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Abstract: In solving systems of algebraic equations we encounter basically two different

situations. If the solution space is zero-dimensional we can list the finitely many solutions. This

approach, however, fails if the dimension of the solution space is non-zero. We propose to use a

parametrized representation for this situation, i.e. the solutions are represented by a birational

map with ground coefficients onto an affine or projective linear hypersurface.
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1 Parametric versus implicit

representation of solutions

Systems of algebraic equations appear in many ap-
plication areas of computer algebra, eg. geometric
theorem proving, robotics, chemistry, etc. There are
several approaches available for carrying out the elim-
ination theory of algebraic equations, i.e. transform-
ing a system of algebraic equations into a triangular
system, in which the variables are introduced one at
a time. The most widely know approaches are resul-
tants, Gröbner bases, and characteristic sets. Once
such a triangular system has been achieved, we may
encounter two basically different situations. If the so-
lution space is zero-dimensional we can list the finitely
many solutions. This approach, however, fails if the
dimension of the solution space is non-zero. We pro-
pose to use a parametrized representation for this sit-
uation, i.e. the solutions are represented by a bira-
tional map with ground coefficients onto an affine or
projective linear hypersurface.

For illustration let us look at two examples.

Example 1: We consider the intersection of the tac-
node curve and the circle, i.e. the system of equations
is

2x4 − 3x2y + y2 − 2y3 + y4 = 0,

x2 + y2 − 1 = 0.
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An equivalent triangular system is

3y4 + y3 − 3y2 − 3y + 2 = 0,

x2 + y2 − 1 = 0.

So there are exactly 4 solutions of the first equation
in y, every one of which gives rise to 2 solutions in
x, i.e. the number of solutions of the system is 8,
counting multiplicities. In fact, as the real solutions
we get

(0, 1), (2 − fold)

(γ/9, α + β − 4/9), (−γ/9, α + β − 4/9),

where

α = 3

√

233/729 +
√

74/27,

β = 3

√

233/729−
√

74/27,

γ =
√

−81α2 − 162αβ − 81β2 + 72α + 72β + 65.

The solution variety is 0–dimensional and the finitely
many solutions can be listed explicitly. 2

Example2: We consider the irreducible space curve
b from the CASA sample session in [Geb91]. The
defining equations for b are

10y3 − 8xy2 − 5y2 + 10x2y − 8xy − 6y

+6x3 − 32x2 + 42x − 9 = 0,

3xz − 3z + 10y2 − 10xy + 7y + 15x2

−28x + 6 = 0,

3yz − 3z − 2y2 + 5xy − 5y − 6x2 + 11x − 3 = 0,

3z2 − 12z − 68y2 + 80xy − 68y − 99x2

+188x− 45 = 0.



There are infinitely many points on b, so obviously we
cannot list all the solutions. Taking z as an indeter-
mined parameter we could, e.g. by a Gröbner basis
computation, reduce the equations for b to

(z + 2)x − 10y2 + (3 − 14z)y + z2 + 9z + 1 = 0,

50y3 + (140z − 5)y2 + (94z2 − 58z − 24)y

−6z3 − 74z2 − 42z − 5 = 0.

However, Gröbner bases do not specialize [Wei92], so
for particular values of z this triangular system might
be incorrect. This problem can be overcome by fur-
ther investigations, as described in [Wei92]. A more
serious drawback is the fact that for determining the
values of y and x corresponding to a fixed z we again
have to solve a polynomial equation.
Alternatively we could determine the rational
parametrization

x =
125t3 + 400t2 + 445t + 204

2d(t)
,

y =
5(25t3 + 65t2 + 23t− 27)

2d(t)
,

z = −5(25t3 + 80t2 + 71t + 12)

2d(t)

where

d(t) = 125t3 + 550t2 + 835t + 441.

(see [Geb91]). Such a rational parametrization gives
us all but a finite number of points of the curve b, and
moreover we do not have to solve polynomial equa-
tions in order to determine the values of x, y, and z
corresponding to a fixed value of the parameter t. 2

2 Parametrization of algebraic

curves

A plane algebraic curve C over the field K of char-
acteristic 0 can be represented in different ways, for
instance as the set of zeros of a polynomial equation

C = {(x, y) | 2x4−3x2y+y2−2y3+y4 = 0, x, y ∈ C},

or as the set of values of rational functions

C = { (φ(t), χ(t)) |
φ(t) = − 18t

4+21t
3
−7t−2

18t4+48t3+64t2+40t+9 ,

χ(t) = 36t
4+84t

3+73t
2+28t+4

18t4+48t3+64t2+40t+9 , t ∈ C}.

We call the first representation implicit and the sec-
ond explicit or parametric.

Definition: The irreducible affine curve C defined by
the irreducible polynomial f(x, y) ∈ K[x, y] is ratio-

nal or parametrizable iff there exist rational functions
φ(t), χ(t) ∈ K(t) such that

(1) for almost all (i.e. for all but a finite number of
exceptions) t0 ∈ K, (φ(t0), χ(t0)) is a point on C, and

(2) for almost every point (x0, y0) on C there is a
t0 ∈ K such that (x0, y0) = (φ(t0), χ(t0)).

If φ, χ satisfy the conditions (1) and (2), (φ, χ) is a
rational parametrization of C. 2

So the curve C is parametrizable if and only if C
is birationally equivalent to a line. Not every plane
curve is parametrizable. The problem is to determine
if a curve C can be parametrized and if so find a
parametrization.

Parametrization problem:

given: an irreducible polynomial f(x, y) ∈ K[x, y]
defining an irreducible affine algebraic plane curve C

decide: the rationality of C

find: (if C is rational) rational functions φ(t), χ(t) ∈
K(t) such that (φ, χ) is a rational parametrization of
C. 2

In [SeW91] an algebraic algorithm is described for
solving the parametrization problem for any plane al-
gebraic curve. This algorithm has been implemented
in the program system CASA. An alternative ap-
proach is decribed in [Sch92]. Recently an improve-
ment of Hilbert and Hurwitz’ method [HiH90] for
birationally transforming curves has been developed
[SeW93], which should allow a considerable speed-up
of the parametrization algorithm.

Space curves can be treated by finding a suitable bi-
rational projection to a plane curve, parametrizing
the plane curve, and applying the inverse of the pro-
jection to the parametrization of the plane curve. For
surfaces the problem becomes more involved. An al-
gorithmic approach is currently under development
[Sch93].

2.1 The Hilbert-Hurwitz method

We describe briefly the approach in [HiH90] to finding
rational points on rational curves and also to finding
parametrizations of such curves. We consider plane
algebraic curves in projective space, i.e. a curve is de-
fined by a homogeneous polynomial F (x1, x2, x3) in
the polynomial ring K[x1, x2, x3]. This is necessary
because only when we take into account all the sin-
gularities of such a curve in projective space will we
be able to parametrize the curve. However, we can
always think of a projective curve as an affine curve
with finitely many additional points on the line at
infinity.

Let F (x1, x2, x3) be a homogeneous polynomial of de-
gree d defining the rational curve C. Let H be a
generic representative of a linear system of curves of
degree d − 2. If we force H to pass through every r–
fold singularity on C with multiplicity r−1, then H is
expressed in terms of d− 1 indeterminate coefficients
as

H = t1φ1 + . . . + td−1φd−1, (1)



where the φi’s are homogeneous polynomials of degree
d − 2 over the field K. I.e. H is a projective linear
system of curves of degree d−2 and of dimension d−2.
For arbitrary parameters λ1, . . . , λd−1 the curve

(λ1φ1 + . . . + λd−1φd−1)

intersects the curve C in the fixed singular points
of C and in d − 2 additional points depending on
λ1, . . . , λd−1.
Now take three independent elements Φ1, Φ2, Φ3 of
the linear system H and transform F by means of

y1 : y2 : y3 = Φ1 : Φ2 : Φ3 (2)

to obtain an irreducible form G(y1, y2, y3) of degree
d − 2 over K. Since this transformation is rational,
almost every rational point on C corresponds to a ra-
tional point on the curve C′ defined by G and vice
versa. Hence, the original problem is reduced to deal-
ing with the curve C′ which is also rational but of de-
gree d − 2. Continuing this process we finally arrive
at a rational cubic or conic. From a parametrization
of C′ we can get a parametrization of C by applying
the inverse of the rational transformation (2).
The main difficulty of this approach is that, in gen-
eral O(d) rational transformations have to be applied
in order to reduce the original curve to a cubic or
conic. This renders the method all but impossible in
practical applications.

2.2 A faster method

The procedure described in [SeW93] allows to con-
struct a family of exactly d − 4 regular points on a
curve C of degree d by applying a single birational
transformation. Forcing the linear system H to pass
through these additional d − 4 points results in a re-
duction of the dimension of the system H to 2, i.e.

H = t1φ1 + t2φ2 + t3φ3. (3)

So if we now transform the curve C by the transfor-
mation (2), we will obtain a conic C2 which is bira-
tionally equivalent to C. A parametrization of C2 is
then subject to the inverse of the transformation (2)
to get a parametrization of C.
In this process we need to compute only 2 birational
transformations in contrast to O(d) such transforma-
tions in the original approach by Hilbert and Hurwitz.

Example 3: Let C be the curve of degree 10 defined
by the the polynomial F .

F (x1, x2, x3) =
x1x

4
2x

5
3 + x1x

5
2x

4
3 + x2

1x
3
2x

5
3 + x5

1x
2
2x

3
3 − 19x2

1x
5
2x

3
3

−53x3
2x

4
2x

3
3 + x5

1x2x
4
3 + x5

1x
5
2 + x5

1x
5
3 + 43x3

1x
3
2x

4
3

+x4
1x

3
2x

3
3 + 12x4

1x
4
2x

2
3 + 57x3

1x
5
2x

2
3 − 19x5

1x
3
2x

2
3

−36x4
1x

5
2x3 + x5

2x
5
3 + 21x5

1x
4
2x3 − 15x3

1x
2
2x

5
3.

The singularities of C are P1 = (1 : 1 : 1), P2 = (0 :
0 : 1), P3 = (1 : 0 : 0), P4 = (0 : 1 : 0), where P1 is a
4–fold point and P2, P3, P4 are 5–fold points.

F = {(1 − 2t : 1 + 2t : 1 + 4t)}a(t)=0,

where a(t) = 5984t6 + 13936t5 + 7808t4 − 7240t3 −
8762t2−2965t−327, is a family of 6 different regular
points on C. Now if we force a linear system of curves
of degree 8 to pass through P1, P2, P3, P4 with mulit-
plicity 3, 4, 4, 4, respectively, and through the points
in F , the resulting system is of dimension 2, i.e.

H(x1, x2, x3) = t1φ1 + t2φ2 + t3φ3.

Taking 3 curves Φ1, Φ2, Φ3 in the system H and ap-
plying the birational transformation

y1 = Φ1(x1, x2, x3),
y2 = Φ2(x1, x2, x3),
y3 = Φ3(x1, x2, x3),

we arrive at the conic C2 defined by

G(y1, y2, y3) =
−3y2

2 − 4y1y2 + y2
1 + 8y2y3 + 4y1y3 − 5y2

3 = 0.

C2 has the parametrization

y1 =
8t2 − 2t

3t2 + 4t − 1
, y2 =

−23t2 + 28t − 5

9t2 + 12t − 3
, y3 = 1.

By an application of the inverse of the birational
transformation we get the following parametrization
of C:

x1 =
p1(t)

q1(t)
, x2 =

p2(t)

q2(t)
, x3 = 1,

where

p1(t) = −36417t5 + 47205t4 − 23118t3 + 4926t2

−369t− 3,
q1(t) = 216175t5 − 283559t4 + 146986t3

−37354t2 + 4631t− 223,
p2(t) = 3(12139t5 − 15735t4 + 7706t3 − 1642t2

+123t + 1),
q2(t) = 4843t5 + 17821t4 − 23234t3 + 10034t2

−1801t + 113. 2

3 An Example: The Offset

Curve to a Parabola

Offset curves are of central interest in geometric mod-
eling, see for instance Hoffmann [Hof89]. An offset
curve consists of those points which are at a fixed
distance from a given curve.
We consider the offset curve to a parabola in the sense
of Farouki and Neff [FaN90]. The parabola CP can
be parametrized as

x = t, y = t2.

Imagine that a circle of radius 1 is moved along the
points (t, t2) of the parabola and intersected with the
normal line (x − t) = −2t(y − t2) to the parabola at



(t, t2). The offset curve CO to the parabola is then
defined by

(x − t)2 + (y − t2)2 − 1 = 0, (circle)
(x − t) + 2t(y − t2) = 0, (normal line)

or, after elimination of the parameter t, by the single
equation

16x6 + 16x4y2 − 40x4y − 47x4 − 32x2y3 + 6x2y
+28x2 + 16y4 − 40y3 + 9y2 + 40y − 25

= 0.

CO turns out to be a rational curve, so we can solve
this equation by expressing the x and y coordinates
of a point on CO in terms of a parameter t, e.g.

x(t) =
p1(t)

q1(t)
, y(t) =

p2(t)

q2(t)
,

where

p1(t) = 2(26351t4 − 44574t3 + 22416t2 − 4514t
+321),

q1(t) = 5(91395t4 − 84364t3 + 29202t2 − 4492t
+259),

p2(t) = −307089223t6 + 422392458t5

−240991145t4 + 72992460t3

−12376745t2 + 1113738t− 41543,
q2(t) = 25(12338325t6 − 17055630t5

+9812603t4 − 3007492t3 + 517883t2

−47502t + 1813).
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