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A method lor the p-adic Lfting of a Grébner basis is presented.  Fis a finite vector of
polynomials in Qx,,....x] and p is a lucky prime for F (it turns out that therc are only
finitely many unlucky primes) then in a first step the normalized reduced Grobner basis GO
for ¥ modulo p is computed. together with matrices ¥ and R™ such that Y G = F
(mod p) and R G =0 {mod p), where the raws of R arc the syzygies of G derived
from the reduction of the S-polynomials of G™ 1o (. These congruences can be lifted to
congrucnces modulo pt for any natural number /. finally leading to the normalized reduced
Groébner basts for Fin Qv ... . x 1

Introduction

p-adic metheds have been successfully applied to a variety of problems in computer
algebra, such as the computation of greatest commeon divisors of multivariate polynomi-
als over the integers (Moses & Yun, 1973; Miola & Yun, 1974}, and factorization of
multivariate integral polynomials (Zassenhaus, 1969; Musser, 1975; Wang & Rothschild,
1975; Wang, 1978). For an introduction to p-adic lifting and an overview of applications
we refer to (Lauer, 1983).

In all these applications the p-adic methods help to control the otherwise enormous
growth of coefficients. A similar problem with coefficient growth is encountered in the
computation of Grébner bases of polynomial ideals over the rational number field Q.
Trinks remarks in {Trinks, 1984): “Dealing with K = @, we usually start with a system
fiv. oS having coeflicients of modest size, but during the algorithm the size of
cocficients tends to increase and often makes results unattainable duc to space and time
fimits.”” So it is just natural to develop a p-adic method for the computation of Grébner
hases over . However, to our knowledge, this problem has not received much attention
yet. A method for a special case (solution of a system of algebraic equations with finitely
many, simple solutions) is treated in (Trinks, 1984; Malle & Trinks, 1984) and used for
the solution of an example in (Maizal & Zeh-Marschke, 1986). In this paper we report
some new results on p-adic lifting of Grébner bases, extending {Winkler, 1987a).

For future reference we review some standard definitions and facts. Throughout this

paper we assume that K is a field, K[x,, ..., x,] the ring of polynomials in x,, ..., x, over
K, and <! is an admissible ordering of the power products in the variables x,, ..., x, (a3
defined in Buchberger, 1985). If f'e K[x,, .. ..x,]. then Ipp( /) denotes the leading power
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product of fwr.t. < and /e( '} the leading coeflicient of £, i.e. the coefficient of Ipp( /)

in foI6 F e Klvy. .o, x ) then Iop{E) = {pp( f) | feF}. pp( /) denotes the set of power
products occurring in fand pp(F) = {pp( /) [ feF}.
Every subset F of K[x,. ..., x] generates an ideal in K[x,...., x,]. namely

ideal{ Fy = { Yo f10<n heKlx, ... ..x,,].ﬁ-eF}.
F=1

Fis called a hasis of the ideal generated by F. In fact, from Hilbert’s basis theorem

(Hilbert, 1980; van der Waerden, 1967) we know that every ideal in K[x,,....x,) has a
finite basis. For convenience we will often write a basis # for a polynomial ideal as a
vector (Fy, ..., F, )7 rather than a set {F,... F,%
Every set F < R[x\. ..., x]. Racommutative ring. induces a reduction relation — . on
Rlx,, ... x]in the following way:
. a :
&g WHg=gi—— 0 u.f
le( f)
for some feF, u a power product in x,,....x, such thal u./pp{ /) occurs in g, with

coefficient ¢ and le( f) is invertible in R. In words: g, is reducible to g, wr.r. F. If no such
u and fexist, then g, is irveducible w.r.r. F. This reduction relation - . is Noetherian. A
polynomial f'is reducible w.r.t. Fif and oaly if fcontains a term which is in ideal(ipp(F)).
H g —¥ /(g is reducible to 4 w.r.t. Fin finitely many steps) and # is irreducible w.r.t. F

then /i is called a normial form of g w.rt. F. Whenever ¢, »%g,, F=(F.....F,)",
then g — g, =(hy, ... h,). F for some polynomials /4, ..../,. But not every vector
(... h,) corresponds to a reduction w.r.t. F. A vector (A, ...,h,) such that
(hy..... D) F =0 s called a syzvgy of F. The set of syzygies of F form a module over
Rlxy. . ... xJ]. the module of syzygies of F.
For flgeR{x,.. ... x] such that /e( /') and le(g) arc invertible, the S-polvnomial of f
and g is defined as follows:
. . Lo denlipp( ), Ipp(g)y L dem{lpp( ). Ipp(g))
Spol f.¢) = e e g
«( /) Ipp( f) le(g) pp(g)
A finite basis F of an ideal / in K[x,....,x] is a Grdbner basis for I ifl every

poiynomial f"in 7 is reducible to 0 (in finitely many steps) w.r.t. F. If ideal(F') = I, then
in abuse of notation we also say “F is a Grébner basis for £ instead of “F is a Grobner
basis for ™. The Grébner basis F is called reduced ifl, for cvery polynomiat fe R, fis
irreducible w.r.t. F\{f}. Fis normalized iff every polynomial fin Fis monic, i.e. le( f) = 1.
The normalized reduced Grébner basis for an ideal 7 is uniquely determined { Buchberger,
1976).

There are many characterizations of Grobner bases: we only list some of them as far
as they are relevant for this paper. Let F = (F,. ... F,)" be a finite basis of the ideal /.

— Fis a Grobner basis for [ if and onty if

————— every S-polynomial Spol( £, g) of elements £, g Fis reducible to 0 w.r.l. Fif and only
if

—cevery polynomial has a unique normal form w.r.t, F

These and other characterizations can be found in Buchberger (19857 and Mdller &
Mora (1986). For an introduction to the theory of Grobner bases we refer to Buchberger
(1985). If Fis a Grobner basis, then the set S(F). consisting of the vectors (h,,. ... h,)
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derived from a reduction of the S-polynomials of F 1o 0 w.r.t. F, is a basis for the module
of syzygies of F, see (Winkicr, 1986). Whenever F is a sequence of polynomiais in
Kix,.....x,) and ¢ is & Grobner basis for F. then there are matrices X, ¥, R over
Klxg o0 v,] such that G=X.F, F=Y.G, R. G =0, where the rows of R are the
ciements of S(G). We call the matrices X and ¥ transformation matrices and we call the
matrx R a syzygy matrix of F and G.

The notion of a Grébner basis can be extended to modules over the polynomial ring
{Galligo, 1979). All the properties of a Grobner basis mentioned above carry over (o this
generalization.

In the following we will be dealing primarily with Gr&bner bases in the ring
Q[x,, . ...x]} which we will denote /. By Z,, we mean the ring of integers modulo m.
The ring Z,[x,, ..., x5 meN, will be denoted .o7,. The aim of this paper is to
approximate the Grobner basis G of a potynomial ideal in ./ by a basis G' in o/ . pa
prime. If p” is sufficiently large, then we will be able to recover the “true™ coefficients of
G from their approximations in G'. The coefficients which we want to approximate will
be Farey rationals. The N-Farey rationals, NeN, are defined as

7 4]
AT

Furthermore, for a prime p, #, v = Z v n{a/be | ged(b, p) = 1}. The elements of 7, 5
can be encoded uniquely in the integers modulo m for a suitable m. More specifically, if
p is a prime, m = p*, N such that ¥ < \/@1 — 1)/2, then for any neZ,, there exists at
most one athe ¥, such that @ = b . m mod m1. A proof of this fact is given, for instance,
in (Trinks, 1984). The usual canonical mapping is used for mapping %, into Z,. For
the inverse mapping from Z,, to #,, one can use a suitably extended Euclidean
algorithm, as described in (Kornerup & Gregory, 1983). Whenever we say that p does not
divide ¢ for a prime p and a rational number g, we mean that p divides neither the
numeralor nor the deneminator of ¢, i.e. the p-adic norm of ¢ is one, Eq[p =], and when
we say that ¢’ is the image of ¢ =a/be#,, modulo m=p* we mean that
a=b.qg modm.

The structure of the paper is as follows. Section 1 contains a short discussion of Jucky
primes, i.e. those primes with respect to which the p-adic approximation of a Grobner
basis is possible. In Section 2 existence and uniqueness of such an approximation are
investigated, giving rise to the lifting algorithm of Section 3. In Section 4 we draw some
conclusions and list open problems.

ahe, - N<asN I <b<N geda b)= 1}.

1. Lucky Primes

W. S. Brown {1971} calls a prime p lucky for the computation of the greatest common
divisor of two integral polynomials fand g, if p does not divide the leading coefficient of
fand g and the degree of the ged of fand g module p equals the degree of the ged of f
and g over the integers (the ged of / and g modulo p cannot be less than the degree of
the ged over the integers, as long as p does not divide any of the leading coefficients of
f and g). Only such lucky primes can be used in the modular computation of the
polynomial greatest conumon divisor. We need a similar condition on the prime p.

ExampLE §. (a) (from Ebert, 1983) Let F = {xp?—2p, x7y + 3x} « Q~, )]. Let the
power products be ordered according to the graduated lexicographic ordering with x < .
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The normalized reduced Grébner basis for Fin Qjx, p]is G = {x, v} G mod 5 = {x, y},
but that is not a Gribner basis for ideal(F) in Zslx, v]. Actually, the normalized reduced
Grobner basis for ideal(F) in Z[x, y] is {xp? =2y, x*y — 2x}. So 5 is not “lucky™ for F.

(b) Let F={7xy+y+4x.y+2} < Qx y]. Let the power products be ordered ac-
cording to the graduated lexicographic ordering with x < p. The normalized reduced
Grébner basis for Fin @[x, y1is G = {x + 1, y +2}. 5 divides the seccond coefficient of the
first polynomial in G, so 5 is not “lucky” for F. The normalized reduced Grdbner basis
for Fin Zsx, y]is {1}

() Let F={16x>+4xy? —dz + 1, 4x +2y%z + 1, —2x% + x + 207} < Q[x, y, z]. Let
the power products be ordered according to the lexicographic ordering with z <y < x.
The normalized reduced Grobner basis for £ in Q[x, v, z] has the leading power products
{z7,¥* x} (see Winkier es al., 1985). The normalized reduced Grébner basis for F in
Z,[x, v, 2] has the leading power products {z% zy? v*, x}. So 7 is not “lucky” for F.

(d) Let F={x*y +9x%—y xy +4x? + 3x} = Qfx, y]. Let the power products be or-
dered according to the graduated lexicographic ordering with x < y. The normalized
reduced Grébner basis for Fin @[y, ¥] is {xy +4x? 4 3x, p? — 16x7 4 3y — 12x, x7 —
3v? 4+ 1y}, The normalized reduced Grébner basis for Fin Z[x, y] is {xy — x% = 2x, p* —
¥ =2y —2x,x"+ x*—y} So 5is “lucky” for F.

Ebert (1983) observes that in general the number of polynomials in the normalized
reduced Grébner basis G for some F < @[x,, . .., x,] can be greater than, equal to, or less
than the number of polynomials in the normalized reduced Grobner basis G, for F in
Z[xy,...,x), for some prime p. In Example | we see that also the leading power
products of G can be greater than, equal to, less than, or incomparable to the leading
power products of G,. From Example 1(a) we also see, that it is not sufficient to just
require that p not provide any coefficient of F and G. Fortunately, there are only finitely
many such “unlucky” primes.

THEOREM 1. Let F=(F,....FE)" be a [finite sequence of polynomials in
o, G =(G,,...,G) the normalized reduced Gribner basis for F in /. For almost all
primes p the images F = Fmodp, G =G mod p exist and G is the normalized reduced
Grébrer basis for Fin o/,
ProoE. Let X, ¥, R be matrices over ./ such that

G=X.F and F=Y.C(G,

and the rows of R are the elements of S(G), i.¢. the syzygies of & derived from reductions
of the S-polynomials of G to 0 wart. G.

R.G=0

Let p be such that it does not divide any coefficient of F. G, X, ¥ and R. Then
F=Fmodp, G=GCGmodp, X=X modp ¥=7¥modp exist and

G=X.F,. F=Y.G (modp).

So G and F generate the same ideal in ./,
Furthermore, R = R mod p exists.

R.G=0 (modp)
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and the rows of the matrix R correspond to reductions of the S-polynomials of Gtod
w.rt. G in &, So G is the normalized reduced Grébner basis for Fin .o/,

For a given F thczc are only a finite number of primes that divide some cocfﬁuent of
F, G, X Yor R U

After Example 1(a) we have remarked that it is not sufficient to require that the prime
p not divide any coefficient of F and G. In this case the transformation matrix X is

12 IR
( T3y 3 15“\}')
1 | . __:i___ L2 -
=3 gl Tedd

DeriNITION [ Let Fbe a finite sequence of polynomials in .o/, & the normalized reduced
Groébner basis for F. Let p be a rational prime. p is fucky for F iff there are
transformation matrices X, ¥ and a syzygy matrix R for F and G such that p does not
divide any coefficient in F, G, X, ¥ and R. [

X has no representation in .o/

2. The Lifting of a Grdébner Basis

From now on we assume that p is a rational prime. Let F be a finile sequence of
polynomials in .. Let G be a Grébner basis for Fin 7, and X, Y transformation
matrices and R a syzygy matrix for £ and G over ./,

X(O) F= Gﬂ))
YO G®=F (modp) {(2.1)
RO GO =0,

The first two congruences in {2.1) guarantee that F and G generate the same ideal in
<7, and the third congruence guaraniees that G is a Grobaer basis. In fact various
cmena can be used for eliminating unnecessary S-polynomials or rows of R, respec-
tively (see Buchberger, 1979; Winkler, 1984). In addition to the usual requirement for
such a criterion, namely that checking only the necessary S-polynomials for reducibifity
to 0 suffices to ensure the reducibility to 0 of all S-polynomials, we demand that it should
work uniformly for coefficient domains Z,,.. i = 1. Le. if G'” is a sequence of polynomials
over Z, and G a sequence of polynomials over Z,, such that G =G (mod p) and
pp(G“”) = pp{ G for | <j < length{(G'Y), then SpoKG (", GI™) is necessary if and only if
Spol(GP, G4 is necessary, 1 <k, [ < length(G'™). From now on we will assume such a
criterion (which could, of course, be trivial in the sensc that ail §-polynomials are deemed
necessary). For instance the criteria given in (Buchberger, 1979; Winkler, 1984) satisfy
our requirements, If R is such that it contains only rows corresponding to necessary
S-polynomiats of G, then it is also called a syzygy matrix of G

Now one could try to lift the congruences (2.1) to congruences modulo p' for large
enough /. The work required in the lifting process depends, of course, on the number of
congruences that have to be lifted. The matrix X can contain very high power products,
since Fis not a Grobner basis and therefore the representation of G in terms of Fis not
just a reduction. This problem does not occur with ¥ and R, since G'” is a Grobner
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basis. The following theorem shows that actually we don’t really have to consider the
equivalence XV, F = G™ (mod p).

THEOREM 2. Let G and G be Gribrer bases in K[xy,..... v Ipp(G) = Ipp(G") and
G € ideal(G"). Then ideal{GY) = ideal(G ).

ProofF. Every nonzero polynemial [feideal(G') is reducible w.ort. (7 and, since
Ipp(G7) = pp(G), itis also reducible wort. G and the reduction result is again in ideal{G7).
Since the reduction w.r.t. G is Noetherian, we get that every nonzero feideal{(z") can be
reduced to 0 w.r.(. G. Therefore, ideal(G") < ideal{G). [

Suppose that the prime p is lucky for Fin /. So the normalized reduced Grébner basis
G for F contains the same leading power products as the normalized reduced Grobner
basis G for F in .7, Then in the lifting process it suffices to lift the congruences
Y G = Fand RGP = 0. By Theorem 2, if one finally gets a Grobner basis G in
./, then G will automatically be a Grobaer basis for F. This provided that in the lifting
process the leading power products of the approximations to the basis &' remain
unchanged. So (2.1) is reduced to

Y. GO = F

RO GO = {mod p). (2.2)

The foliowing technicality will be used in subsequent proofs.

Lemma 1. Let &7 be the set of polynontials in .o/ no coefficient of which has a denominator
divisible by p. Let I be an ideal in o/, 1" = I and 1, the set of polynomials f in o7, such
that f=g (mod p) for some gel’. (I, is an ideal in o/ ,.) Let hel', h'esd,, be such that
piotoh = ho(mod pf). Then h'el,.

PrOOF. & is a multipie of p™ ¥, so for some ge.o/” we have i = p* ' . gand #" = g mod p.
Since hel’, also gel’, so A'el,. [

DEFINITION 2. Let Feo/™, p lucky for F, G'™ the normalized reduced Grébner basis for
Fin o, R a syzygy matrix for G* over «/,; specifically, let the jth row of R be the
syzygy of G derived from the reduction of Spol(G{,. GF) to 0 wort. G Let 1 be a
positive integer or oz, and for 0 <7 < ¢ let G, ¥, R be matrices over .7 .1 such that

Y(l‘) . G(l) = F
RV G =0
GO=Gu-D, Yz ye-h ROz RU-Vimodp)) izl

{mod p** "),

every clement of G is monic. and pp(G{") = pp(G{¥ ") for 0 <i<t, 1 <k <n. Then
L= (G, Y, Ry o, I8 a lifting sequence for F modulo p.

For 0 </ < ¢ the lifting sequence L is called reducing up to jiff for alt 0 <7 </ the rows
of R are the syzygies of G carresponding to reductions of the necessary S-polynomials
of G 10 0 in +7,.. 1; specifically, the jth row of R* is the syzygy of G** corresponding
to the reduction of Spol(Gil,. Gi) to 0 wart, GV O
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THEOREM 3. (existence of a lifting sequence): Ler ni, n, [ he natural nmumbers, Fesd”, p
a lucky prime for F, Ges/" the normalized reduced Grébner basis for F, and G Do/t the
normalized reduced Grdbrer basis for Fin o, [f
y(G) ) G(O) = F
R G(O) =0
holds for some (m. ny-matrix Y over o ,, and some (I, n)-matrix R™ over of . then for
every ieN there exist GV U YYD R gver of ,, such that

Y(."---- 13 . Gl.’i--- 1y = F

(mod p)

RU-D G =g {mod p’) (2.3

and
yi-h g yi-n RED=RECI (modp™"), ifi=] (2.4)

arnd
GY ' = G mod p'. (2.5)

The increments

__.]_.". (G(:‘---I)_ G(i----l}) L(Y(:——I}_ Y(i---E)) ______L___ {Ri By R(L——E))
il * [ * i1
r P P
can be chosen as a selution of a system of linear equations in <f ,, the polyvromials in G
are monic, and pp(GY~"y = pp(G{2) for 1 <k <n,

Procr. By induction on /. For i =1 the statements (2.3} and (2.5) obviously hold. (2.4)
is void. Now let i > 1. By the induction hypothesis there exist G2, ¥~ % R over
4/ . such that (2.3), (2.4) and (2.5) hold for i — 1. Let G'e A7, GYYeos", be such that

b
GUN=GH P p!  G'=G mod pt.
So (2.5) obviously holds., We need to construct matrices ¥, R’ over ./, such that for
YO YU g ity
RU-1 = RU-D g pt=t RS

the congruence {2.3) hold (the definition of ¥Y¥ " and RV~ directly implies that (2.4)
holds). So we have to solve

F= Y Go
= YUl GUR plt Yy GU Y ptt YU G (mod pi). (2.6)
Rewriting (2.6) as
Fo Yo G- ped ¥ Gr=ptt YL G0 (mod pi). (2.7

we see that the image modulo p' of the left hand side of (2.7} 15 a vector.

[CES B
i

hfl—“ i1

Lt
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where each component /£ " is the image modulo p' of a polynomial /A, in
ideal(F) = ideal{(5), no coefficient of which has a denominator divisible by p. Because of
(2.3) for { — 1, the left hand side of (2.7) is divisible by p'~'. So we have to solve

(1)
I

: =¥ .G (modp)
iy

For every k, 1 <k <m, hyeideal(G), so by Lemma 1 i~ "/p" 'eideallG'™) and there-
fore we can take the elements of ¥ as the multiplicands used in the reductions of
RO Nipt=t o R Yt Vo 0wt GO

We still have to find a matrix R such that
(RO o pi-V PRy {GY-" T4 p™ ' G =0 (modp?).
So we have to solve
R GU-D g pi-d RUE=D Gr= —pitt  RTOGYTT (mod pi). (2.8)

The image modulo pf of the left hand side of {2.8) is a vector of images of palynomials
in ideal(7) = ideal(F). Because of (2.3) for i — 1, the lefl hand side of (2.8) is divisible by
pi 1 So we have 1o solve

- (_R(i--- A Gy 2)+p!m bR G') =R .G" (mod [)).

»
All the images modulo p of the polynomials on the left hand side are in ideal(G'™) (by

Lemma 1}, so the reduction to 0 modulo G' yields the matrix R
Observe that G =G4, .. .. G Y =(Yihcicmicien a0d R ={(Ry) ciciicien

are a solution to the system of hnear equations

i ) ‘
GO Y+ YO = (F- Y2 G (mod p)

D

| L ,
GP R +RY. G =——  (—RP .G (mod p),
P
the polynomials in G*) are monic, and pp(Gy) & pp(GE ) for 1 <k <n. U

From Theorem 3 we know that for every lucky prime p for F a lifting sequence for F
modulo p exists. The next theorem deals with the uniqueness of such a lifting sequence.
It turns out that the components G are indeed uniguely determined, whereas the
components Y, R are usually not. Starting from the normalized reduced Grobner basis
G modulo p, after 7 lifting steps we get G, a sequence of polynomials in .o7,.c1. Z, <)
is not a field, and since we have not introduced the notion of a Grébner basis over a ring,
we have to prove (a), (b), (¢} in Theorem 4.

THEOREM 4 {uniqueness of lifting sequences): Let n. nel, Feo/", G e/ " the normalized
reduced Grobner basis for F, p licky for F. and i 0. Let L =G Y'Y, RUMg 2, cra
be a lifting sequence for F modulo p. Then

(@) all the S-polynomials of G can be reduced to 0 wr.a. G,
(5) every polyiomial h in idealG) (< o7, 1) is reducible wr.t. GV,
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() ideal(F) = ideal(G") as ideals in of ..\,
{dy GV =G modp' ™,

PrOOF. (&) Since G is a Grdbner basis, we know that all the S-polynomials of G can
be reduced to 0 w.r.t. G, and actually the rows of R are just the syzygies derived from
the reductions of the necessary S-polynomials of G0,

If L is reducing up to 4, then obviously the S-polynomiais of G*? are reducible to 0
w.rt GY

Otherwise Jet j, 1 €/ <7, be the smallest index such that the rows of R do not
correspond to the syzygies derived from reductions of the necessary S-polynomiats of G4
to O wrt. GY' Let R’ be the matrix over </, such that

RO RUI-N +p,f R

The elements of R~ " can be considered as the multiplicands used in an “incomplete”
reduction of the necessary S-polynomials of G w.r.t. G’ A step in this incomplete
reduction consists of partially reducing an occurring term, possibly leaving a coefficient
which is a multiple of p/. The result of this incomplete reduction is a vector of the form

h,
ploh=pi g
h
for some /1, ..., g5/, Because of RV, GV'=0 (mod p'*') we have
poh=—p RGP (modp/ ),
or equivalently,
h=~R .G (mod p).

Obviously h, eideal(G'™) for 1 <k <1, so h can be reduced to 0 w.r.t. GO, Actually,
whenever a term has to be reduced which is also reduced in the incomplete reduction
above, then corresponding basis polynomials can be used in corresponding reduction

steps. Let the elements of the matrix B be the multiplicands used in this reduction of 4
ta 0, so that £ = —~ R, G (mod p). For the matrix

S=R —- R
we have
S G®P =0 {modp).
If we now let
RUVi= RUY e pl | §UN,

ther the rows of RY correspond to the syzygies derived from reductions of the necessary
S-polynomials of G'/7 to 0 w.rt. GI7%
In the sequel we construct matrices RV, . B9 such that

[ o= ((G(G), Y(O)’ R(O)), S (G(j—— l)! Yoo l)! R l)},
(GU), YU], EU))’ e, (G('“’, Y(f)’ E(i)))

is a lifting scquence for F modulo p. Actually we prove the following: [or every k& with
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J €k < there exists a matrix % over .o, such that for
A
R¥m R — % pr S0
£

RO=1,— RUi-8
we have
BR% G¥ =0 (modp““),
R = R¥* =D (modp*),  and

k
(Z pr ) S{r)) ) G(A- - § = 0 (mod [)k =1
L

(2.9)

Induction on k.
For k =j. we have

B Gl = R;") LGl S GYY=0 (mod p7t ),
RV RN pi § e RU=D = RU=D (mad p),
pr S G =0 (modp/t).
Now consider & such that j <k <7 Let the matrix R over =/, be such that
Rl = RE-D L pk R

By the induction hypothesis we have

Ko
(R* Papt R.GP=(R* D4pd R).GH — ( >op S""’) GW=0 (mod p¥).

roes
So
k-1 &
( Z pf ) S(_r')) . Gﬂ_k — it E]Jk . ==Pk g (mod pk+ l)
re=j
&
for some g, - . ., g;€.27,. Observe that k — j < i. So by the assumption of the theorem and

Lemma 1, every g, } <! </ is the homomorphic image of a polynomial in ideai(G)
modulo p, so it can be reduced to 0 w.r.t. G, Collecting the multiplicands used in these
reductions in the matrix S%, we get

g=5% G (modp).
For this definition of S the condition {2.9) holds.
.
R® .G = (R‘“ — Y S“") G = RW GO (LZ} P S"") LG pt L SW G
=y

r=j

= R® G 4 pt g —pFlg=0 (modpfth),

I3 |
R‘(k) o R(k) . Z pr ) S(r) = R(k - by Z [)r- S(r} — R(k -1} (lTlOd [)k),
ro f

red

: (e
(i . Sm) el Eyi e ( Z P S‘-”) G D +pk St Gk R
-y Py

= —pF g4+pfg=0 (modp*ti).

So we have constructed a lifting sequence L which is reducing up to j. Repeating this
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process, we finally get a lifting sequence which is reducing up to /. Thus, all the necessary
S-polynomials of G are reducible to 0 w.r.t. G, and therefore all S-polynomials are
reducible to 0 w.r.t. G This completes the proof of (a).

(b} A polynomial /i in ideal{GY) can be written as

h= Y B G (modpi=h, (2.10)
£y

for some h es/,..,. Let u be the highest power product w.r.t. <¢ occurring in some
summand on the right hand side of {2.10). ¥ {pp(h) <1 u, then the coefficients of u on the
right hand side of (2.10) cancel. Subtracting proper multiples of syzygies of G*7, derived
from reducing S-polynomials of G to 0, we can decrease u by a process analogous to
that described in (Winkler, 1986), proof of Theorem 5. So, finally, the leading power
products on both sides of (2.10) wiil be the same, and therefore / is reducible w.r.t. G,

(¢) Since p is lucky, G =G mod p’* ! exists and ideal(G'™) = ideal(F) as ideals in
&y, Certainly ideal(F) < ideallG"), since Y. G¥'=F (modp’*'). Assume that
ideal(GY} & ideal(F). Let i be a polynomial in ideal(G ) ideal(F). By (b), k is reducible
w.r.t. G But every polynomial which is reducible w.r.t. G is also reducibie w.r.t. G,
since the leading power products in both bases are the same and the basis elements are
monic. Say /1 5. g, Then geideal(GY), since ideal(G'") = ideal(F) < ideal(G"). But
g ¢ideal(F), lor otherwise heideal(F). So g eideal(GV Y\ ideal(F), and by the same reason-
ing as for # we get that g can be reduced w.rt. GY. That process can be repeated
indefinitely, leading to an infinite chain of reductions. This, however, is impossible.

(d) Assume that there exists a k, | <k < n, such that G{’ % G{". G¥” can be reduced
by G}’ to some nonzero polynomial /r in .o/,.. ., and 4 is irreducible w.r.t. G (because
the same power products occur in G’ and G{? and G% is reduced). So, by (b),
h¢ideal(GY). and therefore ideal(GY) s ideal{(G*") = ideal(F) in </ ... This, however, is
a contradiction 1o {¢). I3

If pis a lucky prime for F, then by Theorem 3 the congruence {2.2) can be extended
to a lifting sequence of arbitrary length and by Theorem 4 such a lifting sequence
guarantecs that we get the correct approximation of the normalized reduced Grébner
basis G for F. In order to compute (G, Y, R from (GY- 1, YU~ RU YY) we have
to solve the system

U.e=e" (2.11)

over & ,, where

clir= Lo
I
£ REi-D G-
and U is the maltrix
column n . m column # . (m + 1)
i i
G LGP
0 Ny 0 0 o
TOW Ht G(lm s G{.ﬂ)
G{O) G’SP)
0 0 l R

row m =1 . G ¢
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Y N . L " v e N ‘ INT
(j’ll?‘ R AP "_]'m]""?.}'nmﬂ"llﬂ" P e T NS ST "gn‘)

is a solution such that pp(g)) < pp(GONLpp(G™) ]} for 1 <j < n, then

g\
GO GY- Dy pi| g,
£n
| TR
YO yu-bppid o ],
Kot oo e .]":)m
L N
Pl e P
RO = ROV g pt -
.t .
Faoooo b
For the computation of a basis
. (1} ()
;i g1 g
Ch=- : NV :
21
g g

for the module of sclutions of the homogeneous system
U.e=90 {2.12)

and a solution to the inhomogeneous system (2.11) we refer to (Moller & Mora, 1986;
Furukawa e af., 1986; Winkler, 1986). Observe that for every 1<, k < n therc exists a
solution ¢ = (..., Chomstyetr-+ s Cumanwn) of (212} such that clrpn ;= G and
Chmensr=0for I €r<nt#)

The only remaining complication is that during the lifting process no new power
sroducts are allowed to be introduced in the basis and the basis polynomials should stay
monic. In order to satisfy this requirement, the basis C of the solution module of the
homogeneous system is transformed to a basis

[§3] (r)
. -4 gi
C = . LR ] .
(1
gl g

in which the last # components constitute a Grébner basis for the module generated by
these components (see Moller & Mora, 1986; Winkler, 1987h).

LEMMA 2. Let ieN, G@=(G™ . . GNT the normalized reduced Grébner basis for
F=(F. ... ,F)7in s, plucky for F. Let C be a basis for the module of solutions of
(2.12) such that the last n components of the vectors in C constitute a Gribner basis for the
module generated by these components. Let L =((GY, Y, RY Mo <: be a lifting
sequence for F modulo p.
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(@) There exists a vector §' = (g\,....g,)" over o, such that the lust n components of
every solution

o (5 = - = T

¢ == (('l: LI} Cm,’m - ('l?(_l?l+ [ R (n(m 4 f) 4 r:)

af (2.11) satisfying the additional requirement
[)[)(En(m -‘—.f)+k) = pp(G‘(km)\.‘\{![)[)(G}(U]) } for 1 g k g R (213)

are equal to g’
(h) From an arbitrary solution & of (211) a solurion ¢ of (2.11) which satisfies the additional
requirement (2.13) can be computed.

Proor: (a) By Theorems 3 and 4.
(b) Let E=( .., h,....0)" Then h—g'=(h,—gi, ..., h,—g)" are the last »

components of a solution of (2.12). So they can be reduced to 0 w.ri. the last #
componenis of

(1 i)
&1 £
C= . ey .
{1 (r)
g &y
WJ \___v.____/
c1 ¢,

If we let the possible cocfficients in g be parameters and reduce £ — g’ w.r.t. the last »
components of C, we get linear equations for these parameters that have a unique
sotution (by (&)), and we get a representation of & — g’ as a linear combination of the
vectors consisting of the last # components of C,

&N
- g1

g=h+ Y a.
' gl
Then

is a solution of (2.11) which satisfics (2.13).
The left hand side {7 of (2.11) remains the same throughout the lifting process. The
right hand side varies and it can be cfficiently computed as

Y'GY D YOG 4 p Y G

RIGED 4 RU-DG 1 piR'G

where G'. ¥, R’ arc the matrices over «/, such that G"'=G" D+ pG', YV =
Y(,‘... I)__'_p,-},rr1 R(,-): R{i-- ”-{-[)"R‘.

3. The Lifting Algorithm

Suppose we knew how to determine a reasonable bound B for the coefficients of the
normalized reduced Grdbner basis G for a given F and how to select a lucky prime p.
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Then the following algorithm could be used to compute G by lifting the corresponding
Grobner basis modulo p just high enough so that every coefficient in G has a unique
representation. If such a bound B is not known, then the algorithm /if7 can be considered
as p-adically approximating G.

Algorithm Jift (ime  F=(F, ..., F,)" in o™,

p. a lucky prime for F|
B, a bound on the coefficients in the normalized reduced Grébner
basis & for F, ie. every coeflicient of G is in & 5,
out: (. the normalized reduced Grébner basis for F),

(1) [length of lifting sequence] Compute K such that 2B*+ 1 < p¥,
{2) [initialization] Set i« 1. Compute the normalized reduced Grébner basis

GO = (G, ..., GI™ " for F modulo p and matrices Y%, R™ over &, such that

YO GOW=F and RY.GYU=0 (modp).
and the rows of R are the syzygies of G derived [rom ihe reductions of the
necessary S-polynomials of G\ to 0 w.r.t. G

(3) {solution of homogenecous system] Let the matrix I be as in (2.11). Compute a
basis
o | & ﬁ%"’
g gf.“
for the module of solutions of U. ¢ =0 in ./, such that the last » components of
the basis vectors in C constitute a Grébner basis for the module generated by these
componerts.
(4) [finished?] If i = K then go to {6).
(5) [lift to congruence modulo p'* '] Compute a particular solution
(.‘A’H """ .}.in """ .1.:"] """ .Tt’m!- f';i """ "—,ln' LA ‘r;}t T r;n? g/}* Tt g:!) ’
of
F-ye Gh
1
U gmon Lo
P *‘RU i} G(; 3]
over 7, such that pp(g)) < pp(GON{pp(GI™)} for | <j <n. Set
G(:) (“(: l)+p (g! o eg;z)T-
Yilte Y- b +Pi- (,3"/:—;')| <k me R e R H“l‘ﬁ {r A:)I ki
tjEn t=j=n
Set i=i+ 1. Go to (4).

{6) [convert the coeflicients back to €3] Compute the unique ceeflicients in #,
corresponding to the coefﬁcients in G', getting the normatized reduced Grébner
basis G for Fover @. £

ExaMpPLE 2. We carry out the algorithm /ifi for computing a p-adic approximation of a

Grobner baszs in @x,v]. As the ordering < of the power products we choose the
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lexicographic ordering with x < y. Let the input basis F be

X2 ety
Fe{xp® =822 18yt
e 8y — 24x°

The normalized reduced Grdbner basis for F over @ 1s

x?
G == [ xp? o+ 8y
448y

So the coefficients of both F and & are relatively small, whereas the highest coefficient
appearing in the computation of G is 1098247/1190896.

As the prime p we choose 5, which is indeed a Tucky prime for F. The Grobuner basis
for ¥ modulo 35 is

X2
GO =] xy® — 2y
';.‘4 —_— 2‘1:

the transformation matrix from G™ to F modulo 5 is ¥ and the rows of R™ are the
syzygics derived from the necessary S-polynomials Spol(G\”, G, Spol(GY, G of G,

¥ 4+2xr 00
LI T I 0 RO prP=2 =x 0
‘ 0 1) 0y =¥/

In lifting the Grobner basis G'™ modulo 5 to a basis moduio some higher power of 5 we
have to solve a system of inkomogeneous linear equations. The left hand side of this
system is the malrix {/, whose transposed is

x? 0 ] 0 0
vyt e 2y 0 0 0 0
v — 2y 0 0 0 0
0 x? 0 0 0
0 xpt—2x 0 0 0
0 pt— 2y 0 0 0
0 0 x° 0 0
0 0 gio2x 0 0
0 0 i 2y ¢ 0
0 0 G x? 0
0 0 0 Xy - 2x 0
] 0 0 pt— 2y 0
0 0 0 0 x°
0 1] 0 0 xpt e 2y
0 0 0 0 2y
¥ 2xy -3 X pie2 0
0 1 0 X )
0 0 1 0 —X
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We compute a basis C for the moedule of solutions of U, ¢ = 0in Z;[x, ¥], such that the
last 3 components of the basis vectors in C constitute a Grébner basis for the module
generated by these components. C includes the vectors

to

x xpd - 2x pt—2p
oI 0 ' 0

0 0 0

0 0 0

e B e L N
0 0 0

0 0 0

0 f° 0 ’ 0 '
x? xy? - 2x yh=—2y

In the first lifting step we compute a particular solution & to the system

F o Y(O) ) G(O)
goeml 6

over ZJ{x, ¥]. The basis vectors in C are used to reduce ¢ to a solution ¢ of (3.1) satisfying
the requirement that none of the fast 3 components of & contains any power product that
does not already appear in the corresponding element of G and, moreover, the
coefficient of lpp(Gi™) in é,5.,1s 0, for 1 </ < 3. As the vector ¢ we get

2xy
0
0
—xpt 20 20t 2ay o+ 7
X3y —2x°

0

3
i

O DD DD

—xp® b 20t 2xp7 4 Xy
0
Xy — 2x4
0
2x
2y
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Now we use the components of & to updale the approximations to G, ¥, and R, getting

x?
G =y xy*+8x 1,
J_!d _i,_ 8'];
¥4 12xy 0 0
Y = e Sxp® o 10670 4997 + 10xy + 5x% Sxfy —10x*+1 0f
x 0 1

R(”: ]“+8 — X O
—=5x3 4+ 10x%* 4 10xp? 4 5x% y Sxty —10x*—x )

G (with its coefficients mapped back to @) is already the normalized reduced
Grébner basis for Fin @x, y]. O

4. Conclusion

As we have shown, it is possible to give a lifting algorithm that computes a p-adic
approximation to the normalized reduced Grébner basis G for the ideal generated by a
finite set of polynomials Fin @[x,, ..., x,]. For the lifling process to be valid, we have
to guarantee that the prime p is not one of finitely many unlucky primes. Unfortunately,
up to now we do not have an effective criterion for determining luckyness. What we
would like to have is a criterion similar to the one for the polynomial factorization
problem, where we only have 1o check that p does not divide the leading coefficient and
the resultant of the primitive squarefree polynomial £, and f remains squarefree modulo
p. So determining luckyness remains an open problem.

Another open problem is the computation of a reasonable upper bound on the
coeflicients of the normalized reduced Grébner basis for the ideal generated by a set of
polynomials F. Such a bound is essential for the termination criterion of the algorithm
lift.

Although we cannot yet present a totally effective procedure for the problem of lifting
a Grébner basis, we hope that this is the starting point for further investigation into the
subject.
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