
Austrian Grid
Austrian GridInitial Design of a Distributed Super
omputing APIfor the GridDo
ument Identi�er: AG-D4-2-2008_1.pdfStatus: Publi
Workpa
kage: 4Partners: Resear
h Institute for Symboli
 Computation (RISC)Lead Partner: RISCWP Leaders: Wolfgang S
hreiner (RISC)

1



Austrian GridDelivery Slip Name Partner Date SignatureFromVeri�ed byApproved byDo
ument LogVersion Date Summery of 
hanges Author1 26.09.2008 Initial Version K. Bosa, W. S
hreiner

2



Initial Design of a DistributedSuper
omputing APIfor the GridKaroly BosaWolfgang S
hreinerResear
h Institute for Symboli
 Computation (RISC)Johannes Kepler University Linz{Karoly.Bosa, Wolfgang.S
hreiner}�ris
.uni-linz.a
.atSeptember 26, 2008



Initial Design of a Distributed

Supercomputing API for the Grid

Károly Bósa Wolfgang Schreiner

September 26, 2008

Abstract

We proposed to participate in the Austrian Grid Phase 2 within

the frame of the activity “Grid Research”. We intend to deal with

development of a distributed programming tool for grid computing

which shall empower applications to perform scheduling decisions on

their own, utilizing the information about the grid environment in or-

der to adapt the algorithmic structure to the particular situation. Our

goal is to design and implement a software framework and an API that

can be used for developing grid-distributed parallel programs without

leaving the level of the language in which the core application is writ-

ten. The planned solution will be able to eliminate some algorithmic

challenges of nowadays grid programming. In this paper, we outline

our idea concerning the proposed software system and already discuss

some implementation details.

1 Introduction

We proposed to participate in the Austrian Grid Phase 2 [1] within the frame
of the activity “Grid Research”. We intend to deal with development of a
distributed programming software framework and API for grid computing.
This work shall in particular assist applications whose algorithmic structures
do not lend themselves to a decomposition into big sequential components
whose only interactions occur at the begin and the end of the execution of a
component and that can be scheduled by a meta-level grid workflow language
that implements communication between components by file-based mecha-
nisms. Rather the planned solution shall empower applications to perform
scheduling decisions on their own, utilizing the information provided by the
API about the grid environment at hand in order to adapt the algorithmic
structure to the particular situation.

1



However, no application can execute efficiently in the grid that is not
aware of the fact that it does not run in a homogeneous cluster environ-
ment with low-latency and high-bandwidth connectivity between all pairs
of nodes but in an environment with heterogeneous nodes and connections
that dramatically vary between (at least) three different levels: the proces-
sors within a grid node, the grid nodes within the same network, and grid
nodes in different networks linked by wide-area connections. Correspond-
ingly, the API shall not hide this fact from the application but reflect the
information provided by the grid management and execution environment
to the programming language level such that the application can utilize this
information and adapt its behavior to it, e.g., by mapping closely interacting
activities to nodes within a network and minimizing communication between
activities executing on nodes in different networks.

The proposed API shall however hide low-level execution details from
the application by providing an abstract execution model that in particular
allows to initiate activities and communicate between them independent of
their physical location. The execution engine has to map these abstract
model features to the appropriate underlying mechanisms: to initiate an
activity on a local machine or on a machine within the same administrative
authority, simply a process may be started, to initiate an activity on a remote
node may mean to contact a corresponding service on that machine, provide
the appropriate credentials, and ask the service to start the activity.

In this document, after we give a short survey about the relevant part
of the ”State of the Art” in Section 2, we outline our idea in Section 3 and
discuss some implementation issues concerning our proposed software system
in detail in the further sections. In Section 8, we describe the proposed API in
details and give some examples which present the usage of this API. Finally,
we outline an implementation plan for the major components of the proposed
software system in Section 9.

2 State of the Art

This section is only a short overview of [5]. To execute efficiently nowadays
advanced grid applications, the fundamental grid middleware services (e.g.:
security, resource allocation, etc.) are not sufficient anymore, but some addi-
tional grid service layers are required to introduce like performance prediction
(see Figure 1). The term performance prediction in the context of grid de-
notes a group of grid services which provide assessment for the performance
of various grid resources in advance for a limited period of time.

An example for the applying of performance prediction is the ASKALON

2



Resource Discovery and Allocation
Management

Security

Collective Operations 

Topology−Aware

Topology−Aware

Data StructuresSimple

Application

MPI only

level

Workflow on clusterJobs

b.) Advanced Grid Usagea.) Traditional Grid Usage

e.g.: MPICH−G2, MPICH−VMI

Topology−Aware MP

Scheduling (Optimized
with heuristics) Discovery

Topology 

Resource Discovery and Allocation
Management

Security

RPC
Grid

Advanced

e.g.:

ASKALON

Workflow

Tools

}

}
} Performance

Prediction 
Services

Middleware
Grid

Services

Tools
Grid Programming

Figure 1: Traditional and Advanced Programming of the Grid

project [7, 15, 14] that develops integrated environments under the WSRF
framework of Globus Toolkit 4 to support the development and execution
cycle of scientific workflows on dynamic grid environments. ASKALON em-
ploys its own prediction model based on historical data collected through
a well-defined experimental design and training phase. The output of this
prediction service is used in scheduling mechanisms enhanced with global
optimization heuristics to find good mappings onto the grid that minimize
the execution time.

A typical performance prediction service is the Network Weather Service
(NWS) [16] software system, which became a de facto standard in the grid
community as it is used by major Grid middlewares like Globus, to gather
qualitative information about the current state of a platform (both network
and CPUs) and to predict its short-term performance.

The NetSolve [4] software system which is an implementation of the Grid
Remote Procedure Call (GridRPC) [11] API of the OGF applies NWS for
performance prediction, too.

2.1 Performance Prediction and Topology Discovery

The efficient use of the Grid resources can only be achieved from a parallel
program (e.g.: a MPI program) through the use of accurate network infor-
mation. Information such as the network topology is crucial to achieve tasks
such as running network-aware applications [10], efficiently placing servers [6],
or predicting and optimizing collective communications performance [9].

However, the description of the structure and characteristics of the net-
work interconnecting the different Grid resources is usually not available to
users. This is mainly due to security (fear of Deny Of Service attacks) and
privacy reasons (hiding bottlenecks). Hence there is a need for tools which

3



employ common end-to-end measurements, like bandwidth and latency (but
also interference measurements in an ideal case,i.e., whether an interaction
between a pair of machines has non-negligible impact on the interaction of
another pair of machines, namely they may use the same physical link) and
automatically construct models of network platforms.

The consequence is whereas topology discovery is not part of the per-
formance prediction conventionally, but network topology discovery tools for
the grid must rely on only application-level measurements (i.e., measurements
that can be done by any application running on a computing grid without
any specific privilege) that are typically provided by performance prediction
services as NWS. (NWS is able to report end-to-end bandwidth, latency and
connection time, which are typical application-level measurements.)

2.2 Topology Aware Programming Tools

It is not enough to discover the characteristic of an available physical grid
architecture, but a programming environment must be aware of and exploit
this information. Such typical topology-aware programming environments
are:

MPICH-G2 [2, 8] is a grid-enabled implementation of the MPI-1 stan-
dard which is based on the MPICH [3] library and which uses grid
services provided by the Globus Toolkit pre-Web Service (pre-Web
Service) architecture for user authentication, resource allocation, I/O
management, process control and monitoring. MPICH-G2 implements
topology-aware collective operations that minimize the communication
via the slowest channels.

MPICH-G2 describes a topology with a four levels array where each
level represents a communication channel: TCP over WAN (level 0),
TCP over LAN (level 1), TCP over machine networks (clusters, level
2) and vendor MPI library over high performance network (level 3).
MPICH-G2 assigns to every process at each level a non-negative integer
named color; processes with same colors can communicate over the
corresponding channel.

MPICH-VMI [13] is a grid-enabled MPI implementation which is also
based on MPICH [3] and utilizes the Virtual Machine Interface (VMI)
[12], which is a middleware communication layer that addresses the
issues of availability, usability, and management within heterogeneous
wide-area grids. The most important differences between MPICH-VMI
and MPICH-G2 are that

4



• In MPICH-G2 the user must provide manually the physical topol-
ogy of the network using either a Resource Specification Language
(RSL) file directly (up to 4 level topology structure can be spec-
ified) or a machine file containing a description how CPUs are
arranged on the available machines (it can result only 2 levels
topology), while

• MPICH-VMI constructs a limited (2 levels) network topology at
runtime using the Grid Cluster Resource Manager (GCRM) which
is an external service on the TeraGrid.

Summarizing this, we can say that existing topology-aware programming
tools provides the following functionalities:

• they either attempt to discover a limited (2 levels) network topology
or expect a description of a (max. 4 levels) topology as an input,

• they forward and make available the given topology information on the
level of their programming API and

• they optimize the collective communication operations (e.g.: broad-
cast) with the help of the topology information such that they mini-
mize the usage of the slow communication channels (only in the case
of collective operations).

3 The Idea

In section 2, we could see that existing topology-aware software tools, like
MPICH-G2 and MPICH-VMI, can adapt the execution of the collective op-
erations to the topology of a particular grid infrastructure. But they are
still not able to adapt the point-to-point communication structure of a par-
allel programs to network topologies such that they achieve a nearly optimal
execution time on the grid.

In our approach, we assign to a given parallel program a pre-defined
schema describing a generalized communication structure designed for het-
erogeneous network environments. Then, this schema can be specialized fur-
ther with some parameters according to some characteristics of the program.
The outcome of this procedure is a specification of the preferred algorithmic
structure of the program in heterogenous networks, see Section 4. Then we
map this specification to a predicted performance model of an available phys-
ical network architecture in order to decrease the communication overhead
during the execution as much as possible.

5



TA−API

MPI Program

MPI Program MPI Program MPI Program

Program Structure

Specification

Mechanism
Scheduling

NWS
Measured Latency and

Bandwith Values

RSL file

Deployment Mechanism

Mapping Description

Program Structure

Topology and

between Network

...

node nnode 1 node 2

GLOBUS

Legend:
TA−API = Topology−Aware API

TA−API TA−API TA−API

MPICH−G2

Figure 2: Overview of the Proposed Software System

By this, our software framework will be able to hide the algorithmic
challenges of the topology dependency of a gridified MPI program from the
programmer.

3.1 Overview on the Proposed Software Framework

Figure 2 depicts on overview about the proposed software system. In the
design, we intend to compose a modular structure, where each component
will interact some others via pre-defined interfaces (components denoted with
ellipses on the figure are third party softwares which we may substitute in
a later phase). Our planned software architecture consists of three major
components:

Scheduling Mechanism depends on NWS, which provides from time to
time the information about the available CPUs and about actual la-

6



tency (and perhaps bandwidth) of the communication channel between
any two grid nodes. The Scheduling Mechanism attempts to classify
the available computing resources (CPUs) according to the measured
latency (and bandwidth) values and to build up a three level network hi-
erarchy (intra-machine interactions, LAN interactions, slowest (WAN)
interactions). This classification is refined periodically.

Before each execution of a MPI parallel program on the grid (either on
the same physical grid architecture or a different one), the scheduling
mechanism maps the specified algorithmic structure of the program to
the composed topological hierarchy of the physical grid architecture
such that it minimizes the assessed execution time. The output will be
an execution plan described in two files, an Globus RSL script for the
Deployment Mechanism and a XML-based mapping description (be-
tween the network topology and a determined program structure) for
the topology-aware API, see Section 5.

Deployment Mechanism is based on the MPICH-G2 starting mechanism
(gridified mpirun for Globus). It takes the generated RSL file as input
and starts the processes of the program on the corresponding grid nodes
according to the content of the RSL file.

Topology-Aware API The main purpose of this API is to assign the pro-
cesses of a program to the allocated grid resources according to the
mapping description generated by Scheduling Mechanism (each pro-
cess must identify itself with a functional role assigned to its local grid
node by the given execution plan) The mapping description either will
be “staged on” to the grid nodes when the MPI program is started
or each process can download it from a grid catalog service (further
investigation is needed to decide).

For instance, we can regard a hierarchical Manager/Worker algorithmic
solution organized into a 3-levels tree of processes containing approximately
20 leaf-processes. The root process acts as the global manager, the pro-
cesses on the second level are the local managers and the leaf-processes are
dedicated to worker processes. The scheduling mechanism with the help of
the NWS is able to determine an adequate distribution of the processes on
some grid nodes, such that the point-to-point communications between the
processes on the second level and the corresponding workers on the third
level will be as efficient as possible (preferring clusters and LANs). Then
the deployment mechanism will be able to allocate the chosen group of pro-
cesses. Furthermore, the topology-aware API used in the application is able

7



to apply in runtime a corresponding mapping between the predefined roles
in the specified hierarchy (global manager, local manager and worker) and
the allocated pool of grid nodes, such that it minimize the execution time.

This approach should definitely be more efficient than existing topology-
aware solutions (e.g.:MPICH-G2 and MPICH-VMI) which ignore the point-
to-point structures of parallel programs.

3.2 Advantages and Disadvantages

The major advantages of the proposed solution are the following:

• It takes into consideration the point-to-point structure of a MPI parallel
program and tries to fit it to a heterogeneous grid network architecture,

• It preserves the achievements of the already existing topology-aware
software frameworks. This means the topology-aware collective opera-
tions of MPICH-G2 are still available, since MPICH-G2 is applied in
the deployment mechanism for executing programs on the grid.

• Our system eliminates the algorithmic challenges of the topology-aware
programming. The programmers should deal only with the problems
which they are going to solve with the program (like in a homogeneous
cluster environments).

• The distribution of the processes is always conformed to the actual
loading of the network resources.

Possible disadvantages of the proposed solution can be the following:

Execution of old MPI Programs At present, most of the existing MPI
programs which are intended to execute on the grid were designed orig-
inally for homogeneous environments. Hence, it is easy to find a simple
structural specification for them and to run them with our solution, see
Section 4. But in the case of existing MPI programs already assuming
heterogeneous infrastructure (e.g.: MPICH-G2 programs) it might be
challenging to find a proper algorithmic structure specification for a
grid user.

Artificial Topology Our scheduling mechanism builds an assumed topo-
logical structure from latency (and bandwidth) values, which are influ-
enced by network load. Therefore, it can be a considerable deviation
between the composed structure and physical network topology.

8



Elongated Startup Period Since the mapping between the specification
of the algorithmic structure of a program and the composed network
topology is recommended to perform before each execution, startup
period of an MPI program on the grid will be elongated.

4 Specifications for Heterogeneous Commu-

nication Structures

In this section, we present some schemas used for specifying heterogeneous
point-to-point communication structures for parallel programs. The par-
allel programs are classified into these schemas on the basis of the roles
of their processes and the qualification of the used point-to-point channels
among them (often used and rarely used channels). Common features of
these schemas:

• They never include the grid client from where the programs are sub-
mitted by the user.

• They arrange processes into some groups, where each group is sup-
posed to execute on a local network environment (cluster or LAN).
The point-to-point channels among the processes of such a group are
never specified by the schemas.

• For each parallel program going to be executed via our software system
on the grid, we must define such a schema (only exception is the sin-
gleton, which is also used for scheduling pure MPI codes, see the next
section).

4.1 Single Group

This schema singleton is used for scheduling programs on the grid which were
designed for homogeneous network environments:

SINGLETON{nr, strictRestriction}

with the arguments, we can specify the number of processes used by the
program and a condition whether all processes must be schedule to the same
local network environment. If it is not possible to find a cluster or LAN with
the given number of available CPUs and the second parameter is true, then
the scheduling will be unsuccessful. But if the second parameter is false, the

9



A B

C

Figure 3: Some Distributions satisfying Specification GROUPS{12, 4}

scheduling mechanism always returns a possible distribution of the processes
on some grid resources (which may belong to different local networks).

In case of an existing MPI program which does not comprise our API, the
schema singleton will be used for finding an appropriate local environment
for running the given number of processes.

4.2 Set of Groups

The schema groups is for specifying a condition how to organize a given num-
ber of concurrent processes into as few local groups as possible on an avail-
able grid environment (as was mentioned before the point-to-point structure
within a group is not interesting for us at the moment):

GROUPS{nr,minSizeOfGroups}

The first argument is the number of processes and second is the minimum
number of processes in a local group.

Example Let us regard the following specification,

GROUPS{12, 4}

which requires to schedule 12 concurrent processes into some local groups
mapped to a heterogeneous grid environment, where each local group consists
of 4 processes at least.

There are many possible distributions which fulfill this requirements (some
candidates are depicted in Figure 3). The scheduling mechanism attempts
to find an available local network environment (cluster or LAN) first, where
all the processes can be executed (see Figure 3A). If it is not possible, the
scheduling mechanism attempts to find a distribution which takes into ac-
count the minimum number of groups and fits to the current physical grid
architecture (see Figure 3B and C).

10



4.3 Groups with Fixed Sizes

The schema fixed-groups is a similar structure to the schema groups, but here
we can define the number of groups (first argument) and the precise number
of the processes in each group respectively (further arguments):

FIXED − GROUPS{nrOfGroups, [sizeOfGroup 1...sizeOfGroup N ]}

Example In the following specification, we intend to schedule 18 processes

FIXED − GROUPS{3, 5, 6, 7}

The maximum number of groups specified by the first argument is 3 in this
case. First, the scheduling mechanism attempts to schedule all processes
into same local network environment. If it is not feasible, it tries to organize
the processes either into two groups or into three groups, where the size of
groups is determined by the second, third and fourth arguments (in case of
two groups the size of the one group is correspond to the sum of any two of
these arguments).

4.4 Multi Level Parallelism – Tree

For specifying a multi-level manager-worker structure, in which there are
some local managers connected one or more global managers (e.g.: because
of some scalability issue), the schema tree is going to be used:

TREE{nr, depth, minSizeOfLeafGroups}

The arguments are the following from left to right: number of processes
(both workers and managers), the expected depth of the tree and the mini-
mum number of worker processes in a local group.

We do not give directly a maximum number of the worker processes in
one group, but we can specify precisely depth of the tree (e.g.: in order to
control the scalability). For instance, in the case of depth 2, each worker
will executed under the direction of one (local) manager in one local network
environment (if such a distribution of the processes is not applicable on a
particular grid architecture, then scheduling is unsuccessful). In the case
of depth 3, the scheduler mechanism attempts to divide the workers into 2
groups at least (one local manager is included to each group additionally), in
the case of depth 4 minimum number of worker groups will be 4, etc (if the
depth is equal to 1, then we are in the same situation as in case of schema
singleton — one local group without any manager process).

11



A B

Figure 4: Some Distributions satisfying the Specification TREE{19, 3, 5}

Example If we take the following specification

TREE{19, 3, 5}

then we can say that similarly to the schema groups we have more than one
possible tree distribution which fulfill the given requirements (see Figure 4).
The scheduling mechanism tries to distribute this tree structure of processes
as optimal as possible (first into one local network environment and if it is
not possible then int two or three ones (as it is showed by the Figure 4A and
B). In addition, it attempts to place the global managers close (in terms of
latency and bandwidth) to its children processes.

4.5 A Planned Addition: Ring

This schema is very similar to the schema groups, but this time the groups
compose a ring (each group has two neighbors):

RING{nr,minSizeOfGroups}

In the case of the schema ring, the scheduling mechanism takes care of the
placing of the groups compared to each other, such that the groups supposed
to be neighbors in the ring are scheduled on the physical grid architecture
close to each other (in terms of latency and bandwidth).

The main reason why the schema ring is part of the proposed software
system is that it represents a promising extension of the algorithmic struc-
ture specifications discussed above where not only the expectation against
the local groups of participating processes are defined but the interacting ac-
tivities among these groups are taken into consideration (this may lead some
advantages for instance in the case of a P2P-based grid architecture).

12



5 The Mapping between Specifications and

Physical Grid Architectures

The scheduling mechanism accomplishes the mapping between the specifica-
tion of the algorithmic structure of a program and a physical grid architecture
with the help of the measured latency (and in a later phase of the project,
the bandwidth and CPU usage) values.

The expected input is an algorithmic structure specification presented in
the previous section and the output is an execution plan described in the
following two files:

Globus RSL script file is necessary for starting MPI programs via the
gridified mpirun solution of MPICH-G2 and for preserving the topology-
aware collective operations provided by MPICH-G2. In our case, this
file is organized into jobs and subjobs, such that it describes a two lev-
els structure of the distribution of concurrent processes on a particular
grid architecture.

XML-based Mapping Description file is used by our proposed topology-
aware API to assign the processes of the program to the allocated
grid resources. This file describes the mapping between the processes
and the grid architecture similarly to the RSL script, but in a more
sophisticated and flexible way. For the exact structure of this file, see
Section 6.

However these files contain redundant information about the distribution
of the processes on the grid, but both of them are needed in the currently
proposed version of our software system. In a later phase, MPICH-G2 may
be substituted for another solution for executing MPI programs on the grid
and the RSL script will perhaps not required anymore.

Later the scheduling mechanism (and both output file as well) can be re-
fined further by querying the grid information system MDS and by determin-
ing on which machines (clusters) some vendor-MPI softwares are deployed.

6 XML-based Execution Plan

The XML-based mapping description file is a generated execution plan which
consists of the following major components:

Mapping{prgName, timeStamp, type, prgStructure, networkTopology}

13



The first component is the name (or unique identifier) of the parallel
program, the second one is a time stamp restricting the validity of the cur-
rent mapping and the third one is the type of the given program structure
(singleton, setOfGroups, tree). The fourth component is a precise descrip-
tion of the program structure adapted to physical network architecture (e.g.:
the sizes of the groups are already fixed by the scheduling mechanism), see
Section 6.1. The fifth component comprises a topology description of the
computing resources going to be allocated and the assignment of these re-
sources to particular processes, see Section 6.2.

6.1 Description of Program Structures

The program structure description is part of a particular execution plan (the
output of the scheduling mechanism) and it describes a precise program struc-
ture which meets with the specification and also adapted to the topological
hierarchy of the available grid architecture at the same time.

6.1.1 Singleton

The component singleton contains the number of the participating processes
and a list of their identifiers.

singleton{nrOfProcs., [listOfPID]}

6.1.2 Groups, Fixed-Groups and Ring

The component setOfGroups is used to describe program structure specified
by the schemas groups, fixed-groups and ring and it contains the number
of the included groups, the minimum size of the groups and an embedded
enumeration of these groups. The description of such a group consists of a
unique group identifier, the number of processes belongs to this group and
the list of identifiers of the participating processes.

setOfGroups{nrOfGroups, minSizeOfGroups, [
group{grpID, nrOfProcs., [listOfPID]},
...,

group{grpID, nrOfProcs., [listOfPID]},
]}

14



6.1.3 Tree

The component tree is applied to describe a hierarchy of concurrent processes
which meets with the conditions specified in the schema tree. It contains the
identifier of the root process, the depth of the tree, a minimum number of
worker processes in a local group, the number of children of the root and the
embedded enumeration of its subtree components (or its worker components
depending on the depth of the tree).

tree{rootPID, depth, minSizeOfLeafGroups, nrOfChildren, [
subTree{nodePID, nrOfChildren, [

group{grpID, nrOfProcs., [listOfPID]},
]},
...,

subTree{...}
]}

A component subtree contains the identifier root process of the subtree
and the number of its children. The subtrees can be embed into each other
until an arbitrary level (depending on the depth of the tree). Within the inner
most subtree components, a group component (see Section 6.1.2 is defined
which contains the list of worker processes (which are the leaves of the tree).

6.2 Description of Mapped Topologies

The component structure presented below has two major parts:

wan{topology, grp2grpLatencies}

The component topology is used to couple the process identifiers occurred
in a given program structure (see Section 6.1) the grid resources going
to be allocated and to provide additionally some network topology in-
formation related to these resources.

topology{[

host{address, nrCPUs, nrProcesses, [listOfPID]}

...,

host{...},

lan{avgLatency, [

host{address, nrCPUs, nrProcesses, [listOfPID]},

15



...,

host{...},

]},

...,

lan{...}

]}

In order to improve the flexibility of our topology-aware API, the com-
ponent lan (embedded into the component topology) contains latency
(and perhaps bandwidth) information concerning the corresponding
network environments. A component host can be embedded either
into the component topology directly or into a component lan and it
describes a chosen grid node with its network address, the number of
its CPUs, the number of processes intended to run on it and a list of
process identifiers occurred already a given program structure descrip-
tion.

The component grp2grpLatencies consists of an enumeration of the iden-
tifiers of the previously defined groups (see Section 6.1.2 and Sec-
tion 6.1.3) ordered in pairs such that all combinations of the possible
pairs occur. For each pair, the enumeration contains the average la-
tency value between the two given groups and a flag which can be true
or false such that the two groups are supposed to interact with each
other according to the given schema (the value of the flag can be true
only in the case of a ring of groups schema at the moment).

grp2grpLatencies{[

latency{grpID0, grpID1, avgLatency, flag},

...,

latency{grpID0, grpID
n
, avgLatency, flag},

...,

latency{grpIDn−1, grpIDn, avgLatency, flag},

]}

16



7 Resource Allocation and Execution

In the first version of our planned software system, the allocation of the
chosen grid resources and the starting of a parallel program on the grid
will be performed by the runtime system of the MPICH-G2 (under Globus
Toolkit). This requires that the instances of the program must be deployed
and compiled on the chosen grid resources. This runtime system expects a
topology description formalized in a RSL file as input (which is generated by
a our scheduling mechanism, see Section 5).

The usage of the MPICH-G2 also provides some topology-aware collective
operations based on the content of the RSL file.

8 The Topology-Aware API

The proposed API is an addition to the MPI library and its purpose is to
inform a parallel program

• how its processes assigned to some physical grid resources and to certain
virtual hierarchies (e.g.:groups, tree, etc.) and

• which are the designated roles for these processes.

All these are performed according to the XML-based mapping description file
(which was generated by the scheduling mechanism). A detailed description
of this API is presented below (but further refinement is possible in the near
future).

8.1 Header File

taag.h header file is required for all programs/routines which intend to use
any calls of our API (TAAG is the abbreviation of the term “Topology-Aware
API for the Grid”).

8.2 Format of the API Calls

int rc = TAAG Xxxxx (parameter, ...) is the general format of the
calls defined our API. All of them return an integer error code. if the call
was successful, the return value is equal to the constant TAAG SUCCESS.

17



8.3 Calls wrt. Initialization and Termination

TAAG Init (char *prg str, char *exec plan file) allocates and initial-
izes the corresponding data structures according to the generated execution
plan file given in the second argument (see Section 6). The first argument
is the name of the program structure (e.g.: singleton, groups, tree, etc.)
described by the execution plan file. This function must be called in every
program, must be called before any other TAAG functions and must be called
only once in a program.

TAAG Initialized (int *flag) indicates whether TAAG Init has been
called. It returns a flag as either logical true (1) or false(0).

TAAG Free () deallocates the data structures used by the API library.

8.4 Calls wrt. Topology Structure

TAAG GetCommLevel (int rank1, int rank2, int *commlevel) re-
quires two process ranks as input and returns on which network level they
can communicate with each other. If commLevel = 0 then the two processes
can interact each other only via WAN, but if commLevel = 1 they are located
in the same LAN network and if commLevel = 2 they nest on the same host.

TAAG GetProcsOnHost (int rank, int *nr, *procs) requires a pro-
cess rank as input and it returns the number and ranks of all the processes
residing on the same host.

TAAG GetProcsOnLAN (int rank, int *nr, *procs) requires a pro-
cess rank as input and (similarly with the previous call) it returns the number
and ranks of all the processes residing on the same LAN.

TAAG GetGrpLatency (int grpRank, double *latency) requires a
rank of a group (see below in Section 8.5) as input and it returns the average
latency value in the given group.

TAAG GetGrp2GrpLatency (int grpRank1, int grpRank2, dou-
ble *latency) requires the ranks of two groups (see below in Section 8.5) as
input and returns the average latency value between the two groups.

18



TAAG GetHostAddress (int rank, int *size, char *address) re-
quires a process rank as input and returns the address of the host where
the process resides.

TAAG GetHostCPUs (int rank, int *nrCPUs) requires a process
rank as input and returns the number of CPUs on the host where the given
process resides.

8.5 Calls wrt. the Program Structure Group

Each group has a unique rank assigned by our library when the group ini-
tializes. A group rank (similarly to the process ranks) is an integer number
and its scope start with 0 and ends with less but one than the number of
groups.

TAAG GetNrOfGrps (int *n) returns the number of groups contained
by the execution plan.

TAAG GetGrpRank (int rank, int *grpRank) requires a process rank
as input and returns the rank of the group which belongs to this process.

TAAG GetGrpMinSize (int grpRank, int *minSize) requires a group
rank as input and returns the minimum size (minimum number of processes)
of this group which was given in the schema specification.

TAAG GetGrpMembers (int grpRank, int *nr, int *members) re-
quires a group rank as input and returns the number and the ranks of all
member processes of the group.

TAAG CreateMPIStructsForGrp (int grpRank, MPI Group
grp, MPI Comm *comm) requires a group rank as input and creates the
corresponding MPI Group and MPI Comm structures for the given group.
This call is useful if some MPI collective operations are going to be used
within the frame of the group (only for those processes which are members
of the given group).

TAAG GetConnectedGroups (int grpRank, int *nr, int *list) re-
quires a group rank as input. If the execution plan defines which groups are
planned to interact each other (e.g.: in the case of a schema ring), then this

19



call returns the number and the ranks of the “neighbor” groups of the given
one.

8.6 Calls wrt. Program Structure Tree

The following section presents some calls which are related to the program
structure tree. Each execution plan can describe one tree at most.

In a tree, the leaves ordered in some program structure groups (the leaves
which belong to the same parent compose a group). Hence, every call pre-
sented in Section 8.5 above can be applied for these groups.

TAAG GetRoot (int *rank) returns the rank of the root process.

TAAG GetTreeDepth (int *levels) returns the depth (number of the
levels) of the tree.

TAAG GetNrOfLeaves (int *leaves) returns the number of leaf/worker
processes in the entire tree.

TAAG GetLevel (int rank int *level) requires a process rank and re-
turns on which level the given process is located on the tree. The level of the
root is 0 and the level of the leaves is depth − 1.

TAAG IsLeaf (int rank, int *flag) requires a process rank and indicates
whether the given process is located on the level on depth − 1 in the tree.
The call returns a flag as either logical true (1) or false (0).

TAAG IsLocalMngr (int rank, int *flag) requires a process rank and
indicates whether the given process is located on the level on depth − 2 in
the tree. The call returns a flag as either logical true (1) or false (0).

TAAG GetChildren (int rank, int *nr, int *children, int *comm-
Level) requires a process rank and returns the number and the ranks of the
children of the given process. The last parameter is an array as well and
indicates on which network level a child can communicate with its parent.
If commLevel = 0 then the two processes can interact each other only via
WAN, but if commLevel = 1 they are located in the same LAN network and
if commLevel = 2 they nest on the same host.

20



TAAG GetParent (int rank, int *parent, int *commLevel) requires
a process rank and returns the rank of the parent of the given process. The
last parameter indicates on which network level the process can communicate
with its parent (similarly to the call TAAG GetChildren above).

TAAG CreateMPIStructsForAllLvs (MPI Group *grp, MPI
Comm *comm) creates MPI Group and MPI Comm structures which in-
clude all leaf processes. This call is useful if some MPI collective operations
are going to be used for all leaf processes.

TAAG CreateMPIStructsForAllNonLvs (MPI Group *grp, MPI
Comm *comm) creates MPI Group and MPI Comm structures which in-

clude all non-leaf processes. This call is useful if some MPI collective oper-
ations are going to be used for all non-leaf processes (i.e. root, schedulers,
local schedulers).

8.7 Channels

The channels are proposed communication objects between two groups. Their
goals are:

• to allow to make some collective operations (e.g.: broadcast) from a
process of one group to all processes of another group

• to allow interactions among the members of two groups via different
protocols (e.g.: SOAP, gridftp).

• to allow the usage of private networks (with non-public IPs).

A channel is always defined between two designated processes of the two
groups. Other processes sends messages via the channel by the assistance of
these two processes.

TAAG Ch Init (int rank1, int rank2, char *protocol, TAAG Ch
*ch) establishes a channel between the two given groups and returns a chan-
nel handle, a pointer to TAAG Ch struct. We can specify the communication
protocol for the channel as well (e.g.: SOAP, gridftp, etc).

TAAG Ch Free (TAAG Ch *ch) deallocates the given existing chan-
nel.

21



TAAG Ch Send (...) performs a blocking send from a process of a group
to another process of another group via a predefined channel. Details are not
clarified yet.

TAAG Ch Isend(...) performs a non-blocking send from a process of a
group to another process of another group via a predefined channel. Details
are not clarified yet.

TAAG Ch Bcast(...) performs a broadcast from a process of a group
to all processes of another group via a predefined channel. Details are not
clarified yet.

8.8 Some Examples

The following simple parallel programs gives some examples for usage of our
proposed API.

8.8.1 An Example for Groups

The following example is a very artificial (dummy) program, but it represents
well how to use the proposed groups-related calls described in Section 8.5.

In this example the program consists of even number of local groups
(which is independent from the number and distribution of processes) and
these groups are arranged in two pools according as their ranks are odd or
even. See the comments related to the source code below.

01: #include "mpi.h"

02: #include "taag.h"

03: #include <stdio.h>

04:

05: #define BUFFER_SIZE 255

06:

07: int main(int argc, char *argv[]) {

08: int rc, nrMembers, nrGrps, numTasks;

09: int globalRank, localRank, grpRank;

10:

11: int members[BUFFER_SIZE];

12: int msg[BUFFER_SIZE];

13:

14: MPI_Status stat;

15: MPI_Request req;

22



16: MPI_Group mpiGrp;

17: MPI_Comm mpiComm;

18:

19: rc = MPI_init(&argc, &argv);

20: if (rc != MPI_SUCCESS) {

21: printf("Error starting MPI program.\n");

22: MPI_Abort(MPI_COMM_WORLD, rc);

23: }

24:

25: rc = TAAG_Init("groups", "exec_desc.xml");

26: if (rc != TAAG_SUCCESS) {

27: printf("Error initializing the TAAG structure.\n");

28: MPI_Abort(MPI_COMM_WORLD, rc);

29: }

30:

31: TAAG_GetNrOfGrps (&nrGrps);

32: if (nrGrps % 2 != 0) P

33: printf("Error: the number of groups is odd.\n");

34: }

35: else {

36: MPI_Comm_size(MPI_COMM_WORLD, &numTasks);

37: MPI_Comm_rank(MPI_COMM_WORLD, &globalRank);

38:

39: TAAG_GetGrpRank(globalRank, &grpRank);

40: TAAG_GetGrpMembers(grpRank, &nrMembers, members);

41:

42: TAAG_CreateMPIStructsForGrp(grpRank, &mpiGrp, &mpiComm);

43: MPI_Group_rank (mpiGrp, &localRank);

44:

45: if (grpRank % 2 == 0) {

46: /***** branch for the groups whose ranks are even *****/

47: if (globalRank == members[0]) { //(localRank == 0) is the same

48: /***** local manager branch *****/

49:

50: MPI_Recv(msg, BUFFER_SIZE, MPI_CHAR,

51: MPI_ANY_SOURCE, MPI_ANY_TAG, mpiComm, &stat);

52:

53: int nr, membersOddGrp[BUFFER_SIZE];

54: TAAG_GetGrpMembers (grpRank-1, &nr, membersOddGrp);

55: MPI_Send(msg, BUFFER_SIZE, MPI_CHAR, membersOddGrp[0],

56: 0, MPI_COMM_WORLD);

23



57: }

58: else {

59: /***** DO SOME WORK HERE *****/

60: MPI_Isend(msg, BUFFER_SIZE. MPI_CHAR, 0, localrank, mpiComm, &req);

61: }

62: }

63: else {

64: /***** branch for the groups whose ranks are odd *****/

65:

66: if (globalRank == members[0]) { //(localRank == 0) is the same

67: /***** local manager branch *****/

68: MPI_Recv(msg, BUFFER_SIZE, MPI_CHAR,

69: MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &stat);

70: MPI_Bcast(msg, BUFFER_SIZE, MPI_CHAR, 0, mpiComm);

71:

72: }

73: else {

74: MPI_Bcast(msg, BUFFER_SIZE, MPI_CHAR, 0, mpiComm)

75:

76: }

77: }

78: }

79:

80: TAAG_Free();

81: MPI_Finalize();

82: }

Comments:

lines 01–03 comprise the required includes.

line 25 allocates and initializes the corresponding data structures for a pro-
gram structure “groups” according to the content of the file called
“exec desc.xml”.

lines 31–34 check whether the program consists of even number of groups.

line 39 determines the group rank for the given process.

line 40 determines the number and the ranks of the processes in the given
group.

line 42 creates structures MPI Group and MPI Comm for the given group.

24



line 43 determines the local rank of the calling process in the given MPI
Group.

lines 45–62 describe the behavior of the groups whose ranks are even.

lines 47–57 describe the behavior of the local manager processes of the
groups whose ranks are even. It waits a message from one of the workers
of the group. If the message arrives it determines the global rank of
the local manager of that group whose rank is less by one (odd) than
its own rank and forwards the received message.

lines 58–61 describe the behavior of the worker processes of the groups
whose ranks are even. They simply send a message to their local man-
ager (after some work).

lines 63–77 describe the behavior of the groups whose ranks are odd.

lines 66–72 describe the behavior of the local manager processes of the
groups whose ranks are odd. It waits until a message arrives from
another local manager and broadcasts this message its group.

lines 73–76 describe the behavior of the worker processes of the groups
whose ranks are odd. They simply wait for the broadcast.

line 80 deallocates the data structures applied by our library.

8.8.2 An Example for a Tree

The following example represents how to use the proposed tree-related calls
described in Section 8.6 This source code can be conjugated with the tree
specification example described in Section 4.4:

TREE{19, 3, 5}

In this program a global manager process distributes some computational
tasks among some local manager processes which distribute them further
among the worker processes. After a worker accomplished a task it sends
back to the global manager through its local manager.

Remark: This program assumes (and runs correctly) that the used block-
ing message passing routines (MPI Send and MPI Recv) are implemented
with usage of system buffering.

25



01: #include "mpi.h"

02: #include "taag.h"

03: #include <stdio.h>

04:

05: #define BUFFER_SIZE 255

06: #define NR_OF_TASKS 500

07: extern int create_task(int, char*);

08: extern int process_task(char*, char*);

09:

10: int main(int argc, char *argv[]) {

11: int numtasks, rc, flag, nrChildren;

12: int rank, root, parent, level;

13:

14: int children[BUFFER_SIZE];

15: int levels[BUFFER_SIZE];

16: int inmsg[BUFFER_SIZE], outmsg[BUFFER_SIZE];

17:

18: MPI_Status stat;

19:

20:

21: rc = MPI_Init(&argc,&argv);

22: if (rc != MPI_SUCCESS) {

23: printf("Error starting MPI program.\n");

24: MPI_Abort(MPI_COMM_WORLD, rc);

25: }

26:

27: rc = TAAG_Init("tree", "exec_desc.xml");

28: if (rc != TAAG_SUCCESS) {

29: printf("Error initializing the TAAG structure.\n");

30: MPI_Abort(MPI_COMM_WORLD, rc);

31: }

32:

33: MPI_Comm_size(MPI_COMM_WORLD,&numtasks);

34: MPI_Comm_rank(MPI_COMM_WORLD,&rank);

35:

36: TAAG_GetRoot(root);

37:

38: if (rank == root) {

39: /***** root branch *****/

40: int output[NR_OF_TASKS][BUFFER_SIZE];

41: MPI_Request reqs[NR_OF_TASKS];

26



42: MPI_Status stats[NR_OF_TASKS];

43: TAAG_GetChildren(rank, &nrChildren,

44: children , levels);

45: int j = 0;

46:

47: for (int i = 0; i < NR_OF_TASKS; i++) {

48: create_task(i, outmsg);

49: MPI_Irecv(output[i], BUFFER_SIZE, MPI_CHAR,

50: children[j], i, MPI_COMM_WORLD, &reqs[i]);

51: MPI_Send(outmsg, BUFFER_SIZE, MPI_CHAR,

52: children[j++], i, MPI_COMM_WORLD);

53: if (j == nrChildren) { j = 0; }

54: }

55:

56: MPI_Waitall (NR_OF_TASKS, reqs, stats)

57:

58: for (int i = 0; i < NR_OF_TASKS; i++) {

59: printf("The solution of the %d. task is \"%s\".\n",

60: stats[i].MPI_TAG, output[i]);

61: }

62: }

63: else {

64: /***** non-root branch *****/

65: TAAG_GetParent(rank, &parent, &level);

66: TAAG_IsLeaf(rank, flag);

67: if (flag == 0) {

68: /***** non-leaf branch *****/

69: int j = 0;

70: TAAG_GetChildren(rank, &nrChildren,

71: children, levels);

72: while(1) {

73: MPI_Recv(outmsg, BUFFER_SIZE, MPI_CHAR,

74: MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &stat);

75: if (stat.MPI_SOURCE == parent) {

76: MPI_Send(outmsg, BUFFER_SIZE, MPI_CHAR,

77: childen[j++], stat.MPI_TAG, MPI_COMM_WORLD);

78: if (j == nrChildren) { j = 0; }

79: }

80: else {

81: MPI_Send(outmsg, BUFFER_SIZE, MPI_CHAR,

82: parent, stat.MPI_TAG, MPI_COMM_WORLD);

27



83: }

84: }

85: }

86: else {

87: /***** leaf branch *****/

88: while(1) {

89: MPI_Recv(inmsg, BUFFER_SIZE, MPI_CHAR,

90: parent, MPI_ANY_TAG, MPI_COMM_WORLD, &stat);

91: process_task(inmsg, outmsg);

92: MPI_Send(outmsg, BUFFER_SIZE, MPI_CHAR,

93: parent, stat.MPI_TAG, MPI_COMM_WORLD);

94: }

95: }

96: }

97:

98: TAAG_Free();

99: MPI_Finalize();

100:}

Comments:

lines 01–03 comprise the required includes.

line 07 defines an external function called create task which returns a string
description of the subsequent computational task.

line 08 defines an external function called process task whose input is a
previously mentioned task description and whose output is the outcome
of this task (in string format).

line 27 allocates and initializes the corresponding data structures for a pro-
gram structure “tree” according to the content of the file called “exec
desc.xml”.

line 36 determines the root process of the tree hierarchy.

lines 38–62 describe the behavior of the root process of the tree. In line 43
it determines number and the rank of its children processes. Then
it generates a given number of computational tasks, distributes them
among its children and waits for the results. If all results were received,
it prints out them.

28



line 65 determines the parent process of the current non-root process in the
tree.

line 66 decides whether the current process is a leaf in the tree.

lines 67–85 describe the behavior of the local scheduler processes in the
tree. In line 70 it determines number and the rank of children of the
current process. Then local scheduler is blocked, until a message is
received. If the message was sent by its parent process it forwards it
to one of its children. Otherwise, it forwards it to its parent.

lines 86–95 describe the behavior of the leaf processes in the tree. A leaf
is blocked, until a computational task arrives in a message from its
parent. Then it processes the task and sends the result back to its
parent.

line 98 deallocates the data structures applied by our library.

9 Development Plan

The development of the software system described in the previous sections
are planned as follows:

1.10.2008 — 31.3.2009 In this period, we work on the first skeleton pro-
totype which contains the implementations of the API calls described
in Section 8.3, Section 8.5, Section 8.6 and additionally most of the
API functions described in Section 8.4. Furthermore, we develop the
initial version of the deployment mechanism (see Section 3.1).

1.4.2009 — 30.9.2009 In this period, we work on the second skeleton pro-
totype that contains all the major components of the software sys-
tem described in this document. We develop the proposed scheduling
mechanism (see Section 3.1) and improve the implementation of the
deployment mechanism. We finish the implementation of the API calls
described in Section 8.4.

1.10.2009 — Based on our first experiences with the system we refine the
design and implement an initial version of the SOAP– and gridftp–
based communication calls of the proposed API (see Section 8.7).

29



Acknowledgement

The work described in this paper is partially supported by the Austrian
Grid Project [1], funded by the Austrian BMBWK (Federal Ministry for
Education, Science and Culture) under contract GZ 4003/2-VI/4c/2004.

References

[1] Austrian Grid Project Home Page. http://www.austriangrid.at.

[2] MPICH-G2 Project Home Page. http://www.hpclab.niu.edu/mpi/.

[3] MPICH Project Home Page. http://www-unix.mcs.anl.gov/mpi
/mpich1/.

[4] NetSolve/GridSolve Project Home Page. http://icl.cs.utk.edu/netsolve.

[5] Karoly Bosa and Wolfgang Schreiner. Report on the state of the art
survey. Technical report, Research Institute for Symbolic Computation
(RISC), Johannes Kepler University Linz, Austria., 2008.

[6] Pushpinder Kaur Chouhan, Holly Dail, Eddy Caron, and Frédéric
Vivien. Automatic middleware deployment planning on clusters. Int. J.
High Perform. Comput. Appl., 20(4):517–530, 2006.

[7] Thomas Fahringer, Alexandru Jugravu, Sabri Pllana, Radu Prodan,
Clovis Seragiotto Junior, and Hong-Linh Truong. ASKALON: A Tool
Set for Cluster and Grid Computing. Concurrency and Computation:
Practice and Experience, 17(2-4), 2005. http://dps.uibk.ac.at/askalon/.

[8] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled
Implementation of the Message Passing Interface. Journal of Parallel
and Distributed Computing (JPDC), 63(5):551–563, May 2003.

[9] Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, and
Raoul A. F. Bhoedjang. MagPIe: MPI’s collective communication op-
erations for clustered wide area systems. ACM SIGPLAN Notices,
34(8):131–140, 1999.

[10] Arnaud Legrand, Hélène Renard, Yves Robert, and Frédéric Vivien.
Mapping and load-balancing iterative computations. IEEE Trans. Par-
allel Distrib. Syst., 15(6):546–558, 2004.

30



[11] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and
Casanova. A GridRPC Model and API for End-User Applications.
GridRPC Working Group of Global Grid Forum, June 2007.

[12] S. Pakin and A. Pant. Vmi 2.0: A dynamically reconfigurable messaging
layer for availablility, usability and management. 2002.

[13] Avneesh Pant and Hassan Jafri. Communicating efficiently on cluster
based grids with mpich-vmi.

[14] Radu Prodan, Thomas Fahringer, Farrukh Nadeem, and Marek Wiec-
zorek. Real-world workflow support in the askalon grid environment.
In CoreGRID Workshop on Grid Middleware, Dresden, Germany, June
2007. Springer Verlag.

[15] Jun Qin, Marek Wieczorek, Kassian Plankensteiner, and Thomas
Fahringer. Towards a Light-weight Workflow Engine in the ASKALON
Grid Environment. In Proceedings of the CoreGRID Symposium,
Rennes, France, August 2007. Springer-Verlag.

[16] Rich Wolski, Neil T. Spring, and Jim Hayes. The network weather ser-
vice: a distributed resource performance forecasting service for meta-
computing. Future Generation Computer Systems, 15(5–6):757–768,
1999.

31


