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Abstract. We find a full system of invariants with respect to gauge
transformations L → g−1Lg for third-order hyperbolic linear partial dif-
ferential operators on the plane. The operators are considered in a nor-
malized form, in which they have the symbol SymL = (pX + qY )XY
for some non-zero bivariate functions p and q. For this normalized form,
explicit formulae are given. The paper generalizes a previous result for
the special, but important, case p = q = 1.
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1 Introduction

For a second-order hyperbolic Linear Partial Differential Operators (LPDOs) on
the plane in the normalized form

L = Dx ◦Dy + aDx + bDy + c , (1)

where a = a(x, y), b = b(x, y), c = c(x, y), it has been known for several centuries
that the quantities

h = c− ax − ab, k = c− by − ab (2)

are its invariants with respect to the gauge transformations L → g−1Lg. These
two invariants were proved [2] to form together a full system of invariants for
operators of the form (1). Thus, if two operators of the form (1) are known to
have the same invariants h and k, then one may conclude that the operators
are equivalent with respect to such transformations. Any other invariant of the
operator, as well as all of its invariant properties, can be expressed in terms of
h and k.

The case of operators of order two has been actively investigated. For ex-
ample, we can note the classical Laplace hyperbolic second-order LPDOs, scalar
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hyperbolic non-linear LPDOs, and so on (sample references include [1, 3, 5]). For
the case of hyperbolic operators of high orders, however, not much is known. A
method for obtaining some invariants for a hyperbolic operator of arbitrary or-
der was mentioned in [8]. In the paper [4] a method to compute some invariants
for operators of order three was suggested.

Although the determination of some particular invariants is already impor-
tant, there is an enormous area of applications for a full system of invariants.
Whenever we have a full system of invariants for a certain class of LPDOs, we
have an easy way to judge whether two operators of the class are equivalent, and
it is possible to classify some of the corresponding partial differential equations
in terms of their invariants. Thus, for example, classification has an immediate
application to the integration of PDEs. Indeed, most integration methods work
with operators given in some normalized form. Also a full system of invariants
for a certain class of operators can be used for the description of all the invariant
properties of the operators in terms of the invariants of the full system.

For third-order operators of the form

L = (Dx + Dy)DxDy + a20D
2
x + a11Dxy + a02D

2
y + a10Dx + a01Dy + a00 , (3)

where all the coefficients are functions in x and y, a full system of invariants
was obtained in [6]. This is a special case — albeit an important one — of a
general normalized form for a third-order hyperbolic bivariate LPDO. Indeed,
the symbol of the normalized form of such operators has the form (X + qY )XY ,
where q = q(x, y) is not zero.

Full systems of invariants have important applications, such as classification,
integration algorithms, etc. So one needs them for as general a class of LPDOs
as possible. In the present paper we establish a full system of invariants for
operators of the form

L = (pDx + qDy)DxDy +a20D
2
x +a11Dxy +a02D

2
y +a10Dx +a01Dy +a00 , (4)

where p = p(x, y) and q = q(x, y) are not zero (Theorem 4).

2 Preliminaries

We consider a field K with a set ∆ = {∂1, . . . , ∂n} of commuting derivations
acting on it, and work with the ring of linear differential operators K[D] =
K[D1, . . . , Dn], where D1, . . . , Dn correspond to the derivations ∂1, . . . , ∂n, re-
spectively.

Any operator L ∈ K[D] is of the form

L =
∑

|J|≤d

aJDJ , (5)

where aJ ∈ K, J ∈ INn and |J | is the sum of the components of J . Then we say
that the polynomial

SymL =
∑

|J|=d

aJXJ
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is the symbol of L. Let K∗ denotes the set of invertible elements in K. Then for
L ∈ K[D] and every g ∈ K∗ there is a gauge transformation

L → g−1Lg .

We also can say that this is the operation of conjugation. Then an algebraic
differential expression I in the coefficients appearing in L is invariant under
the gauge transformations if it is unaltered under these transformations. Trivial
examples of an invariant are coefficients of the symbol of the operator.

An operator L ∈ K[D] is said to be hyperbolic if its symbol is completely
factorable (all factors are of first order) and each factor has multiplicity one.

3 Obstacles to Factorizations and Their Invariance

In this section we briefly recapitulate a few results from [7], because they are
essential to the next sections.

Definition 1. Let L ∈ K[D] and suppose that its symbol has a decomposition
SymL = S1 . . . Sk. Then we say that the factorization

L = F1 ◦ . . . ◦ Fk, where SymFi
= Si , ∀i ∈ {1, . . . , k}, (6)

is of the factorization type (S1)(S2) . . . (Sk).

Definition 2. Let L ∈ K[D], SymL = S1 . . . Sk. An operator R ∈ K[D] is
called a common obstacle to factorization of the type (S1)(S2) . . . (Sk) if there
exists a factorization of this type for the operator L − R and R has minimal
possible order.

Remark 1. In general a common obstacle to factorizations of some factorization
type is not unique.

Example 1. Consider a hyperbolic operator

L = Dxy − aDx − bDy − c,

where a, b, c ∈ K. An operator P1 (in this particular case it is an operator of
multiplication by a function) is a common obstacle to factorizations of the type
(X)(Y ) if there exist g0, h0 ∈ K such that

L− P1 = (Dx − g0) ◦ (Dy − h0).

Comparing the terms on the two sides of the equation, one gets g0 = b, h0 = a,
and

P1 = ax − ab− c.

Analogously, we get a common obstacle to factorization of the type (Y )(X):

P2 = by − ab− c,

and the corresponding factorization for (L− P2): L− P2 = (Dx − a) ◦ (Dy − b).
Thus, the obtained common obstacles P1 and P2 are the Laplace invariants [2].
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Theorem 1. Consider a separable operator L ∈ K[Dx, Dy] of order d, and the
factorizations of L into first-order factors. Then

1. the order of common obstacles is less than or equal to d− 2;
2. a common obstacle is unique for each factorization type;
3. there are d! common obstacles;
4. if d = 2, then the common obstacles of order 0 are the Laplace invariants;
5. the symbol of a common obstacle is an invariant.

Corollary 1. For an LPDO of the form

L = (pDx + qDy)DxDy +a20D
2
x +a11Dxy +a02D

2
y +a10Dx +a01Dy +a00 , (7)

where all the coefficients belong to K, and p, q are not zero, consider its factor-
izations into first-order factors. Then

1. the order of common obstacles is zero or one;
2. a common obstacle is unique for each factorization type, and therefore, the

corresponding obstacles consist of just one element;
3. there are 6 common obstacles to factorizations into exactly three factors;
4. the symbol of a common obstacle is an invariant with respect to the gauge

transformations L → g−1Lg.

4 Computing of Invariants

Consider the operator (7). Since the symbol of an LPDO does not change un-
der the gauge transformations L → g−1Lg, then the symbol, and therefore the
coefficients of the symbol, are invariants with respect to these transformations.
Thus, p and q are invariants.

Now we use Corollary 1 to compute a number of invariants for the operator
L. Suppose for a while that

p = 1 .

Denote the factors of the symbol SymL = (X + qY )XY of L by

S1 = X, S2 = Y, S3 = X + qY .

Denote the common obstacle to factorizations of the type (Si)(Sj)(Sk) by Obstijk.
Then the coefficient of Y in the symbol of the common obstacle Obst123 is

(a01q
2 + a2

02 − (3qx + a11q)a02 + qxqa11 − ∂x(a11)q2 + q∂x(a02) + 2q2
x − qxx)/q2 .

By Theorem 1, this expression is invariant with respect to gauge transforma-
tions L → g−1Lg. Since the term (2q2

x − qxx)/q2 and multiplication by q2 does
not influence the invariance property (because q is an invariant), the following
expression is invariant also:

I4 = a01q
2 + a2

02 − (3qx + a11q)a02 + qxqa11 − ∂x(a11)q2 + q∂x(a02) .
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The coefficient of Y in the symbol of the common obstacle Obst213 is

(I4− (∂x(a20)q2−∂y(a02)q +a02qy)q +a02qy)q− qxqyq + qxyq2 +2q2
x− qxxq)/q2 .

Again the expressions in q can be omitted, while I4 is itself an invariant. There-
fore,

I2 = ∂x(a20)q2 − ∂y(a02)q + a02qy

is an invariant.
Similarly, we obtain the invariants

I1 = 2a20q
2 − a11q + 2a02 ,

I3 = a10 + a20(qa20 − a11) + ∂y(a20)q − ∂y(a11) + 2a20qy .

Generally speaking, by Corollary 1, there are six different obstacles to fac-
torizations into exactly three factors. In fact, all the coefficients of the symbols
of the common obstacles can be expressed in terms of four invariants

I1, I2, I3, I4 .

Denote the symbol of the common obstacle Obstijk by Symijk. Direct compu-
tations justify the following theorem:

Theorem 2.

q2Sym123 = (q2I3 + I2 − qxyq + qyyq2 + qxqy)Dx + (I4 + 2q2
x − qxx)Dy ,

q2Sym132 = (i2 + I2)Dx + (I4 + 2q2
x − qxx)Dy ,

q2Sym213 = (q2I3 + q2qyy)Dx + i3Dy ,
q2Sym231 = (q2I3 + q2qyy)Dx + i1Dy ,
q2Sym312 = (i2 + I2)Dx + (i1 + I2q)Dy ,
q2Sym321 = i2Dx + i1Dy ,

where

i1 = I4 − 2∂x(I1)q + 4qxI1 − 2I2q ,

i2 = q2I3 − 2∂y(I1)q + 2I1qy + I2 ,

i3 = I4 − I2q − qxqyq + qxyq2 + 2q2
x − qxxq .

Note that neither of the obtained invariants I1, I2, I3, I4 depends on the “free”
coefficient a00 of the operator L, and, therefore, we need at least one more
invariant.

We guess the form of the fifth invariant by analyzing the structure of invariant

I5 = a00−a01a20−a10a02+a02a20a11+(2a02−a11+2a20)∂x(a20)+∂xy(a20−a11+a02)

of the case p = 1, q = 1, considered in [6], and then perform some elimination.
One of the difficulties here lies in the handling of large expressions, which appear
during such manipulations. Naturally, a computer algebra system is needed, and
we used Maple running our own package for linear partial differential operators
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with parametric coefficients. Thus, we get several candidates to be the fifth
invariant. The most convenient of them has the form

I5 = a00 − 1
2
∂xy(a11) + qx∂y(a20) + qxya20 +

(
2qa20 +

2
q
a02 − a11 + qy

)
∂x(a20)− 1

q
a02a10 − a01a20 +

1
q
a20a11a02 .

5 A Full System of Invariants for Third Order LPDOs

Here we prove that the obtained five invariants together form a full system of
invariants for the case of operators with the symbol (X + qY )XY , and then, as
the consequence, obtain a full system of invariants for operators with the symbol
(pX + qY )XY .

One can prove that invariants I1, I2, I3, I4, I5 form a full system in a similar
way to that which was done for invariants of operators with the symbol (X +
Y )XY [6]. Below we suggest a simplification of such a way of proving, even
though we consider a more general case.

Theorem 3. For some non-zero q ∈ K, consider the operators of the form

L = (Dx + qDy)DxDy + a20D
2
x + a11Dxy + a02D

2
y + a10Dx + a01Dy + a00 , (8)

where the coefficients belong to K. Then the following is a full system of invari-
ants of such an operator with respect to the gauge transformations L → g−1Lg:

I1 = 2a20q
2 − a11q + 2a02 ,

I2 = ∂x(a20)q2 − ∂y(a02)q + a02qy ,

I3 = a10 + a20(qa20 − a11) + ∂y(a20)q − ∂y(a11) + 2a20qy ,

I4 = a01q
2 + a2

02 − (3qx + a11q)a02 + qxqa11 − ∂x(a11)q2 + q∂x(a02) ,

I5 = a00 − 1
2
∂xy(a11) + qx∂y(a20) + qxya20 +

(
2qa20 +

2
q
a02 − a11 + qy

)
∂x(a20)− 1

q
a02a10 − a01a20 +

1
q
a20a11a02 .

Thus, an operator L′ ∈ K[D]

L′ = (Dx + qDy)DxDy + b20D
2
x + b11DxDy + b02D

2
y + b10Dx + b01Dy + b00 (9)

is equivalent to L (with respect to the gauge transformations L → g−1Lg) if and
only if their corresponding invariants I1, I2, I3, I4, I5 are equal.

Remark 2. Since the symbol of an LPDO L does not alter under the gauge
transformations L → g−1Lg, we consider the operators with the same symbol.
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Proof. 1. The direct computations show that the five expressions from the state-
ment of the theorem are invariants with respect to the gauge transformations
L → g−1Lg. One just has to check that these expressions do not depend on g,
when calculate them for the operator g−1Lg. Basically, we have to check the
fifth expression I5 only, since the others are invariants by construction.

2. Prove that these five invariants form a complete set of invariants, in other
words, the operators L and L′ are equivalent (with respect to the gauge trans-
formations L → g−1Lg) if and only if their corresponding invariants are equal.

The direction “⇒” is implied from 1. Prove the direction “⇐”. Let

I ′1, I
′
2, I

′
3, I

′
4, I

′
5

be the invariants computed from the coefficients of the operator L′ by the for-
mulas from the statement of the theorem, and

Ii = I ′i, i = 1, 2, 3, 4, 5 . (10)

Look for a function g = ef , f, g ∈ K, such that

g−1Lg = L′ . (11)

Equate the coefficients of Dxx, Dyy on both sides of (11), and get

∂y(f) = b20 − a20 , (12)
∂x(f) = (b02 − a02)/q . (13)

In addition, the assumption I2 = I ′2 implies

(b20 − a20)x = ((b02 − a02)/q)y.

Therefore, there is only one (up to a multiplicative constant) function f , which
satisfies the conditions (12) and (13).

Consider such a function f . Then substitute the expressions

b20 = a20 + fy , (14)
b02 = a02 + qfx . (15)

for b20, b02 in (11), and prove that it holds for g = ef .
Subtracting the coefficients of Dxy in g−1Lg from that in L′ we get

b11 − a11 − 2fx − 2qfy ,

which equals
2q(I1 − I ′1) ,

which is zero by the assumption (10). Now we can substitute

b11 = a11 + 2fx + 2qfy .
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Analogously, subtracting the coefficients of Dx,Dy in g−1Lg from those in
L′, correspondingly, we get

b10 − a10 − 2a20fx − a11fy − 2fxy − 2fxfy − qfyy − qf2
y =

I ′3 − I3 = 0 ,

b01 − a01 − 2a02fy − a11fx − 2qfxy − 2qfxfy − fxx − f2
x =

I ′4 − I4 = 0 .

Now we can express b10 and b01. Now, subtracting the “free” coefficient of g−1Lg
from that of L′, we get

b00 − a00 − a10fx − a01fy − a20(fxx + f2
x)− a11(fxy + fxfy)− a02(fyy + f2

y )−
fxxy − 2fxyfx − fyfxx − fyf2

x − qfxfyy − qfxf2
y − qfxyy − 2qfyfxy =

I ′5 − I5 = 0 .

Thus, we proved that for the chosen function f , the equality (11) holds, and
therefore, the operators L and L′ are equivalent.

Remark 3. The Theorem 3 is a generalization of the result of [6], where the case
q = 1 is considered.

Thus, a full system of invariants for the case p = 1 has been found. Now we
give the formulae for the general case.

Theorem 4. For some non-zero p, q ∈ K consider the operators of the form

L = (pDx +qDy)DxDy +a20D
2
x +a11Dxy +a02D

2
y +a10Dx +a01Dy +a00 , (16)

where the coefficients belong to K. Then the following is a full system of invari-
ants of such an operator with respect to the gauge transformations L → g−1Lg:

I1 = 2a20q
2 − a11pq + 2a02p

2 ,

I2 = ∂x(a20)pq2 − ∂y(a02)p2q + a02p
2qy − a20q

2px ,

I3 = a10p
2 − a11a20p + 2a20qyp− 3a20qpy + a2

20q − ∂y(a11)p2 + a11pyp + ∂y(a20)pq ,

I4 = a01q
2 − a11a02q + 2a02qpx − 3a02pqx + a2

02p− ∂x(a11)q2 + a11qxq + ∂x(a02)pq ,

I5 = a00p
3q − p3a02a10 − p2qa20a01 +

(pI1 − pq2py + qp2qy)a20x + (qqxp2 − q2pxp)a20y

+(4q2pxpy − 2qpxqyp + qqxyp2 − q2pxyp− 2qqxppy)a20

+(
1
2
pxyp2q − pxpypq)a11 − 1

2
p3qa11xy +

1
2
a11xpyp2q +

1
2
a11ypxp2q

+p2a02a20a11 + pqpxa20a11 − 2pxq2a2
20 − 2p2pxa20a02 .

Proof. Since p 6= 0 we can multiply (16) by p−1 on the right, and get some new
operator

L1 = (Dx +
q

p
Dy)DxDy +

a20

p
D2

x +
a11

p
Dxy +

a02

p
D2

y +
a10

p
Dx +

a01

p
Dy +

a00

p
.
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The invariants of the operator L and L1 are the same. We compute the invariants
of the operator L1 by the formulae of Theorem 3, and get the invariants of the
statement of the current theorem up to multiplication by integers and p, q.

Example 2. For some p, q, c ∈ K consider the simple operator

L = (pDx + qDy)DxDy + c . (17)

Compute the system of invariants of Theorem 4 for L:

0 = I1 = I2 = I3 = I4 ,

I5 = p3qc .

Thus, every LPDO in K[Dx, Dy] with the symbol XY (pX + qY ) that has the
same set of invariants is equivalent to the simple operator (17). In fact, LPDOs
that are equivalent to the operator (17) are not always trivial looking. Such
operators have the form

L = (pDx + qDy)DxDy + pfyD2
x + (2pfx + 2qfy)Dxy + qfxD2

y +
(2pfxy + 2pfxfy + qfyy + qfyfy)Dx + (pfxx + pfxfx + 2qfxy + 2qfxfy)Dy +
c + pfxxy + 2pfxyfx + pfyfxx + pfyf2

x + qfxfyy + qfxf2
y + qfxyy + 2qfyfxy ,

for some f ∈ K.

6 Conclusion

For operators of the form

L = (pDx +qDy)DxDy +a20D
2
x +a11Dxy +a02D

2
y +a10Dx +a01Dy +a00 , (18)

where all the coefficients belong to K, we have found five invariants with respect
to the gauge transformations L → g−1Lg and proved that together they form a
full system of operators.

In fact, Theorem 1 provides a way to find a number of invariants for hy-
perbolic bivariate LPDOs of arbitrary order, rather than just for those of order
three. One of the difficulty lies in very large expressions, which appear already
for third-order operators. Moreover, even if one manages to compute them, in
general one gets a number of very large expressions. Then a challenge is to ex-
tract some nice looking invariants out of those large ones, so that these nice
looking invariants generate the obtained ones. Thus, for the case of third-order
LPDOs, we extracted four invariants out of twelve ones.

Another problem is that for applications one rather needs a full system of
invariants. Thus, for the considered operators (18) we had to find a fifth invariant.
However, even in this case it was not easy. Also for operators of high order, one
needs to find more than one invariants so that they together with the obtained
from obstacles ones form a full system.
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