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Abstract

Most idea) theoretic problems in a polynomial ring are extremely hard to solve, if the
ideal is given by an arbitrary basis. B. Buchberger, 1965, was the first to show that
for potynomials over a field it is possible to construct a “detaching® basis from a
given arbitrary one, such that the problems mentioned above become easily soluble.
Other authors {e.g. M. lauer, 1976, and S$.C. Schaller, 1979} have considered different
coefficient domains. In this paper we investigate a method, developed by C.Sims and
C.Ayoub, for constructing “"detaching" bases in the ring of polynomiats over Z, where
the power products are ordered lexicographically. We show that the method &lso works
for polynomials over a field, with only weak conditicns on the ordering of the power
products. New proofs of correctness and termination are presented. Furthermore we are
able to improve the complexity behaviour of Ayoub's algorithm for the case of polyno-
mials over a field.

1. Introduction and problem specification

Let K be a field. Then K{x1,...,xp}, the ring of polynomials over K in n indetermina-
tes, is a Noetherfan ring [vdW70]. This means that every ideal I in Kxy,....xn] is
generated by a finite basis F (I=1deal{F)}. If we are given a finite basis F for an
ideal I in K[x1,...,xp], a great number of problems still remain extremely difficult
to solve. Among these problems are the problem of deciding whether a given polynomial
belongs to I, the problem of deciding whether the polynomial ideal has dimension zero,
the reduction of polynomials to canonical forms with respect to the ideal I and many
more {compare [w1?8]). Therefore it is essential to compute from the basis F a
"detaching* basis G, such that G generates the same ideal as F, but G makes the solu-
tions of these problems easy.

In the following we assume that we have a total linear ordering <¢ on ppp, the set
of power products of the indeterminates xi,...,xpn, which satisfies the two conditions
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{T1) 1=x10,..xp° <¢ p for all p e ppy and

(T2) p.qy <¢ p.qz for all p,91,92 € ppp such that qy <¢ g.
These two conditions imply that <¢ is a Neetherian relation on ppp.

Throughout this paper we use the following notatijons. If p is the power product
xlei...xne“ in ppp and ie N then by reary(p) we denote the power product xiei...xne"
(if i>n then rearj(p)=1}, and by deg¢(p) we denote ey, the degree of p in xy.

If f is a nonzero po]ynomig1 in K[xl....,xn}, then 1dpp(f) is the greatest power
product in ppp which has a nonzero coefficient in f. tdc(f) is the coefficient of
Ydpp{f). 1dt{f)=1dc(f}1dpp(f). red{f}=F-1dt(f}.

Following Buchberger's notation, for an arbitrary subset F of K[xy,...,X;] we

f E‘; g iff there is a power product p, which occurs with coefficient a#0 in f, and a
nonzero polynomial h in F such that p is a multiple of ldpp(h) and

g=f

define a reduction relaticn E:? on K[X1see-s%pl:

B P _h,
tde(h} ldpp(h)
By —;* we denote the reflexive transitive closure of TT? .
Ei;?is a Moetherian relation, so a chain of reductions starting with a polynomial f _
terminates with some ¢ such that g cannot be reduced further. In this case we say that

unique simplified version of f w.r.t. F.

o If every f £ K[x{,...,%,] is reduction unique w.r.t. F
o then we call F a detaching basis (Gribner-basis or complete basis)
o for ideal(F).

Lemma 1.1: Let F be a finite subset of ¥{xy,...,xp}. If for every poiynomial f in
ideal (F) f';*e then F is a detaching basis for ideal(F).

In [Bu65], (Bu70], and [Bu76] B.Buchberger presented an algorithm for constructing
a detaching basis & for an ideal I in K{xj,....%n]. for which seme basis F is given.
The main step in this algorithm is te take two polynomials f and g in the basis, com-
pute the least common multiple p of ldpp{f) and tdpp(g), reduce p to some hy using f
and to some hy using g and compute simplified versions hy' and hp' of hy and hp. If
hi'#hp' the new polynomial hi'-hp' is added to the basis.

Other authors ([La76al. [La76b], [S¢78]) have considered different coefficient
domains. In {Si78] C.Sims presented an algorithm for constructing a basis for an ideal
in Z[x], which allows to decide whether a given polynomial fs contained in the iceal.
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His work was extended to multivariate polynomials over 7 by C.Ayoub in [Ay80]. Ayoub
proves her result only for the case where <y is the lexicographic ordering on the
power products. This ordering is sufficient for deciding whether a given polyncmial is
contained in an ideal I. But when detaching bases should be used for simplifying poly-
nomials with respect to polynomial side relations, it is desirable to have a wider
range of possible definitions of the notion of "simpler" to choose from.

We present an algorithm for computing detaching bases for polynomial ideals in
K[xl,...,xn}. where the underlying ordering <y on the power products has to satisfy
only the two conditions (T1) and (T2). Detailed proofs of the various lemmata can be
found in [WiB2].

We hope that this paper helps to understand the relations between Buchberger's
and Ayoub's algorithms for completing bases for polynomial ideals.

2. A first algorithm for constructing detaching bases

A finite set F of polyncmials in K{xy,-.-.X,] 15 called staggered, if 0 ¢ F and for
f,9 ¢ F, fzg, we have ldpp(f)#dpp{g).

Lemma 2.1: For every finite set of polynomials F in K[x1,...,xp]. a finite set of
polynomials G can be constructed, such that ideal(F)=ideal{G) and G is staggered.

Proof: Let F' be F-{0}. As long as there are two different polynomials f,g in F' with
Ydpp(fi=1dpp{g), we carry out the following process:

compute h=f - {1dc(f}/1dc(g)).g. If h=0 then delete f from F'. Otherwise replace f by
h inF'.

Obviously the ideal genmerated by F' remains unchanged during this process.

The process terminates after a finite number of steps, since the leading power pro-
ducts of the polynomials in F' decrease with respect to the Noetherian ordering <¢.
Finally we get a set of polynomials F' which generates the same ideal as F and fis
staggered. 5o we let G=F'. o

For a finite,staggered set F in K[x],..+,Xn] we define the following tower of
admissible pairs fn pppxK([x1,«--,%n ]t
fOVS[(1,,) 1 e F) and for 1ci<n
pB)ee e UG (tpoxss, ) | (0, F) eF -0, max(£,F,1), sen,
where max(f,F,1) 1ff (VgeF){reari+1(1dpp{a))=rear;s1{1dop(f)) =
degs (1dpp(g)) < degi{Tdpp(f)) ).

For the proof of the main theorem we will need the following lemmata.
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Lemma 2.2: Let F be a finite, staggered subset of K[xy,««-,Xp). P»Q € ppp, fef.
If (p,f).{q,f) ¢ F[0] then (p.q,f) & FO.

Lemma 2.3: Let F be a finite, staggered subset of K[x],.+.,xp], feF, l<ms<n,
(a.0)eFIM), f2g and 1dpp(xy.f)=1dpp(q.g)-.
Then the exponents of Xg,....xp in q are O.

Lemma 2.4: let F be a finite, staggered subset of K[x1,...,xp]:
iﬂ; 2
Then F is also staggered.

By modg{F} let us denote the K-module generated by F for any FSEK[x1,...,xn],
t.e. modg(F) = { agfy*...vagfy | for me Mo, ap,ee,ag & K, froeee,fn e F . Now we are
ready to state the fundamental theorem for the construction of detaching bases.

Theorem 2.1: lLet F be a finfte, staggered subset of K[xj,.--.Xn]:
Then the following two assertions are equivalent:

(i} x4.T ¢ modK{F(")) for alt f ¢ F, l<icn,

(11) p.f ¢ modg(F(™) for all £ ¢ £, p < ppp.

Proof: Obviously (ii) implies (i), since (i) is a special case of {ii).
It remains to show that (i} implies (ii). This we prove by induction on 1dpp(p.f)
with respect to the Noetherian relation <¢.
Suppose that for some p* & ppp we know that
(1H1) i 1dpp(p.f) <¢ p* then p.f ¢ modg(F(™)) for alt f e F, p € ppy.
From the induction hypothesis (IH1) we have to show
(1) if 1dpp(p.F)=p* then p.f e modg(F(M)) for all £ ¢ F, p & ppp.
We prove (1)} by induction on p with respect te the lexicographic ordering <y on ppy
(which is a Neetherian relation).
Suppose that for some p e ppp we know that
(1H2) if p <1 p and ldpp(p.f) = o* then p.f « modK(F(“))
for altt f « F, p € ppp-

From the induction hypothesis (IH2) we have to show )
(2)  if tdppl(p.f) = p* then p.f ¢ modg(F(™)) for a1l f < F.
If for all indices m, 1<m<n, such that degy{p)#0 we have (xy.f) e F{"], then by
lemma 2.2 {p,f) ¢ (1] and nence p.f e (M S mody(F(M).
Otherwise there is an index m, l<m<n, such that degp{p}#0 and (xp.f) ¢ F[n].
Because of (i} we have xg.f € modK(F(n)), j.e. there are 1 ¢ N, a1,...,a7 & K-{0].
g1s+-+,0] € F(n} such that

%p.f = Zjllaj.gj and gq#gx for ix.
Because of lemma 2.4 1dpp{g;)#¥dpp{gy) for i#k. W.l.0.g. we assume
1dpp{gj) <t ldpp{g1) for 1<jql.
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pef = (p/xp)expf = a1 (p/xp).q1 + Zjlzaj-(ﬁfxm)-gj-

A1 the power products occurring in Zjlzaj'(E/xm}-gj are less than p* (here we

need the property (T2) of <t), so by the induction hypothesis {IH1)

Ejlzaj'(ﬂ/*m}-gj e mody (F(")),

So it remains to show that {p/xm}.q1 ¢ modK(F("))-
91=q.9 for some (q,g) e FEM, where by lemma 2.3 degp(q)=0 for m<r<n.
Now we set q'={p/xy).q and get (p/xm}.91 = 9'.9.
But q' <1 p, so by the induction hypothesis (IH2)
{p/*m)-91 = 9'-0 € modK(F(”]).

This completes the proof of (2),(1) and (i) ==> (i{). .

Now it is easy to show that condition (i) in theorem 2.1 is equivalent to
modK(F(“))=idea¥(F). Using this equivalence together with lemma 1.1 one can prove
that (i) is a sufficient condition for F being a detaching basis.

Theorem 2.2: Let F be a finite, staggered subset of K{xy,...,xu].
o I x;.f e modg(F(")) for all 1cin, £ e F, then F fs a detaching basis
for ideal{Fr).

—

reducibility modulo F: f {7 % g iff there is a power product p, which occurs with
coefficient a#0Q in f, and a polynomial h ¢ F such that p=ldpp(h) and

=fF - % _nh.
g Tde(h)

By';:; we dencte the reflexive transitive closure of Ij;];

;:;TF is a Noetherian relation, so a chain of reductions of a polynomfal f has to ter-
minate with some g, such that g camnot be reduced further. In this case we say that

g is a restricted simplified version of f modulo F. Clearly g = f modulo the ideal

generated by F.

Lemma 2.5: Let F be a finite, staggered subset of K[x],...,Xp]. FeKixy,e...xp]-
Then f ¢ modK(F{”)) if and only if f —> Q.
r,Fin}
In order to be able to prove the termination of our algorithm, we need to intro-
duce the notion of triangularity: a staggered subset F of K{xy,...,xn] s called

1dpp(g)=tdpp{x;.f).

Lemma 2.6: If F is a finite, staggered subset of K[xj,...,Xy], then in finitely many
steps a finite, triangular subset 6 of K[x1,...,x;) can be constructed such that
jdeal (F)=ideal{G).
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proof: Initially we let G be F. As long as there are f £ G, 1<i<n such that there is
n g« &™) with 1dpp(a)=tdpp(x{.f), we add x;.f to G.

The process terminates, since for every k, l<ken, no polynomial h is added such that
degy (1dpp(h)) > max{degx(1dpp(g)) | g € F}. .

terma 2.7: If F is triangular, then for every p e ppy, f € F, there is a g ¢ F(n) such
that p.1dpp(fi=ldpp(g}.

lemma 2.8: If F is a finite, triangular subset of K{x1,...,Xy] and the nonzero poly-

nomial h is irreducible module 1 e(n) then there is no f ¢ F such that 1dpp{h) is
Qr’

a miltiple of ldpp(f}.

Now we can state a first version of the algorithm for constructing a detaching
basis G for ideal(F):

G « detb1(F}
{Algorithm for constructing a detaching basis, l.version. F is a finite subset
of K[X1,..-,%y]- G is a finite detaching basis for ideal(F)]
(1) Let G be a finite, triangular basis for ideal(F);
{an algorithm for constructing such a basis can be extracted from the
proofs of lemma 2.1 and lemma 2.6
{2) Set C + Hiﬁ)!lﬁ<n,f&,(m,ﬂ¢6m and xi.f ¢ G};
(3) while C#4 do
{Choose (i,f} e C;
let h be a restricted simplified version of xj.f moduloe
fan algorithm is given in [Ay80]] -
if h#0 then {Set G' «Gufhl; .
Llet G be a finite, triangular basis for ideal{G');
Set € « [(1,F) ] 1<in, fe6, (xi,F)g6[Tand xi.f ¢ G}
else Delete {i,f) from C };

gn)

return e

The correctness of the atgorithm follows from theorem 2.2 and lemma 2.5. Now let
us consider the problem of termination. If detbl would not terminate, this would mean
that it continuously adds polynomials hj,hz,... to the basis, where by lemma 2.8 no
h; is a multiple of some hy,...,hj_1. Such a sequence of polynomials, however, cannot
exist [Bu70]. So detbl has to terminate.

A rather annoying property of detbl is that whenever a new polynomial is added fo
the basis G in (3}, then all the reductions of pairs (i,f) done so far are rendered
useless and xi.f has to be reduced anew. This is because adding a new polynomial to
the basis may totally destroy the structure of G(”)- So it would be desirable to modi-
fy the basic concept in such a way that each pair (i,f} must be considered only once.
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3. Improvement of the algorithm

The cost for improving detbl has to be paid in notational compiexity. There are two
major changes in notation. Firstly we consider sequences of polynomials rather than
sets of polynomials, i.e. we consider "ordered" bases. Secondly the set of reductors
F(") for a basis F is defined somewhat differently, so that adding new polynomials to
F does not destroy the structure of F(n) but merely add new reductors.

We define staggeredness for sequences of polynomials as in chapter 2 - a sequence
of polynomials in K[xl,...,xn] is called staggered if every element of F occurs only
once in F and the set of elements in F is staggered - and again we can prove that for
every finite sequence F of polynomials in K[x],...,xy] in finitely many steps a finite
staggered Sequence G can be constructed such that F and G generate the same ideal.

{{a1,-..,ap) | 3§=0 or aj=x; for l<i<n}. We say that {(a,f) and (b,g} are unifiable,
if there are substitutions of and cg such that
x°F(a1)x o an) app(g) = 1y %l D, xy%9(00) ydpp(a) .

For a finite, staggered sequence of polynomials F in K{x1,...,xp] we define the
if length(F)=0 then F'={). If F=Goh then F =G o{aj,...,an), where for l<k<n ag=xyx if
max{h,F,k} and (G~j,Gj) and ((a3,¢s+,8K.1+sXk>05+++,0),1) are not unifiable for
1<j<length{G}, and =0 otherwise. {o denotes the operation of adding a last etement
to a sequence.)

The set of reductors F* for a finite, staggered sequence of polynomials F is

defired as F*={p.F€ | {p,3) € F=}, where
F=z§(xi°(ai)...xn° aﬁ),j) | {a1,+++.8p)=F j, o a substitution, l<j<length(F)}.

Lemma 3.1: Let F be a finite, staggered sequence in K{x1,...,xn}, P.q £ PPp.
1<j<length(F}.
If (p,i),(q,3) ¢ F* then (p.q,j) e F™

A staggered sequence F in K[x1,...,xpn} is called unambiguous if
(W{p.i),(a.k) e F=} {(p.j)#(q.k) == p.1dpp(Fj)*q.1dpp(Fy}).

Lemma 3.2: Let F be a finite, unambiguous sequence in K[xq,...,xn], h a nonzero
potynomial in K[Xl,---»xn] such that there is no g ¢ % with ldpp{h)=1dpp{g).
Then Foh is unambiguous.

Lemma 3.3: let F be a finite staggered sequence of polynomials in K[x1,...,%p].
Then there is a permutation = such that (Fﬂ{l),...,F"(1ength(p)}) is unambiguous.
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Proof: We induct on Y=length{F). For 1=0 F is already unambiguous.

Now let 1»1. We choose j ¢ {1,...,1} such that 1dpp(Fj) is not a multiple of any
1dpp(F3) for 1<i<l, izj. let F'=(F1,...,Fj_l,Fj+1,...,F1}. By the induction hypothesis
there is a reordering &' of F' such that G' is unambiguous.

So 6=G'oF3 s a reordering of F and by lemma 3.2 G is unambiguous. e

Lemma 3.4: tet F be a finite, unambiguous sequence of polynomials in K[x1,...,Xp].
Then F* is a staggered set of polynomials.

Again we define the noti&n of triangularity: an unambiguous sequence F is called

such that Idpp{xi.Fj)z1dpp(q.Fk).

temma 3.5: Let T be a finite, triangular sequence in K[x1,---,xn}, h a nonzero poly-
nomial in K{x{,....xp] such that there is no g e F* with 1dpp(h)=ldpp(g), and m such
that degp{ldpp(h)) > max [degn(1dpp(F4)) | 1<i<tength(F)}.

Then (xg.length{F)+1) e (Foh)® and Foh is unambiguous.

Lemma 3.6: Let F be a finite triangular sequence in K{xp,...,xp}, h a nonzero poly-
nomial in K[x],-+-,Xn) such that there is no g ¢ £* with 1dpp(h)=tdpp(g).

Then there are polynomials hy,...,hp € K[xl,...,xn], bp=h, such that G=Fchjo...ohy s
triangular and ideal(Fch)=ideal{G}.

Proof: Let g=h. As long as there is an index m such that there is no f e (Fog)™ with
1dpp{xm.9)=1dpp{f), set g=xp.g. The process terminates, since by lemma 3.5
degy{1dpp{g)) cannot surpass max jdegy(tdpp(h)),max{degn(Fi) } 1<i<length(F}}}.

8y lemma 3.2 Fog is unambiguous. F is triangular and for every 1, 1<i<n, there is a
{p,j} € (Fog)® with tdpp{xj.g)=1dpp{p.(Fog)j), so Fog is triangular. So we tet hi=g.
Iterating this process we get the desired ha,...,hy.

Clearly ideal{Foh)=ideal(G). .

Lemma 3.7: Let F be a finite, unambiguous seguence in K{xl,...,xn}.
Then there is a finite, triangular sequence G such that every polynomial in G is a
myltiple of some polynomial in F and ideal (G)=ideal(F).

Proof: Because of the proof of lemma 3.3 we may assume that tdpp(Fj} is not a multiple
of ldpp(Fi} for i<i<j<length(F).

We induct on T=length(F). If 1=0 then obviously F is trizngular.

So Tet 1al. For F'=(F1,...,F1.1) by the induction hypothesis there is a finite,
triangular sequence G' such that every polynomial in G' is 3 multiple of some poly-
nomial in F* and ideal(G')}=ideal(F'). By lemma 3.6 there are mltiples hi,....hp of

Fy such that G=6'chyo...ohyp is triangular and ideal{f)=ideal(F}. e
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Lemma 3.8: Let F be a finite, triangular sequence in K[xq,....%Xp]:
Then for every P & PPps 1cj<tength(F) there is a pair (g,Fy) e F¥, k&d, such that
dpp(p.F3)=1dpp(q.F).

Lemma 3.9: Let F be a finite, triangular sequence in K[x],....xn] and h a nonzero
polynomial in K[x{,...,x] such that there is no g ¢ F* with 1dpp{h}=ldpp(g}.
Then there is no j, 1<j<length(F), such that ldpp(h) is a muittiple of 1dop(Fj}.

With these new notations, a theorem analogous to theorem 2.1 holds.

Theorem 3.1: Let F be a finite, triangular sequence in K[xj....,xp].
Then the following two assertions are equivalent:

(1) xj-Fj e modg(F*) for all l<j<length(F), 1<icn,

(1) p.Fj e modg(F*) for all 1<j<length(F), p e ppn-

Proof: Obviously (ii) implies (i}, since (i} is a special case of (ii).
It remains to show that (1) dmplies {i1). This we prove by induction on tdpp{p.F3)
with respect to the Noetherian relation <¢.
Suppose that for some p* & ppy we know that
(IH1) if 1dpp(p.Fj) <t p* then p.Fj e modg(F*) for all p e ppp, 1<j<length(F).
From the induction hypothesis (IH1)} we have to show
(1) if tdpp{p.Fj)=p* then p.Fj e modg(F*) for all p e ppp. 1<j<length(F}.
We prove (1) by fnduction on j.
If j=1 then (p,1} € F* and therefore p.F1 € F*Smodg(F*).
Now suppose that for some 3%, 2<j*<length{F) we know that
{1H2) if !dpp(p.Fj)=p* and j<i* then p.Fj € mody (F*)
for all p £ ppp, 1<i<length{F}.

From the induction hypothesis (IH2) we have to show
(2) if 1dpp(p.Fj*)=p* then p.Fj* ¢ modg (F¥)  for all p e ppp.
If for all indices m, 1<m<n, such that degy(p}#0 we have (xm,j*) e F*, then by
lenma 3.1 (p,i*) € F* and hence p.Fj* ¢ F* Smodg (F*).
Otherwise there is an index m, l<m<n, such that degy(p)#0 and (xm»d*) ¢ F=.
Because of (i) we have xp.Fj* e modg(F"), i.e. there are 1 W, ay,....a1 = k-{0},
91,+--,9] € F* such that

*m-Fj* = Ejllaj.gj and gj#gg for i#k.
Because of lemma 3.4 1dpp{gi)#dpp(gyx) for i#k. W.l.0.g. we assume
tdpp(gj) <t Tdpp(gy) for all 2<j<i.

p-Fi* = (p/xq) - Xp Fg* = a1-{p/xp}-97 + Zjlzaj.(p/xm).gj.

A1 the power products occurring in {jlzaj-(p/xm).gj are less than p*, so by the

induction hypothesis ({IR1)
Ijlzaj.(p/zm).gj e modg{F*).
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It remains to show that (p/xy).g] e modg(F*).

g1=9-Fy for some {a,k) e F¥. Since 1dpp{xm.Fj*)=1dpp(q.Fk) and F is triangular, k must
be less or equal to j*. But j*=k is impossible, because (xm,i*} # F=. So k<j™-1.
Therefore (p/xm)-91 = (p/xp)}.q-Fk € modg(F*} by the induction hypothesis {IH2).

This completes the proof of (2),{1) and {i) ==} (i{).

In analogy to chapter 2 it turns out that (i} in theorem 3.1 is equivalent to
mody (F*)=ideal(F). Using this equivalence together with lemma 1.1 one can prove that
(1) is a sufficient condition for F being a detaching basis.

e Theorem 3.2: Let T be a finite, triangular sequence in K[X1,++-,%n]-
If xi.Fj ¢ modg(F*)} for all l<j<length(F), l<i<n, then F is a detaching
e basis for ideal(F).

As in chapter 2 we need a method for deciding whether f ¢ modK(F*) for a poly-
nomial f in K{xl,...,xn] and a finite, triangular sequence F.

Lemma 3.10: Let F be a finite, unambiguous sequence in ¥X[xy,.+.,xp] and f a polynomial
in K[x1.e00%p]-
Then f e modg(F*) i€ and only if £ 7% O.

Lemna 3.11: let F be a finite, unambiguous sequence in K[x],...Xp]. h & polynomial in
K{x1,++,xn] such that T1dpp(h)#1dpp(g) for all g e F™.

If f1 . ¢% f2 then f1 r (Foh)i £9, for any f1,f2 € K[x],e--,%p]-
~

Lemma 3.11 is the key observation for reducing every polynomial x4.Gj only once in
the subsequent algorithm for constructing detaching bases.

Now we are ready to state the improved version of the algorithm:

G + detb2(F)
[Algorithm for constructing a detaching basis, 2.version. F is a finite sequence
in K{Xy,es-.%n]- G 15 a finite detaching basis for ideal(F)]
{1) Let G be a finite, triangular basis for ideal(F);
[an algorithm for constructing such a basis can be extracted from the
preofs of lemma 3.3 and lemma 3.7]
(2) Set C + {(i,5) | Ic<i<n, l<jclength(G), (xi,j)e6" and xi.G5 ¢ G};
(3) while € #C do
{Choose (i,j) & C;
Let h be a restricted simplified version of xj.6; modulo 6",
if h # 0 then {Construct hy,...,hp.} such that G'=Gohjo...ohg_jeh is
a triangular basis for ideal{Goh);
fuse the method described in the proof of lemma 3.6]
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Set € « Cu{{#,3) | i<icn, length(G)+l<j<length(G)+m,
{(xi,3)¢6'= and x.G';j ¢ 6"}
Set G «G'};
Detete {i,j) from C};
return @

The correctness of the algorithm follows from theorem 3.2 and lemma 3.10. The
proof of termination of detb2 is analogous to the one for detbl. One merely has to
use lemma 3.9 instead of lemma 2.8.

Example:
We consider the fdeal in Zg[x,y,z] which is generated by the set of polynamials

ForixyZz + 32z, xyd + xz + 2y, xyz + 2y2 L
As the linear ordering <¢ on the set of power products we choose the graduated
texicographic ordering ([Bu?9]).
A detaching basis for ideal{F) is computed first by Buchberger's algorithm 8B with
criterion 3 (compare [Bu79]) and then by the algorithm detb2.

GB generates the sequence of polyncmials (G1}-{G13)

(61) xy2z + 3x2z (GBY x%y + 3xz + ¥
(62) xy3 +xz + 2 {G9} xz2 + xy? + %z
(63} xyz + 2y2 (610) xz + 2y

(G4) y3 + x2z {611) xy?

{65) x¥z + dxz + 3y {G12) xy

(66) x2y? (613) y2.

(67} x2z + 2xy
13,1272 = 78 S-polynemials have to be considered for reductfon, but only 21
reductions have to be carried out according %o criterion 3.

The algorithm detb? generates the sequence of polynomials {G'1)-(G'16)

{G'1) xy2z + 3x2z {6'9) x2y + 3z + y
(G'2) xy? + xz + 2y {6'10) xz2 + xy2 + 2yz
{G'3) xyz + 2y? (G'11) xz + 2y

(G'4) y3¥z + x222 (6'12) xy?

{(G'5) y3¥ + x2z (6'13) xy

(G'6) x3z + 4xz + 3y (6'14) y2z2

(G'7) x?y? (6G'15) y?z

{G'B) x2z + Zxy {6'16) y2.

23 of the 48 polynomials v.f, ve{x,y,z}, feG', have to be reduced to normal form
during the execution of dethb2.

Since the reductions are the most time consuming steps in either GB and detb2, the
efficiency of the two algorithms for this example is fairly the same (the two extra
reductions in detb2 are counterbalanced by the number of tests for criterion 3 in GB).
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Unfortunately, up to now it has not been possible to derive upper bounds on the
computing time of detb2. The same is true for Buchberger's algorithm for constructing
detaching bases (except for n=2, see [Bu791,[BW79]). Cne has to wait for an implemen-
tation of deth? in order to be able to compare the run time efficiencies of the two
algorithms.
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