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Abstract

Most ideal theoretic problems in a polynomial ring are extremely hard to sclve, if the
ideal is given by an arbitrary basis. B. Buchberger, 1965, was the first to show that
for polynomials over a field it is possible to construct a "detaching" basis from a
given arbitrary one, such that the probtems mentioned above become easily soluble.
Other authors (e.g. M. Lauer, 1976, and S.C. Schaller, 1979) have considered different
coefficient domains. In this paper we investigate a method, developed by C.Sims and
C.Ayouk, for constructing “"detaching" bases in the ring of polynomials over 2, where
the power products are ordered lexicographically. We show that the method also works
for polynomials over a field, with only weak conditions on the ordering of the power
products. New proofs of correctness and termination are presented. Furthermore we are
able to improve the complexity behaviour of Ayoub's algorithm for the case of pelyno-
mials over a field.

1. Introduction and problem specificaticen

Let K be a field, Then K[xy,...,Xp), the ring of polynomials over K in n indetermina-
tes, is a Noetherian ring [vdW70]. This means that every ideal 1 in K[x],...,xp] is
generated by a finite basis F (I=ideal{F)). If we are given a finite basis F for an
ideal I in K[x1,...,xn], a great number of problems still remain extremely difficult
to solve. Among these problems are the problem of deciding whether a given polynomial
belongs to I, the problem of deciding whether the polynomial ideal has dimension zero,
the reduction of polynomials to canonical forms with respect to the ideal I and many
more (compare [Wi78}). Therefore it is essential to compute from the basis F a
"detaching” basis G, such that G generates the same ideal as F, but G makes the solu-
tions of these problems easy.

In the following we assume that we have a total linear ordering < on ppp, the set
of power products of the indeterminates xj,...,%p, which satisfies the two conditions
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(T1) 1=210...x,0 < p for al} p = ppy and

(T2) p.qy <t p.qz for all p,q1,92 ¢ ppp such that ai <¢ q2.
These two conditions imply that <¢ is a Nostherian relation on ppp.

Throughout this paper we use the following notations. If p is the power product
x1%L...x,%" in ppp and e N then by reari{p) we denote the power product xi®1...xp%n
{if i>n then rear;(p)=1), and by deg;(p) we denote ey, the degree of p in x4.

If f is a nonzero polynomfal in K[x{.....Xn], then ldpp(f) is the greatest power
product in ppp which has a nonzero coefficient in £. 1dc(f) is the coefficient of
Tdpp(f). 1dt{f)=1de(f)1dpp(f). red{f)=f-1dt(f}.

Following Buchberger’'s notation, for an arbitrary subset F of K{xy,...,xp| we
f E_? g iff there is a power product p, which occurs with coefficient a#0 in f, and a
nonzero polynomial h in F such that p is a multiple of ldpp(h) and

g=f-—2 ____P _p
Tde{n) ldpp{h)

By —f’ we denote the reflexive transitive closure of E‘? .
Hd

1 ; is a Noetherian relation, so a chain of reductions starting with a polynomial f
L] N
terminates with some g such that g canrnot de reduced further. In this case we say that

unique simplified version of f w.r.t. F.

o If every f e K[xy,-...%q] is reduction unique w.r.t. F
&« then we call F a detaching basis (Gribner-basis or complete basis)
o for ideal(F).

Lerma 1.1: Let F be a finite subset of K{xl,...,xn]. If for every polynomial f in
ideal (F) f'E’O then F is a detaching basis for ideal(F).

In [Bu65], [8u70], and {Bu76) B.Buchberger presented an algorithm for constructing
a detaching basis G for an ideal I fn K[x1,...,xy]. for which some basis F is given.
The main step in this algorithm is to take two polynomials f and g in the basis, com-
pute the least common muttiple p of ldpp(f) and 1dpp(g), reduce p to some hy using f
and to some hy using g and compute simplified versions hi' and hp' of hy and ho. If
hy'#ho' the new polynomial hy'-hp' is added to the basis.

Other authors ([La76a]. {La76b}, [Sc79]) have considered different coefficient
domains. In [Si78] C.Sims presented an algorithm for constructing a basis for an ideal
in Z{x], which allows to decide whether a given polyncmial is contained in the ideal.
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His work was extended to multfvariate polynomials over 7 by C.Ayoub in [Ay80]. Ayoub
proves her result only for the case where <¢ is the texicographic ordering on the
power products. This ordering fs sufficient for deciding whether a given pelynomial is
contained in an ideal I. But when detaching bases should be used for simplifying poly-
nomials with respect to polynomial side relations, it is desirable to have a wider
range of possible definitions of the notion of “"simpler" to choose from.

We present an algorithm for computing detaching bases for polynomial ideals in
K[x1,+04,%p], where the underlying ordering <4 on the power products has to satisfy
only the two conditions (T1) and (T2). Detailed proofs of the various lemmata can be
found in [Wig2].

We hope that this paper helps to understand the relations between Buchberger's
and Ayoub's atgorithms for completing bases for polynomial ideals.

2. A first algorithm for constructing detaching bases

A finite set F of polynomials in K[xy,....xn] is called staggered, if 0 ¢ F and for
f.g ¢ F, f#g, we have ldpp(f)#1dpp(q).

Lemma 2.1: For every finite set of polynomials F in K[xq{,...,xp). a finite set of
polynomials G can be constructed, such that ideal (F)=ideal(G) and G is staggered.

Proof: Let F' be F-{0}. As Tong as there are two different polynomials f,g9 in F' with
1dpp{f)=1dpp(g}, we carry out the following process:

compute h=f - (ldc(f}/1dc(g)}.g. If h=0 then detete f from F'. Otherwise replace f by
h in F',

Obviously the ideal generated by F' remafns unchanged during this process.

The process terminates after a finite number of steps, since the leading power pro-
ducts of the polynomials in F' decrease with respect to the Noetherian ordering <¢.
Finally we get a set of polynomials F' which generates the same ideal as F and is
staggered. S0 we let G=F', e

For a finite,staggered set F in K[x1,...,xy] we define the following tower of
admissible pairs in ppp=K[x}.....xp]:
glol.- [{1.f) | f ¢ F} and for lcicn
PO e U0 (poys.f) | (puf) o [0, max(e,6,4), sem),
where max(f,F,i) iff {vgeF)(rearjs1{Tdop(g)}=rearis1{1dpp(f)} =>
degi{1dpp(g)) < deg;(Tdpp(f)} ).

For the proof of the main theorem we will need the following lemmata.
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Lemma 2.2: Let F be a finite, staggered subset of K{xi,....Xn]. P.@ € ppp, fef.
If (p,f).(q,F) & FI then {p.q,f)  F [N,

Lemma 2.3: Let F be a finite, staggered subset of K[xy,...,%n]. feF, l<msn,
(q,g}sFtn}, f#g and ldpp(xy.f)=1dppi{g.q).
Then the exponents of xg,...,xp in q are 0.

temma 2.4: Let F be a finite, staggered subset of K[x1,...,%q]-
Then £\ 45 also staggered.

By modg(F) let us dencte the K-module generated by F for any FQI([xl,...,xn},
f.e. modg(F} = { apfy+...tagfy | for me Mg, aj,ees3y € K, F1,eee,fp e F }. Now we are
ready to state the fundamental theorem for the construction of detaching bases.

Theorem 2.1: Let F be a finite, staggered subset of K[x1,...,%p].
Then the following two assertions are eguivalent:

(1) xif e modg(F™)) for all £ ¢ F, 1<icn,

(i1} p.f ¢ modg(F(™) for al1 £ ¢ F, p < ppp.

Proof: Obviously {ii) implies (i}, since (i) is a special case of {ii).
It remains to show that (i) implies (if). This we prove by induction on ldpp{p.f)
with respect to the Hoetherian relation <¢.
Suppose that for some p* ¢ ppp we know that
(IH1) if 1dpp(p.f) <¢ p* then p.f modK(F{n)) for all f < F, p & ppp.
From the induction hypothesis (IH1) we have to show
(1) if 1dpp(p.£)=p* then p.f & modg(F{M) for all f e F, p e ppy.
We prove (1} by induction on p with respect toc the lexicographic ordering <y on ppy
(which is a Noetherian relation).
Suppose that for some p e ppy we know that
(1#z) T P <1 p and 1dpp(p.f) = p* then p.f ¢ mody(F (M)
for all f e F, p € pppe

From the induction hypothes1s {IH2) we have to show
(2)  f 1dpp(p.f) = p* then p.f ¢ modg(F(")) for a1l f ¢ F.
If for all indices m, I<m<n, such that deg {(p)#0 we have {xnF) € 0], then by
Temma 2.2 (p,f) « ] and ence p.f eF |'51C=nodK rinly,
Otherwise there is an index m, l<m<n, such that degp{p}#0 and {xp,f) ¢ F["]-
Because of (i) we have xq.f ¢ modK(F{“)), f.e. there are 1 elN, aj3,...,a7 € K-{0}.
91,--+,G1 € F(n) such that

Xgqof = Zjllaj.gj and gy #g for i#k.
Because of Temma 2.4 Ydpp(g;)#1dpp({gy) for i#k. W.1.0.9. we assume
Tdpo(gs} <¢ Tdpp(gy) for 1<i<l.
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pf = (p/xm)-xpef = a1 (p/xp}.gy + Ejlzaj-(?_/xm)-gj-
A1l the power preducts occurring in zjlzaj.{gjxm).gj are less than p* (here we
need the property (T2} of <¢), so by the induction hypothesis {IH1)
51025+ (/xm)-g5 < modg(F(M)).
So it remains to show that (p/xml.g] e modK(F(n))-
§1=q.9 for some (g.g) ¢ F™, where by lemma 2.3 degp(g)=0 for m<r<n.
Now we set q'=(p/xy).q and get (p/xp)-91 = q'-9.
But ¢' <y p, so by the induction hypothesis (IK2)
{p/xm).9;1 = g'.q ¢ modK(F(n)).
This completes the proof of (2),(1) and {i) ==> (ii}. .

Now it is easy to show that condition (i) in thecrem 2.1 is equivalent to
modK{F(n))=idea1(F). Using this equivalence together with lemma 1.1 one can prove
that {#} is a sufficient condition for F being a detaching basis.

® Thegrem 2.2: let F be a finite, staggered subset of K{xi,....xp].
s If x;.f ¢ modK(F(”)) for all 1<i<n, f € F, then F i5 a detaching basis
e for ideal{F).
For & set of polynomials F in K[x7....,Xp) we introduce the notion of restricted

coefficient a#0 in f, and 2 polynomial h ¢ F such that p=ldpp{h) and
g=f-—2_.n

Tdc(h)
By 7 F we denote the reflexive transitive closure of T‘;j?

I_F—? is a Noetherian relation, so a chain of reductions of a polynomial f has to ter-
¥ ¥
minate with some g, such that g cannot be reduced further. In this case we say that

g is a restricted simplified version of f modulo F. Clearly ¢ = f moduTo the ideal

generated by F.

Lemna 2.5: let F be a finite, staggered subset of K[x],..+,xp). feK[x1,+.v,xp]-
Then £ ¢ modg(F(™)) 1 and only if Tt
r,
In order to be able to prove the termination of our algorithm, we need to intro-
duce the notfon of triangularity: a staggered subset F of K[xy,...,xp] is called

1dpp(g)=1dpp(x{.f).

Lemma 2.6: If F is a finite, staggered subset of K{x1,....x;]. then in finitely many
steps a finfte, triangular subset G of K[xy,...,%;] can be constructed such that
ideal(F)=ideal(G).
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Proof: Initially we let & be F. As long as there are f = G, 1<i<n such that there is
no g ¢ 6" with 1dpp(g)=1dpp(xi.f), we add x;.f to 6.

The process terminates, since for every k, l<k<n, no polynomial h is added such that
degi{Tdpp(h}) > max{degk(1dpp(g}) | g & F}. .

Lemna 2.7: If F is triangular, then for every p e ppp, f e F, there is a g ¢ F("} such
that p.ldpp(f)=1dpp(q).

Lemma 2.8: If F is a finite, triangular subset of K{xj,...,Xp] and the nonzero poly-
nomial h is irreducible moduld , then there is no f ¢ F such that 1dpp(h) is

1,r,F{n)
a miltiple of 1dpp(f).

Now we can state a first version of the algorithm for constructing a detaching
basis G for ideal(F):

G + detbl(F)
[ATgorithm for comstructing & detaching basis, l.version. F is a finite subset
of K[x1,.+.,%p]. 6 is 2 finite detaching basis for ideal(F}]
(1) Let G be a finite, triangular basis for ideat(F);
[an algorithm for constructing such a basis can be extracted from the
proofs of lemma 2.1 and Temma 2.6}
(2) Set € « 1(1.6) | 1<ian, fe6, (xi,f)¢6M and xi. ¢ 6};
(3) while C* ¢ do
{Choose (1,f) « C;
Let h be a restricted simplified version of xi.f module G(n);
[an algorithm is given in [Ay80]] -
if h#0 then ([Set & <« Guih}s
Let G be a finite, triangular basis for ideal(G');
Set € « {(i.,f)] 1<i<n, feG, (xi,Figeland xi. ¢ 6},
else Delete (i,f) from C };

return e

The correctness of the algorithm follows from theorem 2.2 and lemma 2.5. Now Tet
us consider the problem of termination. If detbl would not terminate, this would mean
that it continuously adds polynemials hi,hs,... to the basis, where by lemma 2.8 no
hi is a multiple of some hy,...,hi_1- Such a sequence of polynomials, however, cannot
exist [Bu70]. So detbl has to terminate.

A rather annoying property of detbl is that whenever a new polynomial is added to
the basis G in (3), then all the reductions of pairs {i,f) done so far are rendered
useTess and xj.f has to be reduced anew. This is because adding a new polynomial te
the basis may totally destroy the structure of G("). So it would be desirable to modi-
fy the basic concept in such a way that each pair {i,f) must be considered only once.
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3. Improvement of the algorithm

The cost for fmproving detbl has to be paid in notational complexity. There are two
major changes in notation. Firstly we consider sequences of polynemials rather than
sets of polynomials, i.e. we consider "ordered" bases. Secondly the set of reductors

n) for a basis F is defined somewhat differently, so that adding new polynomials to
F does not destroy the structure of F(") but merely add new reductors.

We define staggeredness for sequences of polynomials as in chapter 2 - a sequence
of polynomials in K[xl,...,in] is called staggered if every element of F occurs onty
once in F and the set of elements in F is staggered - and again we can prove that for
every finite sequence F of polynomials in K{xl,...,xn] in finitely many steps a finite
staggered seguence G can be constructed such that F and G generate the same ideal.

Let (a,f), (b g) be pairs in anK[xl,...,xn] {0}, where X is the set
if there are substitutions of and o g such that
x 0 081) e of(an) qapniey = 90010,k 99(®n) 1 4pp(a).

For a finite, staggered sequence of polynomials F in K[x1,....xn] we define the
if length(F)=0 then F =(). If F=Gch then F =G o{ay,...,an), where for 1<k<n ag=xy if
max(h,F,k) and (G"j,Gj) and {({a],...,a.1,%¢.0,...,0),h} are not unifiable for
1<j<length(G), and ay=0 otherwise. {o denotes the operation of adding a last element
t0 a sequence.}

defined as F*={p.F? b(p,3) & F=}, where

F’=§(x1°(al)...xn° aﬂ),j) { {a1,.+4,an)=F 3, o a substitution, 1<j<length(F)}.

Lemma 3.1: Let F be a finite, staggered sequence in K[x],....%nJ)s P»q € PPn,
1<j<length(F).
I {p,j},{q.3) & F* then {p.q,j} e F=.

A staggered sequence F in K{Xy,...,Xn] is called unambiguous if
(V(p,i).(a.,k) e F*) ({p,i}#(a.k) == p.1dpp(F;j)#q.Tdpp{Fy)).

Lemma 3.2: Let F be a finite, unambiguous sequence in K[x1,...,Xp], h a nonzero
polynomial in K[xz,...,xn} such that there is no g e F* with 1dpp{h)=1dpp{g).
Then Feh is unambiguous.

Lemna 3.3: let F be a finite staggered sequence of polynomials in X[x1,...,x,]
Then there 15 a permutation = such that (Fﬂ(l),...,F“(1ength(F})) is unambiguous.
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Proof: We induct on 1=length{F). For 1=0 F is already unambiguous.

Now Tet 1»1. We choose j e {1,...,1} such that !dpp(Fj) is not a multiple of any
1dpp(Fi) for 1l<i<l, i#j. let F'=(F1,...,F5,1,Fj+1,...,F]). By the induction hypothesis
there is a reordering G' of F' such that G' is unambiquous.

So G=G'0Fj is a reordering of F and by lemma 3.2 G is unambiguous. e

Lemna 3.4: Let F be a finite, unambiguous sequence of polynomials in K[x1,...,xn}.
Then F* is a staggered set of polynomials.

Again we define the notion of triangularity: an unambiguous sequence F is called

such that 1dpp(xs.F;)=1dpp{q.Fy).

Lemma 3.5: let F be a finite, triangular sequence in K[xl,...,xn], h a nonzero poly-
nemial in K[xq,-.+,Xy] Such that there is no g & F* with 1dppth)=1dpp(q), and m such
that degn(1dpp(h)) » max{degy(1dpp(F;}) | I<i<length(F}}.

Then (xg,length(F)+1} e {Foh}™ and Fch is unambiguous.

Lemma 3.6: Let F be a finite triangular sequence in K[x1,....%n], h a nanzerc poly-
nomial in K{xy,...,Xp} such that there is no g ¢ E* with 1dpp{h)=1dpp(g).

Then there are polynomials hi,...,hq & K[X1,¢++,Xp], Wy=h, such that G=Fohjo...ohy, is
triangular and ideal{Foch}=ideal{G).

Proof: let g=h. As long as there is an index m such that there is no f e¢ (Fog)® with
Tdpp{xm-9)=1dpp(f}, set g=xp.g. The process terminates, since by lemma 3.5
degn{1dpp(g)) cannot surpass max {degu{Tdpp(h}),max{degy(F;) | 1<i<length{F)}}.

By lemma 3.2 Fog is unambiguous. F is triangular and for every i, 1<i<n, there is a
(p,3) ¢ (Fog)® with 1dpp(xj.g)=1dpp(p.(Fog);}, so Fog is triangular. So we let hy=g.
Iterating this process we get the desired hy,...,hy.

Clearly ideal{Foh)=ideal (G). .

Lemma 3.7: Let F be a finite, unambiguous sequence in K[xl,...,xn}.
Then there is a finite, triangular sequence G such that every polynomial in G is a
multipTe of some polynomial in F and ideal{G)=1deal(F).

Proof: Because of the proof of lemma 3.3 we may assume that pop(Fj) is not a multiple
of ldpp{F4) for l<i<j<length(F).

We induct on 1=Tength(F). If 1=0 then gbviously F is triangular.

So let 1»1. For F'={F1,...,F1.1} by the induction hypothesis there is a finite,
triangular sequence G° such that every polynomial in G' is a multiple of some poly-
nomial in F' and ideal (G'}=ideal(F'}. By Temma 3.6 there are multiples hj,...,hy of

F1 such that G=G'ohjo...ochy is triangular and ideal (G)=ideal(F}. e
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Lemma 3.8: Let F be a finite, triangular sequence in K[X1,....%p]
Then for every p ¢ ppy, 1<j<length(F) there is a pair {q,F) ¢ F¥, k<j, such that
1dpp{p-F3)=1dpp(q.Fi).

Lemna 3.9: Let F be a finite, triangular sequence in K{xi,...,xp] and h a nonzero
polynomial in K[xl,...,xn] such that there is no ge F* with 1dpp(h)=1dpp(g).
Then there is no j, 1<j<length{F}, such that ldpp(h} is a mtiple of Tdpp(Fj).

With these new notations, a theorem analogous to theorem 2.1 holds.

Theorem 3.1: Let F be a finite, triangular sequence in K[x1,...,xp]-
Then the following two assertions are equivalent:

(1) xi.F5 e modg(F*) for all 1<j<length(F), Icicn,

(11) p.Fj e modg{F*) for all 1¢j<length(F), p e ppp.

Proof: Cbvicusly (ii) impties {i), since (i) is & special case of {ii).
It remains to show that (i) implies (ii). This we prove by induction on Tdpp{p.Fj)
with respect to the Noetherian relation <¢.
Suppose that for some p* € ppy we know that
(IH1) if 1dpp(p.Fj) <¢ p” then p.F; e modg(F") for all p e ppp, 1<j<length(F).
From the induction hypothesis {IHI} we have to show
{1} if 1dpp(p.Fj)=p* then p.Fj ¢ modg (F*} for all p e ppp, 1<j<length(F).
We prove (1} by induction on j.
If j=1 then (p,1) ¢ F= and therefore p.F1 e F*Smodg(F*).
Now suppose that for some j*, 2<j"<length(F} we know that
(1) 1T 1¢pp(p-Fy)=p" and j<i* then p.Fj e mod(F)
for all p e pop, 1<j<length(F).

From the induction hypothesis (IH2) we have to show
(2) if 1dpp(p.Fj*)=p" then p.Fs* & modg(F*) for all p ¢ opy.
If for all indices m, l<m<n, such that degy{p)+#0 we have (xm,j*} e F¥, then by
Temme 3.1 (p,J*) e F= and hence p.Fj* e F*Smody(F*).
Otherwise there is an index m, l<m<n, such that degm(p}#0 and {x,i*) ¢ F=.
Because of (i} we have xp.Fj* e modg(F¥), f.e. there are 1 e N, a1,...,a1 ¢ K-{0},
91,-.5.01 € F* such that

XmeFi* = Ejllaj.gj and gj#g, for i#.
Because of Temma 3.4 Tdpp(gj)#ldpp(gk) for i#k. W.1l.0.g. we assume
Tdpp(gy) <t Tdpp{gy) for all 2<j<i.

poFi* = (p/xm)eXmeFi* = a1.(p/xp).0y + zjlgaj'(D/Xm)-gj-

A1 the power products occurring in .1 ais(p/xq).gs are less than p*, s0 by the
j=2%] Mmers)

induction hypothesis (IH1)
Ijlzaj.(p/zm).gj e modg (F¥).



177

It remains to show that {p/xm}.g1 e mody(F*).

g1=q.Fx for some (g,k) e F*. Since ldpp{xy.Fj*)=1dpp(q.Fy) and F is triangular, k must
be less or equal to j*. But j*=k is impossible, because (xg.j*) ¢ F=. So ke¢i*-1.
Therefore (p/¥m)-91 = (p/xm).a.Fy € modg{F*) by the induction hypothesis (IHE).

This completes the proof of (2},(1) and {i) == (ii}. e

In analogy to chapter 2 it turns out that (i) in theorem 3.1 is equivalent to
modK(F*)=ideal(F). Usfng this equivalence together with lemma 1.1 one can prove that
(1) is a sufficient condition for F being a detaching basis.

e Theorem 3.2: Let F be a finite, triangular seguence in K[X1,-+«,Xp]-
If xi.F5 ¢ modg (F*} for 211 1<j<length(F}, 1<i<n, then F is a detaching
e basis for ideal(F).

As in chapter 2 we need a method for deciding whether f ¢ modK{F*} for a poly-
romial £ in K[x},...,%n) and a finite, triangular sequence F.

Lemma 3.10: let F be a finite, unambiguous sequence in K[x;,...,xn] and f a polynomial
in K[XpseeesXple
Then f & modg(F*) if and only if f % 0.

Lemma 3.11: Let F be a finite, unambiguous sequence in K[x1,...xn). h a polyncmial in
Kix1,++.,xn] such that 1dpp(h)#1dpp(a) for all g ¢ F*.
If f1 ?,‘F'.i—’fg then fq ng, for any f1,f2 € K[X1s--+4%p ).

-~
temma 3.11 is the key observation for reducing every polynomial xj.Gj only once in

the subsequent algorithm for constructing detaching bases.

Now we are ready to state the improved version of the algorithm:

G « detb2(F)
[Algorithm for constructing a detaching basis, 2.version. F is a finite sequence
in K[xy,-+-.Xp]- G is a finite detaching basis for ideal(F)]
(1) Let G be a finite, triangular basis for ideal(F);
lan algorithm for constructing such a basis can be extracted from the
proofs of lemma 3.3 and Temma 3.7}
(2) Set € « {(1,§) | 1<ien, 1qj<length(8), (xi,i)¢6™ and x{.G5 ¢ G};
(3) while €0 do
{Choose (i,j) «C;
Let h be a restricted simplified version of xi.ﬁi modulo &6%;
if h # 0 then {Construct hj,...,hp-1 such that G'=Gohjo...ohy. joh is
a triangular basis for ideal(Goh);
[use the method described in the proof of lerma 3.6]
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Set € + Cuw{(i,5) | I<i<n, length{G}+1<j<length{G)+m,
(xi,3)¢6° and x{.G'5 ¢ 6'};
Set G « G'};
Delete {i,3) from C};
return .

The correctness of the algorithm follows from theorem 3.2 and lemma 3.10. The
proof of termination of detb2 is analogous to the one for detbl. One merely has to
use lemma 3.9 instead of lemma 2.8.

Example:
We consider the ideal in 15[x,y,z] which is generated by the set of polynomials

Fo={ xy%z + 3x2z, xy? + xz + 2y, xyz + 2y2 |.
As the linear ordering <t on the set of power products we choose the graduated
Texicographic ordering ([Bu79]).
A detaching basis for ideal(F) is computed first by Buchberger's algorithm GB with
criterion 3 (compare [Bu79]) and then by the algorithm detb2.

GB generates the sequence of polynomials {G1)-(Gi3)

{GL) xy2z + 3xZz {68) x%y + Iz + y
(G2) xy3 + xz + 2y (69) xz2 + xy2 + 2yz
(G3) xyz + 2y? (G18) xz + 2y

(G4) y3 + x?z (G11) xy?

{G5) x32 + dxz + 3y (612} xy

(66) x2y2 (613} y2.

(67) x2z + 2xy
13.12/2 = 78 S-polynomials have to be considered for reduction, but only 21
reductions have to be carried out according to criterion 3.

The algorithm detb2 generates the sequence of polynomials (G'1)-(G'16)

(G'1} xy2z + 32z (G'9} x%y + 3xz +y
(6'2) xy3 + xz + 2 {G'10) xz2 + xy? + 2yz
{G'3) xyz + 2y? (6'11) xz + 2

{G'4) yIz + x2z2 (6'12) xy?

(G'5) y¥ + x2z (G'13) xy

(6'6) x3z + dxz + Yy (G'14) y2z2

{G'7) x2y2 (6'15) y2z

(G'8) x2z + Zxy {G'16) y2.

23 of the 48 polynomials v.f, velx,y,z}, feG', have to be reduced to normal form
during the execution of deth?2.

Since the reductions are the most time consuming steps in either GB and detb2, the
efficiency of the two algorithms for this example is fairly the same (the two extra
reductions in detb? are counterbalanced by the number of tests for criterion 3 in GB).
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Unfortunately, up to now it has not been possible te derive upper bounds on the
computing time of detb2. The same is true for Buchberger's algorithm for constructing
detaching bases (except for n=2, see [Bu79},[BW79]). One has to wait for an implemen-
tation of detb2 in order to be able to compare the run time efficiencies of the two
algorithms. :
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