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Abstract — In this letter we show how the nonlinear evolution of a resonant triad depends on the
special combination of the modes’ phases chosen according to the resonance conditions. This phase
combination is called dynamical phase. Its evolution is studied for two integrable cases: a triad and
a cluster formed by two connected triads, using a numerical method which is fully validated by
monitoring the conserved quantities known analytically. We show that dynamical phases, usually
regarded as equal to zero or constants, play a substantial role in the dynamics of the clusters.
Indeed, some effects are i) to diminish the period of energy exchange 7 within a cluster by 20%
and more; ii) to diminish, at time scale 7, the variability of wave energies by 25% and more;
iii) to generate a new time scale, T > 7, in which we observe considerable energy exchange within
a cluster, as well as a periodic behaviour (with period T') in the variability of the modes’ energies.
These findings can be applied, for example, to the control of energy input, exchange and output in
tokamaks; for the explanation of some experimental results; to guide and improve the performance

of experiments; to interpret the results of numerical simulations, etc.

Copyright © EPLA, 2009

Introduction. — In this letter we will regard nonlinear
resonant systems corresponding to the 3-wave resonance
conditions. Examples of these nonlinear resonant systems
are, in order of simplicity, triads (which are integrable),
and small groups of connected triads which are known
to be important for various physical applications (large-
scale motions in the Earth’s atmosphere [1], laboratory
experiments with gravity-capillary waves [2], etc.). The
dynamical system for a triad has the standard Manley-
Rowe form:

By =ZB}Bs, By=ZB!Bs, Bs3=-ZBB,, (1)

where (Bji, Bs, Bs) are complex amplitudes of the reso-
nantly interacting modes Bjexpi(k;-x—w(k;)t). The
corresponding resonance conditions are

w(k1)+w(k2)—w(k3):0, ki +ko — k3 =0, (2)

with w(k) the dispersion relation and k the wave vector.
System (1) has been studied both in its real and complex

(3) E-mail: miguel.bustamante@ucd.ie
(P)E-mail: lena@risc.uni-linz.ac.at

form (e.g., [3,4], etc.). In the amplitude-phase represen-
tation B; = |Bj|expib;, (1) is equivalent to a system for
the 3 real amplitudes | B;| and the phase combination ¢ =
01 + 0 — 03, the individual phases 6; being slave variables
and they can be obtained by quadratures [5]. The dynam-
ical equation for ¢ is also known ([4], p. 43, eq. (28)).
Still, a sort of general misunderstanding persists, concern-
ing the relevance of ¢ for the general dynamics of the
system. It is a common belief that for an exact resonance
to occur, it is necessary that ¢ is either zero ([6], p. 132, eq.
(6.7); [7], p- 156, eq. (3.26.19), etc.) or constant (e.g. [2]).

In this letter we to show that for generic initial condi-
tions, ¢, which we call dynamical phase, affects the evolu-
tion of the amplitudes and, therefore, has a direct impact
on the behaviour of any physical system governed by a
triad as well as by small clusters of resonant triads. As was
shown in [8], some of these clusters are described by inte-
grable systems and for them a complete set of conservation
laws (CLs) was given explicitly, showing that dynamical
phases are relevant in the determination of these CLs. In
this paper we present differential equations for the two
independent dynamical phases appearing in the butterfly,
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Fig. 1: (Colour on-line) Plots of the modes’ amplitudes and dynamical phase as functions of time, for a triad with Z =1.
For each frame, ¢(t) is the (red) solid line, Ci(t) is the (purple) dotted line, C3(t) is the (blue) dash-dotted line, Cs(t) is
the (green) dashed line. Upper panel: initial condition « = 0.7 and conserved quantities Ios =1, I13 = 1.1 for all frames. Initial
conditions for the phase and corresponding cubic conserved quantity: left: ¢ =0, I =0; middle: ¢ =0.1, I =0.041; right:
p=m/2, It =0.408. Lower panel: conserved quantity I13 =1.1 for all frames. Initial conditions and corresponding conserved
quantities: left: @ =1.56, ¢ =0.01 and Io3 =1, I+ = 3.2 x 10~°; middle: « =0.7, ¢ =0.01 and Is3 =0.1, Iz = 5.1 x 10~ %; right:
a=0.7,¢o=n/2and I,3=0.1, Ir =5.1 X 1072, Here, the horizontal axis denotes the non-dimensional time; the vertical left and

right axes denote amplitude and phase, respectively.

a resonance cluster formed by two triads connected via
one mode. We investigate the integrable case of butterfly
by solving numerically the reduced evolutionary differen-
tial equations shown in [8] for the phases and amplitudes.
The numerical integration is fully validated by monitor-
ing the conservation laws, known analytically from our
previous work [8]. We study the effects of the phases on
the modes’ amplitudes, and some physical implications are
briefly discussed.

Triad with complex amplitudes. — The CLs for (1)
have the form

{ I3 =|B1|*+|Bs|?, I =|B2|*+|Bs|?,

Iy =Im(B; B2 B3),

which is enough for the explicit solution to be constructed.
The conserved quantities I3 and Is3 are linear combina-
tions of energy and enstrophy [1]. The analytical solution
of (1) can be found in [4], as well as the equations on two of
the three phases ; (the standard amplitude-phase repre-
sentation B; = C; exp(if;) is used). Below we use slightly
different notations, introduced in [8], because they are
more convenient for further studies of bigger groups of
connected triads. The equation for the dynamical phase
can be easily deduced and reads as

p=—Ir(C;*+Cy% = C5?). (4)

Combining (3) and (4), the constraint I = 0 implies that
p=0.

If we put I7 =0, the solution for the amplitudes takes the
familiar form

Cl(t) = dn((*t+t0) z I13, %) \/113,
C2(t) =cn((~t+10) 2 11375273)\/123, (5)

Cs(t) =sn((—t+to) zvTiz, ) VI3,

where t( is defined by the initial conditions and can also
be written out explicitly.

Triad, case I7 # 0. — Now we present some results for
the cases when I1 # 0, otherwise the resonance conditions
in the standard form (2) are satisfied. Figure 1 shows
the evolution of the characteristic amplitudes, depending
on the value of Iy. To characterize the initial condi-
tions, the variable «=arctan(C5/C3) has been chosen
for a triad and variables «, =arctan(C3,/Cs,) and
ap = arctan(Csp/Cop) have been chosen for a butterfly.
These variables appear naturally from the explicit form
of the corresponding Hamiltonians, and simplify the form
of the dynamical systems and conservation laws (see [8]
for more details).

As is shown in fig. 1, when the initial dynamical
phase is zero, it will remain zero at all times, but
the amplitudes will change sign periodically (upper-left
panel). When the dynamical phase is initially very small
but non-zero, the amplitudes become purely positive and
the dynamical phase will have abrupt jumps, at those
times when the amplitudes used to change sign (lower-
left panel). Physically, in terms of squares of amplitudes,
the dynamics in both cases is quite the same (figure not
shown). However, the phase’s dynamics, with its periodic
motion, is revealed in the non-zero case. As is shown in
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the upper panel (left, middle and right), the non-zero
dynamical phase influences the evolution of amplitudes,
so that as the initial ¢ increases from 0 to 7/2, the range
of amplitude variations decreases from 1 to 0.1 and the
period of the motions decreases from 5 to 3.

In the lower panel, we show that the notion of A-mode
(active) and P-mode (passive) introduced in [9] (compare
to the stability criterion [10]) is useful also in the case of
the non-zero dynamical phase ¢. The A-mode is the mode
with the highest frequency, and two other modes are
called P-modes. In the pictures, C7 is a P-mode and Cj is
an A-mode. Lower-middle picture: when the initial value
of the amplitude Cy > C3, Cy (4 times in the figure), the
P-mode C; keeps its energy and the A-mode C5 interacts
strongly with the remaining P-mode Cs. If Cy > C3, C;
then the situation will be qualitatively the same, with the
P-mode C5 keeping the energy. Lower-left figure: on the
other hand, if C3> C;, Cs, then a completely different
time evolution is observed and all modes interact.

One more important general feature of the dynamical
phase is shown in the upper- and lower-right panels.
Indeed, independently of the details of the initial values
of Cp, C5, (3, the variation range of the amplitudes is
minimized when the initial condition for the dynamical
phase ¢ is equal to 7/2. This can be used in real physical
systems in order to control the exchange of energy between
resonant modes, at no energy cost: the choice of the
initial dynamical phase does not change the energy of the
system, which is a sum of squares of amplitudes, obviously
independent of the dynamical phase (and of any phase, for
that matter).

Butterfly with complex amplitudes. — As was
shown in [9], clusters formed by two triads a and b
connected via one mode can have one of the three types
accordingly to the types of connecting mode in each triad:
PP-, AP- and AA-butterfly. In this letter, a PP-butterfly is
taken as a representative example. The dynamical system
describing the evolution of a PP-butterfly has the form

By = Z,B}, B3a + Zy B3, Bay,
' Boy = Zy B} Bap,

BQa - ZaBikB?uzv
B3, =—Z,B1Ba,, Bsy,=—2,B1Buy,

(6)

where the notation B; = B, = By, is chosen for the
amplitude of the mode common for both triads, while Bsy,,
Bsg, Boyp, Bsp are other four modes of the butterfly cluster.
The set of constructed conservation laws reads

Insq =|Boa|* +|Bsal?,  Iosp = |Bas|* + | Bas|?,
Iy =|B1|* 4 |Bsal* + | Bsy|?,
I =Im(Zy By Bou By, + Zy B Bay By)-

(7)

Similar to the triad, the use of the standard representa-
tion Bj = C; exp(if;) shows that the syst. (6) has effec-
tively 3 degrees of freedom and two dynamical phases are

important: ¢, = 014 + 024 — O34, ©p = 01p + O2p — O3, with
the requirement 6, = 01, which corresponds to the choice
of connecting mode. Accordingly, equations on the dynam-
ical phases take the form

{ $a=—Ip(C; >+ C30 — C32),

(8)
¢p=—Ip(Cy>+Cq — C32).

In order to study the effect of non-zero dynamical phases
for the butterfly, we performed numerical simulations for
the integrable case Z, = Z;. This allows us to compare the
results with the triad, which is just a particular case of the
integrable butterfly.

In fig. 2, left column: we show phases, amplitudes and
amplitudes squared (energies) for initial conditions ¢, =
wp =0. The dynamics is quite similar to the triad with
initial condition ¢ = 0 shown in fig. 1 upper left. In fig. 2,
middle column: phases, amplitudes and energies are shown
for initial conditions ¢, = /2, ¢, =0, while in the right
column the same data are presented, for initial conditions
©a = pp =7/2. We observe from figs. 1 and 2 some effects
from the dynamical phases ¢, (t) and ¢;(t) of a butterfly
(respectively, the phase ¢(t) of a triad): to diminish the
period of energy exchange T within a cluster by 20% and
more; to reduce the variability of wave energies by 25% and
more; to generate a new time scale, T'>> 7, in which there
is considerable energy exchange within a cluster, as well
as a periodic behaviour (with period T') in the variability
of the modes’ energies.

All computations have been done using Mathematica
and we have validated the code by checking the corre-
sponding conservation laws, particularly those of cubic
and quartic dependence on the amplitudes (introduced
in [8]). These conservation laws are stably conserved
during the whole numerical simulation, within a relative
error of 10712,

A comment regarding the ergodicity of the integrable
butterfly. We observe in a parametric plot of cos(y,) vs.
cos(ipyp) as functions of time (figure not shown), that the
seemingly periodic motions are indeed precessing with
precession speed depending on the initial conditions. This
is a generic feature of integrable systems which are not
superintegrable.

Conclusions. — Effects of non-zero dynamical phases
should be taken into account in the following situations.

— To control energy input, exchange and output in
laboratory experiments, e.g. in tokamaks. Indeed, a
possibility of concentrating energy in a small set of
drift waves via some instability mechanisms has been
conjectured by Petviashvili some 15 years ago [11].
As soon as energy is concentrated in a resonant
cluster, mode amplitudes can become dangerously
large. In [12] it was shown that the appearance of
resonances can be completely avoided by a special
choice of the form of the laboratory facilities which,
of course, is too costly a game with tokamaks. On
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the other hand, adjustment of dynamical phases can
diminish the amplitudes of resonantly interacting
drift waves 10 times and more for the same technical
equipment.

To gain more insight into the phenomenon of zonal
flows in plasmas which are now regarded as the main
component in all regimes of drift wave turbulence.
“The progress of plasma physics induced a paradigm
shift from the previous ‘linear, local and determinis-
tic’ view of turbulent transport to the new ‘nonlinear,
nonlocal (both in real and wave number space), statis-
tical’ view of turbulent transport. Physics of the drift
wave-zonal flow system is a prototypical example
of this evolution in understanding the turbulence
and structure formation in plasmas” [13]. In [14], a
modulational instability of Rossby/plasma drift
waves leads to the generation of zonal jets through
a process in which the wave amplitudes are initially
well approximated by a kite, a cluster consisting
of two triads connected via two modes. The study
of the behaviour of associated dynamical phases
could lead to a deeper understanding of zonal jet

34002-p4

Fig. 2: (Colour on-line) Upper panel: plots of dynamical phases as functions of time, for a butterfly with Z, =
each frame, @q(t) is the (red) solid line and ¢ (t) is the (black) dashed line. Initial conditions aq = 0.3, a = 0.7; and conserved
quantities Iop = 1.1, I234 = I23p = 0.5 for all frames. Initial conditions for the phases and corresponding cubic conserved quantities:
left: o =y =0, I = 0; middle: @, =0, pp =7/2, Ip =0.13; right: v, = ¢» =7/2, I = 0.36. Middle panel: plots of the modes’
amplitudes of a butterfly as functions of time, same initial conditions and parameters as in the corresponding left, middle and
right frames of the upper panel. Connecting mode C1 is the (blue) dotted line, Ca, is the (green) long-dash-dotted line, C3,
is the (green) long-dashed line, C; is the (purple) short-dash-dotted line, C; is the (purple) short-dashed line. Lower panel:
plot of amplitudes squared, as functions of time, same initial conditions and parameters as in the corresponding left, middle
and right frames of upper and middle panels. Colours as above. To facilitate the view, C%,, C%, are shifted upwards by the
value 1, and C? is shifted upwards by the value 1.75. Here, in all three panels, the horizontal axis denotes the non-dimensional
time; the vertical axis denotes the phase in the upper panel and the amplitudes in the middle and lower panels.

Zy =1. For

formation. Structure formation (for 3-wave resonance
processes) is presented in [15], examples of non-local
interactions are given in [16] as well as the cases of
“weak” locality (waves with wave numbers of order
n and n? can form a resonance cluster, while waves
with wave numbers of order n and n3 cannot); effects
of initial energy distribution among the modes of a
cluster are studied in [9]. In this letter we identify
the dynamical phase as an additional important
parameter for any theoretical study of nonlinear
wave systems. We would like to point out that
some equations for the dynamical phase of a triad
have been known for more than 40 years in plasma
physics and even earlier in nonlinear optics (e.g. eq.
(3.31), [17]). We consider as our material impact
in this métier the detailed study of the effect of
dynamical phase on the nonlinear evolution of a triad
and a butterfly.

To guide and improve the performance and analysis
of laboratory experiments. We showed that non-zero
phases can dramatically reduce the variability of the
oscillations (figs. 1 and 2, left columns). It would
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then be possible to tune initial conditions and/or
forcing (in rotating water tanks, for example) in
order that the measurement of the resonant modes’
oscillations be less subject to errors. In [2] results
of laboratory experiments with gravity-capillary
waves are presented. The corresponding dynamical
system for three connected triads is written out
and solved explicitly. The authors report qualitative
agreement of the observation with the solutions of
the dynamical system though the magnitudes of
observed amplitudes are higher than those theoret-
ically predicted. For all calculations the dynamical
phase of the initially excited triad was set to = which
might be the source of this discrepancy.

— To interpret the results of numerical simulations. For
instance, in [1] a generic model of intra-seasonal oscil-
lations in the Earth’s atmosphere has been presented
which describes the processes with periods of the
order of 30-90 days. In this model, a dynamical phase
has not been taken into account yet. A new time scale,
T > 7, which is clearly observable in fig. 2, corre-
sponds, for the resonant triads of atmospheric plane-
tary waves, to periods of the order of 2-5 years. This
is in the time range of climate variability which might
imply that in numerical modeling of climate variabil-
ity the control of the dynamical phase is a matter of
prodigious importance.
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