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Abstract

The Knuth~Bendix procedure for the completion of a rewrite rule system and
the Buchberger algorithm for computing a Grobner basis of a polynomial ideal are
very similar in two respects: they both start with an arbitrary specification of an
algebraic structure (axioms for an equational theory and a basis for a polynomial
ideal, respectively) which is transformed to a very special specification of this
algebraic structure (a complete rewrite rule system and a Grobner basis of the
polynomial ideal, respectively). This special specification allows to decide many
problems concerning the given algebraic structure. Moreover, both algorithms
achieve their goals by employing the same basic concepts: formation of critical
pairs and completion.

Although the two methods are obviously related, the exact nature of this
relation remains to be clarified. Based on previous work we show how the Knuth-
Bendix procedure and the Buchberger algorithm can be seen as special cases of
a more general completion procedure.

1. Introduction

‘I'he Buchberger algorithm BU has been introduced by B. Buchberger in 1965 [Bu 65],
(Bu 85a] and it solves the following problem:

given a finite set F' of multivarate polynomials over a field, construct a finite set
F' of multivariate polynomials such that =r = =p+ and ~» pi is Church-Rosser.

Here, for a set I of polynomials, =p is the ideal congruence modulo the ideal generated by
Flie f=Epge=f-ge ideal{F'}) and — p is a certain Noetherian reduction relation on
polynomials induced by F” [Bu 85a] with the property that % (the reflexive-symmetric-
transitive closure of — p) is equal to =p. If ' = BU(FY), then the Church-Rosser property
guarantees, that for arbitrary polynomials f, g the congruence f =p g can be decided by
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computing normal forms of f and g modulo — p and checking for syntactic equality. A
basis F' with this property is usually called a Grébner basis {Bu 85a).

Such a Grobner basis can be computed by the Buchberger algorithm BU in the fol-
lowing way:

Fl o BU(F);
[F and F' are finite sets of multivariate polynomials over a field.
=p = =g and — p is Church~Rosser.]
F" e I,
while not all critical pairs of F' are considered do
{*) choose a critical pair {py,p2) of F';
reduce (p;, py) to normal forms (g1, g2) modulo — p/;
(**)if ¢ # g2 then F' « F' U {q — ¢} endif
endwhile =

The two basic strategies of the algorithm are the formation of critical pairs in (*) and
the successive completion step (¥*). A critical pair of F’ is constructed in the following
way: choose two different polynomials f,g in F'; reduce the least common multiple of the
leading terms of f and g by f, getting p;, and by g, getting ps; then (py,pz) is a critical
pair of F'. Instead of reducing (p;,pz) to normal forms (qi, g2) and checking for syntactic
equality, one could reduce p; — p; and check for equality to 0. The polynomial p; ~ pa
is usually called the S-polynomial of f and g [Bu 85a]. Buchberger has shown [Bu 65],
[Bu 85a] that this algorithm terminates for all inputs and computes a Grobner basis for
ideal( F).

The same basic strategies have been used independently by D.E. Knuth and P.B.
Bendix [KB 67] in the context of an equational theory T over an algebra T of first—order
terms. The Knuth-Bendix procedure solves the following problem:

given a finite set E of equations between first-order terms, construct & finite set
E' of equations such that =g = =g and — g is Church-Rosser and Noetherian.

Here, for a set E of first-order equations [HO 80], =g is the equational theory generated
by E, i.e. the set of all equations s = ¢ which can be derived from E, E+ s =t [BL
83]. —g is the reduction relation on terms induced by E viewed as a system of rewrite
rules with =g = «%. Again, the Church-Rosser property guarantees that s =g ¢ can
be decided by reducing s and ¢ to normal forms modulo — g and checking for syntactic
equality. A finite set of equations E, viewed as a system of rewrite rules, such that — g is
Church-Rosser and Noetherian is called a canonical rewrite rule system.,

The Knuth-Bendiz procedure KB attempts to compute a canonical rewrite rule system

in the following way:

E' — KB(E);

[E and E' are finite sets of equations of first-order terms which can be viewed

as Noetherian rewrite rule systems.

=g = =g and —g is Church-Rosser.]

E' — E,

while not all critical pairs of E' are considered do
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choose a critical pair {¢1, ¢;) of E';

reduce (cy, ¢3) to normal forms (d;, dz ) modulo — g;

if d; # d; then
if “““'E’u{d;:d,} is Noetherian then E" e E’ U {dl = dg}
elsif — g (a,=4,} is Noetherian then E' — E' U {d, = d;}
else exit with failure

endif

endwhile H

For the notion of a critical pair we refer to [BL 83]. We say that an equation s = ¢
can be viewed as a rewrite rule s — ¢ if every variable occurring in ¢ also occurs in s.
A set of equations E = {s; = #;,...,8, = {,} can be viewed as a rewrite rule system
{31 — t1,...,8, — t,} if every equation s; = ¢; in it can be viewed as a rewrite rule
a; — t;. In contrast to the Buchberger algorithm there are situations in which the Knuth-
Bendix procedure may terminate with failure or run forever.

Certain types of equations cannot be handled by the Knuth-Bendix procedure: a
commutativity axiom immediately destroys the Noetherianity of the reduction, and an as-
sociativity axiom together with other equations can cause the procedure to run indefinitely.
Peterson and Stickel [PS 81] have proposed to keep such equations in an equational theory
T (the equations in T are not viewed as rewrite rules) and do all the computations in KB
modulo this equational theory T, i.e. not terms ¢ in T are reduced but equivalence classes
[t in T,p. This approach works whenever a complete unification algorithm modulo this
theory T exists. For technical reasons the equational theory E has to be modified so that
it becomes T-compatible. For theories T consisting of commutativity and associativity
axioms this i1s a straightforward process.

The striking similarity between the Buchberger algorithm and the Knuth-Bendix pro-
cedure have been observed in [Lo 81], [BL 83], [Bu 85b]. Le Chenandec [Le 86] gives a
ccmpletion algorithm for commutative polynomials over rings generated by a finite set G
of generators. His method does not apply to the case where the base coefficients belong to
a fleld, since fields cannot be described equationally.

The following approach towards a unified procedure has been tried by Llopis de Trias

(L1 83]: describe Kizy,...,z,] by the reduction system Ry consisting of the nine rewrite
rules

z+0 -z z 4+ (=xz) =0

-0—-0 —(~z}) >z

e+y) ()t () ool

z:0-0 z-(-y) = —(z y)

z-(y+z)—z-y+zc z

and the equational theory

T={e+y=y+e, (c+y)tz=z+(y+2),
sy=y-z (2y)-z=z-(y 2)}
Le Chenandec [Le 86] demonstrates that Ry is a confluent rewrite system with respect

to the equational theory T. The underlying term structure 7' contains constants for the
elements of K and constants X,,..., X, for the indeterminates and the function symbols +
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and -. To the rewrite system R, one adds rules for each of the polynomials in the ideal basis
F', thus creating the new rewrite system R. R has to be made T-compatible by adding
variable enlargements s° — ¢* for the rewrite rules s — ¢, as described in [PS 81). Finally
one applies the completion procedure to R and T, thus constructing a rewrite system R’
which generates the same equivalence relation as R and which is confluent modulo 7.

This approach, however, neglects the following problem. Suppose we are given the
ideal basis

F={ey’ - 20y -2, o’y —z ~y, oy +¢* - 4z - 2} C Q[z, y).
Then the initial rewrite system would be

R=RyURFU{(1)XY? - 2XY + 2,
(2)X*Y - X +7,
(3)XY — —-Y? +4X +2Y)}
U{(19)XY?z - 2XYz + 2z,
(2)X*Yy - Xy + Yy,
(3°) XYz > -Y?2 44Xz +2Y 2}
Because of the associativity and commutativity of + and - we may omit the parenthe-

ses in the polynomials. During the execution of the completion procedure the following
reductions have to be considered:

X2Y?)r
e
2X?%Y +2X)p (XY +Y?r
1(2) (3) l
2X +2Y +2X]r [—Y? 44X + 2V + V?)p
| I
[2X +2X +2Y)p [-Y2+ Y2 4+4X +2Y)p

In order to recognize the results as equal, it would be necessary to “add the coefficients
of like powers”, i.e. to apply the distributivity rule in the opposite direction. Clearly this
cannot be done without destroying the termination property of the rewrite system.

‘There are two possible directions in which one could Jook for a solution of this problem.
First one could try to add the distributivity rule to the equational theory 7. This would
entail the need for an associative-commutative-distributive unification algorithm. Raulefs
et al. [Ra 79, however, list this unification problem as undecidable.

The second way is to separate the polynomial reduction from the arithmetic on the
coefficients. So there are two relations, one is the usual “reduction relation” generated
by the polynomial rewrite rules, the other is a “simplification relation” responsible for
the arithmetic operations on the coefficients. The simplification relation need not be
generated by rewrite rules. The main problem of course is to guarantee that these two
relations behave well w.r.t. one another. This approach has been taken by Kandri-Rody
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and Kapur [KK 83]. The problem with [KK 83} is that it does not really show that the
Knuth-Bendix procedure and the Buchberger algorithm can be viewed as special cases of
a general procedure, but that the correciness proofs can be arranged in similar ways.

In [Wi 84] the author has combined various ideas of these papers together with [Hu 80]
for demonstrating the exact nature of the relationship between BU and KB. The present
paper continues this approach.

2. Confluence modulo a simplification relation

In the following we suppose that M is an arbitrary set, — a Noetherian relation on
M (called a reduction relation), and = a Noetherian confluent relation on M (called a
simplification relation}). By =z,y,z,u,v,w we denote elements of M. «, s, —F, —o*
are the inverse, the symmetric closure, the transitive closure, and the reflexive-transitive
closure of —, respectively. By -5 we denote the union of these relations, i.e. S=— U =.

Def.: — is confluent modulo = iff for all z,y, 2', y" such that ¢’ «—* z &* y —" 3’ there are
2", y" such that ' —* &' &* y" «* ¢ (ie, since = is confluent, 2’ —* 2’ |* y" «* 7).
(See the figure below.) =

» »*
:c\,/ \y’
AY
*‘:B”<==—$* y"
Lemma 2.1: Let — be confluent modulo =. Then for all z,y, z such that y{<=U )"z —*
z and y is irreducible modulo — U=+ and z is irreducible modulo —, we have z =* y. ®

Later on we will separate the reduction — of polynomials in the Grobner basis algo-
rithm from the simplification = of the coefficients in the polynomials. What we ultimately
want to achieve is that the combination —» U= is a confluent relation. As the following
theorem shows, it is enough to guarantee confluence of — modulo =.

Theorem 2.2: If — 1s confluent modulo =, then — U=> is confluent.

Proof. Let — be confluent modulo =. Suppose z,y, z are such that y(&< U )" z(—U=)"2.
Let z' be a normal form of z modulo — and ', 2z’ be normal forms of ¥, z modulo — U=,
respectively. Then by Lemma 2.1 3’ <=* ¢’ =* 2'. Since y' and z' are also in normal form

modulo = and = is confluent, we have y' = 2'. (See the figure below.) L
T
P
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It is essential for an eflective completion procedure that the confluence property of
the reduction relation under consideration can be checked locally. This program can also
be carried out for the notion of confluence modulo the simplification relation =.

Def.: — is locally confluent modulo = iff
(L1) for all z,y,z with y « ¢ —» 2z there are ¥, 2/ such that y —* y' |* 2 «* 2 and
(L2) for all z,y, z with y «— = < 2 there are ¥, 2' such that y —=* ¢’ §* 2 «* 2.

(See the figure below.) L

(Ll):/:n\ (L2): /z = z
i
|
v ; o

¢ i ! % ! ‘ **

*y 0 ¥ ¥ i '

Y y* % y y* oz

Def.: = is orthogonal to — iff
(O1) for all z,y,y' with z = y —7 3’ there are 2”,y" such that ¢ —* 2" §* " «* ¢/

and
(02) for all z,y,z' with ' «F = => y there are 2", y" such that 2’ —=* =" | ¢’ «" y.
(See the figure below.) n
(O1):  2==y (02): /:n —y
|
; \+’ +f !
! I i 9 | |
+ [ f
A PR oo

With these definitions we get the following theorem.

Theorem 2.3: Let —U=> be Noetherian, and = orthogonal to —. Then — is confluent
modulo = if and only if — is locally confluent modulo =.

Proof Obviously confluence of — modulo = implies local confluence of — modulo =.

So now assume that - is locally confluent modulo =. Let % be the following relation on
M?:
(z,9) X (z',y") if 25z andy=1y or
rs ! rs 1
r—2z andz —y or
e=a' andy Sy or
y =z andy >y
Then 3} is a Noetherian relation on M2. (This is a direct application of proposition 2.1
in [Hu 80].)
Now we show
P(z,y): if 2 " y then
for all z',y' such that z —* 2z’ and y =" ¥’
there are Z,7 such that 2’ —* & [|* § «" ¢/

A : 2
by Noetherian induction on =5,
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Let z,y,z',y' € M be such that 2/ «* z &* y —* yy'. We show the existence of Z,§ such
that ' —* z |* y «* y’'. We distinguish two cases,

Case 1. z =y. If 2’ = 2 or y' = y, respectively, then we simply choose £ = § = ¢ or
£ = § = 2', respectively. Otherwise there are z;,y, such that ¢ — z; —* &/, :
y — y1 —" y'. Applying property (L1) to z,z; and ¥, we get u,v, w such that
z, =" v =* w &* v " y. Let 2',u,v,¥ be —-normal form of z',u,v,v’,
respectively. Then by the induction hypothesis P{z;,z;) there exists w; such that
z' =" w; <"y and w, is in =-normal form, by the induction hypothesis P(u,v)
there exists w, such that ¥ =* w,; «* v and w; is in =>-normal form, and by the
induction hypothesis P(y;,y:) there exists w; such that v =" w; <" y' and w; is
in =>-normal form. Because of the confluence of = we have w; = wy = ws. (See

Figure a.) !

Case 2: z # y. Because of the confluence of = we have = §* y. So w.lo.g. thereis u such
that z = u© &" y.

Case 2a: ' = ¢. By the induction hypothesis P(u,y) there are u',3y", w; such that
u—*u =% w &y <"y Hu' = v then we can choose £ = ', § = y". (See
Figure b.)

Otherwise there is u; such that u —» u; —* u'. By the orthogonality of = to —
there are z'', 2", ", w; such that ' — 2" —* 2" =* wy &* v «* u;. Now we let
', u", u',y" be —-normal forms of z",u" u',y", respectively. By the induction
hypothesis Pz, u") there is ws such that g/’ =* wy <" u' and w; is in =~-normal
form, by the induction hypothesis P{u;,u;) there is w4 such that u" =" w, «* 2’
and wy is in =>-normal form, and by the induction hypothesis P(u’, y"') there is w;
such that u' =* ws <" y" and wg is in =»>-normal form. Because of the confluence ©i

of = we have wy = wy = ws. (See Figure ¢.}

Case 2b: ¢’ # 2. In this case there is z; such that z — z; —* z'. Applying property -
(L2) to z,u,z1 we get vy, vy, w; such that z; =" vy =" w; &* v2 «" u. By the 7

induction hypothesis P(u,y) there are vy, y"”, wy such that v; = v3 =* w, «” |
y"' " y'. Now we let z',v,,v,,y" be ~»—normal forms of ', vy, v3,y", respectively. -
By the induction hypothesis P(z;,2;) there is w3 such that 2’ =" w3 <«=* v, and
wj i in =>—normal form, by the induction hypothesis P(v,,v;) there is wy such that :
v, =>* w4 <" y; and wy is in =-normal form, and by the induction hypothesis ]
P(v3,y") there is ws such that v, =* ws <* y"” and ws is in =-normal form. =
Because of the confluence of = we have wy = wy = ws. {See Figure d.) n 3

The orthogonality of the simplification relation = to the reduction relation — gives f
us freedom in the way these relations can be applied successively. :

Lemma 2.4([Wi 84]): Let 3 be Noetherian and = orthogonal to —. If z 2> yand y in
. T8 . . - .

in —-normal form, then there exists z such that # —* z =" y, where z is in —-~normal
form. [ 1

61




3}1

Z/N I
o’ u

f
y
i \u .{::wngy
y_

'U
ind.hyp. md hyp ’( ind.hyp.
v

. P(xl;ml)* y1=y1 gi*
g yl'f
* *
~ Y \: v N v
Figure a Figure b
Ir - \
MY v < 2y
orthogon l ind.hyp l*
uy Plu,y) y'
*YHJ‘ u” :/ \*‘u‘l yla'va'*
~ N 2
wa w
ind.hyp ind.hyp mdlhyp
g‘r P(a:'”,u”) % P(ul,ul) * P(u’,y”) *
i _T,é” Ef H
LT N T N |
= 4 = 5
Figure ¢
z
o Ny
/ \ (L2) md hyp l
# N )
z’ V3 vp v
N /*l 1*
wi ’U3 y
ind.hyp. ind.hyp. ind. hyp
*\' Plzy,2y) J* P(vr,v2) | P(vs,y")
y
\ / \ / \. v
Figure d
62




We are especially interested in the case where the reduction relation — is induced by a
rewrite rule system R, i.e. — = — g, on a set of terms modulo an associative~commutative
theory. The following theorem is proved in [Wi 84].

Theorem 2.5: Let T be an equational theory over the term algebra T, R a T—compatible
rewrite rule system, = a Noetherian confluent relation on T /7 which is stable and com-
patible (i.e. if [s]r = [t]r, o a substitution, p an occurrence in u, then [o(s)]r = [o(t)]
and [u[p « s]]T = [u[p « t]]7) such that —pU = is Noetherian and = is orthogonal to
—n.

Then — g is confluent modulo = if and only if for all critical pairs ([s]r, [t]r) of R modulo
T there are [s']7,[t']7 such that [s]p —} [s']lr I [t')r —% [t]7. [

3. A common ancestor to BU and KB

Theorem 2.5 immediately leads to the following general completion procedure:

R' «— COMPLETE(R, T, =)
[R is & finite Noetherian rewrite rule system over the term algebra T,
T an equational theory for which there exists a complete unification algorithm,
= a Noetherian confluent stable and compatible relation over T/r,
such that — gU= is Noetherian and = is orthogonal to — 5.
R' is a finite Noetherian rewrite rule system such that
(—aU=)" = (=pU=)" and — g is confluent modulo =]
R' — T-compatible extension of R;
while not all critical pairs of R’ have been considered do
choose a critical pair (¢;,¢;) of R':
reduce (¢, ¢z) to normal forms (d;, d;) modulo — p U=;
if d; # d, then
if  terms s,t can be constructed such that d; and d,
have a common successor modulo — Rru{s—t} U= and
— r'u{s—t} U= is Noetherian
then R' « T-compatibel extension of R' U {s — t}
else exit with failure
endif
endif
endwhile |

The procedure COMPLETE can be specialized both to the Knuth-Bendix procedure
and to the Buchberger algorithm. We get KB from COMPLETE by letting = be the

identity and T = §.

It 1s a little bit more complicated to specialize COMPLETE to BU. We have to meet
the following requirements:
(C1) give an injective mapping from the polynomial ring K{z,...,#,] into some term
algebra T modulo an equational theory T,
(C2) give a simplification relation = on T 7,
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(C3) construct a rewrite rule system R for a given basis F of a polynomial ideal

such that

(P1) —»grU= simulates —p, i.e. every reduction step modulo —p can be considered as
a series of reduction steps modulo - gU=,

(P2) there exists a finite complete unification algorithm for 7,

(P3) R is a finite Noetherian rewrite rule system,

(P4) = is a Noetherian confluent stable and compatible relation over Tz,

(P5) —rU=> is Noetherian,

(P8) = is orthogonal to —p.

Ad (C1): The term algebra T contains the binary function symbols @, ®, the unary func-
tion symbol &, the constants X;,..., X, and a for every a € K, and the denumerable set of
variables V = {zo,%,...} (for convenience we denote the first variables by z,y,2z,w,.. .,

similarly for the constants X,). As the equational theory T we choose the associative-
commutative theory of & and ®, i.e. a basis for T is

{zdy=ysde, (z6y)der=c2(y8z2), 23y=y R, (zRy)Rz=20(y®2)}

A nonzero polynomial f = 5 .-, a,X{" . - X5 is mapped onto the equivalence class
of 51 @ (82 B - B (Smo1 © 8m) ) modulo T, where s; is the obvious description of
a; X{ ... Xgin in T. The zero polynomial is mapped onto the constant 0. This mapping
is called ferm. We let & have higher precedence than @, so that we can omit parentheses
because of the associativity of the operators. So, for instance, the polynomial 3z%y® —
2z%y 44z — 5 € Q[z,y] is mapped onto the equivalence class BR@X Z X & YeoYe(-2)g

X©XRY 242 X o (—5)|r. term is an injective mapping from Klzy,..., 2] onto T 7.

Ad (C2): The simplification relation = on T 7 is defined in such a way that it simulates
the operations involving the const.nts of the coefficient field K.

[8]r = [tlr :<=> there are s =1 8,t' =7 t, such that

i t : ¢ !
t' = ¢'[p « u] for some occurrence pin s’ and s;, — v,

where for coeflicients a;,a; € K and terms s € T:

a; @az — ay - a2 a, ©ag — a) + az
©a; “ ~ay Sla; ® 8) > (~a1) s
a ®sEayXse (a) +ay) 83 08a; 88 —a;, &9
0®s—0

The relation = is well-defined on T /7.

Ad (C3): We start with the rules of the canonical rewrite rule system for the ring structure
modulo the AC-theory T which are not already incorporated in =, i.e.

e®(ydz) = (eRy) @ (2B 2) eler) — =

S(e @ y) — (S2) @ (ey) z®(0y) - o(z8y)
We call this rewrite rule system K.

For every polynomial f in the ideal basis F we include the following rule in the rewrite

sytem Rp:
term(It(f)) — Sterm(red(f)
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where [t(f) is the leading term of f and red(f} is the reductum of f.

We let the rewrite rule system R be the union of R, and Rp. L ;

This completes the simulation (C1) — (C3). Now it can be shown that (P1) — (P86)
hold [Wi 84}, We illustrate this simulation of BU by the following example.

Example: We consider the ideal basis

F={z’y -2’ + 2y, 3’ -y+1} CQ[e,y.

— -

fi f2

The power products are ordered according to the graduated lexicographic ordering. First
there is only one critical pair of F, namely the one resulting from the reduction of z?y?
modulo f; and f;, respectively.
2 2 2 2 2
oy — 2z — —2zy* +z* — 2z — z* — dzy + 2=
L, JL =y —2ey f y vy Y

z’y
R 2’y —2? -y 2wy

e >

2

So we add f3 = z% — 22y + 2z to the ideal basis and proceed. All the other critical
pairs lead to common successors, so {fi1, f2, f3} is a Grébner basis for the ideal.

e AT e L e

The rewrite rule system corresponding to F is

RBe={(1): X8XRY - Xg2X3(-2)RXKY, (2):Y2Y-Ya(-1)}
B - " g ~ -
L ty 12 L]

Applying the procedure COMPLETE to R = R, U Rp, we first have to construct a T~
compatible extension R*of R. Because T is an AC-theory, this means adding a new rule
~ 08— uot(uanew variable) for every rule s — t with outermost operator o € {&, &}.

R =R*= R.UR"U RzU
e X2 XY »uk(X3X8(-2)2X3Y),vRY QY —va (Y e(-1))}.

LH 1+ LH t v

-

Fa

The only interesting critical pair results from unifying st and s§ by the unifier ¢ = {u —
Y, v — X ® X} For brevity, we will omit the operator & from now on.
lo(sDlr = [XXYY]r = [o(s3)IT

(1%) (2°)

V(XX b (=2)XY)]r —p, (XX(Y & (-1))lr —r,
(XXY @ (-2)XYY]r - (XXY & (-1)X Xt —y
(XX & (-2)XY & (-2)XYY]r -y XX & (-2)XY & (-1)XXipr ="

(XX @ (-2)XY o (-2)XY & (-2)(-1)X]r =" [(-2)XY]r
(XX 8 (-4)XY e2X]r
We add the new rule (3) : XX — 2XY & (-2)X to R' in order to guarantee a

common successor of the two normal forms of [X XYY} modulo — g U=>. We also have
to add the extended rule, so that R' remains T-compatible.
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All the other critical pairs of R have common successors. So —’ with R = R. U
REU{(1),(2),(3)} U {{1%),(2%),(3%)} is confluent modulo =, L

We want to point out that we do not claim or intend to be able to improve the
efficiency of BU or KB by such a simulation. However, we think that the general completion
procedure COMPLETE might help to understand the intricate relationship between two
important algorithmic concepts for constructing canonical rewrite systems.
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