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Abstract: In solving systems of algebraic equations we encounter basically two different
situations. If the solution space is zero-dimensional we can list the finitely many solutions. This
approach, however, fails if the dimension of the solution space is non-zero. We propose to use a
parametrized representation for this situation, i.e. the solutions are represented by a birational
map with ground coefficients onto an affine or projective linear hypersurface.
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1 Parametric versus implicit
representation of solutions

Systems of algebraic equations appear in many ap-
plication areas of computer algebra, eg. geometric
theorem proving, robotics, chemistry, etc. There are
several approaches available for carrying out the elim-
ination theory of algebraic equations, i.e. transform-
ing a system of algebraic equations into a triangular
system, in which the variables are introduced one at
a time. The most widely know approaches are resul-
tants, Grobner bases, and characteristic sets. Once
such a triangular system has been achieved, we may
encounter two basically different situations. If the so-
lution space is zero-dimensional we can list the finitely
many solutions. This approach, however, fails if the
dimension of the solution space is non-zero. We pro-
pose to use a parametrized representation for this sit-
uation, i.e. the solutions are represented by a bira-
tional map with ground coefficients onto an affine or
projective linear hypersurface.

For illustration let us look at two examples.

Example 1: We consider the intersection of the tac-
node curve and the circle, i.e. the system of equations
is
20t — 3%y + 2 — 28+ = 0,
P +y* -1 = 0.
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An equivalent triangular system is

3yt + P =32 —3y+2 = 0,
21yt o1 =
So there are exactly 4 solutions of the first equation
in y, every one of which gives rise to 2 solutions in
x, i.e. the number of solutions of the system is 8,
counting multiplicities. In fact, as the real solutions
we get
(0,1), (2 — fold)
(’7/970‘4—6—4/9)7 (_’7/97(1"’_6_4/9)7

where

o = {/233/720 + VTA/27,

6 = {/233/720 - VTa/21,
v =+/—8la2 — 162a3 — 8132 + T2a + 723 + 65.

The solution variety is 0—dimensional and the finitely
many solutions can be listed explicitly. O

Example2: We consider the irreducible space curve
b from the CASA sample session in [Geb91]. The
defining equations for b are

10y® — 8zy? — 5y% + 102y — 8zy — 6y

+62% — 3222 +422 -9 = 0,
32z — 3z + 10y — 10zy + Ty + 152>
—28x+6 = 0,
3yz — 32— 2%+ 5xy — 5y — 62> + 11z —3 = 0,
322 — 122 — 68y* + 80xy — 68y — 9922
+188z —45 = 0.



There are infinitely many points on b, so obviously we
cannot list all the solutions. Taking z as an indeter-
mined parameter we could, e.g. by a Grobner basis
computation, reduce the equations for b to

(z+2)x— 100>+ (3—142)y+ 22 +92+1 = 0,
50y° + (1402 — 5)y* + (942% — 582 — 24)y
—62° — 742> — 422 -5 = 0.

However, Grobner bases do not specialize [Wei92], so
for particular values of z this triangular system might
be incorrect. This problem can be overcome by fur-
ther investigations, as described in [Wei92]. A more
serious drawback is the fact that for determining the
values of y and z corresponding to a fixed z we again
have to solve a polynomial equation.

Alternatively we could determine the rational
parametrization

1253 + 400t2 + 445t + 204

2d(t) ’
5(25t% + 65t2 + 23t — 27)
vo= 2d(t) :
Lo 5(25t3 + 80t% + 71t + 12)
2d(t)

where
d(t) = 125t3 + 550t* + 835t + 441.

(see [Geb91]). Such a rational parametrization gives
us all but a finite number of points of the curve b, and
moreover we do not have to solve polynomial equa-
tions in order to determine the values of x, y, and z
corresponding to a fixed value of the parameter ¢. O

2 Parametrization of algebraic
curves
A plane algebraic curve C' over the field K of char-

acteristic 0 can be represented in different ways, for
instance as the set of zeros of a polynomial equation

C ={(z,y) | 22" =32"y+y*—2y°+y* = 0, 2,y € C},
or as the set of values of rational functions

(@(1), x(®)) |

o(t) = — 18t 42143 —7t—2
T 18t%448t3+64t24+40t+9°

_ 36t 4+84t3+73t2428t+4
x(t) = TSt rasiFroiZrdoro | € C}.

c={

We call the first representation implicit and the sec-
ond explicit or parametric.

Definition: The irreducible affine curve C defined by
the irreducible polynomial f(z,y) € K|x,y] is ratio-
nal or parametrizable iff there exist rational functions

o(t), x(t) € K(t) such that

(1) for almost all (i.e. for all but a finite number of
exceptions) to € K, (¢(to), x(t0)) is a point on C, and
(2) for almost every point (zg,yo) on C there is a
to € K such that (o, y0) = (¢(to), x(to))-

If ¢, x satisfy the conditions (1) and (2), (¢, x) is a
rational parametrization of C. O

So the curve C' is parametrizable if and only if C
is birationally equivalent to a line. Not every plane
curve is parametrizable. The problem is to determine
if a curve C can be parametrized and if so find a
parametrization.

Parametrization problem:

given: an irreducible polynomial f(z,y) € Klz,y]
defining an irreducible affine algebraic plane curve C'
decide: the rationality of C'

find: (if C is rational) rational functions ¢(t), x(t) €
K(t) such that (¢, x) is a rational parametrization of
C. a

In [SeW91] an algebraic algorithm is described for
solving the parametrization problem for any plane al-
gebraic curve. This algorithm has been implemented
in the program system CASA. An alternative ap-
proach is decribed in [Sch92]. Recently an improve-
ment of Hilbert and Hurwitz’ method [HiH90] for
birationally transforming curves has been developed
[SeW93], which should allow a considerable speed-up
of the parametrization algorithm.

Space curves can be treated by finding a suitable bi-
rational projection to a plane curve, parametrizing
the plane curve, and applying the inverse of the pro-
jection to the parametrization of the plane curve. For
surfaces the problem becomes more involved. An al-
gorithmic approach is currently under development
[Sch93].

2.1 The Hilbert-Hurwitz method

We describe briefly the approach in [HiH90] to finding
rational points on rational curves and also to finding
parametrizations of such curves. We consider plane
algebraic curves in projective space, i.e. a curve is de-
fined by a homogeneous polynomial F'(z1,z2,z3) in
the polynomial ring K{z1, 22, 23]. This is necessary
because only when we take into account all the sin-
gularities of such a curve in projective space will we
be able to parametrize the curve. However, we can
always think of a projective curve as an affine curve
with finitely many additional points on the line at
infinity.

Let F(z1, 22, x3) be a homogeneous polynomial of de-
gree d defining the rational curve C. Let H be a
generic representative of a linear system of curves of
degree d — 2. If we force H to pass through every r—
fold singularity on C' with multiplicity »r—1, then H is
expressed in terms of d — 1 indeterminate coefficients
as

H=t1¢p1+...+ta—10q—1, (1)



where the ¢;’s are homogeneous polynomials of degree
d — 2 over the field K. l.e. H is a projective linear
system of curves of degree d—2 and of dimension d—2.
For arbitrary parameters A1, ..., Aj—1 the curve

(M1 + ...+ Ai—10a-1)

intersects the curve C in the fixed singular points
of C' and in d — 2 additional points depending on
Al, ey Adfl.

Now take three independent elements ®,, ®o, 3 of
the linear system H and transform F' by means of

Y1:Y2 1y3 =1 : Po: O3 (2)

to obtain an irreducible form G(yi,y2,ys3) of degree
d — 2 over K. Since this transformation is rational,
almost every rational point on C' corresponds to a ra-
tional point on the curve C’ defined by G and vice
versa. Hence, the original problem is reduced to deal-
ing with the curve C’ which is also rational but of de-
gree d — 2. Continuing this process we finally arrive
at a rational cubic or conic. From a parametrization
of C' we can get a parametrization of C by applying
the inverse of the rational transformation (2).

The main difficulty of this approach is that, in gen-
eral O(d) rational transformations have to be applied
in order to reduce the original curve to a cubic or
conic. This renders the method all but impossible in
practical applications.

2.2 A faster method

The procedure described in [SeW93] allows to con-
struct a family of exactly d — 4 regular points on a
curve C' of degree d by applying a single birational
transformation. Forcing the linear system H to pass
through these additional d — 4 points results in a re-
duction of the dimension of the system H to 2, i.e.

H = t1¢1 + t2g2 + t3¢3. (3)

So if we now transform the curve C by the transfor-
mation (2), we will obtain a conic Cy which is bira-
tionally equivalent to C. A parametrization of Cs is
then subject to the inverse of the transformation (2)
to get a parametrization of C.

In this process we need to compute only 2 birational
transformations in contrast to O(d) such transforma-
tions in the original approach by Hilbert and Hurwitz.

Example 3: Let C be the curve of degree 10 defined
by the the polynomial F'.

F(x1,20,73) =
r17axd + riwdas + sl + afadad — 19232523
—5317%3:3:17% + :17?3:23:% + x?x% + x?xg + 43:0?3:%:1%
+axtried + 1202322 + 57230522 — 19232323
—36xir3ws + 25203 + 21afvizs — 15230303,
The singularities of C are P, = (1:1:1), P, =(0:
0:1), P5=(1:0:0), P,=(0:1:0), where P; is a
4—fold point and P», P35, P, are 5—fold points.

F={1-2t:1+2¢t:1+ 4t)}a(t):07

where a(t) = 5984t5 + 13936t> + 7808t* — 7240t3 —
8762t% — 2965t — 327, is a family of 6 different regular
points on C. Now if we force a linear system of curves
of degree 8 to pass through Py, P>, P3, Py with mulit-
plicity 3,4, 4,4, respectively, and through the points
in F, the resulting system is of dimension 2, i.e.

H(xy,w2,23) = ti¢1 + tago + t3¢3.

Taking 3 curves ®1, o, 3 in the system H and ap-
plying the birational transformation

y1 = P (1, 22, 23),
Y2 = ¢2(I1;I2;I3)7
yz = P3(1, 22, 23),

we arrive at the conic Cy defined by

G(y1,y2,y3) =
—3y3 — dy1y2 + yi + Byays + 4y1ys — 5y3 = 0.

C5 has the parametrization

82 — 2t

7 —23t% 4 28t — 5
3244t —1

—1.
9> +12t—3 P

Y1 y Y2 =
By an application of the inverse of the birational

transformation we get the following parametrization

of C: . .
a1(t) (1)
where
p1(t) = —36417t° 4 47205¢* — 2311843 + 492612
369t — 3,
qi(t) = 216175t° — 283559t* + 14698613

—373541% + 4631t — 223,
pa(t) = 3(12139t°5 — 15735t* + 7706t> — 16422
+123t + 1),
48435 + 178211* — 23234t3 + 10034¢2
—1801t + 113. O

ga2(t) =

3 An Example: The
Curve to a Parabola

Offset

Offset curves are of central interest in geometric mod-
eling, see for instance Hoffmann [Hof89]. An offset
curve consists of those points which are at a fixed
distance from a given curve.

We consider the offset curve to a parabola in the sense
of Farouki and Neff [FaN90]. The parabola Cp can
be parametrized as

r=1t Y= 2.

Imagine that a circle of radius 1 is moved along the
points (,?) of the parabola and intersected with the
normal line (z —t) = —2t(y — t?) to the parabola at



(t,t?). The offset curve Co to the parabola is then
defined by

(x—t)?2+ (y—1t3)2—-1=0, (circle)
(x —t) + 2ty — t?) = 0, (normal line)

or, after elimination of the parameter ¢, by the single
equation

1625 4+ 162%y? — 402ty — 472* — 3222y° + 622y
+2822 + 16y* — 40y + 9y + 40y — 25
=0.

Co turns out to be a rational curve, so we can solve
this equation by expressing the x and y coordinates
of a point on Cp in terms of a parameter t, e.g.

pi(t) pa(t)
z(t) = »oylt) = ;
where

pi(t) = 2(26351t* — 44574¢3 + 22416t — 4514t
+321),

qi(t) = 5(91395t% — 843643 + 29202t> — 4492t
+259),

p2(t) = —307089223t5 4 42239245815

—240991145t* + 72992460t
—12376745t2 4+ 1113738t — 41543,

@(t) = 25(12338325t5 — 17055630t°
+9812603t* — 3007492¢3 + 517883¢>
—47502t + 1813).
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