahrenheit
thenlet mk − Fahrenheit(v) = t in mk − Celsius((v − 32) ∗ 5

9 )
else t

norm− temp : (Fahrenheit ∪ Celsius)→ Celsius
norm− temp(t) ∆

cases t of
mk − Fahrenheit(v) → mk − Celsius((v − 32) ∗ 5

9 )
mk − Celsius(v) → t
end

Although there are several different ways of decomposing objects, it is rather
obvious which way to use in which situation. The use of the cases-construct is
clear and was mentioned above. Selectors should be used, if only a few fields
of a multi-component object are accessed. On the other hand, if all fields of a
composite-object are needed, the let-in-construct can be used.

4 A Proof Framework for VDM — Mural

Mural is an interactive specification support tool (SST) and a theorem-proving
assistant (TPA) which has been developed as a part of the Alvey-funded IPSE 2.5
[12] project at Manchester University and the SERC Rutherford Appleton Lab-
oratories [3]. Mural is meant for people with some knowledge about structuring
a formal proof. The main features of this lightweight proofing assistant are

• Bookkeeping: The tool automatically stores all steps a user takes in a
proof. Other axioms or theorems which have been proven before, can be
saved and reused later.

• Selection of applicable rules: At any step of a proof, Mural suggests
applicable rules. Of course a user can also select any other rule from the
theory store.

• Basic specification support environment: Mural also includes a basic
environment for creation of models and model-specific theories.

• Theory store: Axioms, definitions and theorems can be saved to a local
theory store. This store initially includes the theorems and definitions
for typed LPF5. Theorems which haven’t been proved will be added as
unproven conjectures to the theory store.

5Logic of Partial Functions
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Despite all efforts on finding a source to get Mural I was not able to try it
out myself. As popular the proving assistant may have been in the past, as
untraceable it is nowadays. All examples in this chapter are taken from [5].

4.1 Constants and Expressions

Mural knows three different types of symbols:

• variables

• constants

• binders

A variable can hold an arbitrary value from a given range of values. Binders are
used to introduce new bind-variables. Examples for binders are the quantifiers
(∀,∃).

Constants are constructors for values or types. An example for a constant would
be the singleton sequence ([−]) or the constructor for a finite set (−-set). Each
constant has a fixed arity. The arity describes the number of value and type
arguments. The arity of the singleton sequence would be (1,0) — one value
argument, zero type argument — and the arity of the finite set constructor
is (0,1).

Expressions in Mural can be

• a variable symbol,

• a constant symbol,

• a binder or

• a notation of a subtype.

Constants always have to be used with the right number of arguments. Binders
are used to introduce a new variable in another expression. The special notation
for subtypes can be used to invent user defined types. As an example the subtype
of all natural numbers smaller than ten is written as:

〈〈x : N|x < 10〉〉
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4.2 Rules of Inference

Rules of inference in Mural are written in some sort of a Hilbert-style system. A
rule starts with a name, followed by a line. Above the line stands the hypothesis
and below the line the conclusion. Axioms look similar but have have a trailing
”‘Ax”’ after the horizontal line.

− + 1 − form
n : N

(n + 1) : N

0 − form
0 : N

Ax

4.3 Theories

One feature of Mural is the so called theory store. A theory store collects all kind
of theories in an inheritance structure. Such a theory is a collection of constant
and binder definitions, axioms, derived results and also proofs. Theories can be
used to limit the scope. In proofs, mural will only suggest inference rules from
the current scope. Another important aspect of using theories is reusability i.e.
already proven theorems can be reused in further proofs.

4.4 Proofs

A proof in Mural is structured into blocks, starting with from and ending with
infer. A block is a sequence of arguments from hypothesis to conclusion with
its own scope. Each of the inference steps consists of a line number, a formula
and a justification. The justification always refers to an inference rule or to
(un)folding of a syntactical definition.

If a proof is unfinished, it is marked as unjustified. If the user decides to proceed
with proving an unjustified theorem, she/he is free to choose if he wants to work
backwards from the goal or work forwards from the proposition. At each step,
Mural recommends applicable rules of inference. Experienced users can also
select rules which were not found by Mural. In this case the tool just does the
pattern matching i.e. it fits the given values into the selected rule.

Each time a user want’s to set up another hypothesis, a subproof is started,
represented by another from-infer-block. Unproven blocks are also marked as
unjustified until the user inserts a justification.
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4.5 A Sample Proof

Assume, the user has entered the following inference rule:

∀-I y : A `y P (y)
∀x : A.P (x)

The formula is added to the theory with status unproved. If the user selects it,
the proof display opens:

from y : A `y P (y)
. . .

infer ∀x : A.P (x) 〈?? justify ??〉

The conclusion line is flagged unjustified (〈?? justify ??〉). In this example the
user decides to work backwards. He starts in the last line and applies the
definition of ∀ as ¬∃. The justification tool updates the proof.

from y : A `y P (y)
. . .

a ¬∃x : A.¬P (x) 〈?? justify ??〉
infer ∀x : A.P (x) folding(a)

Notice, that the 〈?? justify ??〉-marker has moved up a line and a justification
was added to the last line. If the user applies a rule with a sequent hypothesis,
the tool automatically starts a subproof. Mural handles the bookkeeping.

from y : A `y P (y)
b from z : A

. . .
infer ¬(¬P (z)) 〈?? justify ??〉

a ¬∃x : A.¬P (x) ¬-∃-I(b)
infer ∀x : A.P (x) folding(a)

The 〈?? justify ??〉-marker again moves up one line and a justification is added.
The proof continues with forward reasoning inside the inner block. Note that
the 〈?? justify ??〉-marker disappears completely and the line numbers and jus-
tifications are updated.

from y : A `y P (y)
1 from z : A
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1.1 P (z) sequent h1 (1.h1)
infer ¬(¬P (z)) ¬¬-I(1.1)

2 ¬∃x : A.¬P (x) ¬-∃-I(1)
infer ∀x : A.P (x) folding(2)

The inference rules (axioms) used above can be found below.

¬-∃-Ix : A `x ¬P (x)
¬∃y : A.P (y)

Ax

¬¬-I
e

¬¬e
Ax

5 VDMTools

VDMTools is a Toolkit for development of model-oriented specifications in
VDM-SL and VDM++, an object oriented extension of VDM-SL. VDMTools
supports lots of different features, from basic syntax-checking to generation of
models from Java-code. In 2004 VDMTools was sold to CSK Corporation,
Japan. The tool is still being developed: the latest version 8.1 was released in
Mai 2008! The use of VDMTools with VDM++ is described in the following
subsections. The main sources of this chapter are [4] and [9].

5.1 Main Features

The toolkit has lots of usefull features from syntax checking to code generation:

• Syntax checking: The syntax-checker verifies whether the syntax of the
selected files matches the VDM++ language specifications. If the check
passes, it gives access to the other features of VDMTools.

• Type checking: The type-checker tests mis-uses of values and operators
and can also show places, where runtime errors may occur.

• Code generation: VDMTools is able to generate a fully executable code
for about 95% of all VDM++ constructs. Code generation is available for
Java and C++.

• Specification manager: A manager-window displays all classes and
files in the specification. It also shows the status for each file.

• Interpreter and Debugger: VDMTools allows to execute all exe-
cutable VDM++ constructs. Debugging is also supported.
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• Integrity examiner: It extends the static checking capabilities of
VDM++. The tool scans through all sources to find possible inconsis-
tencies or integrity violations. The examiner creates expressions which
should evaluate to true. If they evaluate to false, there may be a problem.

• Rose-VDM++ Link: The Rational-Rose-Link provides a bi-directional
link between Rational Rose (UML) and the Toolbox (VDM++).

• Java to VDM++ Translator: It is possible to generate a VDM++
specification from a Java application. The generated model can be exam-
ined at VDM++ level.

• Several input types: Models for VDMTools can be written either with
Microsoft Word (RTF) or in Latex. Plain text is also possible but is not
recommended.

5.2 VDM++

This section examines the basic features of VDM++. It is mainly based on [9].

5.2.1 A Basic Class Outline

VDM++ is an object-oriented specification language and an extension of VDM-
SL. VDM uses classes to describe specification models. A VDM++ class consists
of several parts (Figure 1). Instance variables, operations and functions can be
found at the beginning of a class. VDM++ also allows the use of threads which
communicate via shared objects. The concurrency behavior can be specified in
the thread and the sync section of a class.

5.2.2 The Language

• Constructors: As known from programming languages, a VDM++
class can have several constructors.

• Access Modifiers: Class members may be private, public or protected.
Default access is private. static members are also possible.

• Instance Variables: Variables can be used to represent model at-
tributes or model associations.

• Type definitions: VDM++ supports several basis types (e.g. Boolean,
Numeric, Characters,...) and does also allow compound types (e.g. Set
types, Map types, Union types,...). Type invariants may also be added.
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Figure 1: VDM++ class outline

There are several predefined operations for the different types such as
sequence concatenation or set membership.

• Functions: Functions can be defined explicitly or implicitly. Implicitly
defined functions cannot be executed by the interpreter.

• Expressions: Different common expressions such as if-then-else are
available in VDM++.

• Operations: Operations may also be implemented explicitly or implic-
itly.

• Threads: Threads can be defined using the thread section of the class.
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6 A VDMTools Example

As an example for a VDM++ Model in VDMTools a Stack -Class6 will be im-
plemented. The Stack consists of an instance variable and different operations
and constructors. To show the usage of types, a type is also included. The
shown example is based on the Stack-Class which was taken from the examples
delivered with VDMTools.

6.1 Definition

At first the Stack-Class which consists different areas has to be defined .

class Stack

types
...

instance variables
...

operations
...

end Stack

6.1.1 Types

The example stack is able to store several StackItems. These StackItems are
represented by integer values and defined in the types-section of the class.

types
public StackItem = int;

An advantage of defining a particular type for StackItem is, that it is easier to
switch the data type supported by the stack. For example if the stack should
store real numbers instead of integers, only StackItem has to be changed to real.

6A stack is a data structure which accesses its elements Last-In-First-Out. So the least
added item can be removed or read.
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6.1.2 Instance Variables

The internal state of the Model-Class is described by instance variables defined
in the according section of the class. For the stack example a sequence to store
the items is needed.

instance variables
stack : seq of StackItem;

6.1.3 Constructors

To initialize the instance variables with appropriate values constructors are im-
plemented. Constructors are defined in the operations-section of the class. The
default constructor (which takes no arguments) initializes an empty stack.

operations
public Stack: () ==> Stack
Stack() ==
(stack:=[]);

As seen above, constructors are operations which have same name as the class
and return a new instance of the class. Several constructors can be defined using
operation overloading. For example the following constructor takes a StackItem
(in our example an integer value) and initializes a Stack containing the given
element.

public Stack: (StackItem) ==> Stack
Stack(val) ==
(stack:=[val]);

The last constructor takes a predefined sequence of StackItems and simply ini-
tializes the stack with it.

public Stack: (seq of StackItem) ==> Stack
Stack(init) ==
(stack:=init)
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6.1.4 Operations

The basic stack-operations are push and pop. Push puts a given item on the
top of the stack, pop removes the top-item.

public Push : StackItem ==> seq of StackItem
Push(val) ==
(stack := [val]^stack;
return stack)

post stack = [val]^stack~;

The Push-operation appends the given StackItem to the sequence and returns
the new stack. Also a post-condition for the Push-operation is defined. This
post-condition is added to the Integrity-Checker and must be checked by the
user.

public Pop : () ==> StackItem
Pop() ==
def res = hd stack in
(stack := tl stack;
return res)

pre stack <> []
post stack~ = [RESULT]^stack;

The Pop-operation removes the first element from the stack and returns it. At
first the head element is stored in res. The hd -command is a keyword returning
the head-element of the sequence. Then the head is removed by calling tl, which
returns the tail of the list. Finally res is returned.

Additionally to the post-condition, the Pop-operation is equipped with a pre-
condition. The pre-condition states that the stack may not be empty before
calling Pop. Pre-conditions are important when using the VDM++-To-Java
function of VDMTools, as a boolean valued function is created for each pre-
condition, which allows the programmer to check if all pre-conditions are fulfilled
before calling the function. If a function is called, the pre-conditions are also
checked automatically and if they are not satisfied an exception is thrown.

Finally the additional functions Top (returns the head of the Stack, but does
not remove it) and Reset (empties the stack) can be found below.

public Top : () ==> StackItem
Top() ==
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return (hd stack)
pre stack <> []
post stack = stack~;

public Reset : () ==> ()
Reset () ==
stack := [];

6.2 Screenshots

This section contains several screenshots of VDMTools while working with the
example class. While Figure 2 shows the project view, Figure 3 shows the class
view of the project. On the right side the source window can be found. It only
displays the code and does not allow editing. The log window on the bottom
left side of the window logs all past events. In the current example the syntax-
and type checks were successful and all possible outputs were created (Java,
C++, Pretty Print). This can be seen in the class view.

Figure 4 shows the Integrity examiner. All possible integrity problems are listed
and can be marked as checked.

Figure 5 shows the Interpreter windows. The create command creates a new
instance of class Stack. The print command is used to test the operations.

Figure 6 shows the Error List. The position of the selected error is automatically
highlighted in the source window. Futhermore a detailed error description is
displayed below.

6.3 VDM to Java

After syntax- and type-checking, VDMTools is able to create a Java file from
the given model. After adding the included jar-Files to the Java-classpath the
created file compiled without any errors. All functions worked properly and no
further problems occurred. If any post-condition for a called function is not
fulfilled, a VDMRunTimeException is thrown. The sequence of StackItems is
defined as an object of type java.util.Vector. The type StackItem is automati-
cally translated to java.lang.Integer. The whole content of the created file can
be found in Appendix A.2.
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Figure 2: Project view
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Figure 3: Class view
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Figure 4: Integrity Properties
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Figure 5: Interpreter
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Figure 6: Errors
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6.4 Java to VDM

While trying to convert the created Java file back to VDM++, VDMTools
crashed with different runtime-errors (Figure 7). Although the transformation
worked for the provided examples, it was not possible to convert the Stack.java
back to VDM.

Figure 7: Java to VDM - Error

6.5 Other features

The PrettyPrint feature creates a RTF-file for use with Microsoft Word in which
all keywords are highlighted. The VDM-To-C++ feature creates a compilable
C++ file.

The stack example also worked fine with the VDMTools interpreter. It is pos-
sible to create various Stack objects, calling the different constructors. All
operations can be called, but the interpreter does not check any pre-conditions
and crashes if an error occurs.

7 Conclusion

In the history of formal methods, the Vienna Development Method is one of
the longest-established formal methods. During its long lifetime, many different
tools, standards and formalizations arose and disappeared. The most popular
tool for VDM today (VDMTools) is a rather useful tool for development of
formal models in VDM++ or VDM-SL.
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The code creation features of VDMTools for Java and C++ are very help-
ful and work properly. Syntax- and type-checking ensure syntactically correct
models and the Integrity-Examiner provides integrity-conditions which have to
be proven or at least observed. The interpreter and especially the debugger are
a simple way of testing the model and make it easy to discover the error source.

A disadvantage of VDMTools is the lack of usability. There is no internal editor
for the models, so the user always has to use for example Microsoft Word to
change the specification. The Error List cannot be emptied and so it is hard to
see which errors are new and which have already been fixed.

VDM-SL and VDM++ are rather intuitive and well documented formal speci-
fication languages. VDM++ is based on VDM-SL and used for specification of
object oriented models. Both languages provide a large pool of features, from
simple data type definitions to multithreading and thread synchronisation.

The Vienna Development Method has a great community. The VDM portal
webpage [10] lists 1000 different publications about VDM and the VDM forum
is a simple way to communitate with other people working with VDM.

I was not able to test the mural proof framework for VDM or any other tool
that supports guided proofs and cannot say much about their funcionallity.
Since programs like VDMTools are able to generate conditions which have to
be proven to ensure correctnes of the model, these conditions have to be proved
elsewhere or by hand.
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A Complete Listings

The following listings describe the example presented in Chapter 6.

A.1 Stack - VDM++ Model

class Stack

types
public StackItem = int;

instance variables
stack : seq of StackItem;

operations
public Reset : () ==> ()
Reset () ==
stack := [];

public Pop : () ==> StackItem
Pop() ==
def res = hd stack in
(stack := tl stack;
return res)

pre stack <> []
post stack~ = [RESULT]^stack;

public Push : StackItem ==> seq of StackItem
Push(val) ==
(stack := [val]^stack;
return stack)

post stack = [val]^stack~;

public Top : () ==> StackItem
Top() ==
return (hd stack)

pre stack <> []
post stack = stack~;

public Stack: () ==> Stack
Stack() ==
(stack:=[]);
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public Stack: (StackItem) ==> Stack
Stack(val) ==
(stack:=[val]);

public Stack: (seq of StackItem) ==> Stack
Stack(init) ==
(stack:=init)

end Stack

A.2 Stack - Java Class

//
// THIS FILE IS AUTOMATICALLY GENERATED!!
//
// Generated at Thu 05-Mar-2009 by the VDM++ to JAVA Code Generator
// (v8.1 - Wed 19-Mar-2008 09:16:54)
//
// Supported compilers:
// jdk1.4
//

// ***** VDMTOOLS START Name=HeaderComment KEEP=NO
// ***** VDMTOOLS END Name=HeaderComment

// ***** VDMTOOLS START Name=package KEEP=NO
// ***** VDMTOOLS END Name=package

// ***** VDMTOOLS START Name=imports KEEP=NO

import jp.co.csk.vdm.toolbox.VDM.*;
import java.util.*;
import jp.co.csk.vdm.toolbox.VDM.jdk.*;
// ***** VDMTOOLS END Name=imports

public class Stack implements EvaluatePP {

// ***** VDMTOOLS START Name=vdmComp KEEP=NO
static UTIL.VDMCompare vdmComp = new UTIL.VDMCompare();

// ***** VDMTOOLS END Name=vdmComp

// ***** VDMTOOLS START Name=stack KEEP=NO
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private volatile Vector stack = null;
// ***** VDMTOOLS END Name=stack

// ***** VDMTOOLS START Name=sentinel KEEP=NO
volatile Sentinel sentinel;

// ***** VDMTOOLS END Name=sentinel

// ***** VDMTOOLS START Name=StackSentinel KEEP=NO
class StackSentinel extends Sentinel {

public final int Pop = 0;

public final int Top = 1;

public final int Push = 2;

public final int Reset = 3;

public final int Stack_u_u0_u = 4;

public final int Stack_u_u1_ub_un_uStackItem = 5;

public final int Stack_u_u1_ub_us_un_uStackItem = 6;

public final int nr_functions = 7;

public StackSentinel () throws CGException {}

public StackSentinel (EvaluatePP instance)
throws CGException {
init(nr_functions, instance);

}

}
// ***** VDMTOOLS END Name=StackSentinel
;

// ***** VDMTOOLS START Name=evaluatePP KEEP=NO
public Boolean evaluatePP (int fnr)
throws CGException {
return new Boolean(true);

}
// ***** VDMTOOLS END Name=evaluatePP
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// ***** VDMTOOLS START Name=setSentinel KEEP=NO
public void setSentinel () {
try {
sentinel = new StackSentinel(this);

}
catch (CGException e) {
System.out.println(e.getMessage());

}
}

// ***** VDMTOOLS END Name=setSentinel

// ***** VDMTOOLS START Name=Reset KEEP=NO
public void Reset () throws CGException {

sentinel.entering(((StackSentinel) sentinel).Reset);
try {
stack = (Vector)
UTIL.ConvertToList(UTIL.clone(new Vector()));

}
finally {
sentinel.leaving(((StackSentinel) sentinel).Reset);

}
}

// ***** VDMTOOLS END Name=Reset

// ***** VDMTOOLS START Name=Pop KEEP=NO
public Integer Pop () throws CGException {

if (!this.pre_Pop().booleanValue())
UTIL.RunTime("Run-Time Error:Precondition failure in Pop");

sentinel.entering(((StackSentinel) sentinel).Pop);
try {

Integer res = UTIL.NumberToInt(stack.get(0));
{

stack = (Vector)
UTIL.ConvertToList(UTIL.clone(new Vector(stack.subList(1, stack.size()))));
return res;

}
}
finally {
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sentinel.leaving(((StackSentinel) sentinel).Pop);
}

}
// ***** VDMTOOLS END Name=Pop

// ***** VDMTOOLS START Name=pre_Pop KEEP=NO
public Boolean pre_Pop () throws CGException {
return new Boolean(!UTIL.equals(stack, new Vector()));

}
// ***** VDMTOOLS END Name=pre_Pop

// ***** VDMTOOLS START Name=Push KEEP=NO
public Vector Push (final Integer val) throws CGException {

sentinel.entering(((StackSentinel) sentinel).Push);
try {

Vector rhs_2 = null;
Vector var1_3 = null;
var1_3 = new Vector();
var1_3.add(val);
rhs_2 = (Vector) var1_3.clone();
rhs_2.addAll(stack);
stack = (Vector) UTIL.ConvertToList(UTIL.clone(rhs_2));
return stack;

}
finally {
sentinel.leaving(((StackSentinel) sentinel).Push);

}
}

// ***** VDMTOOLS END Name=Push

// ***** VDMTOOLS START Name=Top KEEP=NO
public Integer Top () throws CGException {

if (!this.pre_Top().booleanValue())
UTIL.RunTime("Run-Time Error:Precondition failure in Top");

sentinel.entering(((StackSentinel) sentinel).Top);
try {
return UTIL.NumberToInt(stack.get(0));

}
finally {
sentinel.leaving(((StackSentinel) sentinel).Top);
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}
}

// ***** VDMTOOLS END Name=Top

// ***** VDMTOOLS START Name=pre_Top KEEP=NO
public Boolean pre_Top () throws CGException {
return new Boolean(!UTIL.equals(stack, new Vector()));

}
// ***** VDMTOOLS END Name=pre_Top

// ***** VDMTOOLS START Name=Stack KEEP=NO
public Stack () throws CGException {

try {
setSentinel();

}
catch (Exception e){

e.printStackTrace(System.out);
System.out.println(e.getMessage());

}
try {

stack = (Vector) UTIL.ConvertToList(UTIL.clone(new Vector()));
setSentinel();

}
catch (Throwable e) {
System.out.println(e.getMessage());

}
}

// ***** VDMTOOLS END Name=Stack

// ***** VDMTOOLS START Name=Stack KEEP=NO
public Stack (final Integer val) throws CGException {

try {
setSentinel();

}
catch (Exception e){

e.printStackTrace(System.out);
System.out.println(e.getMessage());

}
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try {

{

Vector rhs_2 = null;
rhs_2 = new Vector();
rhs_2.add(val);
stack = (Vector) UTIL.ConvertToList(UTIL.clone(rhs_2));

}
setSentinel();

}
catch (Throwable e) {
System.out.println(e.getMessage());

}
}

// ***** VDMTOOLS END Name=Stack

// ***** VDMTOOLS START Name=Stack KEEP=NO
public Stack (final Vector init) throws CGException {

try {
setSentinel();

}
catch (Exception e){

e.printStackTrace(System.out);
System.out.println(e.getMessage());

}
try {

stack = (Vector) UTIL.ConvertToList(UTIL.clone(init));
setSentinel();

}
catch (Throwable e) {
System.out.println(e.getMessage());

}
}

// ***** VDMTOOLS END Name=Stack

}
;
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