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Abstract: Computations with algebraic curves and surfaces are very well suited for being

treated with computer algebra. Many aspects of computer algebra need to be combined for

successfully solving problems in this area, e.g. computations with algebraic coefficients, solution

of algebraic equations and elimination theory, and derivation of power series approximations of

branches. We will describe the application of computer algebra to problems arising in algebraic

geometry. The program system CASA, which has been developed by the author and a group of

students will be introduced.
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1 Introduction

1.1 What is CASA?

Algebraic curves and surfaces will become more and
more important in application areas such as geomet-
ric modeling and robotics, see e.g. [Baj92a] and
[Hof89]. The system SHASTRA, which has been de-
veloped by Bajaj [Baj92b], makes extensive use of
algebraic curves and surfaces in modeling physical ob-
jects.
Computations with algebraic curves and surfaces are
very well suited for being treated with computer al-
gebra. Many aspects of computer algebra need to
be combined for successfully solving problems in this
area, e.g. computations with algebraic coefficients,
solution of systems of linear and nonlinear polynomial
equations, factorization and gcd computation over al-
gebraic extensions of the rationals, etc.
The program system CASA (Computer Algebra
Software for constructive Algebraic geometry) can
perform computations and reasoning about geometric
objects defined by algebraic equations.
CASA has been developed at RISC-LINZ over the last
years by a research group under the direction of the
author. Other major contributors to CASA have been
R. Gebauer, M. Kalkbrener, M. Mňuk, J.R. Sendra,
B. Wall, D. Wang. Earlier versions of CASA have
been described in [Geb91] and [Wal93a].
The operations available in CASA include
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• ideal theoretic operations +, ∗,∩, /,

• creating algebraic sets in different representations,

• generating curves of fixed multiplicities at given
points,

• intersection, union, and difference of algebraic sets,

• computing tangent cones and tangent spaces,

• computation of the dimension of an algebraic set,

• decomposition into irreducible components,

• transformations of algebraic sets to hypersurfaces,

• computation of the genus of curves,

• rational parametrization of curves,

• implicitization of parametrically given algebraic
sets,

• Puiseux series expansions of algebraic curves,

• plotting both explicitly and implicitly given curves
and surfaces.

CASA is built on top of the Maple computer algebra
system. Currently the system CASA 2.1 runs under
Maple V.2. A manual is available as [Mňu93]. CASA
can be obtained by sending e-mail to the author.

1.2 Representation of algebraic curves

Although CASA is able to deal with algebraic sets
in higher dimension, let us explain some of its inter-
nal representations by looking at algebraic curves. A
curve might be represented in CASA in the following
ways.

(a) Implicit representation: the curve C is given by a
defining polynomial, e.g. as the zeros of the equation

f(x, y) = x6 + 3x4y2 − 4x2y2 + 3x2y4 + y6 = 0.



See Figure 1 for a plot of this curve in the affine plane
over R.
(b) Parametric representation: C is a rational curve,
so it can be defined as (the Zariski closure of) the
points (x, y) resulting from giving special values to
the parameter t in the rational functions
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where

p1(t) = 2144374784t6 − 2104338432t5

= −297826560t4 + 151338240t3

= +6914160t2 − 2844072t + 35721,
p2(t) = 778047488t6 − 1619994624t5

= +804314880t4 + 70606080t3

= −32017680t2 + 795096t− 5103,
n(t) = 20123648t6 − 5326848t5

= +2467584t4 − 366336t3

= +81648t2 − 5832t + 729.

(c) Approximation by Puiseux series: locally a curve
can be represented as a set of fractional power series
(Puiseux series) approximations of the branches in
the neighborhood of a point on the curve. So, for
instance, the curve C can be expanded around (0, 0)
into the power series
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(d) Projection onto a hypersurface: a curve in 3–space
can be mapped birationally to a plane algebraic curve.
E.g., the space curve defined by

−y2 + 2xy − z2 + x + 1 = 0,
2y4 − 8y3z + 12y2z2 − 8yz3 + 3x4

−3y2z + 6yz2 − 5z3 + z2 = 0

can be mapped birationally to the plane curve defined
by

2u4 + v4 − 3u2v − 2v3 + v2 = 0,

using the birational correspondence

x = u2 − 1, y = u + v, z = v.

2 A CASA session

After having started Maple V.2, we invoke CASA.

> with(casa):

Welcome to CASA 2.1.
Copyright (C) 1993 Computer Algebra Laboratory,
RISC Linz.
For help type ‘?casa’.

# We let the polynomial f define a curve C1.
# C1im is the implicit representation of C1.
# This curve is investigated in [Wal93b].

> read(f);

f := −xy4 + 2xy5 + y6x + 2y8x − y4x3 − x3y2

+y4x4 + 4x2y4 − 2x2y3 − 2y5x2 + 3yx5 + 7y2x4

−4y7x − 3y6x2 + 2y5x4 − 7yx6 − 2y3x4 − 2y2x5

+5x3y3 − 6y5x3 + 4y4x5 − 2y8 + y7 + y9 − 2x7

+2x8

> C1im:=mkImplAlgSet([f],[x,y]);

C1im := algebraic set(
[−xy4 + 2xy5 + y6x + 2y8x − y4x3 − x3y2

+y4x4 + 4x2y4 − 2x2y3 − 2y5x2 + 3yx5 + 7y2x4

−4y7x − 3y6x2 + 2y5x4 − 7yx6 − 2y3x4 − 2y2x5

+5x3y3 − 6y5x3 + 4y4x5 − 2y8 + y7 + y9 − 2x7

+2x8],
[x, y], attr)

# Obviously the origin (0,0) is a singularity
# of C1. We expand the branches around (0, 0)
# into Puiseux series.

> C1plac:=convertRep(C1im,impl,plac,[0,0]);

C1plac := algebraic set([
[proc(powparm) ... end, proc(powparm) ... end],
[proc(powparm) ... end, proc(powparm) ... end],
[proc(powparm) ... end, proc(powparm) ... end],
[proc(powparm) ... end, proc(powparm) ... end]],
[t], attr)

# The result consists of procedures for determining
# the coefficients of these power series, which can
# be displayed by the show–algebraic–set command.

> shAlgSet(C1plac,7);

The algebraic set is known to have the following prop-
erties:

It is given by the following places:

[[t, t2 − 2t4 + 17t6 + O(t7)],
[t, 2t2 + 16t4 + 112t6 + O(t7)],
[t2,−t2 − t3 − 1/2t5 − 3/2t6 + O(t7)],
[t3, t + 1/3t5 + O(t7)]]

# CASA does reliable plots of implicitly defined
# algebraic sets, in contrast to the plotting
# routines implemented in Maple V.2.

> plotAlgSet(C1im,x=-2..2,y=-1..3,

numpoints=200);

# The result is given in Figure 2.

# Let us try to decompose C1 into irreducible
# components.

> decompose(C1im,absolute);

algebraic set(
[x4 − x3 − 2x2y − xy2 + 2xy4 + y5], [x, y], attr),

algebraic set(
[x4 − 3/2x2y + 1/2y2 − y3 + 1/2y4], [x, y], attr)

# So C1 is the union of two curves, C2 and C3.
# C3 turns out to have genus 0, so it can be
# rationally parametrized.

> C2im:="[1];

C2im := algebraic set(
[x4 − x3 − 2x2y − xy2 + 2xy4 + y5], [x, y], attr)

> C3im:=""[2];



C3im := algebraic set(
[x4 − 3/2x2y + 1/2y2 − y3 + 1/2y4], [x, y], attr)

> genus(C2im);

3

> genus(C3im);

0

# We convert the implicit representation of C1

# into a parametric representation ...

> C3par:=convertRep(C3im,impl,para);

C3par := algebraic set(

[
t3 − 6t2 + 9t − 2

2t4 − 16t3 + 40t2 − 32t + 9
,

t2 − 4t + 4

2t4 − 16t3 + 40t − 32t + 9
],

[t], attr)

# ... and check the result.

> xpar:=represent(C3par)[1]:

> ypar:=represent(C3par)[2]:

> f3:=represent(C3im)[1]:

> simplify(subs({x=xpar,y=ypar},f3));
0

# Now let us consider a space curve C4 and
# a surface S.

> read(eqns);

> eqns:=[−y2z2 + 10y2z − yz2 − 25y2

+6yz + x − 5y + 1,
y3z2 − 10y3z + 25y3 − y2z + 5y2

−yz + y]

> C4im:=mkImplAlgSet(eqns);

C4im := algebraic set(
[−y2z2 + 10y2z − yz2 − 25y2 + 6yz + x − 5y + 1,
y3z2 − 10y3z + 25y3 − y2z + 5y2 − yz + y],
[x, y, z], attr)

> read(g);

g:= x2y + y4 − yz2

> Sim:=mkImplAlgSet([g]);

Sim := algebraic set([x2y + y4 − yz2], [x, y, z], attr)

> plotAlgSet(Sim,x=-1..1,y=-1..1,z=-1..1,

numpoints=40);

# The result is given in Figure 3.

> C5im:=implIntersect(C4im,Sim);

C5im := algebraic set(
[x2y + y4 − yz2,
−y2z2 + 10y2z − yz2 − 25y2 + 6yz + x − 5y + 1,
y3z2 − 10y3z + 25y3 − y2z + 5y2 − yz + y],
[z, x, y], attr)

> dimension(C5im);

1

# So the intersection of C4 and S is a curve C5.

> decompose(C4im);

algebraic set(
[−1064y2 − 16x2y + 65z − 44x − 438y − 197yx

−306y2x + 2zx + zx2 − 8y2x2 − x3y + 2x3y2

−108,
−11y3x − 76y3 + x2y3 − 15y2x − 15y2 − 3yx
−3y − x − 1,
4z2 + zx − 23z − 2y2x2 + 22y2x + 152y2 + 41yx
+106y + 16x + 36 − x2y,
20yz + zx + 5z − 152y2 − x2y − 54y − 19yx
−22y2x + 2y2x2 − 4],
[x, y, z], attr),

algebraic set([y, x + 1], [x, y, z], attr)

# Actually C5 is the union of a line and a curve C6.

> C6im:=mkImplAlgSet(Groebnerbasis("[1],

plex));

C6im := algebraic set(
[x − yz2 − z + 5yz + 2,
25y2 − z + y2z2 + 5y − 10y2z − yz + 1],
[x, y, z], attr)

# We convert C6 into projected representation,
# i.e. as a plane curve and a rational map into 3-space.

> C6proj:=convertRep(C6im,impl,proj);

C6proj := algebraic set(
[ [−174z + 91 − 59z3 + 126z2 − z5 + 13z4

+(−114z − 3z3 + 34z2 + 95)x
+(25 + z2 − 10z)x2 ],

[
z2x − 5zx− z + 2

z2 − 5z − 1
,

z − 2 − x

z2 − 5z − 1
, z] ],

[x, z], attr)

# Converting back to implicit representation we get C6im.

> proj2impl(C6proj);

algebraic set([2 − x3 + 5x3x2 − x2

3
x2 + x1,

1 − x3 + 5x2 − x3x2 − 10x3x
2

2
+ x2

3
x2

2
+ 25x2

2
],

[x1, x2, x3], attr)

# Now let us demonstrate some arithmetic operations
# on algebraic sets.
# We start from the curve C3.

> plotAlgSet(C3im,x=-2..2,y=-1..3,

numpoints=200);

# The result is given in Figure 4.
# We consider three sets of points, P1, P2, P3.
# We add P3 to the algebraic set C3 and compute
# the implicit representation of this union V1.
# Then we subtract P2 from V1 and compute the
# Zariski closure V2 of the result.
# Finally we subtract P3 from V2 and compute the
# Zariski closure V3 of the result.
# V3 turns out to be the original curve C3.

> P1im:=mkImplAlgSet([x,(y-2)*(y+2)],[x,y]);

P1im := algebraic set([x, (y-2) (y+2)], [x, y], attr)

> V1:=implUnionLCM(C7im,P1im);

V1 := algebraic set(
[−4y2 + 8y3 − 3y4 + 12x2y − 8x4

−2y5 + y6 − 3x2y3 + 2x4y2,
y2x − 2y3x + y4x − 3x3y + 2x5],
[x, y], attr)

> P2im:=mkImplAlgSet([x,y*(y-2)],[x,y]);



P2im := algebraic set([x, y (y - 2)], [x, y], attr)

> V2:=implIdealQuo(V,P2im);

V2 := algebraic set(
[y5 − 3y3 + 2y2 − 3y2x2 + 2x4y − 6x2y + 4x4,
y2x − 2y3x + y4x − 3x3y + 2x5 ],
[x, y], attr)

> P3im:=mkImplAlgSet([x,y*(y+2)],[x,y]);

P3im := algebraic set([x, y (y + 2)], [x, y], attr)

> V3:=implIdealQuo(V1,P3im);

V3 := algebraic set(
[2x4 − 3x2y + y2 − 2y3 + y4 ], [x, y], attr)
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