
Flat Matching

Temur Kutsia

Research Institute for Symbolic Computation, Johannes Kepler University,
A-4040 Linz, Austria

Abstract

We study matching in flat theories both from theoretical and practical points of view. A flat
theory is defined by the axiom f(x, f(y), z)

.
= f(x, y, z) that indicates that nested occurrences

of the function symbol f can be flattened out. From the theoretical side, we design a procedure
to solve a system of flat matching equations and prove its soundness, completeness, and mini-
mality. The minimal complete set of matchers for such a system can be infinite. The procedure
enumerates this set and stops if it is finite. We identify a class of problems on which the pro-
cedure stops. From the practical point of view, we look into restrictions of the procedure that
give an incomplete terminating algorithm. From this perspective, we give a set of rules that, in
our opinion, describes the precise semantics for the flat matching algorithm implemented in the
Mathematica system.

1. Introduction

This paper pursues two major goals. The first one is to study theoretical properties of
matching in flat theories, to design a complete procedure to solve flat matching problems,
and to investigate terminating restrictions. The second goal is to formally characterize one
of such restrictions, Mathematica’s flat matching algorithm, give its precise semantics,
and compare it to the theoretically complete and minimal procedure. A flat theory is
defined by the axiom f(x, f(y), z) .= f(x, y, z) that indicates that nested occurrences
of the function symbol f can be flattened out. Function symbols with this property are
called flat function symbols. Their arity is not fixed. The variables x, y, and z are sequence
variables. They can be instantiated by finite, possibly empty, sequences of terms. Flat
symbols appear in the programming language of the Mathematica system, by assigning
to certain symbols the attribute Flat. This property affects both evaluation and pattern
matching in Mathematica.

Matching in flat theories is interesting per se, from the unification theory point of view,
without relating it to any particular implementation. In this paper we study theories with
flexible arity function symbols where some of those symbols can be flat, and variables

Email address: Temur.Kutsia@risc.uni-linz.ac.at (Temur Kutsia).

Preprint submitted to Elsevier 7 May 2008

are of three kinds: individual variables (can be instantiated by a single term), function
variables (can be instantiated by a function symbol or a function variable), and sequence
variables (can be instantiated by a term sequence). Interest to a flat theory is caused by
the fact that it is an example of a theory, not “cooked artificially”, that has infinitary
decidable matching.

Flatness is often confused with associativity. Although these properties are similar,
they are not the same. Even more, flat and associative theories belong to different classes
in the unification/matching hierarchy: associative matching is finitary (minimal complete
set of matchers always exists and is finite), while flat matching is infinitary (minimal com-
plete set of matchers always exists and for some problems it may be infinite). Similarity
can be found if one restricts flat theories to have only individual variables (i.e., forbids
sequence and function variables), and instead of associative matching considers associa-
tive matching with the unit element (AU-matching). Even in this case they are just very
similar, not exactly the same. The reason is hidden in the fact that flat function sym-
bols have flexible arity, while associative functions are binary. The matching problem
f(x, y) ¿ f(a, b) underlines this: The minimal complete set of matchers for it, when f
is associative, is a proper subset of the minimal complete set of matchers for flat f , e.g.
the substitution {x 7→ f(a), y 7→ f(b)} is a matcher for flat f , but not for associative f .
In the latter case f(a) and f(b) are not well-formed terms, because f is binary.

This paper investigates flat matching in details. We introduce rules to solve flat match-
ing equations and impose a control on these rules that gives a solving procedure. We prove
that the procedure enumerates the minimal complete set of matchers, and terminates if
this set if finite. There are flat matching problems that have infinite minimal complete
set of matchers, which implies that flat matching is infinitary. We identify classes of
flat matching problems on which the procedure terminates. We also show how to ob-
tain an incomplete terminating algorithm for arbitrary flat matching problems, slightly
modifying one of the rules in the procedure.

Searching for practically useful terminating restrictions of the flat matching procedure
is the motivation behind the second part of the paper. It represents an attempt to give a
precise semantics for the implementation of flat matching in Mathematica. We describe
Mathematica’s flat matching algorithm and compare it to the theoretically complete
procedure. Obviously, a practically useful method that solves flat matching equations
should be terminating and, hence, incomplete (unless it provides a finite description of
the infinite complete set of flat matchers). Therefore, it is natural that Mathematica’s flat
solving method is incomplete. Interesting questions are what its semantics is, what the
rules behind it are, and how it works. These questions, as far as we know, have not been
formally answered. Informal explanations can be found elsewhere, see, e.g. [37, 25, 16, 36].
The MathGroup Archive [1] contains more than 600 postings that discuss and try to
clarify the flat attribute. It seems that for many people who program in Mathematica
the behavior of flat matching is quite confusing. Understanding proper semantics of
programming constructs is very important to program correctly, and we hope that the
last part of this paper will contribute into clarifying the semantics of Mathematica’s
flat matching. To the best of our knowledge, it gives the first formal account of the
corresponding mechanism implemented in the system.

The paper consists of the following sections: Section 1 is the introduction. In Section 2
the basic definitions are given. In Section 3 the flat matching procedure is defined, its
properties are proved, and some of the terminating restrictions are introduced. Section 4

2

gives a detailed formal account of the flat matching algorithm of Mathematica. Related
work is briefly surveyed in Section 5. The paper ends with concluding remarks given in
Section 6.

2. Preliminaries

We assume some familiarity with the standard notions of the unification theory [3]
and with programming in Mathematica.

First we start with studying flat theories. The alphabet we are using consist of mutually
disjoint countable sets of individual variables VInd, sequence variables VSeq, function
variables VFun, and function symbols F . All the symbols in F have flexible arity. We
will use x, y, z for individual variables, x, y, z for sequence variables, F, G, H for function
variables, and a, b, c, f, g, h for function symbols. The set of variables VInd ∪ VSeq ∪ VFun

is denoted by V. Terms (over F and V) are defined by the following grammar:

t ::= x | x | f(t1, . . . , tn) | F (t1, . . . , tn).

An individual term is a term that is not a sequence variable. When it is not ambiguous,
we write f for the term f() where f ∈ F . In particular, we will always write a, b, c for
a(), b(), c(). Terms are denoted with s, t, r.

The set of variables of a term t is denoted by V(t). We can use the subscripts Ind, Seq,
and Fun to indicate the sets of individual, sequence, and function variables of a term,
respectively. A ground term is a term without variables. These definitions are generalized
for any syntactic object throughout the paper. The head of a term is its root symbol.
The size of a term t, denoted size(t), is the number of symbols in it.

A substitution is a mapping from individual variables to individual terms, from se-
quence variables to finite term sequences, and from function variables to function vari-
ables and symbols such that all but finitely many variables are mapped to themselves.
(We do not distinguish between a singleton term sequence and its sole element.) We will
use lower case Greek letters for substitutions, with ε for the empty substitution.

For a substitution σ, the domain is the set of variables

dom(σ) = {v ∈ V | σ(v) 6= v}.
A substitution can be represented explicitly as a function by a finite set of bindings of
variables in its domain: {v 7→ σ(v) | v ∈ dom(σ)}. For readability, we put term sequences
in parentheses. For instance, the set {x 7→ f(a, y), x 7→ (), y 7→ (a, F (f(b)), x), F 7→ g} is
such a representation of a substitution.

Substitutions are extended to terms:

xσ = σ(x). (f(t1, . . . , tn))σ = f(t1σ, . . . , tnσ).

xσ = σ(x). (F (t1, . . . , tn))σ = σ(F)(t1σ, . . . , tnσ).

In a similar way substitution are extended to term sequences:

(t1, . . . , tn)σ = (t1σ, . . . , tnσ).

We call tσ and (t1, . . . , tn)σ instances of respectively t and (t1, . . . , tn) under σ. We use
s̃, t̃, and r̃ to denote finite, possibly empty, term sequences.

3

Composition of two substitutions σ and ϑ, written σϑ, is defined by s̃(σϑ) = (s̃σ)ϑ
and F (σϑ) = (Fσ)ϑ.

An equation (over F and V) is a pair of individual terms 〈s, t〉, written s
.= t. Substitu-

tions are extended to equations in the usual way. The notion of size extends to sequences,
substitutions and equations:

size(t1, . . . , tn) =
n∑

i=1

size(ti),

size(σ) =
∑

x∈dom(σ)

size(xσ) +
∑

x∈dom(σ)

size(xσ) +
∑

F∈dom(σ)

size(F ()σ),

size(s .= t) = size(s) + size(t).

Given a set E of equations over F and V, we denote by .=E the least congruence relation
on the set of finite sequences of terms (over F and V) that is closed under substitution
application and contains E. The set .=E is called an equational theory defined by E.
Slightly abusing the terminology, we will also call the set E an equational theory or an
E-theory. The signature of E, denoted sig(E), is the set of all function symbols occurring
in E. A function symbol is called free with respect to E if it does not occur in sig(E).

A substitution σ is more general than a substitution ϑ on a set of variables X modulo
an equational theory E, denoted σ ≤·XE ϑ, if there exists a ϕ such that vσϕ

.=E vϑ for all
individual and sequence variables v ∈ X and F ()σϕ

.=E F ()ϑ for all function variables
F ∈ X .

Solving equations in an equational theory E is called E-unification. The fact that the
equation s

.= t has to be solved in an equational theory E is written as s
.=?

E t. If one of
the sides of an equation is ground, then it is called a matching equation, and solving such
equations in a theory E is called E-matching. We write matching equations as s ¿ t,
where t is ground, and indicate that it has to be solved in an E-theory by writing s ¿?

E t.
Let E be an equational theory with sig(E) ⊆ F . An E-matching problem over F is a

finite set of matching equations over F and V:

Γ = {s1 ¿?
E t1, . . . , sn ¿?

E tn}.
An E-matcher of Γ is a substitution σ such that siσ

.=E ti for all 1 ≤ i ≤ n. The
set of all E-matchers of Γ is denoted by matchE(Γ). Γ is E-matchable, or E-solvable, if
matchE(Γ) 6= ∅.

A minimal complete set of E-matchers of Γ is a set S of substitutions with the following
three properties:

(1) (Correctness) S ⊆ matchE(Γ), i.e., each element of S is an E-matcher of Γ;
(2) (Completeness) For each ϑ ∈ matchE(Γ) there exists σ ∈ S such that σ ≤·V(Γ)

E ϑ.
(3) (Minimality) The set S is minimal with respect to V(Γ) modulo E, i.e., if there

exist σ, ϑ ∈ S such that σ ≤·V(Γ)
E ϑ then σ = ϑ.

The equality f(x, f(y), z) .= f(x, y, z) specifies the property called flatness for the func-
tion symbol f that is called a flat function symbol. A flat theory, or shortly an F-theory, is
defined by a set of equalities that express flatness of function symbols. Below we consider
general F-matching, i.e., besides flat symbols we can have also arbitrary free function
symbols in matching problems. A term or an equation is in the flattened form if all
nested occurrences of flat function symbols are flattened out.

4

Flat matching is decidable. It is easy to observe that if a flat matching problem Γ is
solvable, then it has a solution in the flattened form (i.e. where all terms are flattened)
whose size is bounded by the size of Γ. There are finitely many flattened substitutions
whose size does not exceed the size of Γ, which map variables in Γ to terms, finite term
sequences, and function symbols occurring in Γ. Hence, we can simply check whether any
of these substitutions is a solution of Γ.

An interesting property of flat matching is that some problems may have an infinite
minimal complete set of matchers:

Example 1. The minimal complete set of matchers for the flat matching problem
{f(x)¿?

Ff(a)} with flat f is {{x 7→ a}, {x 7→ f(a)}, {x 7→ (a, f())}, {x 7→ (f(a), f())},
{x 7→ (f(), a)}, {x 7→ (f(), f(a))}, {x 7→ (f(), a, f())}, {x 7→ (f(), f(a), f())},}.

3. Flat Matching Procedure

We describe a procedure that enumerates the minimal complete set of matchers for
flat matching problems. The procedure will be defined in a rule-based manner, in the
spirit of [21]. Its inference system R consists of the rules presented below. Rules operate
on systems. A system is either the symbol ⊥ (failure) or a pair Γ; σ. It is assumed that
equations are kept in the flattened form.

T: Trivial

{s ¿?
F s} ∪ Γ; σ =⇒ Γ; σ.

S: Solve

{x ¿?
F t} ∪ Γ; σ =⇒ Γϑ; σϑ, where ϑ = {x 7→ t}.

FVE: Function Variable Elimination

{F (s̃) ¿?
F f(t̃)} ∪ Γ; σ =⇒ {f(s̃ϑ) ¿?

F f(t̃)} ∪ Γϑ; σϑ, where ϑ = {F 7→ f}.

Dec: Decomposition

{f(s, s̃) ¿?
F f(t, t̃)} ∪ Γ; σ =⇒ {s ¿?

F t, f(s̃) ¿?
F f(t̃)} ∪ Γ; σ, if s 6∈ V.

IVE: Individual Variable Elimination

{f(x, s̃) ¿?
F f(t, t̃)} ∪ Γ; σ =⇒ {f(s̃ϑ) ¿?

F f(t̃)} ∪ Γϑ; σϑ where ϑ = {x 7→ t}.

SVP: Sequence Variable Projection

{f(x, s̃) ¿?
F f(t̃)} ∪ Γ; σ =⇒ {f(s̃ϑ) ¿?

F f(t̃)} ∪ Γϑ; σϑ where ϑ = {x 7→ ()}.

SVW: Sequence Variable Widening

{f(x, s̃) ¿?
F f(t, t̃)} ∪ Γ; σ =⇒ {f(x, s̃ϑ) ¿?

F f(t̃)} ∪ Γϑ; σϑ where ϑ = {x 7→ (t, x)}.

IVE-FH: Individual Variable Elimination under Flat Head

{f(x, s̃) ¿?
F f(t̃1, t̃2)} ∪ Γ; σ =⇒ {f(s̃ϑ) ¿?

F f(t̃2)} ∪ Γϑ; σϑ

where f is flat and ϑ = {x 7→ f(t̃1)}.

5

SVW-FH: Sequence Variable Widening under Flat Head

{f(x, s̃) ¿?
F f(t̃1, t̃2)} ∪ Γ; σ =⇒ {f(x, s̃ϑ) ¿?

F f(t̃2)} ∪ Γϑ; σϑ

where f is flat and ϑ = {x 7→ (f(t̃1), x)}.

We call the substitutions computed at transformation steps (the ϑ’s in the rules in R) the
local substitutions. We may write Γ1; σ1 =⇒R,ϑ Γ2;σ2 to indicate that the system Γ1; σ1

was transformed into Γ2; σ2 by applying the rule R ∈ R with the local substitution ϑ.
A derivation is a sequence of system transformations Γ1;σ1 =⇒R1,ϑ1 Γ2;σ2 =⇒R2,ϑ2 · · · .
Some of the subscripts will be omitted if they are not relevant for the context. A selection
strategy S is a function which given a derivation Γ1; σ1 =⇒R1,ϑ1 · · · =⇒Rn−1,ϑn−1 Γn; σn

returns a matching equation in Γn. A derivation is via a selection strategy S if in the
derivation all choices of selected equations are performed according to S. We will use the
abbreviation Γ1; σ1 =⇒+

ϑ Γn; σn for the derivation Γ1;σ1 =⇒ϑ1 Γ2; σ2 =⇒ϑ2 · · · =⇒ϑn−1

Γn;σn, where ϑ = ϑ1 · · ·ϑn−1.

Definition 2. A flat matching procedure F is any program that takes a system Γ; ε and
a selection strategy S as input, where Γ is a flat matching problem, and uses the rules
in R to generate a complete tree of derivations via S in the following way:

(1) The root of the tree is labeled with Γ; ε.
(2) Each branch of the tree is a derivation via S. The nodes in the tree are systems.
(3) If a system in a node is unsolvable, the branch is extended with Γ; ε =⇒ ⊥. Oth-

erwise, the system is transformed by the rules in R. If several rules, or different
instances of the same rule are applicable to the selected equation, they are applied
concurrently.

The leaves of such a tree are labeled either with ⊥ (failed branches) or with systems
of the form ∅; σ (successful branches). Since each selected equation can be transformed
by finitely many different ways, the tree is finitely branching. A substitution σ is called
an answer of Γ computed by F, or just a computed answer of Γ if ∅; σ is the leaf of a
successful branch of the solving tree for Γ. We denote by compF(Γ) the set of answers
of Γ computed by F.

To illustrate how F works, we give an example below. (More examples can be found
in Section 4 in the context of comparing F to flat matching in Mathematica.)

Example 3. We show a successful derivation for a flat matching problem {f(x, g(x)) ¿?
F

f(a, g(f(), a))}, where f is flat and g is free. (Remember that equations are flattened after
each application of substitutions.)
{f(x, g(x)) ¿?

F f(a, g(f(), a))}; ε
=⇒SVW-FH {f(x, g(f(), x)) ¿?

F f(a, g(f(), a))}; {x 7→ (f(), x)}
=⇒SVW {f(x, g(f(), a, x)) ¿?

F f(g(f(), a))}; {x 7→ (f(), a, x)}
=⇒SVP {f(g(f(), a)) ¿?

F f(g(f(), a))}; {x 7→ (f(), a)}
=⇒T ∅; {x 7→ (f(), a)}.

The procedure F is sound, complete, and enumerates a minimal complete set of match-
ers for a given flat matching problem. It follows from the theorems we prove below.

Theorem 4 (Soundness). Let Γ be a flat matching problem and σ ∈ compF(Γ). Then
σ ∈ matchF(Γ).

6

Proof. The theorem follows from the fact that each rule in R is sound: If Γ1; σ1 =⇒R,ϑ

Γ2; σ2 by a rule R ∈ R, and ϕ ∈ matchF(Γ2), then ϑϕ ∈ matchF(Γ1). Correctness of this
fact is easy to establish: Inspection of the rules in R is sufficient. 2

Theorem 5 (Completeness). Let Γ be a flat matching problem and σ ∈ matchF(Γ). Then
σ|V(Γ) ∈ compF(Γ).

Proof. By well-founded induction on the size of σ. We shall construct the derivation from
Γ (via a given selection strategy S) that ends with ∅;σ|V(Γ). Let s ¿?

F t be an equation in
Γ selected by S. Depending on the shape of s and t we may have different cases. Here we
consider only the case when s = f(x, s̃) and t = f(t, t̃), where f is flat. The other cases
are similar. For xσ we have one of the following alternatives: (i) xσ = (t, r̃), (ii) xσ = (),
(iii) xσ = (f(), r̃), or (iv) xσ = (f(t, r̃1), r̃2). In (i) r̃ is an initial subsequence of t̃ and we
extend the derivation by the rule SVW and the substitution ϑ = {x 7→ (t, x)} arriving at
∆ = {f(x, s̃ϑ) ¿?

F f(t̃)} ∪ Γϑ. It has a matcher σ′ = (σ \ {x 7→ (t, r̃)}) ∪ {x 7→ r̃} whose
size is less than that of σ’s. Therefore, by the induction hypothesis, σ′|V(∆) ∈ compF(∆).
By the definition of compF, we have ϑ(σ′|V(∆)) ∈ compF(Γ), from which we obtain
ϑ(σ′|V(∆)) = (ϑσ′)|V(∆) = σ|V(∆) = σ|V(Γ). Hence, σ|V(Γ) ∈ compF(Γ). In the case (ii)
we would proceed with SVP, and in (iii) and (iv) with SVW-FH. 2

Theorem 6 (Minimality). Let Γ be a flat matching problem. Then compF(Γ) is minimal.

Proof. Follows from the fact that if a matching equation is transformed in two different
ways by rules in R, then the local substitutions ϑ1 and ϑ2 used in these transformations
can not be “brought” to the same instance: There are no ϕ1 and ϕ2 such that vϑ1ϕ1

.=F

vϑ2ϕ2 for all v ∈ VInd(Γ) ∪ VSeq(Γ) and F ()ϑ1ϕ1
.=F F ()ϑ2ϕ2 for all F ∈ VFun(Γ). We

call such ϑ1 and ϑ2 disjoint with respect to V(Γ). This property can be established by
inspecting the rules in R. We just demonstrate it here for the rules SVW and SVW-FH.
Let ∆; σ be a system in a derivation, which is transformed in different ways by SVW
and SVW-FH, where f(x, s̃) ¿?

F f(t, t̃) is a selected equation with f being flat. Since the
transformation rules do not introduce new variables, we have x ∈ V(Γ). The head of t is
not f , because terms in systems are kept flattened. Both SVW and SVW-FH can transform
the selected equation. SVW can do it with the local substitution ϑ1 = {x 7→ (t, x)},
while SVW-FH does it in finitely many ways. Let ϑ2 = {x 7→ (f(t̃′), x)} be a local
substitution used by SVW-FH in this transformation, where t̃′ is a (possibly empty)
initial subsequence of the sequence (t, t̃). Then it is clear that there are no ϕ1 and ϕ2

such that xϑ1ϕ1
.=F xϑ2ϕ2, because t and f(t̃′) are two different ground terms with

different heads.
From disjointness of ϑ1 and ϑ2 with respect to V(Γ) we obtain disjointness of σϑ1

and σϑ2: Since both x ∈ V(Γ) and x ∈ V(∆) hold, we have either x /∈ dom(σ) or
xσ = (r̃, x) for some r̃. In either case we get that there are no ϕ1 and ϕ2 such that
xσϑ1ϕ1

.=F xσϑ2ϕ2.
We can proceed in a similar way for any pair of local substitutions generated by the

rules in R. (For local substitutions generated by the same rule the argument that guar-
antees disjointness is based on the fact that two flattened ground terms with different

7

number of arguments are not equal modulo flatness.) It implies that any pair of substi-
tutions in compF(Γ) is disjoint with respect to V(Γ) and, hence, compF(Γ) is minimal.

2

Hence, every solvable flat matching problem has a minimal complete set of matchers.
As we have seen in Example 1, for some problems this set can be infinite. It implies that
flat matching is infinitary. Any complete procedure for flat matching will be nonterminat-
ing. The procedure F enumerates the minimal complete set of solutions and terminates
if the set is finite.

Now we identify a class of flat matching problems on which F terminates, i.e., a class
with a finite minimal complete set of flat matchers. The first result restricts such a class
to flat matching problems without sequence variables.

Lemma 7. The procedure F terminates on a flat matching problem Γ that does not
contain sequence variables.

Proof. We introduce a complexity measure for a flat matching problem Γ as a pair
〈n,m〉 where n is the number of distinct variables in Γ and m is the multiset of sizes in
the ground sides of Γ. Measures are ordered lexicographically. The ordering is, obviously,
well-founded. Since the rules in R do not introduce new sequence variables, the rules
SVP, SVW, and SVW-FH will not be used in any derivation in F that starts from Γ. The
other rules strictly decrease the complexity measure as Table 1 shows, which implies that
any such derivation terminates. The sign 6↑ means the component does not increase, ↓
means it strictly decreases.

Rule n m

S, FVE, IVE, IVE-FH ↓
T, Dec 6↑ ↓

Table 1. Behavior on the complexity measure of the rules that do not affect sequence variables.

2

Now we enlarge the class of problems in Lemma 7. First, we introduce two new notions:
A sequence variable x is called bounded in a flat matching problem Γ if it occurs in a
subterm of Γ of the form g(t̃1, x, t̃2), where g is a free function symbol. We say that Γ
is bounded if all sequence variables occurring in Γ are bounded in Γ. 1 For instance, the
problem in Example 3 above is bounded.

The minimum size of a term t, denoted by minsize(t), is the number of symbols
different from variables in t. We associate to each flat matching problem Γ = {s1 ¿?

F

t1, . . . , sn ¿?
F tn} the number dif (Γ) = max(

∑n
i=1(size(ti)−minsize(si)),−1). Obviously,

if dif (Γ) = −1 then Γ is unsolvable.
Now we can weaken the condition in lemma 7:

1 Usage of the term bounded is motivated by the fact that each bounded variable can be equivalently
replaced by a sequence of individual variables whose length is bounded by the size of the ground side of
the corresponding matching equation.

8

Lemma 8. The procedure F terminates on a bounded flat matching problem Γ.

Proof. We define a complexity measure for a flat matching problem ∆ as a triple
〈n,m, k〉, where n is the number of distinct variables in ∆, m is the multiset of sizes
in the ground sides of ∆, and k = dif (∆). Complexity measures are ordered lexicograph-
ically. In Table 2 one can see that each rule strictly decreases the complexity measure
for bounded matching problems. A remark about SVW-FH is in order here: Recall that
in a bounded problem, each sequence variable occurs as an argument of a term with the
free head (it may occur also under a flat head). Let ∆ = {s1 ¿?

F t1, . . . , sn ¿?
F tn}. Then

each application of SVW-FH strictly increases the minimal size of at least one of the si’s
(namely, of those that contain under a free function symbol the sequence variable that
the SVW-FH binds), while the minimal sizes of the other s’s, in general, do not decrease
and the sizes of t’s, in general, do not increase. It guarantees that if Φ is obtained from
∆ by SVW-FH, then dif (∆) > dif (Φ).

Rule n m k

S, FVE, IVE, SVP, IVE-FH ↓
T, Dec, SVW 6↑ ↓
SVW-FH 6↑ 6↑ ↓

Table 2. Rules on the complexity measure of bounded flat matching problems.

The rules in R preserve boundedness. Unsolvable problems are immediately trans-
formed to ⊥. That means that the rule SVW-FH will not apply to a ∆ if dif (∆) = −1.
The ordering on complexity measures of solvable problems is well-founded. Hence, for
bounded problems no derivation in F can continue infinitely.

2

An interesting consequence of Lemma 8 is that linearity, in general, is not an advantage
in flat matching. A term or a matching problem is called linear if no variable occurs more
than once in it. In many equational theories matching is much easier for linear problems
(e.g., linear context matching is in P [33] while context matching is NP-complete [32]),
but not in flat theories. Here linear sequence variables can be quite a serious disadvantage:
If a sequence variable occurs only under a flat function symbol, any complete matching
procedure may run forever enumerating the infinite minimal complete set of matchers.

Now we approach the termination problem from a different side. Instead of restricting
the class of problems to ensure termination of the procedure, we restrict the procedure
itself, sacrificing its completeness, to achieve termination for arbitrary flat matching
problems.

Examines the rules in R carefully, one can observe that the rule SVW-FH, in particular,
its instance with the empty t̃1, is the source of nontermination of F. Let us split this rule
into two new ones:

SVW1-FH: Sequence Variable Widening 1 under Flat Head

{f(x, s̃) ¿?
F f(t̃)} ∪ Γ; σ =⇒ {f(x, s̃ϑ) ¿?

F f(t̃)} ∪ Γϑ; σϑ

where f is flat and ϑ = {x 7→ (f(), x)}.

9

SVW2-FH: Sequence Variable Widening 2 under Flat Head

{f(x, s̃) ¿?
F f(t, t̃1, t̃2)} ∪ Γ; σ =⇒ {f(x, s̃ϑ) ¿?

F f(t̃2)} ∪ Γϑ; σϑ

where f is flat and ϑ = {x 7→ (f(t, t̃1), x)}.
SVW1-FH is the instance of SVW-FH when t̃1 = (), and SVW2-FH corresponds to the

instance with t̃1 6= (). We denote by RNE the set of rules R \ {SVW-FH} ∪ {SVW2-FH}.
(NE stands for nonempty and is motivated by the way how SVW2-FH is obtained from
SVW-FH.) The procedure FNE is obtained from F by replacing in its definition the set
R by RNE. Then FNE is obviously incomplete, e.g., it can not solve the problem in
Example 3. But it is terminating, and we can prove it easily:

Theorem 9. The procedure FNE is terminating.

Proof. Let us define the complexity measure in the same way as in the proof of Lemma 7.
Table 3 shows that all the rules in RNE strictly decrease it, which implies that FNE is
terminating. 2

Rule n m

S, FVE, IVE, SVP, IVE-FH ↓
T, Dec, SVW, SVW2-FH 6↑ ↓

Table 3. Rules in RNE on the complexity measure.

FNE is quite a natural restriction of F that gives a terminating matching procedure for
flat theories. As we will see in the next section by inspecting the results of flat matching
of Mathematica, it corresponds to a further restriction of FNE.

4. Flat Matching in Mathematica

Matching with the Flat attribute implemented in Mathematica, to the best of our
knowledge, is not described in the literature formally. Matching is used in many places
and by different functions in the system. Examples given in this section are based on
the behavior of Mathematica functions MatchQ and ReplaceList. 2 According to [37],
function call MatchQ[expr, form] returns True if the pattern form matches expr, and
returns False otherwise. ReplaceList[expr, rules] attempts to transform the entire
expression expr by applying a rule or list of rules in all possible ways, and returns a
list of the results obtained. The reason why we chose these functions is that MatchQ can
serve as a test for matchability, and ReplaceList can be used to compute all possible
matchers. Symbols with flat attributes are declared by SetAttributes[symbol, Flat].
We are interested in those pattern objects of Mathematica that are expressed using
blanks and blank sequences because they can be seen as counterparts to our variables:
In the pattern f [x ,a,y] the f corresponds to what we call a function variable, x

2 All the experiments have been carried out on Linux and Windows versions of Mathematica 5.2 and
Mathematica 6.0.

10

corresponds to an individual variable, and y to a sequence variable. In almost all the
examples below we use the conventional notation instead of Mathematica syntax.

To demonstrate differences and similarities between F, FNE, and flat matching in
Mathematica, we collected some characteristic examples:

Example 10. Outputs of F, FNE, and Mathematica on selected flat matching problems.
The function symbol f is flat. All the other function symbols are free. The substitution
of Mathematica is guessed by the instantiations computed by ReplaceList.

(1) Problem: f(x) ¿?
F f(a).

Outputs:

F : {{x 7→ a}, {x 7→ f(a)}}.
FNE : {{x 7→ a}, {x 7→ f(a)}}.

Mathematica : {{x 7→ f(a)}}.

(2) Problem: f(y) ¿?
F f(a).

Outputs:

F : {{y 7→ a}, {y 7→ f(a)}, {y 7→ (f(), a)},
{y 7→ (f(), f(a))}, {y 7→ (a, f())}, . . .}.

FNE : {{y 7→ a}, {y 7→ f(a)}}.
Mathematica : {{y 7→ a}}.

(3) Problem: f(x, a) ¿?
F f(a).

Outputs:

F : {{x 7→ f()}}.
FNE : {{x 7→ f()}}.

Mathematica : ⊥

(4) Problem: f(y, a) ¿?
F f(a).

Outputs:

F : {{y 7→ ()}, {y 7→ f()}, {y 7→ (f(), f())}, . . .}.
FNE : {{y 7→ ()}}.

Mathematica : {{y 7→ ()}}.

(5) Problem: f(x, y) ¿?
F f(a, b, c).

Outputs:

F : {{x 7→ f(), y 7→ f(a, b, c)}, {x 7→ a, y 7→ f(b, c)},
{x 7→ f(a), y 7→ f(b, c)}, {x 7→ f(a, b), y 7→ c},
{x 7→ f(a, b), y 7→ f(c)}, {x 7→ f(a, b, c), y 7→ f()}}

11

FNE : {{x 7→ f(), y 7→ f(a, b, c)}, {x 7→ a, y 7→ f(b, c)},
{x 7→ f(a), y 7→ f(b, c)}, {x 7→ f(a, b), y 7→ c},
{x 7→ f(a, b), y 7→ f(c)}, {x 7→ f(a, b, c), y 7→ f()}}

Mathematica : {{x 7→ f(a), y 7→ f(b, c)}, {x 7→ f(a, b), y 7→ f(c)}}.

(6) Problem: f(x, y) ¿?
F f(a, b, c).

Outputs:

F : {{x 7→ f(), y 7→ (a, b, c)}, {x 7→ f(), y 7→ (f(a), b, c)},
{x 7→ f(), y 7→ (a, f(b), c)},
{x 7→ f(), y 7→ (a, b, f(c))},
{x 7→ f(), y 7→ (f(a, b), c)},
{x 7→ f(), y 7→ (f(a), b, f(c))},
{x 7→ f(), y 7→ (a, f(b, c))},
{x 7→ f(), y 7→ f(a, b, c)}, . . . ,
{x 7→ a, y 7→ (b, c)}, {x 7→ a, y 7→ (f(b), c)},
{x 7→ a, y 7→ (b, f(c))}, {x 7→ a, y 7→ f(b, c)},
{x 7→ f(a), y 7→ (b, c)}, {x 7→ f(a), y 7→ (f(b), c)},
{x 7→ f(a), y 7→ (b, f(c))}, {x 7→ f(a), y 7→ f(b, c)},
{x 7→ f(a, b), y 7→ c}, . . . ,
{x 7→ f(), y 7→ (f(), a, b, c)},
{x 7→ f(), y 7→ (a, f(), b, c)}, . . . ,
{x 7→ f(), y 7→ (a, b, c, f())}, . . . ,
{x 7→ f(a, b, c), y 7→ f()},
{x 7→ f(), y 7→ (f(), f(), a, b, c)}, . . . ,
{x 7→ a, y 7→ (f(), b, c)}, . . .}

FNE : {{x 7→ f(), y 7→ (a, b, c)}, {x 7→ f(), y 7→ (f(a), b, c)},
{x 7→ f(), y 7→ (a, f(b), c)},
{x 7→ f(), y 7→ (a, b, f(c))},
{x 7→ f(), y 7→ (f(a, b), c)},
{x 7→ f(), y 7→ (f(a), f(b), c)},
{x 7→ f(), y 7→ (f(a), b, f(c))},
{x 7→ f(), y 7→ (a, f(b, c))},
{x 7→ f(), y 7→ (a, f(b), f(c))},
{x 7→ f(), y 7→ f(a, b, c)},
{x 7→ f(), y 7→ (f(a), f(b, c))},
{x 7→ f(), y 7→ (f(a, b), f(c))},

12

{x 7→ f(), y 7→ (f(a), f(b), f(c))},
{x 7→ a, y 7→ (b, c)}, {x 7→ a, y 7→ (f(b), c)},
{x 7→ a, y 7→ (b, f(c))}, {x 7→ a, y 7→ f(b, c)},
{x 7→ a, y 7→ (f(b), f(c))}, {x 7→ f(a), y 7→ (b, c)},
{x 7→ f(a), y 7→ (f(b), c)}, {x 7→ f(a), y 7→ (b, f(c))},
{x 7→ f(a), y 7→ f(b, c)}, {x 7→ f(a), y 7→ (f(b), f(c))},
{x 7→ f(a, b), y 7→ c}, {x 7→ f(a, b), y 7→ f(c)},
{x 7→ f(a, b, c), y 7→ ()}}.

Mathematica : {{x 7→ f(a), y 7→ (b, c)}, {x 7→ f(a, b), y 7→ c},
{x 7→ f(a, b, c), y 7→ ()}}.

(7) Problem: f(x, g(x)) ¿?
F f(a, g(a)).

Outputs:

F : {{x 7→ a}}.
FNE : {{x 7→ a}}.

Mathematica : ⊥.

(8) Problem: f(y, g(y)) ¿?
F f(a, g(a)).

Outputs:

F : {{y 7→ a}}.
FNE : {{y 7→ a}}.

Mathematica : {{y 7→ a}}.

(9) Problem: f(x, g(x)) ¿?
F f(a, g(f(a))).

Outputs:

F : {{x 7→ f(a)}}.
FNE : {{x 7→ f(a)}}.

Mathematica : {{x 7→ f(a)}}.

(10) Problem: f(y, g(y)) ¿?
F f(a, g(f(a))).

Outputs:

F : {{y 7→ f(a)}}.
FNE : {{y 7→ f(a)}}.

Mathematica : ⊥.

(11) Problem: F (x, g(x)) ¿?
F f(a, g(a)).

Outputs:

13

F : {{F 7→ f, x 7→ a}}.
FNE : {{F 7→ f, x 7→ a}}.

Mathematica : {{F 7→ f, x 7→ a}}.

(12) Problem: F (y, g(y)) ¿?
F f(a, g(a)).

Outputs:

F : {{F 7→ f, y 7→ a}}.
FNE : {{F 7→ f, y 7→ a}}.

Mathematica : {{F 7→ f, y 7→ a}}.

(13) Problem: F (x, g(x)) ¿?
F f(a, g(f(a))).

Outputs:

F : {{F 7→ f, x 7→ f(a)}}.
FNE : {{F 7→ f, x 7→ f(a)}}.

Mathematica : ⊥.

(14) Problem: F (y, g(y)) ¿?
F f(a, g(f(a))).

Outputs:

F : {{F 7→ f, y 7→ f(a)}}.
FNE : {{F 7→ f, y 7→ f(a)}}.

Mathematica : ⊥.

Analyzing these examples leads to the following observations:
(1) When an individual variable x matches a single argument a in a flat function f ,

Mathematica returns x 7→ f(a), 3 while F and FNE compute two bindings each:
x 7→ a and x 7→ f(a).

(2) When a variable v occurs as an argument in a flat function f , Mathematica does
not bind v with f().

(3) When a sequence variable x matches a sequence (s1, . . . , sn) under a flat function
f , Mathematica returns x 7→ (s1, . . . , sn). F computes infinitely many bindings
obtained from x 7→ (s1, . . . , sn) by putting some of the s’s under f and inserting
sequences of f()’s in between of sequence elements. FNE computes finitely many
bindings obtained from x 7→ (s1, . . . , sn) by putting some of the s’s under f .

(4) When a term F (s̃) matches a term f(t̃), where f is flat, Mathematica binds F
with f and continues like solving the matching problem h(s̃){F 7→ f} ¿?

F h(t̃)
where h is a fresh free function symbol. 4 F and FNE continue with solving the
f(s̃){F 7→ f} ¿?

F f(t̃). This observation comes from the problems 7-10 and 11-14.

3 This is also explained in [37].
4 We do not know what the motivation behind such a behavior is. We could not find any discussion on
this feature.

14

Comparing 7 and 11, one can see that in 11, after mapping F to f , if Mathematica
continued with solving f(x, g(x)) ¿?

F f(a, g(a)) then it would have failed because
7 fails on that. Also, comparing 9 and 13 justifies the observation, since otherwise
Mathematica would have returned the same substitution for 9 and for 13. On the
other hand, there is no difference between the answers on the problems 8 and 12,
and between the answers on 10 and 14, because Mathematica behaves in the same
way on those problems, no matter whether the head of the terms to be matched is
flat or free.

Now we try to model the observed behavior of Mathematica. It requires to introduce a
couple of new rules that will replace their old counterparts:

S-Mma: Solve Rule in Mathematica

{x ¿?
F t} ∪ Γ; σ =⇒ Γϑ; σϑ,

where Γ does not contain an equation f(s̃) ¿?
F r with x ∈ V(s̃) and ϑ = {x 7→ t}.

FVE-Mma: Function Variable Elimination in Mathematica

{F (s̃) ¿?
F f(t̃)} ∪ Γ; σ =⇒ {g(s̃ϑ) ¿?

F g(t̃)} ∪ Γϑ; σϑ,

where ϑ = {F 7→ f} and g is a fresh free function symbol.

IVE-Mma: Individual Variable Elimination in Mathematica

{f(x, s̃) ¿?
F f(t, t̃)} ∪ Γ; σ =⇒ {x ¿?

F t, f(s̃) ¿?
F f(t̃)} ∪ Γ; σ where f is not flat.

IVE-FH-Mma: Ind. Var. Elimination under a Flat Head in Mathematica

{f(x, s̃) ¿?
F f(t, t̃1, t̃2)} ∪ Γ; σ =⇒ {x ¿?

F f(t, t̃1), f(s̃) ¿?
F f(t̃2)} ∪ Γ; σ

where f is flat.

Soundness and termination of these rules follow from the same properties of their old
counterparts. We also introduce explicit failure rules that will help us to get rid of the
decidability test in the algorithm:

SC: Symbol Clash

{f(s̃) ¿?
F g(t̃)} ∪ Γ; σ =⇒ ⊥ if f 6= g.

ERS: Empty Right Side

{f(s, s̃) ¿?
F f()} ∪ Γ; σ =⇒ ⊥ if s /∈ V.

ELS: Empty Left Side

{f() ¿?
F f(t, t̃)} ∪ Γ; σ =⇒ ⊥.

Now, let us denote by RMma the set of rules T, S-Mma, FVE-Mma, Dec, IVE-Mma,
SVP, SVW, IVE-FH-Mma, SC, ERS, and ELS. (Note that the rule SVW-FH is omitted.)
Then the algorithm FMma can be defined similarly to F, using the rules from RMma

instead of R and omitting the solvability check in the nodes of the matching tree. This
leads us to the following conjecture, which we can only test on examples but obviously
can not prove formally:

15

Conjecture 1. For flat matching problems with individual, function, and sequence vari-
ables, the algorithm FMma models the input-output behavior of the flat matching algo-
rithm of Mathematica.

To get more insight into FMma, we bring examples comparing FMma and FNE.

Example 11. We compare the behavior of FMma and FNE on the matching problems
below. The function symbol f is flat.

(1) Problem: {f(g(x), x) ¿?
F f(g(a), a)}.

Run of FNE:
{f(g(x), x) ¿?

F f(g(a), a)}; ε
=⇒Dec {g(x) ¿?

F g(a), f(x) ¿?
F f(a)}; ε

=⇒IVE {f(a) ¿?
F f(a)}; {x 7→ a}

=⇒T ∅; {x 7→ a}.
Run of FMma:
{f(g(x), x) ¿?

F f(g(a), a)}; ε
=⇒Dec {g(x) ¿?

F g(a), f(x) ¿?
F f(a)}; ε

=⇒IVE-Mma {x ¿?
F a, f(x) ¿?

F f(a)}; ε
=⇒IVE-FH-Mma {x ¿?

F a, x ¿?
F f(a)}; ε

=⇒S-Mma {a ¿?
F f(a)}; {x 7→ a}

=⇒SC ⊥.
(2) Problem: {F (g(x), x) ¿?

F f(g(a), a)}.
Run of FNE:
{F (g(x), x) ¿?

F f(g(a), a)}; ε
=⇒FVE {f(g(x), x) ¿?

F f(g(a), a)}; {F 7→ f}
=⇒Dec {g(x) ¿?

F g(a), f(x) ¿?
F f(a)}; {F 7→ f}

=⇒IVE {f(a) ¿?
F f(a)}; {F 7→ f, x 7→ a}

=⇒T ∅; {F 7→ f, x 7→ a}.
Run of FMma:
{F (g(x), x) ¿?

F f(g(a), a)}; ε
=⇒FVE-Mma {h(g(x), x) ¿?

F h(g(a), a)}; {F 7→ f}
=⇒Dec {g(x) ¿?

F g(a), h(x) ¿?
F h(a)}; {F 7→ f}

=⇒IVE-Mma {x ¿?
F a, h(x) ¿?

F h(a)}; {F 7→ f}
=⇒IVE-Mma {x ¿?

F a}; {F 7→ f}
=⇒S-Mma ∅; {F 7→ f, x 7→ a}.

Note that Mathematica can verify that each solution computed by F is correct, e.g., it
sees f(x, g(x)){x 7→ a} and f(a, g(a)), where f is flat, as identical expressions, although
the Mathematica matching algorithm can not compute the substitution {x 7→ a} that
matches f(x, g(x)) to f(a, g(a)).

One of confusing examples for novice Mathematica programmers is the behavior of
the system on evaluating f[a], where f has the attribute Flat and the rule for f is
defined as f[x]:=x. It exceeds the iteration limit that indicates getting into an infinite
loop. This behavior has an easy explanation based on FMma: Matching f[x] to f[a]
results (according to the rule IVE-FH-Mma) to instantiating x with f[a]. Hence, the
rule rewrites f[a] into f[a]. Since Mathematica keeps applying rules to an expression it
evaluates until it stops changing, the obtained f[a] will be again evaluated, and it gets
into an infinite loop.

16

For the reader who is familiar with patterns in Mathematica, we note that we discussed
only patterns of the form s:obj where obj is either Blank[] or BlankNullSequence[] pat-
tern object. Other pattern objects as, for instance, Repeated, Condition, PatternTest,
Except, etc. have not been considered.

We believe that FMma characterizes flat matching of Mathematica more formally than
the explanations one can find in the literature. Moreover, it is more complete: The case
with function variables matching flat functions, which we formalize in the rule FVE-Mma
and which shows quite a nonstandard behavior from the theoretical point of view, is not
mentioned in the documentation.

We implemented the algorithms F, FNE, and FMma in Mathematica. The code together
with the problems from Example 10 can be downloaded from

http://www.risc.uni-linz.ac.at/people/tkutsia/software.html. 5

5. Related Work

Languages with sequence variables, and solving methods for them, have applications in
various areas, like automated reasoning [15, 28, 23, 7], logic, functional, and rule-based
programming [12, 5, 26, 11, 37, 27], XML querying and processing [10, 24], semantic
web [18], program synthesis and transformation [9, 30], artificial intelligence and knowl-
edge engineering [17, 8, 19], just to name a few. We investigated equational unification
with sequence variables in [22] where among other theories, the flat and orderless theo-
ries have also been studied. Within this framework, expressing Mathematica’s free (i.e.,
without attributes) and orderless pattern matching is straightforward, and other, related
problems as word equations [35, 2, 20, 34], associative unification [29], unification for
path logics closed under right identity and associativity [31] can be easily modeled.

A review of Mathematica, including its programming capabilities, appeared in [13].
Evaluation of expressions and programs in four computer algebra systems, Mathemat-
ica among them, is surveyed in [14]. Largely informal explanations of pattern matching
in Mathematica are given in the manual [37] and in other materials on Mathematica
programming (see, e.g. [25, 16, 36] as well as the Mathematica user’s forum [1]). There
have been attempts to give a formal characterization of Mathematica’s behavior in dif-
ferent contexts. For example, [4] provides a semantics justifying the use of infinity in
informal limit calculations. Rewriting part of the Mathematica programming language,
Mathematica/R, is characterized in [6].

6. Conclusion

In the first part of the paper we studied flat matching from the unification theory point
of view. We introduced a method to solve modulo a flat theory systems of equations built
over individual, sequence, and function variables and flexible arity function symbols.
The method provides a minimal complete matching procedure for flat theories. Flat
matching is infinitary and, hence, there are problems on which the procedure does not
stop. The minimal complete set of matchers it enumerates can be infinite. However, there

5 From the same location one can also download an implementation of flat matching algorithm that
computes a finite representation of the minimal complete set of matchers. The representation is based
on regular expressions over substitutions.

17

are terminating cases as well, when the minimal complete set of matchers is finite. We
described one of such cases: If a sequence variable occurs in the input problem, then it
also occurs as a direct argument of a subterm with the free head.

The second part of the paper can be interesting from a practical point of view. Here
instead of restricting the class of input problems, we restricted the procedure to get a
terminated (incomplete) algorithm. We showed that the rule that allows to instantiate
a sequence variable x under a flat symbol f with the sequence (f(), x) is the source of
nontermination in the procedure. Removing it, we obtained a terminating flat matching
algorithm. We made further restrictions of the algorithm to finally reach the set of rules
that, in our opinion, models formally the flat matching algorithm of Mathematica and
gives its precise semantics.

7. Acknowledgements

This work was supported by the European Commission Framework 6 Programme for
Integrated Infrastructures Initiatives under the project SCIEnce—Symbolic Computation
Infrastructure for Europe (Contract No. 026133).

The author thanks to anonymous referees for useful remarks.

References

[1] The MathGroup Archive. Mathematica User’s Forum. Available at http://fo-
rums.wolfram.com/mathgroup/archive/, 1989–2006.

[2] H. Abdulrab and J.-P. Pécuchet. Solving word equations. J. Symbolic Computation,
8(5):499–522, 1990.

[3] F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445–532.
Elsevier Science, 2001.

[4] M. Beeson and F. Wiedijk. The meaning of infinity in calculus and computer algebra
systems. J. Symb. Comput., 39(5):523–538, 2005.

[5] H. Boley. A Tight, Practical Integration of Relations and Functions, volume 1712 of
LNAI. Springer, 1999.

[6] B. Buchberger. Mathematica as a rewrite language. In T. Ida, A. Ohori, and
M. Takeichi, editors, Proc. of the 2nd Fuji Int. Workshop on Functional and Logic
Programming, pages 1–13. World Scientific, 1996.

[7] B. Buchberger, A. Crǎciun, T. Jebelean, L. Kovács, T. Kutsia, K. Nakagawa,
F. Piroi, N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger. Theorema:
Towards computer-aided mathematical theory exploration. J. Applied Logic, 4:470–
504, 2006.

[8] H. Chalupsky. Ontomorph: A translation system for symbolic knowledge. In
A. G. Cohn, F. Giunchiglia, and B. Selman, editors, Proc. 7th Int. Conference on
Principles of Knowledge Representation and Reasoning, KR 2000, pages 471–482,
2000.

[9] E. Chasseur and Y. Deville. Logic program schemas, constraints and semi-unifica-
tion. In Proc. LOPSTR’97, volume 1463 of LNCS, pages 69–89. Springer, 1998.

18

[10] J. Coelho and M. Florido. CLP(Flex): Constraint logic programming applied to
XML processing. In R. Meersman and Z. Tari, editors, On the Move to Meaningful
Internet Systems 2004: CoopIS, DOA, and ODBASE. Proc. of Confederated Int.
Conferences, volume 3291 of LNCS, pages 1098–1112. Springer, 2004.

[11] J. Coelho and M. Florido. VeriFLog: A constraint logic programming approach to
verification of website content. In H.-T. Shen, J. Li, M. Li, J. Ni, and W. Wang,
editors, Advanced Web and Network Technologies, and Applications, volume 3842 of
LNCS, pages 148–156. Springer, 2006.

[12] A. Colmerauer. An introduction to Prolog III. Communications of ACM, 33(7):69–
91, 1990.

[13] R. J. Fateman. A review of Mathematica. J. Symbolic Computation, 13(5):545–579,
1992.

[14] R. J. Fateman. Symbolic mathematics system evaluators. In Y. N. Lakshman, editor,
Proc. 7th Int. Symposium on Symbolic and Algebraic Computation, ISSAC’96, pages
86–94. ACM Press, 1996.

[15] M. L. Ginsberg. The MVL theorem proving system. SIGART Bull., 2(3):57–60,
1991.

[16] A. Hayes. How and why? Mathematica techniques. Mathematica in Education and
Research, 8(3–4):84–97, 1999.

[17] P. Hayes and C. Menzel. Semantics of Knowledge Interchange Format. http://re-
liant.teknowledge.com/IJCAI01/HayesMenzel-SKIF-IJCAI2001.pdf, 2001.

[18] I. Horrocks and A. Voronkov. Reasoning support for expressive ontology languages
using a theorem prover. In J. Dix and S. J. Hegner, editors, Proc. 4th International
Symposium on Foundations of Information and Knowledge Systems, FoIKS’06, vol-
ume 3861 of LNCS, pages 201–218. Springer, 2006.

[19] ISO/IEC. ISO/IEC 24707. Information technology—Common Logic (CL): A frame-
work for a family of logic-based languages. http://standards.iso.org/ittf/PubliclyAvail-

ableStandards/c039175 ISO IEC 24707 2007(E).zip, 2007.
[20] J. Jaffar. Minimal and complete word unification. J. ACM, 37(1):47–85, 1990.
[21] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-

based survey of unification. In J.-L. Lassez and G. Plotkin, editors, Computational
Logic: Essays in Honor of A. Robinson, pages 257–321. The MIT Press, Cambridge,
Massachusetts, US, 1991.

[22] T. Kutsia. Solving and Proving in Equational Theories with Sequence Variables and
Flexible Arity Symbols. PhD thesis, Johannes Kepler University, Linz, Austria, 2002.

[23] T. Kutsia. Theorem proving with sequence variables and flexible arity symbols. In
M. Baaz and A. Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning. Proceedings of the 9th International Conference, LPAR’02, volume
2514 of LNAI, pages 278–291. Springer, 14–18 October 2002.

[24] T. Kutsia. Context sequence matching for XML. Electronic Notes on Theoretical
Computer Science, 157(2):47–65, 2006.

[25] R. Maeder. Programming in Mathematica. Addison-Wesley, third edition, 1996.
[26] M. Marin and D. Ţepeneu. Programming with sequence variables: The Sequentica

package. In P. Mitic, P. Ramsden, and J. Carne, editors, Challenging the Boundaries
of Symbolic Computation. Proc. of 5th Int. Mathematica Symposium, pages 17–24,
London, 2003. Imperial College Press.

19

[27] M. Marin and T. Kutsia. Foundations of the rule-based system RhoLog. J. Applied
Non-Classical Logics, 16(1–2):151–168, 2006.

[28] L. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361–386. Academic Press, 1990.

[29] G. Plotkin. Building in equational theories. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 7, pages 73–90. Edinburgh University Press, 1972.

[30] J. Richardson and N. E. Fuchs. Development of correct transformation schemata
for Prolog programs. In N. E. Fuchs, editor, Proc. of the 7th Int. Workshop on
Logic Program Synthesis and Transformation, volume 1463 of LNCS, pages 263–
281. Springer, 1997.

[31] R. Schmidt. E-Unification for subsystems of S4. In T. Nipkow, editor, Proc. of
the 9th Int. Conference on Rewriting Techniques and Applications, volume 1379 of
LNCS, pages 106–120. Springer, 1998.

[32] M. Schmidt-Schauß and K. U. Schulz. Solvability of context equations with two
context variables is decidable. J. Symbolic Computation, 33(1):77–122, 2002.

[33] M. Schmidt-Schauß and J. Stuber. The complexity of linear and stratified context
matching problems. Theory of Computing Syst., 37(6):717–740, 2004.

[34] K. U. Schulz. Word unification and transformation of generalized equations. J. Au-
tomated Reasoning, 11(2):149–184, 1993.

[35] J. Siekmann. String unification. Research paper, Essex University, 1975.
[36] M. Trott. The Mathematica Guidebook: Programming. Springer, New York, 2004.
[37] S. Wolfram. The Mathematica Book. Wolfram Media, 5th edition, 2003.

20

