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Abstract

The program package CASA is designed to enhance the
power of a traditional computer algebra system by ad-
ding programs for constructive algebraic geometry. The
objects that CASA works with are algebraic sets in af-
fine or projective spaces over a field. The geometric
objects may be given in varicus different representati-
ons. CASA is able to analyse properties of algebraic
sets, such as to compute their dimensions, compute their
irreducible components, determine singular points, de-
termne intersection properties and the like. The user
can also create 2— and 3~dimensjonal pictures of curves
and surfaces.

1 Introduction

CASA (Computer Algebra Software for Algebraic geo-
metry) is designed to enhance the power of a traditional
computer algebra system by adding a package of pro-
grams for constructive algebraic geometry. As the un-
derlying computer algebra system we have chosen Maple
4.3, because it is widely available and relatively comfor-
table to program in. Actually, CASA is not a fnished
product. We have started working on CASA about a
vear ago and many of the features we envision for CASA
have not been implemented yet. So this paper reports
on work in progress.

Computer algebra systems are very powerful tools for
caleulating with polynomials, rational functions, and
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the like (among other domains). Algebraic geometry
is the theory of geometric objects that can be descri-
bed as the solutions of sets of polynomial equations. In
the last few decades the research interest in algebraic
geometry has shifted from constructive aspects to non-
constructive investigations. Now, however, that com-
puter algebra systems have been around for quite some
time, it seems natural to apply them for actually con-
structing objects and deciding statements in algebraic
geometry. This is the goal of the CASA project. For
related work we refer to [BR90], [Ben90], [SSB89].

Some of the applications of CASA are computing the
singularities of curves and surfaces, determining topo-
logical pictures of algebraic sets, expanding algebraic
curves in power series, computing the intersection of al-
gebraic curves and surfaces, applying various transfor-
mations to algebraic sets, determining the dimension,
decomposing into irreducible components, calculating
m the coordinate ring of an algebraic set, computing
with functions defined on an algebraic set. The CASA
=vsiem works with algebraic sets in various different re-
presentations. So an important feature of the system is
the ability to change from one representation into ano-
ther.

Applications include geometric modeling with algebraic
curves and surfaces, and any problem domain which
needs solutions of algebraic equations. For instance,
problems in quantum physics have been solved suc-
cessfully by using CASA (see [KHSHS0]).

2 Definitions and Notations

Let N be a finitely generated field extension of the ra-
tional numbers.

For a given subset I of K{x;, ..., z,], Ideal(F} denotes
the ideal in Kfzy,...,zn] generated by F and V(F)
denotes the algebraic set of F,i.e. the set

{a €T | fla) =0 for every f € F).



An algebraic set V is irreducible if it cannot be written
as the union of two non-empty proper algebraic subsets
of V.

Theoretically all computations could be carried out in
I{'. However, some of the algorithms in Maple 4.3 (e.g.
Grobner bases) do not work for polynomials with co-
efficients in an algebraic extension field. This puts a
restriction on the input class of some of ocur algorithms.
We expect that these problems will be solved in a new
version of Maple.

3 Data Structures

In CASA an algebraic set is specified by three items:
the representation of the algebraic set, a variable list
and a table of attributes. There are four different kinds
of representations. The algebraic set can be given in im-
plicit, parametric or projected form or as a set of places
{a more detailed descripiion is provided at the end of
this section). The variable list is used to distinguish bet-
ween variables and parameters. The table of atiributes
contains properties of the algebraic set, like the dimen-
ston or a list of independent variables. These attributes
are querled by some of the algorithms to avoid dupli-
cate computations. In the sequel the different types of
representations are described.

Implicit Form: A representation in implicit form
consists of a list of polynomials f, ..., fi over I in the
variables 2y,..., 2, specified in the variable list. The
algebraic set defined by these polynomials is

V({fi,.. e }).

Parametric Form: A representation in parametric
form consists of a list of rational functions M. Bi
over {1 the variables ), ..., 1) specified in the vauabie
list. The algebraic set deﬁned by this parametrization

is

Vi{g e K{zy,...,zq] |
(t1....,1%) alty,. . 1x)
.‘7 Zi(i:.‘u)t:)"-'}gn(!i; x } })

Projected Form: Some algorithms in constructive
algebraic geometry are described to operate on hyper-
surfaces. It is possible to reduce the general case to
hypersurfaces. As a consequence of the Theorem of the
Primitive Element, every irreducible k-dimensional va-
riety in n-dimensional space is - after a suitable linear
transformation of coordinates - birationally projecta-
ble onto an irreducible k-dimensional variety in & + 1-
dimnensional space. This “projection” is one~to-one for
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all but finitely many points on the algebraic set. o,
instance algebraic space curves can be mapped biragjo.
nally onio planar curves. It can be attempted to para-
meterize the planar curve and then map the parameu;.
zation back o a parametrization of the space curve, \\7.
call an irreducible hypersurface given in implicit form by
a polynomial f and a list of rational functions Lu _____ L_
a representation in projected form. f, the p's and the ¢’
are polynomials in the variables t1,. .., tx4 specified i,
the variable list. Let (ay,...,ak41) G T he a gene-
ric point of f,i.e. flay,...,ax41) = 0 and ay,. T
have transcendence degree & over K. The algebraic sey
defined by this projected representation is

V({g € Klzy,.... 2] |
pifas,...akqy) pale1, o arq1)y
AT C—. GA+:)"“"qn{ﬂz,---'awx})—o}}'

Places: Algebraic sets can also be locally paramels
zed by power series. Let py, ..., p, be univariate power
series with coefficients in K. These power series are o
description of the algebraic set given in implicit form
by a polynomial f and center (ay,...,a,) € K", il
f(,"i,-»-,Pn) = 0 and pi(0) = ai,...,pa(0) = an. A
parametrization in power series with a singular point as
center may require more than one tuple of power seric~
to describe all branches of the algebraic set. The repre-
sentation by places consists of », (r > 1), lists of power
series {14, Paily - -y [Pies . o) Pur). The power serics
are in the variables specified in the variable list. The
algebraic set defined by this representation is

I/({5’ = I{{Il» - .,.73,1] ;

Q(Plly o -:Pnl) = O) v vng(plr: v :pnr) = O})
4 Algorithms
4.1 Conversion Algorithms between

Different Representations

One of the design goals of CASA is to provide aige
rithms for converting a given algebraic set from any re
presentation to any other. However, there are certain
limitations, because not all conversions are theorcticals
possible. For instance, not all curves given in implicit
form can be parameterized by rational functions. A
short description of the conversion algorithms is give:
i the sequel.

Rational Parametrization of Curves: The irredi-
cible plane curve C defined by the irreducible polyne-
mial fle,y} € Klz,y] is rafional iff there exist e
tional functions é(t), v({) € K(t) such that {1) for a&




most all (i.e. for all but a finite number of exceptions)
to € T, ($(ie), x(to)) is a point on C, and (2) for almost
every point (zo,y0) on C there is a 1g € € such that

(2o, y0) = {#{ta), x{0)). 1 &, x satisfy the conditions
(1) and (2), (¢, x) is a rational parametrization of C.

An irreducible curve ¢ in n~dimensional space can be
parameirized by projecting it onto a plane curve ',
i.e. representing it by an irreducible polynomial Hz,w)
and rational functions f?:—:, e %f, and parametrizing the
plane curve C' by (¢, x). Then

& ),--.,%(qb,x)

— QIJ! X
q1 (
is a rational parametrization of C.

So we arrive at the following parametrization problem:

given: an irreducible polynomial f(z,y) € Gz, y] defi-
ning an irreducible affine algebraic plane curye C
(irreducible over C)

decide: the rationality of C

find: (if C is rational) rational functions ¢(t), x(t) €
Q(1) such that (¢, x) 1s a rational parametrization
of C.

CASA contains an algorithm that solves exactly this
problem. During the execution of this algorithm the
singularity structure of the curve is determined. For
curves of genus zero a parametrization is computed by
forcing a pencil of curves through these singularities and
sufficiently many simple points of the curve. The ma-
thematics behind this parametrization algorithm is de-
scribed in [SWOI).

Implicitization: Af present we have implemented
three algorithms for finding implicit representations of
algebraic sets given in parametric form (see [KalgGh]
and [Kal90a]). Each of these algorithms is based on the
computation of Grobner bases. We will only give a short
description of one of these algorithmns here.

Giiven the rational parametrization
P _

o a’ T gn

where p's and ¢’s are polynomials in y,..., ¢ over the
field K, the algorithm computes the square—free form ¢
of the polynomial [[re; ¢;. Then the implicit represen-

tation of the given algebraic set is found by computing

3}

G'B({pl Xy —(11,---,1‘%2 s ln Qn,fI'Z"“ 1})

ARz, ),

where = is a new variable and GB is the Grobner basis
with respect to the lexical ordering with 2y < ... <
r, <t < oKty <z
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Conversion from Projected to Implicit Form: If
an irreducible algebraic set is given in projected form,

i.e. by an irreducible polynomial f in Kty il
and rational functions
Ty = p—l—, ...... Ty = EP_’
q1 dn
where p’s and ¢'s are polynomials in ty,. .., g4 OVer

the field K, then we compute an implicit representation
of this algebraic set by a strategy similar to the strategy
used in the implicitization algorithm:

The implicit representation of the given algebraic set 1s
found by computing

P Ea— G, @2 — 1, f})
ﬂK[s;l,. ..,Jjn],

GB({P; &1 G,

where z is a new variable, ¢ is the square~free form of
the polynomial []i., ¢, and GB is the Grobner basis
with respect to the lexical ordering with z; < ... <
Ty <ty < <P <2

Projection: Every irreducible k-dimensional variety
V in n-dimensional space is — after a suitable linear
transformation of coordinates — birationally projec-
table onto an irreducible d-dimensional variety V' in
d + 1-dimensional space. We have implemented an al-
gorithm to project an implicitly given, irreducible, k-
dimensional algebraic set in n-dimensional space onto a
k-dimensional hypersurface. This algorithm is based on
the computation of Grobner bases. A detailed descrip-
tion can be found in [Kal91].

Power Series Expansions of Curves: On a planar
curve one can compute the places centering around the
points of the curve. For curves in implicit form we im-
piemented the Newton polygon method (see for instance
(Wal78]). Actually we use refinements of this classical
method for singular points ([Duv89]) and regular points
(IKT78]). For curves in parametric form numerator and
denominator of the rational functions are view as power
series and divides out. In both cases a suitable para-
meter substitution as preprocessing allows to computer
the series around a given center.

4.2 TFurther Operations on Algebraic
Sets

Equation Solving: CASA contains an algorithm ba-
sed on the computation of primitive polynomial rema-
inder sequences and elimination sequences that sol-
ves systems of algebraic equations in three variables



(see [Kal90c}). More precisely, for a finite set F C
K21, 29, 23] the algorithm computes the decomposition

s

Py

VIF)=1 |V(E)

3

such that foralli & {1,...,m}

E; 1s a finite subset of K{xy, v, 23},

every common zero of the polynomials in £; N
Klzy,...,2;] s a common zero of the polynomials
in Ideal(F: )N K|z, ..., z;] forevery j € {1,2,3},

if V() consists of finitely many points then E;
has three elements, a univariate polynomial in z,,
a bivariate polynomial in x; and 22, and a poly-
nomial in three variables.

Dimension and Independent Variables: To com-
pute dimensions of algebraic sets we use one of several
diflerent definitions. The dimension of an algebraic set
V 1s the dimeusion of the ideal I of polynomials in
K{zy,...,2s] vanishing on V. If I is a proper ideal
in K[zy,...,2,] then the dimension of 7 is the maximal
number of elements in any set S of variables indepen-
dent modulo . 8 C {z4,..., 25} isindependent modulo
the proper ideal J if K{S]NI = {0}. We have implemen-
ted the computation of the dimension of an implicitly
represented algebraic set by doing one Grobner basis
calculation (for details confer {KW88]). As a byproduct
we obtain a set of independent variables.

Proper Parametrizations: An algebraic curve in
parametric form, given by the rational functions

Lo lqm in the variable {, can be reparametrized using
n

a parameter substitution

_ 8™ + dmo1sTT 4 toag
bys™ + bm—lsm—} + ...+ by

The appearance of the curve is not altered, only the re-
lationship between poinis on the curve and parameter
values. If there is 2 one-to-one correspondence between
parameter values ¢ and points on the curve (with excep-
tion of singular points), then there is an m-to-cne cor-
respondence between parameter values s and points on
the curve. Curves which have a one-to-one relationship
between parameter values and points on the curve are
called properly parametrized curves. Every curve can
bre reparametrized such that the new parametrization is
proper (Liroth’s Theorem, see {Wal78]). We have im-
plemented an algorithm of Sederberg to compute proper
parametrizations (confer [Sed&6]).
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Decomposition of Algebraic Sets in Irreducibie
Components: CASA contains an algorithm comypy-
ting the irreducible components of an algebraic set gj.
ven in impliait form. The output 18 a sequence of iy
plicitly represented irreducible algebraic sets. The a)-
gorithm is based on the computation of Ritt’s charae.
teristic sets and Grobner bases, for details see [Riti()].
[Wan89}, [Wus4].

Graphics Representation of Curves and Surfa.
ces: Maple 4.3 provides a function “plot”, which te-
sults in an internal MAPLE-structure of 2D-curves ai-
ven in parametric form or as a list of points which have
to be connected. This internal structure can be plot-
ted. Such an internal representation of a curve can he
visualized on the screen or printer. It is also desirable
to draw curves and surfaces given in any other represen-
tation, in particular, implicit 2D-curves. The function
“plotAlgSet” results in a file containing the graphic re-
presentation of a curve or surface given in any type of
representation except implicit 3D-curves. For drawing
an implicit 3D-curve one can convert the curve from
implicit to projected forin and then draw the conver-
ted curve. This process may result in a loss of finitely
many peints on the curve. A similar phenomenon oe-
curs i the rational parametrization of the curves. There
are several optional parameters to specify, for instance,
whether points have to be connected by splines or lines,
a title for the drawing, the order of places {i.e. each
place ends with the term of the given order), ete.

HELP facility: To use CASA one must get infor-
mation on the procedures and functions in CASA, i.e.
available procedures and funciions, sequence of parame-
ters, optional parameters, function results, etc. A call
of the funetion “helpAlgSet” provides information ou
certain procedures and functions in CASA.



5 Sample Session

iIN“/
SRAN [/1... Copyright (c¢) 1989-1890 the University of Waterloo
\ MAPLE / Version 4.3 --- Mar 1989 ’
€ > For on-line help, type help();

# First we load the CASA files.
>
> read Casa:

Vo VR

~2xx-y-3*z], [x,y,2]);
2 2 2
a 1= algebraic_set{f{3x -4y +2z -8yz+4xz-4x+1,

2 2

We generate an algebraic set in implicit form and assign it to the variable a.

a 1= mEkImpLALgSet ([3#xkk2-dryr* 24z #2-Bkyrz+dexsg—dax+1, Xhx2+2hyrk2+2hyhz sy

X +2y +2yz4+xz-2x-y-~3z], [x,y, 2],

attr)
* Now a is decomposed in its irreducible components.
> decompose(a);
algebraic_set(

3 2 2 2 3

{10y -8xy -85y 4+10yx ~6y=~8yx-9+6x +42 x - 32 x ,

2 2
3 xz-3z+15x +10y -28x+7y-10yx + 6,

2 2
3rz-3dz=~-6x =2y +1ix~-5y+5yx-=-3,

2 2 2

3z -12z-99x -68y + 188 x - 68 y + 80 y x - 45],

[x, vy, 2], attr),

algebraic_set([- 1 + 2y, x + 2], [x, y, 2], attr)
% a decomposes inte two components, one line and one space curve.
# We assign the curve to the variable b.

>
b := "[1]:

b is one-dimensiocnal. We check this by computing the dimension.

VOV B v v

dimension{b);

llext b is birationally projected onto a planar curve in the x-z plane. The representation

ft

* of b as a planar curve + birational map is assigned to c.
>

>

c = impl2proj(b);

407

2



¢ := algebraic_set(

2 3 2 2 3
(172 -12-60z +6 2z + (71 -68Bz+39 2 ) x+ (-80+352) x + 25 x 1,

2 2
-z +6z-~1+(8-8682z)x-5x
[x, ~ ~=-- e , 213,
2+ 4z

[x, 2], attr)

# We plot the space curve given in projected representation. In this case PostScript output
# is produced and stored in the file c.ps

> plotAlgSet(c,x=—5..5,z=~5..5,numpoints=200,plotdevice=postscript,plotoutput=’c.ps’);

# h parametrization of ¢ is obtained by parametrizing the planar curve and mapping the
# result back to 3D-space.

>
> d := projZpara(c);
d := algebraic_set{
2 3 3 2
445 t + 400 t + 125 t + 204 25t + 65t + 23t~ 27
[1/2 e e e s B e o R
3 2 3 2
441 + 125t + 835t + 550 t 443 + 125 ¢ + B35 ¢t + 550 ¢
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3 2
71t + 12+ 25t + B0 %
441 + 125 t + 835 t + 550 t

{t}, attr)

In the following we analyze the planar curve cbtained by the projection of the space
curve. The function represent pulls out the representation polynomial. It is assigned to g.

AR A

g = represent(c}[£]{1];
2 3 2 2 3
g:= 17z - 12-60 2z +5 2z + (~68z+71+3%z)x+ (-80+352z)x +25x

A curve in 2-dimensional space is formed. Here the second (optional) argument,
a list of variables, is given to specify that the curve is planar.

e := mkImplAlgSet({gl,[x,z1);
1= algebraic_set(

H

2 3 2 2 3
(172 ~-12~60z +52z + (~-68z+71+39z) x+ {(-80+35z)x +256x1],

[x, 2z}, attr)

# The algorithm tsclve computes the solution of a system of equations in at most
# three variables. It is based on the computation of polynomial remainder sequences.
# tsolve is used to determine the singularities of the planar curve given by g.

> tsolve([g,diff(g,x),diff{g,z)1, [x,21);
flz + 1/2, 180 x - 306]]

# A power series expansion of the curve can be computed around this singularity.
; f := impl2plac{e, [306/180,-1/2]);
f := algebraic_set([[proc(powparm} ... end, proc{powparm) ... end],
[proc(powparm) ... end, proc{powparm) ... end]l, {TI],
attr)

# The function shAlgSet is used to print out a finite approximation of the series,
# The second argument gives the number of terms that are cemputed.

>

> shAlgSet(f,3);

The algebraic set is given by the following places:

/ 172\
17 1 | 1 2 ] 2 3
e T, - /2 + T+ |- 300 ———- - 210 --—-=! T + 0(T )],
10 1/2 \ W1 o/
5 -5 2
/ 1/2\
17 1 | 1 2 | 2 3
[-——= + = T, - 1/2 + T + |- 300 ==~= « 210 ===~ T + 0(T )1]
10 1/2 \ %1 %1/
54+ 52
1/2
YA ~ 48 = 36 2
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Conclusion

Computer algebra can be applied to solve many inte-
resting problems in algebraic geometry. We have de-
scribed the program system CASA, which provides a
variety of operations for algebraic curves and surfaces.
Whatever is described in this paper is available in the
CASA system. However, there are still many algebraic
and geometric algorithms that we plan to implement in
the future.

References

[Ben90]  D. Bennett. Interactive Display and Mani-
pulation of Curves and Surfaces of Mathe-
matical Functions, ACM SIGSAM Bulleiin,

24(3), 1990. |

C. Bajaj and A. Royappa. The GANITH Al-
gebraic Geometry Toolkit. In A. Miola, edi-
tor, Lect. Notes in Comp. Sci. {29, DISCO
'90, pages 268-269, Capri, Italy, April 1990.
also in: ACM SIGSAM Bulletin 24(3).

D. Duval. Raticnal Puiseux Expansion.
Compositio Mathemaiica, 70:119~154, 1989.

[BRO(]

[Duvgg)

[Ikal90a] M. Kalkbrener. Implicitization by TUsing
Grobner Bases.  Technical Report RISC-

Series 90-27, Univ. of Linz, 1990.

[Kal90b] M. Kalkbrener. Implicitization of Rational
Curves and Surfaces. In Proc. AAECC-8 {to

appear), 1980.

M. Kalkbrener. Primitive Polynemial
Remainder Sequences. Technical Report
RISC-LINZ Series no. 90-01, Research In-
stitute for Symbolic Computation, Univ. of
Linz, 1990.

[alg0c]

ikal9l] M. Kalkbrener. Birational Projections of Ir-
reducibie Varieties. Technical Report RISC-
LINZ Series no. 90-59, Rescarch Institute for

Symbolic Computation, Univ. of Linz, 1991.

[INHSHO0] M. Kalkbrener, W. Herfort, J. Seke, and
M.O. Hittmair. Application of primitive
polynomial remainder sequences to a pro-

blem of quantum optics. Sitzungsbericht der

[KT78)

[KW88]

[Rit50]
[Sed86]

(SSB8Y)

1SW91]

(W-103]

[Wan89]

[Wu84]

410

asterr. Akademie der Wissenschaften (to ap.
pear}, 1990.

H. T. Kung and J. F. Traub. All Algebraic
Functions Can Be Computed Fast. J. of /¢
ACM, 25:245-260, 1978.

H. Krede! and V. Weispfenning. Computing
Dimension and Independent Sets for Poly-
nomial Ideals. J. Symb. Comput., 6(2 and
3):231-248, 1988.

3. F. Ritt. Differential Algebra. AMS, 1950,

T. W. Sederberg. Improperly parametrized
rational curves. Computer Aided Geom. [e-
sign, 3(1):67-75, 1986,

M. Stillman, M. Stillman, and D. Baye:.
Macaulay User Manual 1989,

J. R. Sendra and F. Winkler. Symbolic
Parametrization of Curves. J. of Symbolic
Computation, 1991, (To appear).

R. J. Walker. algebraic curves. Springer-
Verlag, second edition, 1978,

D. Wang. A Method for Determining the Fi-
nite Basis of an Ideal from its Characteristic
Set with Application to Irreducible Decom-
position of Algebraic Varieties. Technical re-
port, RISC-Linz series no. 89-50.0, Research
Institute for Symbolic Computation, Univer-
sity of Linz, Austria, Dec. 1989,

W. Wu.  Basic Priniciples of Mechaii-
cal Theorem Proving in Elementary Geo-
metries. Journal Sys. Sci. & Math. Sas.,
4:207-235, 1984.



