Prec. 5. QOsterr. Al-Tagung, J.Retii K Leidlmair (eds.), Springer-Verlag (1989)

Equational Theorem Proving and Rewrite Rule Systems *
Franz Winkler

Institut fiv Mathernatik and
Research Institute for Symbolic Computation
Johannes Kepler Universitat Ling

Abstract

Equational theorem proving is interesting both from a mathematical and a compu-
tational point of view. Many mathematical structwres like monoids, groups, etc. can be
described by equational axioms. So the theory of free monoids, free groups, ete. is the
equaiional theory defined by these axioms. A decision procedure for the equational theory
is a solution for the word problem over the associated algebraic structure. From a com-
putational point of view, abstract data types are basically described by equations. Thus,
proving properties of an abstract data type amounts to proving theorems in the associated
equational theory.

One approach to equational theorem proving consists in associating a direction with
the equational axioms, thus transforming them into rewrite rules. Now in order to prove an
equation a = b, the rewrite rules are applied to both sides, finally vielding reduced versions
a' and b of the left and right hand sides, respectively. If ¢’ and b agree syntactically, then
the equation holds in the equational theory. However, in general this argument cannot
be reversed; ¢’ and ' might be different even if @ = b is a theorem. The reason for this
problem is that the rewrite system might not have the Church-Rosser property. So the
goal is to take the original rewrite system and transform it into an equivalent one which
has the desired Church-Rosser property.

We show how rewrite systems can be used for proving theorems in equational and
inductive theories, and how an equational specification of a problem can be turned into a
rewrite program.

1. Introduction

We give an overview of “automated reasoning with equations”. Equations, i.c. for-
mulas of the form s = ¢, are very common in mathematics, logic, and computer science.
We concentrate on two questions concerning such equations: {1} how can we automatically
deduce new equations from given ones, and (2) how can we compute with such equations?

Example 1.1: The abstract data type QUEUFE (over some element type EL) contains
operations newg {constructing the empty queue), app (appending two queues), and add
(adding a new element to a queue).

) Work reported herein has been supported by the Fonds zur Férderung der wissenschaftlichen

Forschung under Projekt Nr. P6763.

27

These operations have to satisfy the equafions

(QLl) app(z,newq) = 2,

(Q2} apple,add(y, z)) = add(app(z,y), 2},
(Q3) applapp(z,y), z) = applz, apply, =)).

[

Do the equations (Q1) ~ (Q3) imply that
(H) applz, appladd(y,), w)) = appladd(applapp(c, newq). y), z),w) 7

In fact they do, because

app{a, app(add(y, z), 1)) =q3 <=

applapp(z, add(y, z)),w) =qz,=

appladd(app(z,y), z),w) =q1,«
app{add(app(app(a, newq), y), =), w).

Here by the subscripts we indicate which equation is used on which subterm and in which
direction, i.e. whether the left hand side is replaced by the associated right hand side or
vice versa.

In general the problem is that we do not know in which sequence the given equations have
to be used and in which direction. Furthermore we do not have an upper bound on the
lenght of a derivation. |

Example 1.2: In mathematics a group is a set with operations 1 (arity 0), - (arity 2), ™!

(arity 1), satisfying the group axioms
(G1) 1-z=u,
(G2) a2 t.a=1,
(G3) (v-y) z==a(y z)

Again we are interested in deciding equations of the form s = ¢, where both s and ¢ are

terms constructed from variables and the group operations, for instance
(27 (g V= (et y) a7 "

Example 1.3: We consider an equational definition of the guotient and remainder of non-
negative integers. The predicate div is defined as

div(z,y,q.r) = r=q-y+r N 1<y

So an equational definition of the predicate div is
(D) div(u+y-+Ly+1l,¢g+1r)=dviuy+14q7),
(D2) div(z, 2 +uw-+1,0,2) = frue.

We want to use such an equational definition for actually computing the quotient and

remainder of two nonnegative numbers.]

In the following chapters we define the syntax and semantics of equational theories,
show how term rewriting systems can be applied for deciding equations modulo equational

28

theories, describe the Knuth-Bendix completion procedure for term rewriting systems,
discuss the termination of the Knuth-Bendix procedure, and show how the completion
procedure can be applied for proving theorems in inductive theories and for programming
with rewrite rules. For extensive introductions to equational theories, rewrite rules and
the completion procedure we refer to [HO 80, [Wi 84} and [Bu 85]. There the interested

reacder may also find proofs of the theorems.

2. Equational theories

Let & be a set of sorts (for instance, S = {EL, QUEUE} in Example 1.1). A signature
over § is a set of operators ¥ together with an (implicit} typing function T, which assigns
to every operator f € ¥ a type T(f) of the form §; x-S, — §, where §y,....5,,5 € S.
If n =0, then the operator f is called a constant.

Given a signature X over a set of sorts §. a L-algebra 1s an algebraic structure “im-
plementing” the sorts and operators of . Ie. a L-algebra is a pair (4, F), where A is
an S-indexed family of sets (Ag, for S € §, is called the carrier set of sort S) and F is a
Y-indexed family of functions (the operations of the algebra) such that

~ Fyis a constant in Ag if T(f) = 5, and
-~ Fyis a function from Ag, x -+ x Ag, to Ag if T(f) =S5y x--- x5, = 5.

A special Z-algebra is the algebra of ground terms or initial algebra G(2). For every
sort S the carrier of sort 5, G(2)g, contains every constant of type S in ¥ and if T(f) =
Sy x o xSy = Sand t; € G(X)g, for 1 < i <, then fty ...ty 1s in G(X)g. Nothing
else is in the carrier of G{Z). An element of G(2)g is called a ground term of sort 5. The
operations of this algebra are defined such that Fy takes ground terms #y,..., ¢, {of the
appropriate sorts) and maps them to the ground term fty ... ¢,. For hetter readability we
often write f{{1,...,¢,) instead of fiy... ;.

Admitting additional special ground terms Vg = {vi,v%,...} of every sort S, V an
S-indexed family of sets, we get the term algebra T(X,V) over the signature ¥ and the
variahle set V. An element of 7{%,V)g is called a term of sort S.

Example 2.1: Let & = {NAT, QU EUE} be the set of sorts, £ the following signature
operator type

0 NAT
suce NAT - NAT
newq QUEUE
app QUEUE x QUEUE —- QUEUE
add QUEUE x NAT - QUEUE
Then 0, succ(suce(0)), suce(succ(suce(suce(0)))) are ground terms of sort NAT over Z,

and newq, add(app{newq, newq}, suce(0)) are ground terms of sort QUEUE over L.

We choose Vvar = {#1,22,...} as variables of sort NAT and Voupvr = {vi,v2,...}

as variables of sort QUEUE. Then 0, suce(suce(es)) arve terms of sort NAT, and
newq, add(app(yz,newq), suce(xg)) are terms of sort QUEUE.]

The two bhasic operations on terms are substitution and replocement of subterms. A
substitution is a homomorphism of the term algebra 7T(X,V) into itself, which changes
only a finite number of variables. If the substitution ¢ changes the variable v to the
term #y, ... vz to the term ¢ and leaves every other variable unchanged, we write o as
{t1 = v1,....tr — vi}t. A replacement is a partial function of two terms s, ¢ and an
occurrence (sequence of positive integers) p = pypa - - - pr, which changes the subterm of s
at p to the term t. We write s{p « #] for the replacement of the subterm of s at p by ¢. If
[=0, 1e p is the empty sequencc A, then s*[p —t]=t. Ifl>0and s =

fi(t}v pl-—l fﬁ?(fg s pgm ff(tl sy p; fiu) T '?:r;j—‘.l:“"-t;zz.g.}'rt}_ln—i-}}"'?t-gz.l_)
then s[p ¢ ﬂ =

fl(fl ey pl—l fz(fjr" pg——}a 'fl(té)"':t:““tsn) : ‘;2)2-{-1, fig)wf];1+lw““fr[q)
Otherwise the replacement is undefined. By s/p we denote the subterm of s at p. In the
notation above s/p = s if p = A and otherwise s/p = tm

Definition 2.2: Let ¥ be a signature and V a variable set over the set of sorts & An
equation over T (X, V) is a pair of terms s,t, written as s = ¢, where s and ¢ are of the
same sort.

Now let E be a set of equations and s,¢ two terms in 7 = T(Z, V). Then s and ¢ are
provably equal modulo E, or s = t is provable modulo E { EF s =1) il s = ¢ can be
derived in the following equational calculus:

(Gl) —— forallu; =uy, € B

Uy = Ug

: Uy — Uy Uj — Uz, Up = U Iy ‘ .

(G2 ,) (reflexivity, symmetry, transitivity)

Uy T Uy g = Uy Uy =y
e Up = Uy L
(G3)) (02 {substitution rule)

o(ug) = ous

! !
U == UGy Uy = U _

(G4) L e (replacement rule)

where the u’s are terms, ¢ is a substitution, and f is an operator of appropriate type.

The set =5 = {s=1| EF s=1}is called the equational theory generated by E. and E
is called a basis of =p.

For convenience we often write s =g ¢ instead of EF 5 = 1. u

Provability of an equation is a purely syntactical notion. Now let us turn to the
semantics of equations, i.e. a definition of validity.

Definition 2.3: Let & be a signature and V' a variable set over §. Let {4, F) be a -

algebra. An assignment in (A4, F) is a homomorphism v from 7(Z, V) in (A, F). Such an
assigniment is uniquely determined by the values of the variables in V' and by the functions
associated with the operators in .

30

An equation s = ¢ over T(£,V} i1s valid in { A, F) (or (A, F) is a model of s = t) iff for all
assignments v in (A, F) we have v(s) = v{t).

The set of Y-algebras in which all the equations of a set of equations & are valid, 1s called

the variety of E, var(Z, E).

5 and t are semantically equal modulo E, or s = 1 is valid modulo E (E =s =t)il s =1
is valid in every Y-algebra in var(L, £).]

Example 2.4: Let §, 2, and V be as in Example 2.1. In Example 1.1 we have shown that
{(Q1),(Q2),(Q3)} F H.

Let S ={S}, = {1, LV ={sy7z..}and G = {{G1},(G2),(G3)} as in Example
1.2. We show that

ey)) =27 e
is valid modulo G, i.e. in the equational theory of free groups. Let (A, {one, fimes, inv})
be a L-algebra in var(X, @), e for all ¢,b,c € 4
(G’1) times(one,a) = a
(G’2) times(inv(a),a) = one
(G’3} times{tinmes(a,b), ¢} = times(a, times(b, ¢))
Then no matter what the assignment v assigns to the vaviables 2, y, z, we get

(™t (v - y) - 2)) = times(ino(v(a)), times(times{inv(v(y)), {y)), »(2))) =2
times(inv(v{z)), ﬁmcs(owc v(2))) =@
times(inv(v{a)), v(z)) =cqra) one =g
times{inv(v(2)),v(2)) = v(z7" - 2).
SoGlret ((y oy a)y=2"1 2]

In contrast to the situation in predicate caleulus the notions of provability and validity
coincide for equational theories.

Theorem 2.5 {Birkhoff [Bi 35]}): Let E be the basis of an equational theory over ¥ and V,
and s,f terms in 7(Z, V). Then
EEs=t < Els=t |

So for deciding the validity of an equation modulo E is suffices to show that the
equation can be syntactically derived from E.

3. Rewrite rule systems

One approach to deciding equational theories =y is to use rewrite rule systems. The
idea is to associate a direction (left to right or right to left) with every equation of the

31

basis E. This leads to a “reduction relation” — 5 on the terms such that =5 is equal to
the reflexive, symmetric, transitive closure of — 5. Then the decision problem for =p can
be solved if —; has some nice properties: (1) —p always terminates after a finite number
of applications and (2) — 5 has the so called Church-Rosser property. We will deal with
(1) and (2) in this chapter. But first we have to give some definitions and present basic
Tacts about such rewrite rule systems.

From now on we assume that a set of sorts &, a signature ¥ and a variable set V' over
§ are given. By T we denote the set of terms over ¥ and V.

Definition 3.1: A rewrite rule is a paiv of terms s — £ of equal sort such that every variable
occurring in ¢ also occurs in 8. A rewrite rule system (or rrs for short) is a set of rewrite
rules.

A rewrite rule system R generates a relation — g on the set of terms 7 in the following

way:
s —p t <=> there exists arule ! — r € K, a substitution o, and an occurrence p in s, such
that s/p = o(l) and £ = s[p « (). n

Whenever we have a binary relation — on a set M, then by —7T, =%, &% we de-
note the transitive, reflexive—transitive, and reflexive—transitive-symmetric closure of -,
respectively. By ¢ we denote the inverse of —. Furthermore we define
x 1Ty <= there exists a z such that @ ¢ z - y,

2 1%y <= there exists a z such that @ <% z =7 y,
x Ly <= there exists a z such that © — »z « y,
@ ¥y <= there exists a z such that @ =% z < 4.

Definition 3.2: Starting from a term ¢ and successively reducing it by the rules in some
rewrite rule systemn R might lead {after finitely many steps) to a term ¢ which cannot be
reduced further: ¢t = p t| =gt =g -+ —gr tr —p t'. In this case ¢ is called a normal
form of t module R. t' is said to be irreducible or in normal form modulo R.

If every reduction chain ¢t — g t; —p t2 —p - terminates with a normal form then R is
a terminating or Noetherian rewrite rule system. -

If we are able to orient the equations in some set of equations E such that we get a
rewrite rule system R, then instead of studying =p we could just study }%.

Lemma 3.3: Let R be a rewrite rule system, F the set of equations {{ =» |l = r € R}
Then <} = =p.

Example 3.4: Orienting the group axioms {Examples 1.2 and 2.4) leads to the rewrite rule
system KRG

(RG1) 1-a—z,

(RG2) 27! a—1,

(RG3Y (v y) z—a (y 2.

[

For this rewrite rule system we have ¢37,., = =¢. Using RG we can reduce

—1 ~1 . 1 3oy R e

T . ((?j . y) : R.) =P (RG2) T ' (1 : H,) FRG1) T TR 1 and

R

b *z W}(R(;g) 1.

Soa™ (g™ y)-2) ©he 271z and therefore w70 (™) y) - a) =271z is in the
equational theory generated by G.

On the other hand, also 2+ 1 = & is in =z, but this fact cannot be proved by reduction
modulo BG. Both sides of this equation are irreducible modulo RG. =

So in general, for deciding <% it 1s not enough to reduce both sides to normal form
and check for syntactic equality. What we need is the so called Church-Rosser property,
which can be defined for arbitrary binary relations on some set M.

Definition 3.5: Let — be a binary relation on a set M.

— is Church-Rosser or complete if & «+™ y == 2 [* yfor all 2,y € M.

—is confluent iff o 1"y == vl yforall a,y e M.

— 15 locally confluent 2 Ty == al*yforalla,y e M. |

For Noetherian rewrite rule systems the test for the Church-Rosser property can be
recduced to the test for local confluence.

Theorem 3.6: Let — be a binary relation on a set M.
(a) — is Church~Rosser if and only if — is confluent.
(b) If — is Noetherian, then — is confluent if and only if it is locally confluent. |

Observe that modulo a complete s R every term + has a uniquely defined normal
form. This can be seen by the following argument: if ¢ and " are two normal forms of ¢,
then ¢ <% t”, so there must be a term w such that ¢ =% w «% ¢”. But both # and ¢”

H

arve irreducible, so ' = u = ",

Example 3.7: The rewrite rule system (RG) is not locally confluent. This can be seen by
considering the two terms 1-y and 27! {2+ y). They have a common predecessor, but 1y
can only be reduced to y and the second term is irreducible.

(7' x) -y
2 (rG2) \m(;s)
1.y 2l (2 y)
Yran)
i [

If A is a term algebra and — is the reduction relation modido a rewrite rule svstem
R, then it suffices to carry out the test for local confluence for finitely many so calied
“eritical” situafions ¢ +— z — y.

33

Definition 3.8: Let R be a rewrite rule system, Iy — ry, Iy — rp two rules in R, p an
occurrence in Iy such that I;/p is not a variable. Furthermore assume that ;/p and Iy
can be unified by a most general unifier & such that o{l,/p) and !; have no variables in
common. Then (o(l;]p + rq]), (1)) is a eritical pair in R. [

Observe that the critical pairs are the results of reducing “smallest” terms which can
be reduced in two different ways. o(lyp |} «ro(li} = o(r).

Theorem 3.9 (Knuth, Bendix [{B 67]): Let R be a rewrite rule system such that —p is
Noetherian. Then — g 1s Church-Rosser if and only if ¢ 1* ¢o for all critical pairs (1, ¢2)
in . =

We can use Theorem 3.9 to test any given rewrite rule system R whether it has the
Church~Rosser property. Now suppose that in the course of this test we find a critical
pair {c;,cz) in R such that ¢; =% ¢, ¢ =% ¢}, c1,¢2 are irreducible modulo R and
¢ # ey el = e (or ¢f — c}) is a rewrite rule which does not disturb the termination
property, then we can add it to the rule system R and thereby force a common successor of
¢y and ¢;. This enlargement of the rule system is correct, because ¢f &7, ¢f and therefore
“h = SRy ol i} If this process stops, then we get an rrs which is Church—Rosser and

terminating. Such a rrs is called canonical.

Completion procedure ([KB 67]) 3.10:
Input: R, a finite Noetherian rrs
OQutput: R, a finite Noetherian rrs, such that ¢}, = 3, and —p is Church-Rosser
or “failure”

R' = R; C' 1= set of critical pairs i [;
while C' # § do
(cy,¢2) 1= an element of C;
C = C\ {(es,)}
{dy,ds} ;= normal forms of (¢, ¢2) modulo — p/;
ifdy £ dy and R = RU{dy — da} (or R = R'U{ds — d1}) is a Noetherian rrs
then R := R"
else exit with “failure”
endif;
C = CJ set of critical pairs formed with the new rule
endwhile m

This completion procedure does not always terminate with a complete rrs. Firstly, a
pair of normal forms (dy, d2} might not be orientable, i.e. it is not possible to transform
it into a rewrite rule which preserves the termination property of the rewrite rule system.
In this case the procedure terminates with “failure”. Secondly, the process of adding new
rewrite rules might not stop. Nevertheless, in many interesting examples the completion
procedure does produce a complete rewrite rule system.

After a canonical rrs R has heen computed by the completion procedure, some of the

34

rules in ' can be eliminated. Suppose that the left hand side of the rule (1) [} ~+ ry can
be reduced by the rule {2) I3 — r2. Then in computing normal forms for terms the rule
(1) 1s superfluous, because whenever a term is reducible by (1) it is also reducible by (2).
Finally, however, a unique normal form is reached, because ' is complete. So the rule
(1) can be deleted from R’ without changing the relation %, The resulting rrs is still

canonical.

Example 3.11: The axioms (Q1) - (Q3) of Example 1.1 can be oriented such that the left
hand side is reduced to the right hand side. This gives a terminating rrs B¢}, Running
the completion procedure on RQ finally leads to the canonical system RQ':

app(x, newy) — @

app(z, add(y, z)) — add(app(2,y), =)

applapp(z.y}, z) — app(z, apply, z))

app{x, app(newq,y)) — app(z, y)

app{z, appladd(y, z),w)) — appladd{app(x,y), z),w)

Using the s RQ', both sides of (H} (in Example 1.1} can be reduced to
app(add{app(z,y), z),w), so the equation is proved. -

Example 3.12: We consider the rrs RG of Example 3.4. As we have seen in Example
3.7, RE is not Church~Rosser. So we might try to complete it, i.e. add additional rules
which do not change the associated equivalence relation <%, and also do not destroy
the termination property. Choosing (1-y,2™ - {(z - y)) as the critical pair (e3,¢z) in the
completion procedure, we detect that (dy,dq) = (y,a7 ' - (v - y)) and RGU{dy — d;} is
again a Noetherian rrs. So we add d; — dy as a new rule. This, of course, leads to new
critical pairs.

Finally the procedure stops, because all the critical pairs can be reduced to identical
normal forms. At this stage the rrs contains 20 rules, 10 of which can be eliminated. A
complete rrs RG' for the equational theory of free groups is

(1) 1 -z —

(2) R T

(3) (2 y) Z—}:z:-(y-z)
(4) el (z-yy =y

(5) T

(6) 171 1

(7) (7“1)“1 3

(8) R

(9) T (:1:""17 . y) =y

(10) (2)™ =ytaT

Every theorem in the equational theory of free groups, i.e. every term equation which
can be derived from the three group axioms, can be proved by reducing the two sides of
the equation modulo this rewrite rule system and checking for syntactical equality. =

35

The completion procedure has been refined in various ways. Huet [Hu 81] Las devel-
oped a version which gives a semidecision procedure for the associated equational theory.
An approach to speeding up the procedure is described i [WB 83].

The two important properties a rrs might have are the Church-Rosser property and
the termination property. We have alveady dealt with the Church-Rosser property, so let
us now turn to termination. Termination of rewrite rule systems is needed twice in the
process of deciding an equational theory: we need it for computing normal forms in the
completion procedure and we need it for being able to infer that a locally confluent rrs
{(which is computed by the completion procedure) is actually confluent.

Unfortunately, termination of rewrite rule systems is an undecidable property [De 85].
However, various suflicient conditions for termination have been developed. For instance,
termination can be proved if one has a simplification ordering compatible with the rrs. A
simplification ordering is a partial ordering > on a set of terms 7 such that for all terms
t.u € T and for all operators f

t- = ot)= fou--) and
f(,ﬁ) P

Theorem 3.13: If R is a rrs over a set of terms 7 and > is a simplification ordering on 7
such that ¢t 5 p u ==t > u for all terms ¢t,u € 7, then It is terminating. n

Example 3.14: Let 7 be the set of terms for the group signature of Example 2.4. Let
7 be the following map from 7 to N: (1) = 2, v(2) = 2 for every variable @, and
lu-v) = 7(u) - 7(v), 7(&™) =2 7(u) for all terms w,v € 7. We get a simplification
ordering > on 7 by setting

w v = 7(u) > T{v).

With respect to this simplification ordering the left hand side of every rule in RG is greater
than the right hand side, so by Theorem 3.13 RG’ is terminating. []

For an overview of sufficient conditions for termination we refer to [De 85].

As we have seen above, the termination property 1s essential for the application of
the completion procedure. There are certain types of axioms which make termination
unpossible. A typical example is the commusativity axiom f(=,y) = f(y,). This problem
can be overcome by treating such an axiom not as a rewrite rule but keeping it as an
equation and carrying out the completion procedure modulo this equation, or in general
modulo a set of equations K. Basically this means computing the most general unifier (or
a generating set for the unifiers) modulo E. Peterson and Stickel [PS 81 have described
a completion procedure modulo a set of equations E which contains associativity and
commutativity axioms.

4. Inductive theories

Definition 4.1: Let ¥ be a signature, £ a set of equations over L. The inductive theory of
E is the set of equations s = ¢ which ave valid in the mitial algebra of B, T(E}. I(E) is
the quotient of the algebra of ground terms G(¥) modulo the congruence =p. |

The inductive theory of a set of equations £ contains the equational theory of E. For
proving theorems in inductive theories usually some sort of inductive argument is used,
e.g. induction on the structure of the terms. We follow [De 83] in describing how the
completion procedure can be used for proving theorems in inductive theories.

Example 4.2: The following rrs L is a complete system for reversing list structures with
hasic elements a and b:

(1) «" =«
(2) 0" -0
(3) (@-y)" = (y"-27)
The equation =" = z holds for all ground lists. This can be proved for instance by

induction on the depth of the list. So if we denote by LE the set of equations corresponding
to L, then " = 2 is in the inductive theory of LE, but it is not i the equational theory
of LE. []

Theorem 4.3: Let E be the basis of an equational theory., B a complete rrs for =p. Let
R{G) be the set of irreducible ground terms modulo R. Let s = ¢ be an equation which
can be oriented into a rewrite rule r such that R U {r} is Noetherian. Then s = ¢ is not
in the inductive theory of E if and only if running the completion procedure on R U {r}
results in a rule with a left-hand side that has an instance m R(G). This, provided that
the completion procedure does not stop with “failure”.]

Example 4.4: We apply Theorem 4.3 for proving that the equation =" = z is in the
inductive theory of LE (see Example 4.2). Adding the rule

to the rrs L and running the completion procedure generates no new rule. So the equation
indeed belongs to the inductive theory of LE.

On the other hand, adding
(z-z2)" =2

/

to the rule system and running the completion procedure generates (among others) the

new ruies]
atoat =2’

a - a—r .

Since a - @ is an irreducible ground term modulo L, this proves that (z - z)" = 2" is not in

the inductive theory of LE. |

37

Example 4.5: As another example consider a systemn AM of axioms for addition and
multiplication
m - Q= m,
m o 0= (),
m X {n+1y=mxn+4m,
Soey =0,
POAREEED DU T
Summation is a function of the upper bound, so we write sum(n) instead of >0 7. We use
prefix notation for all the operators. Transforming these eguations into rewrite rules and
running the completion algorithm (modulo a set of equations E containing associativity
and commutativity axioms for + and x) vields the complete rewrite systemn RAM

+(m, 0} — e,

x{m,0) = 0,
x{m,+{(n,1)} = +(x(m,n),m),
sum(0) — 0,
sum(-+(n, 1)) = -+(swmin}, 4+(n, 1)},
x(m, 1) - m,
sum{l) — 1.

The irreducible ground terms aze 0, 1, +(1,1}, +(1,+(1.1)},... . Now we want to prove

that .
~ . nx(n+1)
(H) E e S

=

f=]

is in the inductive theory of AM. So we add the rule
x{+(1, 1), sum(n)) — x(n, +{n. 1))
to the rrs RAM and run the completion algorithm. The only new rule generated is
+(suni(n}, sum{n)) — +(x(n,n),n).

No irreducibel ground term becomes reducible by this new rule, so (H) is in the inductive
theory of AM. [

5. Programming with rewrite rules

Definition 5.1: If P is an n—ary predicate over the ground terms of some term algebra 7.
and R is a canonical rrs for deciding P, then R is called a rewrite program for P. ‘Deciding

P’ means that P(tq,...,t,) =% true if and only if the ground terms ty, ..., ¢, safisfy the
predicate P. -

Example 5.2: We consider the predicate ¢ and r are the guoiient and remainder of x
divided by y.
div(z,y,¢,r) <= v =q y+r A r <y

38

A rewrite program for div 1s RD:
basic rules:
(1) divfu+y+1,y-+1g+1,7) = diview,y+ 1, ¢}
(2) div{z,z+uw+ 10,2} — true
specializations of (1) and (2), where some of the variables ave sef to 0:
(3) div{u+y+ Ly-+110) = div(u,y+ 1,00}
(4) div{y +Ly+1l,g+ 1) - div(0,y+1.¢,7)
(3) dwwly -+ 1,y 1,1,7) = dew(0,y + 1,0,7)
(6) dww(u-+1,1,qg-+1,7) - diviu,l,q,7)
(7) div(u+1,1,1,7) = div(w, 1,0,7)
(8) div(l,1,¢+1,7) = div(0,1,q,7)
(9) dew(1,1,1,7) = div(0,1,0,r)
{10) div(z, z + 1,0,) — true
(11) div(0,1,0,0) — true
Now we want to use this rewrite program for computing the quotient and remainder of 7
and 3. We add the rule
div(7,3,¢,7) = false(q,r)
to RD and complete the system. The completion procedure generates the additional rules
div(4,3,q,7) — false(q+ 1,1}
div(1,3,q,7) — false(q + 2,7}
false(2,1) —» true
So the assumption that div(7,3,¢,r) is false leads to a confradiction and the counterex-

ample is ¢ = 2, » = 1. Hence 2 and 1 are the quotient and remainder, respectively, of 7
and 3.]

Theorem 5.3 ([De 83]): Let 1 be a rewrite program for the predicate P(#, z}. Running the

and z are variables, and with a simplification ordering under which the constant truc is
less than any other term, will generate an answer rule with a left~hand side false(t) if and
only if ground terms 7 exist such that P(§,7) is true. This, provided that the completion
procedure does not stop with “failure”. [|

Actually one gets a solution of the problem by substituting ground terms for the
variables in the term ¢.

Example 5.4;: We can also use the rewrite program RD for solving the reverse problem:
find @ and y sucl that div{x,y,2,1) holds. For solving this reverse problem we add the
rule

div(z,y,2,1) - false(z,y}

to RD and complete the system. The completion procedure generates the additional rules
div(u,y + 1,1,1) = false(w +y + 1,y + 1)
div(u,y + 1,0,1) = false(fu +y+y+1+1.y+1)
falsely +y+ 14+ 14+ 1,y+ 1) = true

39

So whenever we substitute ground terms into 2y + 3 and y + 1 we get numbers whose
quotient and remainder are 2 and 1, respectively. =

References

Bi 35] G. Birkhoff: “On the structure of abstract algebras”, Proc. Cambridge Phil. Soc.
31, 433-454 (1933)

Bu 85} B. Buchberger: “Basic features and development of the critical-pair/completion
g I pl
procedure”, Proc. Rewriting Techniques and Applications, J.-P. Jouannaud (ed.),
1-45, Springer—Verlag, LNCS 202 (1985)

[De 83] N. Dershowitz: “Applications of the Knuth-Bendix Completion Procedure”, Techn.
Rep. ATR-83(8478)-2, Laboratory Operations, THE AEROSPACE CORP., El Se-
gundo, Calif. 90245 (1983)

[De 85] N. Dershowitz: “Termination”, Proc. Rewriting Technigues and Applications, J.-P.
Jouannaud (ed.), 180-224, Springer—Verlag, LNCS 202 {1985)

Hu 81] G.P. Huet: “A Comaplete Proof of Correctness of the Knuth-Bendix Completion
Algorithm”, J. Comp. and Syst. Sei. 23, 11-21 (1981)

'HO 80] G.P. Huet, D. Oppen: “Equations and rewrite rules: A survey”, in: Formal
Languages: Perspectives and Open Problems, R. Book (ed.}, Academic Press (1980)

I{B 67] D.E. Knuth, P.B. Bendix: “Simple word problems in universal algebras”, in:
Computational Problems in Abstract Algebra, J. Leech (ed.), Pergamon Press (1970)

[PS 81] G.E. Peterson, M.E. Stickel: “Complete Sets of Reductions for Some Equational
Theories”™, J ACM 28/2, 233-264 {1981}

Wi 84| F. Winkler: The Church-Rosser property in computer algebra and special theorem
PETLY ! &
proving. An investigation of critical-pair/completion algorithms, Dissertation, Inst.
f. Math., Univ. Linz (1984)

[WDB 83] F. Winkler, B. Buchberger: “A criterion for elimmating unnecessary reductions
in the Knuth-Bendix algorithm”, Colloguia Mathematica Societatis Janos Bolyai -
42. Algebra, Combinatorics and Logic in Computer Science, North-Holland (1986)

