
A Program Calculus

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.uni-linz.ac.at

September 25, 2008

Abstract

This document describes a theory of imperative programs, i.e. programs that op-
erate on a system state which is modified by their execution.

For this purpose, we define the syntax and formal semantcs of a small imperative
programming language, introduce judgements for reasoning about programs writ-
ten in this language, and define rules for deriving true judgements. Our treatment
includes variable scopes, control flow interruptions, and (also recursive) methods
whose contracts are specified in the style of behavioral interface description lan-
guages by preconditions, postconditions, and frame conditions. All reasoning is
modular, i.e. based on the contracts of methods rather than their implementations.

The core of the calculus on the translation of commands to logical formulas de-
scribing the state transitions allowed by the commands; this translation thus re-
moves the “syntactic disguise” of a command and discloses its “semantic essence”.
The calculus supports reasoning about a program’s well-formedness, partial cor-
rectness, and termination, as well as the automated construction of preconditions,
postconditions, and assertions.

Contents

1 Introduction 4

2 Programs 7

2.1 Example Programs . 7

2.2 Syntax . 11

2.3 Semantics Overview . 14

2.4 Semantic Algebras . 18

2.5 Program Semantics . 27

2.6 Command Semantics . 30

2.7 Expression Semantics . 37

2.8 Formula and Term Semantics . 38

3 Judgements 42

3.1 Syntax . 42

3.2 Semantic Algebras . 45

3.3 Judgement Semantics . 55

4 Rules 61

4.1 Definitions . 61

4.2 Judgement se ` RMs S {C} . 64

4.3 Judgement se ` RMs . 66

4.4 Judgement se ` RM . 67

4.5 Judgement se, Is ` Ms . 68

2

CONTENTS 3

4.6 Judgement se, Is ` M . 69

4.7 Judgement se ` M . 71

4.8 Judgement se, Is,Vs ` CXF . 72

4.9 Judgement se, Is,Vs ` C : F . 77

4.10 Judgement se, Is,Vs ` C ↓J F 86

4.11 Judgement se, Is,Vs ` PRE(C,Q) = P 91

4.12 Judgement se, Is,Vs ` POST(C,P) = Q 92

4.13 Judgement se, Is,Vs ` ASSERT(C,P) = C′ 93

4.14 Judgement F § Ks
Rs . 97

4.15 Judgement F §c Fc . 98

4.16 Judgement F §b Fb . 99

4.17 Judgement F §s
Qs
Rs . 100

4.18 Judgement F §e
Ls
Ks . 101

4.19 Judgement |=Rs F . 102

A Mathematical Language 108

Chapter 1

Introduction

We present a calculus for reasoning about the properties of imperative programs
and verifying their correctness with respect to their specifications. Our presenta-
tion consolidates the results presented in [14] where we have elaborated various
variants of the calculus in a number of iterations that helped us to clarify our un-
derstanding. For more detailed explanations on the rationales behind the concepts
presented in this document, we mainly refer the reader to that report.

Nevertheless, to make our presentation more self-contained, we repeat here the
essence of the introduction of [14]:

The core idea of the corresponding program reasoning calculus is to lift the “com-
mands as relations” principle from the meta-level (the definition of the semantics)
to the object-level (the judgements of the calculus): a command/program imple-
mentation is translated to a predicate logic formula I that captures the program
semantics; the specification of the command/program given by the user is also
such a formula S; the implementation is correct with respect to the specification,
if I ⇒ S holds.

We believe that, independent of the actual verification, the translation of com-
mands to logical formulas may give (after appropriate simplification) crucial in-
sight into the behavior of a program by pushing through “the syntactic surface” of
a program and disclosing its “semantic essence”; this is similar to Schmidt’s ap-
proach to denotational program semantics [13] (which however uses a functional
model rooted in Scott’s domain theory). For this purpose, the calculus is settled
in classical predicate logic (in contrast to other approaches based on e.g. dynamic
logic [2]); this is the logic that (if any) most software developers are familiar with.

The idea of programs as state relations is not new: it is the core idea of the
Lamport’s “Temporal Logical of Actions” [10] where the individual actions of

4

5

a process are described by formulas relating pre- to post-states; Boute’s “Calcu-
lational Semantics” [3] defines program behavior by program equations; related
approaches are Hehner’s “Practical Theory of Programming” [5] and Hoare and
Jifeng’s “Unifying Theories of Programming” [6]. Calculi for program refine-
ment [1, 12, 11, 4] allow specifications as first-order language constructs at the
same level as program commands with which they may be freely intermixed.

While the present report builds upon these ideas, it has a different focus. Most of
the calculi described above work on simple “while languages” that have clean and
elegant calculi but neglect “messy” constructs that would complicate the calculus.
Our goal, however, is to model the full richness of program structures including

• local variable declarations (and thus commands with different scopes),

• commands that break the control flow (continue, break, return),

• commands that raise and handle exceptions (throw, try . . .catch),

• expressions that raise exceptions (1/0).

Furthermore, our calculus includes program procedures (“methods”) with static
scoping; it supports modular reasoning about programs on the basis of method
specifications (rather than on the basis of method implementations). A core mo-
tivation of our work was to understand in depth the semantics of modern “be-
havioral interface specification languages” such as JML [7] or Spec# [15] (which
build upon earlier specification languages such as VDM [8]) as the basis of soft-
ware systems for specifying and verifying computer programs; the method spec-
ifications in the present paper are derived from these. The current version of the
calculus handles most aspects of imperative programming languages with the ma-
jor exception of datatypes and pointer/reference semantics semantics (programs
operate on mathematical values). It does also not address object-oriented features
(object methods, inheritance, overriding) or concurrency.

Since our language model is much closer to real programming languages, the rules
are frequently considerably more complicated than those in the calculi presented
above. However, we wanted to deal with the current programming reality “as it
is” in contrast to what one might think it “should be”. We also wanted to stay
as close to the source language as possible and avoid translations to simple core
languages (such as performed in ESC/Java2 [9]) since these tend to obfuscate the
relationship between the program text accessible to the user and the ultimately
constructed semantic interpretation which is used for reasoning/verification.

While relational frameworks are good for modeling “partial correctness” (no ter-
minating computation exhibits a wrong result), they have problems with model-
ing “total correctness” (every computation terminates). There have been various

6 CHAPTER 1. INTRODUCTION

attempts to embed “termination” into the relational structure, e.g. including “non-
termination states” (⊥) into the domains of the relations or by simply demanding
that for correct programs all computations must terminate. We find these ap-
proaches not satisfactory and therefore treat “termination” as an issue orthogonal
to (partial) correctness: every program/command is, in addition to a state rela-
tion R, specified by an accompanying state condition C: only if C is satisfied in
a pre-state, the command is required to terminate (in some post-state allowed by
R); the only connection between C and R is that that for every prestate on which C
holds, R must allow some post-state (otherwise, the specification is inconsistent).

While we took great effort in [14] to prove the soundness of the rules in a rea-
sonable level of detail, the goal of the present document is to give a consolidated
“reference manual” for further work (in particular the implementation of the cal-
culus); no proofs are given at all.

With respect to the soundness of the calculus presented in this paper, intellectual
integrity demands to clearly state that

1. already the results of [14] depend on a number of unproved lemmas and
results from simpler models have been transferred to more general ones
without complete formal re-checking,

2. moreover, the semantic framework in this paper has been further generalized
by a more comprehensive treatment of recursion,

3. also references to global variables have been introduced to the programming
language (in addition to the formula language),

4. furthermore, the rules have been consolidated and modified for a clearer and
more concise presentation, and

5. the soundness of the translation of specification formulas to classical for-
mulas (with respect to the preservation of validity) has not been proved.

Therefore, while our previous work gives us reason to believe that the calculus pre-
sented in this document is “essentially” sound, it may nevertheless have “small”
technical errors arising from the various generalizations and changes (notwith-
standing any errors that may have already plagued our previous results). Never-
theless, we feel that the foundation is now stable enough for an actual implemen-
tation in a software environment for “program exploration” by which our efforts
are spent better than by starting a new round of soundness proofs; with little doubt,
by this implementation technical and pragmatical problems will be detected.

Chapter 2

Programs

In this chapter, we define the abstract syntax and formal semantics of the program-
ming language about which we are going to reason.

2.1 Example Programs

Figures 2.1 gives an example of a program written in the imperative programming
language which we are going to formalize in this document. A program written
in this language consists of a sequence of method declarations and a “main” com-
mand that is executed in the scope of the declarations; the methods and the main
command are annotated by specifications that describe their respective behaviors.

The example program sets the global variable z to the sum of the values of the
global variables x and y; it also sets x to 0 and leaves y unchanged. If the global
variable x is shadowed (such as by the parameter declaration in method add), we
still may refer to the variable by the special syntax ?x.

The specifications of methods and of the main command consist of

• a frame condition “writesonly Rs” which lists all the global variables Rs
that are changed by the execution of the method/command,

• an exception condition “throwsonly Is” which lists the names of all the
exceptions Is that may be thrown by the method/command,

• a precondition “requires F” which describes by the formula F a con-
dition which must be true in that state in which the method/command is
executed (the prestate),

7

8 2.1 Example Programs

method add(x)
writesonly ?x throwsonly
requires isnat(?x) and isnat(x)
ensures next.executes and ?x’ = 0 and next.value = ?x+x
decreases dummy

{
var r = x;
invariant next.executes and ?x + r = ?x’ + r’
decreases ?x
while (?x > 0)
(
r = r+1;
?x = ?x-1

)
return r;

}

writesonly x,z throwsonly
requires isnat(x) and isnat(y)
ensures next.executes and x’ = 0 and z’ = x+y
decreases dummy
{
z = add(y)

}

Figure 2.1: A Program

9

method prod(x,y)
writesonly throwsonly
requires isnat(x) and isnat(y)
ensures next.executes and next.value = x*y
decreases dummy

{ return x*y }

recursive (
method fact0(x)
writesonly throwsonly
requires isnat(x) ensures ...
decreases x

{
if (x = 0)
return 1

else
var y; var r;
(y=fact(x-1); r=prod(x,y); return r;)

}

method fact(x)
writesonly throwsonly
requires isnat(x) ensures ...
decreases x

{
if (x = 0)
return 1

else
var y; var r;
(y=fact0(x-1); r=prod(x,y); return r;)

}
)

writesonly y throwsonly
requires isnat(x)
ensures next.executes and y = . . .
decreases dummy
{ y = fact(x) }

Figure 2.2: A Recursive Program

10 2.1 Example Programs

• a postcondition “ensures F” which describes by the formula F a relation
that must hold between the prestate of the method/command and the state
in which the execution of the method/command terminates (the poststate),

• a termination measure “decreases T ” with a term T which denotes a
natural number that is decreased by every recursive invocation of a method
(see below, T is not used, if the method is not recursive).

In a postcondition, plain references x respectively ?x refer to the values of the
corresponding variables in the prestate, while primed reference x’ respectively ?x’
refer to their values in the poststate. The formula next.executes says that the
poststate of the method/command is “executing” (i.e. e.g. no exception is raised),
the term next.value refers to the return value of a method after the execution of a
return command.

Also loops may be annotated by specifications that consist of

• an invariant “invariant F” where the formula “F” describes a relation-
ship between the loop’s prestate and the state after every execution of the
loop body.

• a termination measure “decreases T ” where the term T denotes a natural
number that is decreased by every iteration of the loop.

Without provision, every method may only call those methods that appear ear-
lier in the list of method declarations (which prevents recursion). However, as
shown in Figure 2.2, the construct “recursive Ms” may be used to introduce
a “recursive method set” Ms, i.e. a set of methods that may call each member
in the set, also (directly or indirectly) recursively. In order to guarantee the ter-
mination of recursive method invocations, every method in Ms must specify by
“decreases T ” a termination measure, i.e. a term T that denotes a natural num-
ber. If method a with measure Ta calls method b with measure Tb, the value of Tb
(in the state in which b is called) must be less than the value of Ta (in the state
in which a was called)1. The methods in the recursion set may nevertheless call
those methods that were declared prior to the set without this provision.

1This condition is actually stronger than required. By the analysis of the concrete method
call dependencies in Ms, infinite “recursion cycles” can be ruled out, even if not all method calls
decrease the respective measures. All that is needed is that in every cycle there exists some measure
that is decreased while no other measure is increased. For simplicity, the calculus presented in this
paper does not make use of this generalization.

11

2.2 Syntax

Figure 2.3 gives the (abstract) syntax of the programming language which is used
to write programs while Figure 2.4 gives the (abstract) syntax of the formula lan-
guage which is used to write the corresponding program specifications.

The programming language models the core features of classical imperative pro-
gramming languages but omits type declarations: all variables range over an un-
specified domain of “values”. For simplicity, there are no global variable decla-
rations, instead we assume that every identifier denotes a distinct variable; local
variable declarations (introduced by the keyword var) may shadow global vari-
ables. A variable reference I refers to the value of I in the current context (where I
may denote a global variable or a local one) while ?I always denotes the global
variable. A method call always returns a value and may appear only as sepa-
rate command that assigns the return value to a variable (i.e. no method calls are
allowed within expressions). The keyword assert introduces an assertion; a
failed assertion “blocks” the program i.e. prevents the generation of any poststate.

The specification language is essentially the language of first order predicate
logic. Specification formulas are interpreted over pairs of states, typically the
prestate of a command and its poststate, denoted by the constants now and next,
respectively.

In formulas, references to program variables may appear as value constants where
an unprimed reference R denotes the value of the program variable in the prestate
and a primed reference R’ denotes its value in the postate. If a formula shall ex-
press a condition on a single state, it is simply interpreted over a pair of identical
states, i.e. R and R’ are then considered as synonyms. The formula “readsonly”
states that the prestate and the poststate have the same values in all variables de-
noted by some identifier; the formula “writesonly Rs” allows the prestate and the
poststate to hold different values for those variables that are referenced by Rs.

Formulas may refer to two kinds of logical variables:

• Value variables of form $I which are bound to values and may be quantified
by forall, exists, and let.

• State variables of form #I which are bound to states and may be quantified
by allstate and exstate.

Program values may be compared by the predicates = and /=. The formulas lan-
guage includes value predicates isnat and < and an unspecified set of other value
predicates and value functions.

12 2.2 Syntax

Method Language: Abstract Syntax

P ∈ Program
RMs ∈ RecMethods
RM ∈ RecMethod
Ms ∈Methods
M ∈Method
S ∈ Specification
LS ∈ LoopSpec
C ∈ Command
E ∈ Expression
R ∈ Reference
F,G,H ∈ Formula
T ∈ Term
I,J,K,L ∈ Identifier

P ::= RMs S {C}.

RMs ::= | RMs RM.

RM ::= M | recursive Ms.
Ms ::= | Ms M.

M ::= method I(I1, . . . , Ip) S {C}.

S ::= writesonly R1, . . . ,Rn
throwsonly K1, . . . ,Km
requires FC ensures FR decreases T.

LS ::= invariant F decreases T.

C ::= R = E | var I;C | var I=E;C |C1;C2
| if (E)C | if (E)C1 elseC2
| while (E)C | LS while (E)C
| continue | break | return E | throw I E
| tryC1 catch(Ik Iv)C2
| R = I(E1, . . . ,Ep) | assert F.

E ::= R | . . .

R ::= I | ?I.
I ::= . . .

. . . (continued in Figure 2.4)

Figure 2.3: The Programming Language

13

Formula Language: Abstract Syntax

. . . (continued from Figure 2.3)

F,G ∈ Formula
T ∈ Term
U ∈ StateTerm
p ∈ Predicate
f ∈ Function

F ::= true | false
| p(T1, . . . ,Tn) | T1 = T2 | T1 /= T2
| readsonly | writesonly R1, . . . ,Rn
| !F | F1 and F2 | F1 or F2 | F1 => F2 | F1 <=> F2
| F1 xor F2 | if F then F1 else F2 |
| forall $I1, . . . ,$In: F | exists $I1, . . . ,$In: F
| let $I1=T1, . . . ,$In=Tn in F |
| allstate #I1, . . . ,#In: F | exstate #I1, . . . ,#In: F
|U1 == U2
|U .executes |U .continues |U .breaks
|U .returns |U .throws |U .throws I

T ::= R | R’ | $I | f (T1, . . . ,Tn)
| if F then T1 else T2
| let $I1=T1, . . . ,$In=Tn in T |
|U .value

U ::= now | next | #I
p ::= isnat | < | . . .

f ::= . . .

Figure 2.4: The Formula Language

14 2.3 Semantics Overview

Program states may be compared by the predicate ==. Every state has a specific
status which is indicated by the predicates .executes (normal execution), .contin-
ues (after execution of the command continue), .breaks (after execution of the
command break), .returns (after execution of the command return), .throws
(after execution of the command throw). After the execution of throw with
exception type I, the state satisfies the predicate .throws I. After the execution
of return or throw, a state carries a (return/exception) value which can be
queried by the state function .value.

2.3 Semantics Overview

Before going into the details of the formal semantics of the programming lan-
guage, we present in this section an overview of the general ideas.

States and Stores Our goal is to describe the behavior of programs that execute
commands which modify the state of a system. The most important part of a state
is the store which holds for every variable a value which may be read and updated
by the command. The other part of the state are control data which indicate the
status of the program after the execution of the command (see Figure 2.5). The
corresponding domains are defined as

Store := Variable→ Value
State := Store×Control

The control data of a state consist of

• a flag indicating the execution status (“executing” normally, “continuing” a
loop body, “breaking” from a loop, “returning” from a method, or “throw-
ing” an exception),

• a key, i.e. an identifier indicating the exception type (only used if the execu-
tion status is “throwing”),

• a value indicating the return value (if the execution status is “returning”) or
the exception value (if the execution status is “throwing”).

A command always starts its execution in status “executing” but it may terminate
in a state which has any execution status indicated above. The corresponding
domains are defined as

Control := Flag×Key×Value
Flag := {E,C,B,R,T}
Key := Identifier

15

v1 v2 v3 . . . c

flag value

x1 x2 x1 . . .

Store

Variables

Values

I1 I2 . . . I1 I2 . . . xa,xb,xc, . . .

Global View Local View Space

key

Identifiers

Control

State

Context

Figure 2.5: States, Stores and Contexts

State Relations and State Conditions A command consists of two parts:

• a state relation which describes those transitions from a prestate to a post-
state that may be performed by the command,

• a state condition which describes those prestates for which the command
must make a transition and yield a poststate.

The state relation must for every prestate included in the state condition allow at
least one poststate.

The corresponding domains are

StateRelation := P(State×State)
StateCondition := P(State)
Command := StateRelation×StateCondition

The state relation of a command C is denoted by the expression [C]c,me
d while its

state condition is denoted by 〈〈C〉〉c,me
d ; here c denotes the command’s context, me

its method environment (both see below) and []d and 〈〈 〉〉d are the denotation
functions with signatures

[]d : Command→
(Context×MethodEnvs)→ StateRelation

〈〈 〉〉d : Command→
(Context×MethodEnvs)→ StateCondition

16 2.3 Semantics Overview

The subscript d parameterizes the semantics with respect to the behavior of “un-
defined” program expressions; if set to TRUE, the result are simply “undefined”
values, if set to FALSE they cause the program to raise an “expression evaluation”
exception.

Contexts A method’s context determines to which variables a command has
access. A context consists of (see Figure 2.5)

• a global view which assigns to every global identifier ?I a variable in the
store,

• a local view which assigns to every local identifier I a variable in the store,

• a space which is a pool of variables that are not assigned to any identifiers
and may be used for allocation of local variables.

Identifiers ?I and I may be assigned the same variables (the local view coincides
with the global view) but, due to the declaration of a local variable I, they may
also differ. The space does not share any variables with either the global or the
local view. The corresponding domains are defined as

View = Identifier→ Variable
Space = P∞(Variable)
Context = View×View×Space

Methods A command’s method environment determines to which methods a
command has access by assigning to every identifier a method that can be called
by the command. A method essentially is a mapping from values (the method’s
arguments) to a command (the method’s body); the arguments are provided by the
caller of the method.

Actually, a method not only depends on arguments but, for execution of its body,
also on a context and a method environment. The method environment is the one
which is active at the point where the method is declared while the context of the
method is constructed as follows:

• the context’s global view is the one which is active when the method is
declared,

• the method’s local view is identical to the global view,

17

• the method’s space is the one from the context of method’s caller and pro-
vided by the caller.

Since a method needs access to both the global view and the method environment
active at the point of its declaration, a method environment assigns to an identifier
actually not only a method but also global view and a method environment. We
therefore construct the domains of method environments and method behaviors
in “stages”: a method environment of type MethodEnvi+1 assigns to an identi-
fier a behavior of type Behaviori+1, a global view, and an environment of type
MethodEnvi. The corresponding declarations are (the gaps “. . .” are filled later):

Method := Value∗→ Command

MethodEnvs :=
⋃

i∈NMethodEnvi∪ . . .

MethodEnv0 := Identifier→ View×Behavior0

MethodEnvi+1 := DirMethodEnvi ∪ . . .

DirMethodEnvi := Identifier→ View×MethodEnvi×Behaviori+1

Behavior0 := Context →Method
Behaviori+1 := Context×MethodEnvi →Method

Method environments are constructed by method declarations; given a method en-
vironment of type MethodEnvi, a method declaration M constructs an environment
of type MethodEnvi+1.

Recursion The situation gets more complicated, if also recursive method sets
are considered. The behavior b of a recursive method is essentially modelled
by an infinite sequence b0,b1, . . . of non-recursive method behaviors where each
behavior b j+1 may make use of behavior b j, i.e. b j+1 denotes the behavior of the
recursive method with not more than j recursive invocations. The execution of
a recursive method in prestate s terminates in a poststate s′ if there exists some j
such that the execution of b j in s terminates in s′.

Given a method environment of type MethodEnvi, the declaration of a recursive
method set recursive Ms correspondingly constructs an infinite sequence of
method environments of types RecMethodEnvi

j (for each j ∈ N) where an envi-
ronment of type RecMethodEnvi

j holds methods of type RecBehaviori
j that allow

less than j recursive invocations. The corresponding definitions are as follows:

18 2.4 Semantic Algebras

Definitions: Variables and Values

Variable := . . .
Value := B∪N∪ . . .

Predicate := P(Value∗)
Function := Value∗→ Value

⊥ := SUCH v : v 6∈ Value
Value⊥ := Value∪{⊥}

Figure 2.6: Variables and Values

MethodEnvs :=
⋃

i∈NMethodEnvi∪⋃
j∈NRecMethodEnvi

j

MethodEnvi+1 := DirMethodEnvi ∪ RecMethodEnvi

RecMethodEnvi
0 :=

Identifier→ View×MethodEnvi×RecBehaviori
0

RecMethodEnvi
j+1 :=

Identifier→ View×RecMethodEnvi
j×RecBehaviori

j+1

RecBehaviori
0 := Context×MethodEnvi →Method

RecBehaviori
j+1 := Context×RecMethodEnvi

j →Method

In the following section, we will give the full definitions of the semantic algebras
implementing the ideas sketched above.

2.4 Semantic Algebras

Figures 2.6–2.17 introduce the semantic algebras, i.e. the domains (aka “types”)
and associated operations, on which the formal model of the programming lan-
guage depend. See Appendix A for information on the mathematical language in
which these definitions are written.

19

Definitions: Contexts

View = Identifier→ Variable
Space = P∞(Variable)
Context = View×View×Space

gview : Context → View,gview(vg,vl,s) = vg
lview : Context → View, lview(vg,vl,s) = vl
space : Context → Space,space(vg,vl,s) = s

context : View×View×Space→ Context
context(vg,vl,s) = 〈vg,vl,s〉

call : View×Space→ Context
call(v,s) = context(v,v,s)

range : Context → P(Variable)
range(c) = range(gview(c))∪ range(lview(c))∪ space(c)

take : Space→ (Variable×Space)
take(s) = LET x = SUCH x : x ∈ s IN 〈x,s\{x}〉

push : Context× Identifier→ Context
push(c, I) =

LET 〈x,s′〉= take(space(c)) IN

context(gview(c), lview(c)[I 7→ x],s′)

push(c, I1, . . . , In)≡ push(. . .push(c, I1) . . . , In)

Figure 2.7: Contexts

20 2.4 Semantic Algebras

Definitions: States

State := Store×Control

store : State→ Store, store(s,c) = s
control : State→ Control, control(s,c) = c
state : Store×Control→ State, state(s,c) = 〈s,c〉

StateFunction := State→ Value
StateFunction⊥ := State→ Value⊥
BinaryStateFunction := State×State→ Value
ControlFunction := State×State→ Control

Figure 2.8: States

Definitions: Stores

Store := Variable→ Value

read : State×Variable→ Value
read(s,x) = store(s)(x)

write : State×Variable×Value→ State
write(s,x,v) = state(store(s)[x 7→ v],control(s))

writes(s,x1,v1, . . . ,xn,vn)≡ write(. . .write(s,x1,v1) . . . ,xn,vn)

s = s′ EXCEPT V ≡
∀v ∈ Variable : read(s,v) 6= read(s′,v)⇒ v ∈V

s EQUALSc s′ ≡
s = s′ EXCEPT space(c)

s = s′ EXCEPTc Rs≡
s = s′ EXCEPT space(c)∪{[R]c : R ∈ Rs}

Figure 2.9: Stores

21

Definitions: Control Data

Flag := {E,C,B,R,T}
Key := Identifier
Control := Flag×Key×Value

flag : Control→ Flag,flag(f ,k,v) = f
key : Control→ Key,key(f ,k,v) = k
value : Control→ Value,value(f ,k,v) = v

cont : Flag×Key×Value→ Control
cont(f ,k,v) = 〈 f ,k,v〉

execute : State→ State
execute(s) =

LET c = control(s) IN state(store(s),cont(E,key(c),value(c)))
continue : State→ State
continue(s) =

LET c = control(s) IN state(store(s),cont(C,key(c),value(c)))
break : State→ State
break(s) =

LET c = control(s) IN state(store(s),cont(B,key(c),value(c)))
return : State×Value→ State
return(s,v) =

LET c = control(s) IN state(store(s),cont(R,key(c),v))
throw : State×Key×Value→ State
throw(s,k,v) =

LET c = control(s) IN state(store(s),cont(T,k,v))

executes : P(Control),executes(c)⇔ flag(c) = E
continues : P(Control),continues(c)⇔ flag(c) = C
breaks : P(Control),breaks(c)⇔ flag(c) = B
returns : P(Control),returns(c)⇔ flag(c) = R
throws : P(Control), throws(c)⇔ flag(c) = T

Figure 2.10: Control Data

22 2.4 Semantic Algebras

Definitions: Expression Evaluation Exceptions

EXP := SUCH k : k ∈ Key
VAL := SUCH v : v ∈ Value

expthrow : State→ State
expthrow(s) = throw(s,EXP,VAL)

expthrows : P(Control)
expthrows(c)⇔ throws(c)∧ key(c) = EXP

Figure 2.11: Expression Evaluation Exceptions

Definitions: Commands and Methods

StateRelation := P(State×State)
StateCondition := P(State)
Command := StateRelation×StateCondition

rel : Command → StateRelation,rel(r,c) = r
cond : Command → StateCondition,cond(r,c) = c

command : StateRelation×StateCondition→ Command
command(r,c) = 〈r,c〉

Method := Value∗→ Command

Figure 2.12: Commands and Methods

23

Definitions: Iteration

iterate⊆ N×State∞×State∞××StateFunction⊥×StateRelation
iterate(i, t,u,E,C)⇔
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
E(t(i)) = TRUE∧C(t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

leaves : P(State)
leaves(s)⇔¬executes(s)∧¬continues(s)

Figure 2.13: Iteration

Definitions: Environments

ValueEnv := Identifier→ Value
ControlEnv := Identifier→ Control
Environment := ValueEnv×ControlEnv

venv : Environment → ValueEnv, venv(v,c) = v
cenv : Environment → ControlEnv, cenv(v,c) = c
env : ValueEnv×ControlEnv→ Environment, env(v,c) = 〈v,c〉

e[I1 7→ v1, . . . , In 7→ vn]v ≡
env(venv(e)[I1 7→ v1, . . . , In 7→ vn],cenv(e))

e[I1 7→ c1, . . . , In 7→ cn]c ≡
env(venv(e),cenv(e)[I1 7→ c1, . . . , In 7→ cn])

Figure 2.14: Environments

24 2.4 Semantic Algebras

Definitions: Method Environments and Behaviors

MethodEnvs :=
⋃

i∈NMethodEnvi∪⋃
j∈NRecMethodEnvi

j

DirMethodEnvs :=
⋃

i∈NDirMethodEnvi

RecMethodEnvs :=
⋃

i∈NRecMethodEnvi

MethodEnv0 := Identifier→ View×Behavior0

MethodEnvi+1 := DirMethodEnvi ∪ RecMethodEnvi

DirMethodEnvi := Identifier→ View×MethodEnvi×Behaviori+1

RecMethodEnvi
0 :=

Identifier→ View×MethodEnvi×RecBehaviori
0

RecMethodEnvi
j+1 :=

Identifier→ View×RecMethodEnvi
j×RecBehaviori

j+1

Behavior0 := Context →Method
Behaviori+1 := Context×MethodEnvi →Method

RecBehaviori
0 := Context×MethodEnvi →Method

RecBehaviori
j+1 := Context×RecMethodEnvi

j →Method

Figure 2.15: Method Environments and Behaviors

25

Definitions: Method Access

recmethodi, j :
RecMethodEnvi

j× Identifier×Context →Method
remethodi, j(me, Im,c) =

LET 〈v,me′,b〉= me(Im),c′ = call(v,space(c)) IN bc′,me′

recmethodi : RecMethodEnvi× Identifier×Context →Method
recmethodi(me, Im,c)(v1, . . . ,vp) =

LET

R : StateRelation
R(s,s′)⇔
∃ j ∈ N :

LET com = recmethodi, j(me j, Im,c) IN

rel(com)(v1, . . . ,vp)(s,s′)
C : StateCondition
C(s)⇔
∃ j ∈ N :

LET com = recmethodi, j(me j, Im,c) IN

cond(com)(v1, . . . ,vp)(s)
IN command(R,C)

method : MethodEnvs× Identifier×Context →Method
method(me, Im,c)⇔

LET sp = space(c) IN

IF me ∈MethodEnv0 THEN

LET 〈v,b〉= me(Im),c′ = call(v,sp) IN bc′

ELSE IF me ∈ DirMethodEnvs THEN

LET 〈v,me′,b〉= me(Im),c′ = call(v,sp) IN bc′,me′

ELSE IF me ∈ RecMethodEnvs THEN

LET i := SUCH i ∈ N : me ∈ RecMethodEnvi IN

recmethodi(me, Im,c)
ELSE

LET i, j := SUCH i, j ∈ N : me ∈ RecMethodEnvi
j IN

recmethodi, j(me, Im,c)

Figure 2.16: Method Access

26 2.4 Semantic Algebras

Definitions: Method Environment Construction

behaviori : MethodEnvi× Identifier→ Behaviori+1
behaviori(me, Im) =

LET

b : Context×MethodEnvi →Method
bc,me′ = method(me, Im,c)

IN b

ebasei : View×MethodEnvi×P(Identifier)→ RecMethodEnvi
0

ebasei(v,me, Is)(Im) =
LET

b : RecBehaviori
0

bc,me(v1, . . . ,vp) =
IF Im ∈ Is

THEN 〈 /0, /0〉
ELSE method(me, Im,c)(v1, . . . ,vp)

IN 〈v,me,b〉

enexti, j : View×RecMethodEnvi
j×→ RecMethodEnvi

j+1
enexti, j(v,me)(Im) =

LET

b : RecBehaviori
j+1

bc,me = recmethodi, j(me, Im,c)
IN 〈v,me,b〉

Figure 2.17: Method Environment Construction

27

2.5 Program Semantics

Figure 2.18 defines the semantics associated to the top-level syntactic domains of
the programming language:

Program The valuation function takes a global view v and a space sp and con-
structs from this a context c in which the method definitions RMs are evalu-
ated. These definitions take a method environment me of type MethodEnvi

and return a method environment me′ of type MethodEnv j. The state rela-
tion [C]c,me′

d and state condition 〈〈C〉〉c,me′
d are used to construct the semantics

of the method body.

RecMethods The valuation function takes a method environment me of type
MethodEnvi and return a method environment of type MethodEnv j (pro-
vided that the “RecMethods” argument consists of j− i “RecMethod” com-
ponents).

RecMethod Given a non-recursive method M, a method environment me of type
MethodEnvi, and a global view v, the valuation function constructs a “di-
rect method environment” of type DirMethodEnvi which maps a method
identifier Im,

• if Im denotes M, to a triple of v, me, and a “direct semantics” [M]d,i
of M, and

• if Im denotes another method, to a triple of v, me, and the behavior of
the method, which is looked up in me as an object of type Behaviori
and “lifted” to type Behaviori+1.

Given a “recursive method set” Ms and me respectively v as above, the
valuation function constructs a “recursive method environment” of type
RecMethodEnvi; this environment actually represents an infinite sequence
of environments:

• the element at position 0 in this sequence is constructed by the function
ebase such that it looks up the behavior of every method which is not
in Ms in me and lifts it to type RecBehaviori

0 and maps every method
which is in Ms to the empty behavior (representing a non-terminating
recursive call),

• the element at position j + 1 in this sequence is constructed from the
element me′ at position j by

28 2.5 Program Semantics

Program Semantics

[]d,i, j : Program→ View×Space×MethodEnvi → Command
[RMs S {C}]v,sp

d,i, j(me) =
LET c = call(v,sp),me′ = [RMs]vd,i, j(me) IN

command([C]c,me′
d ,〈〈C〉〉c,me′

d)

[]d,i, j : RecMethods→ View×MethodEnvi →MethodEnv j

[]vd,i,i(me) = me

[RMs RM]vd,i, j+1(me) = [RM]vd, j([RMs]vd,i, j(me))

[]d,i : RecMethod→ View×MethodEnvi →MethodEnvi+1

[M]vd,i(me)(Im) =
IF Im = [M]I

THEN 〈v,me, [M]d,i〉
ELSE 〈v,me,behaviori(me, Im)〉

[recursive Ms]vd,i(me)0 = ebasei(v,me, [Ms]I)
[recursive Ms]vd,i(me) j+1 =

LET me′ = [recursive Ms]vd,i(me) j IN

[Ms]vd,i, j(me′,enextd,i, j(v,me′))

[]d,i, j : Methods→
View× (RecMethodEnvi

j×RecMethodEnvi
j+1)→

RecMethodEnvi
j+1

[]vd,i, j(me,me′) = me′

[Ms M]vd,i, j(me,me′) = [M]vd,i, j(me,me′)(me, [Ms]vd,i, j(me,me′))

[]d,i, j : Method→
View× (RecMethodEnvi

j×RecMethodEnvi
j+1)→

RecMethodEnvi
j+1

[M]vd,i, j(me,me′) = me′[[M]I 7→ 〈v,me, [M]d,i, j〉]

Figure 2.18: Program Semantics

29

Method Semantics

[]I : Methods→ P(Identifier)
[]I := /0
[Ms M]I := [Ms]I∪{[M]I}

[]I : Method→ Identifier
[method Im(J1, . . . ,Jp) S {C}]I := Im

[]d,i : Method→ Behaviori+1

[method Im(J1, . . . ,Jp) S {C}]c,me
d,i, j(v1, . . . ,vp) =

LET

c′ = push(c,J1, . . . ,Jp)
r ∈ StateRelation
r(s,s′)⇔
∃s0,s1 : State :

s0 = writes(s, [J1]c
′
,v1, . . . , [Jp]c

′
,vp) ∧

[C]c
′,me

d (s0,s1) ∧
s′ = IF throws(control(s1))

THEN s1 ELSE executes(s1)
t ∈ StateCondition
t(s)⇔

LET s0 = writes(s, [J1]c
′
,v1, . . . , [Jp]c

′
,vp) IN

〈〈C〉〉c′,me
d (s0)

IN command(r, t)

[]d,i, j : Method→ RecBehaviori
j+1

[method Im(J1, . . . ,Jp) S {C}]c,me
d,i, j(v1, . . . ,vp) = . . . (as above)

Figure 2.19: Method Semantics

30 2.6 Command Semantics

1. first building a “start environment” by the application of func-
tion enext which looks up the behavior of every method in me′ as
an object of type RecBehaviori

j and lifts it to a behavior of type
RecBehaviori

j+1, and
2. then updating this environment by every declaration in Ms.

Methods The valuation function updates the method environment me′ of type
RecMethodEnvi

j+1 by every method which is declared in environment me
of type RecMethodEnvi

j.

Method The valuation function updates environment me′ by a mapping of the
identifier of method M to a triple of the global view v, method environment
me, and the behavior of M.

The core of Figure 2.19 are the two last valuation functions which construct the
direct respectively recursive behavior of a method:

• the first constructs a direct behavior of type Behaviori+1 which takes a
context and a method environment me of type MethodEnvi and returns a
method,

• the second constructs a recursive behavior of type Behaviori
j+1 which takes

a context and a method environment me of type RecMethodEnvi
j and returns

a method.

Both valuation functions are defined in a syntactically identical way, since the
command valuation functions [] and 〈〈 〉〉 accept method environments of type
MethodEnvs which encompasses both cases.

2.6 Command Semantics

Figures 2.20–2.25 describe the core of the program semantics: the formalization
of a command as a pair of a state relation and and a state condition which repre-
sent the possible state transitions and the prestates with guaranteed termination,
respectively. The various kinds of commands are formalized based on the follow-
ing intuitions:

Assignment First, the expression E is evaluated. If this yields an undefined
value (⊥), the command raises an exception, otherwise, the variable denoted
by the identifier is updated by the value. The command always terminates.

31

Command Semantics

[]d : Command→
(Context×MethodEnvs)→ StateRelation

〈〈 〉〉d : Command→
(Context×MethodEnvs)→ StateCondition

[R = E]c,me
d (s,s′)⇔

LET v = [E]cd(s) IN

IF v =⊥
THEN s′ = expthrow(s)
ELSE s′ = write(s, [R]c,val)

〈〈R = E〉〉c,me
d (s)⇔ TRUE

[var I; C]c,me
d (s,s′)⇔

LET c′ = push(c, I) IN [C]c
′,me

d (s,s′)
〈〈var I; C〉〉c,me

d (s)⇔
LET c′ = push(c, I) IN 〈〈C〉〉c′,me

d (s)

[var I=E;C]c,me
d (s,s′)⇔

LET v = [E]cd(s) IN

IF v =⊥ THEN

s′ = expthrow(s)
ELSE

LET c0 = push(c, I),s0 = write(s, [I]c0,v)
IN [C]c0,me

d (s0,s′)
〈〈var I=E;C〉〉c,me

d (s)⇔
LET v = [E]cd(s) IN

IF v =⊥ THEN

TRUE

ELSE

LET c0 = push(c, I),s0 = write(s, [I]c0,v)
IN 〈〈C〉〉c0,me

d (s0)

Figure 2.20: Command Semantics (1/5)

32 2.6 Command Semantics

Command Semantics (Contd)

[C1;C2]c,me
d (s,s′)⇔

∃s0 ∈ State :
[C1]c,me

d (s,s0) ∧
IF executes(control(s0))

THEN [C2]c,me
d (s0,s′)

ELSE s′ = s0

〈〈C1;C2〉〉c,me
d (s)⇔

〈〈C1〉〉c,me
d (s) ∧

∀s0 ∈ State :
[C1]c,me

d (s,s0)∧ executes(control(s0)) ⇒ 〈〈C2〉〉c,me
d (s0)

[if (E)C]c,me
d (s,s′)⇔

LET v = [E]cd(s) IN

IF v =⊥ THEN

s′ = expthrow(s)
ELSE IF v = TRUE THEN

[C]c,me
d (s,s′)

ELSE

s′ = s
〈〈if (E)C〉〉c,me

d (s)⇔
[E]cd(s) = TRUE ⇒ 〈〈C〉〉c,me

d (s)

[if (E)C1 else C2]c,me
d (s,s′)⇔

LET v = [E]cd(s) IN

IF v =⊥ THEN

s′ = expthrow(s)
ELSE IF v = TRUE THEN

[C1]c,me
d (s,s′)

ELSE

[C2]c,me
d (s,s′)

〈〈if (E)C1 else C2〉〉c,me
d (s)⇔

LET v = [E]cd(s) IN

IF v =⊥
THEN TRUE

ELSE IF v = TRUE THEN 〈〈C1〉〉c,me
d (s) ELSE 〈〈C2〉〉c,me

d (s)

Figure 2.21: Command Semantics (2/5)

33

Variable Declaration A new context c′ is created by introducing a local vari-
able I. The declaration body C is executed in c′. The command terminates,
if the body does.

Variable Definition First, the expression E is evaluated. If this yields an unde-
fined value (⊥), the command raises an exception. Otherwise, a new context
c′ is created by introducing a local variable I and the variable denoted by I is
updated by the value. The definition body C is executed in c′. The command
terminates, if the body does.

Command Sequence The first command C1 is executed yielding an intermediate
state s0. If this state is not executing, it immediately represents the se-
quence’s poststate. Otherwise, the second command C2 is executed with s0
as its prestate which yields the sequence’s poststate. The command ter-
minates, if C1 terminates and if C2 terminates in every executing poststate
of C1.

One-Sided Conditional First, the expression E is evaluated. If this yields an
undefined value (⊥), the command raises an exception. Otherwise, if the
expression value is TRUE, the branch C is executed. The command termi-
nates, if C terminates in every state in which E yields TRUE.

Two-Sided Conditional First, the expression E is evaluated. If this yields an
undefined value (⊥), the command raises an exception. Otherwise, if the
value is TRUE, the first branch C1 is executed, and else the second branch
C2 is executed. The command terminates, if E yields⊥, or if E yields TRUE

and C1 terminates, or if E yields neither ⊥ nor TRUE and C2 terminates.

While Loop The behavior of a while loop is determined by two sequences of
states t and u both starting with the loop’s prestate s (see Figure 2.23). The
execution of the loop body C transforms every t(i) to u(i + 1) from which
the prestate t(i + 1) of the next iteration is constructed by setting the sta-
tus from “continuing” or “breaking” to “executing”. The loop is terminated
with state t(k) if u(k) indicates a “leaving” (not executing and not contin-
uing) state or if the loop expression E does not yield TRUE in t(k); if the
loop expression yields an undefined value, the poststate s′ is constructed
from t(k) by throwing an exception, otherwise s′ equals t(k). The loop ter-
minates if for every prestate t(k) of the loop body C the execution of C
terminates and if no infinite sequence of iterations arises.

Continue The statement sets the poststate to “continuing” and terminates.

Break The statement sets the poststate to “breaking” and terminates.

34 2.6 Command Semantics

Command Semantics (Contd)

[while (E) C]c,me
d (s,s′)⇔

∃k ∈ N, t,u ∈ State∞ :
t(0) = s∧u(0) = s ∧
(∀i ∈ Nk : iterate(i, t,u,s, [E]cd, [C]c,me

d)) ∧
(leaves(u(k))∨ [E]cd(t(k)) 6= TRUE) ∧
IF leaves(u(k))∨ [E]cd(t(k)) 6=⊥

THEN s′ = t(k)
ELSE s′ = expthrow(t(k))

〈〈while (E) C〉〉c,me
d (s)⇔

∀t,u ∈ State∞ : t(0) = s∧u(0) = s⇒
(∀k ∈ N :

(∀i ∈ Nk : iterate(i, t,u,s, [E]cd, [C]c,me
d)) ∧

¬leaves(u(k))∧ [E]cd(t(k)) = TRUE ⇒
〈〈C〉〉c,me

d (t(k))) ∧
¬(∀i ∈ N : iterate(i, t,u,s, [E]cd, [C]c,me

d)) ∧

[LS while (E)C]c,me
d (s,s′)⇔ . . . (as above)

〈〈LS while (E)C〉〉c,me
d (s)⇔ . . . (as above)

Figure 2.22: Command Semantics (3/5)

0 1 2 3 kk−1

0 1 2 3 kk−1

s′

[C] execute

s

st

u

expthrow

. . .

. . .

Figure 2.23: While Loop

35

Command Semantics (Contd)

[continue]c,me
d (s,s′)⇔ s′ = continue(s)

〈〈continue〉〉c,me
d (s)⇔ TRUE

[break]c,me
d (s,s′)⇔ s′ = break(s)

〈〈break〉〉c,me
d (s)⇔ TRUE

[return E]c,me
d (s,s′)⇔

LET v = [E]cd(s) IN

IF v =⊥
THEN s′ = expthrow(s)
ELSE s′ = return(s,v)

〈〈return E〉〉c,me
d (s)⇔ TRUE

[throw I E]c,me
d (s,s′)⇔

LET v = [E]cd(s) IN

IF v =⊥
THEN s′ = expthrow(s)
ELSE s′ = throw(s, I,c)

〈〈throw I E〉〉c,me
d (s)⇔ TRUE

[try C1 catch(Ik Iv)C2]c,me
d (s,s′)⇔

∃s0,s1 ∈ State :
[C1]c,me

d (s,s0) ∧
IF throws(control(s0))∧ key(control(s0)) = Ik THEN

LET c0 = push(c, Iv) IN

s1 = write(execute(s0), [Iv]c0,value(control(s0))) ∧
[C2]c0,me

d (s1,s′)
ELSE s′ = s0

〈〈try C1 catch(Ik Iv)C2〉〉c,me
d (s)⇔

〈〈C1〉〉c,me
d (s)∧

∀s0 ∈ State :
[C1]c,me

d (s,s0) ∧
executes(control(s0))∧ key(control(s0)) = Ik ⇒

LET c0 = push(c, Iv) IN

s1 = write(execute(s0), [Iv]c0,value(control(s0))) ∧
〈〈C2〉〉c0,me

d (s1)

Figure 2.24: Command Semantics (4/5)

36 2.6 Command Semantics

Command Semantics (Contd)

[R = Im(E1, . . . ,Ep)]c,me
d (s,s′)⇔

LET v1 = [E1]cd(s), . . . ,vp = [Ep]cd(s) IN

IF v1 =⊥∨ . . .∨ vp =⊥ THEN

s′ = expthrow(s)
ELSE

LET r = rel(method(me, Im,c)(v1, . . . ,vp)) IN

∃s0 ∈ State :
r(s,s0) ∧
IF throws(control(s0))

THEN s′ = s0
ELSE s′ = write(s0, [R]c,value(control(s0)))

〈〈R = Im(E1, . . . ,Ep)〉〉c,me
d (s)⇔

LET v1 = [E1]cd(s), . . . ,vp = [Ep]cd(s) IN

IF v1 =⊥∨ . . .∨ vp =⊥ THEN

s′ = expthrow(s)
ELSE

LET t = cond(method(me, Im,c)(v1, . . . ,vp)) IN t(s)

[assert F]c,me
d (s,s′)⇔ [F]ce(s,s)∧ s′ = s

〈〈assert F〉〉c,me
d (s)⇔ [F]ce(s,s)

Figure 2.25: Command Semantics (5/5)

37

Return First, the expression E is evaluated. If this yields an undefined value (⊥),
the command raises an exception. Otherwise, the statement sets the post-
state to “continuing” and the control value to the value of E and terminates.

Throw First, the expression E is evaluated. If this yields an undefined value
(⊥), the command raises an exception. Otherwise, the statement sets the
poststate to “throwing”, the control data’s key to the indicated identifier,
and the control data’s value to the expression value.

Exception Handler The first command C1 is executed yielding an intermediate
state s0. If s0 does not throw an exception of type Ik, it immediately repre-
sents the handler’s poststate. Otherwise, a new context c0 is created with the
handler’s parameter Iv as a local variable. A new executing state s1 is created
from s0 by updating this variable with the exception value of s0. Then C2 is
executed with s1 as prestate which yields the handler’s poststate. The com-
mand terminates, if C1 terminates and if C2 terminates in every prestate s1
that can be derived from any poststate s0 of C1 as indicated above.

Method Call First, the argument expressions E1, . . . ,Ep are evaluated. If any of
the evaluations yields an undefined value (⊥), the command raises an ex-
ception. Otherwise, the method environment me is looked up for the method
identified by Im. This method is applied to the argument values which yields
a command behavior from which the transition relation is extracted. The
application of this transition relation to the prestate gives a poststate s0;
if s0 throws an exception, it already represents the postate of the command.
Otherwise s0 is updated by writing into the variable referenced by R the
method’s return value. The method terminates, if the evaluation of some ar-
gument expression yields an undefined value, or if the command behavior’s
termination condition indicates termination.

Assertion If the condition holds, the command does not change the state. Other-
wise, the command blocks.

2.7 Expression Semantics

The core semantics of an expression E is defined in two parts (see Figure 2.26):
Given a context c and a state s,

• the value semantics [E]V maps E to a value.

• the definedness condition [E]D tells, whether this value makes sense or not.

38 2.8 Formula and Term Semantics

Expression Semantics

[] : Expression→ Context→ B→ StateFunction⊥
[E]cd(s) = IF d∨ [E]cD(s) THEN [E]cV(s) ELSE ⊥

[]D : Expression→ Context→ StateCondition
[R]cD(s)⇔ TRUE

[. . .]cD(s)⇔ . . .

[]V : Expression→ Context→ StateFunction
[R]cV(s) = read(s, [R]c)
[. . .]cV(s) = . . .

[] : Reference→ Context→ Variable
[I]c = lview(c)(I)
[?I]c = gview(c)(I)

Figure 2.26: Expression Semantics

The overall semantics [E]d then depends on a boolean value d:

• If d is true, the value of [E]V is unconditionally forwarded;

• If d is false, then [E]V is only returned if [E]D says that this makes sense;
otherwise, the special value ⊥ (“undefined value”) is returned.

In the second case, a command that evaluates the expression transforms an unde-
fined value to an “expression evaluation exception” in the command’s postate (see
the previous section).

2.8 Formula and Term Semantics

Figures 2.27 and 2.28 introduce the semantics of specification formulas while
Figure 2.29 defines the semantics of terms within these formulas. Here we should
especially note the differences in the semantics of references to program variables
in the prestate respectively poststate (R and R’), the semantics of logical value
variables ($I), and the semantics of logical state variables (#I).

39

Formula Semantics

[] : Formula→ Context×Environment→ StateRelation

[true]ce(s,s′)⇔ TRUE

[false]ce(s,s′)⇔ FALSE

[p(T1, . . . ,Tn)]ce(s,s′)⇔ [p]([T1]ce(s,s′), . . . , [Tn]ce(s,s′))
[T1 = T2]ce(s,s′)⇔ [T1]ce(s,s′) = [T2]ce(s,s′)
[T1 /= T2]ce(s,s′)⇔ [T1]ce(s,s′) 6= [T2]ce(s,s′)
[readsonly]ce(s,s′)⇔ s EQUALSc s′

[writesonly R1, . . . ,Rn]ce(s,s′)⇔
s = s′ EXCEPTc R1, . . . ,Rn

[!F]ce(s,s′)⇔¬[F]ce(s,s′)
[F1 and F2]ce(s,s′)⇔ [F1]ce(s,s′)∧ [F2]ce(s,s′)
[F1 or F2]ce(s,s′)⇔ [F1]ce(s,s′)∨ [F2]ce(s,s′)
[F1 => F2]ce(s,s′)⇔ [F1]ce(s,s′)⇒ [F2]ce(s,s′)
[F1 <=> F2]ce(s,s′)⇔ [F1]ce(s,s′)⇔ [F2]ce(s,s′)
[F1 xor F2]ce(s,s′)⇔ [F1]ce(s,s′) 6⇔ [F2]ce(s,s′)
[if F then F1 else F2]ce(s,s′)⇔

IF [F]ce(s,s′) THEN [F1]ce(s,s′) ELSE [F2]ce(s,s′)
[forall $I1, . . . ,$In: F]ce(s,s′)⇔

∀v1, . . . ,vn ∈Value : [F]ce[I1 7→v1,...,In 7→vn]v(s,s
′)

[exists $I1, . . . ,$In: F]ce(s,s′)⇔
∃v1, . . . ,vn ∈Value : [F]ce[I1 7→v1,...,In 7→vn]v(s,s

′)
[let $I1=T1, . . . ,$In=Tn in F]ce(s,s′)⇔

LET

e1 = e[I1 7→ [T1]ce(s,s′)]v
. . .
en = en−1[In 7→ [Tn]cen−1

(s,s′)]v
IN [F]cen

(s,s′)

. . . (continued in Figure 2.28)

Figure 2.27: Formula Semantics (1/2)

40 2.8 Formula and Term Semantics

Formula Semantics (Contd)

[] : Formula→ Context×Environment→ StateRelation

. . . (continued from Figure 2.27)

[allstate #I1, . . . ,#In: F]ce(s,s′)⇔
∀c1, . . . ,cn ∈ Control : [F]ce[I1 7→c1,...,In 7→cn]c(s,s

′)
[exstate #I1, . . . ,#In: F]ce(s,s′)⇔
∃c1, . . . ,cn ∈ Control : [F]ce[I1 7→c1,...,In 7→cn]c(s,s

′)
[U1 == S2]ce(s,s′)⇔ [U1]ce(s,s′) = [U2]ce(s,s′)
[U .executes]ce(s,s′)⇔ executes([U]ce(s,s′))
[U .continues]ce(s,s′)⇔ continues([U]ce(s,s′))
[U .breaks]ce(s,s′)⇔ breaks([U]ce(s,s′))
[U .returns]ce(s,s′)⇔ returns([U]ce(s,s′))
[U .throws]ce(s,s′)⇔ throws([U]ce(s,s′))
[U .throws I]ce(s,s′)⇔

LET c′ = [U]ce(s,s′) IN throws(c′)∧ key(c′) = I

[] : Predicate→ Predicate

[isnat](v)⇔ v ∈ N
[<](v1,v2)⇔ v1 < v2

[](v1, . . . ,vn)⇔ . . .

Figure 2.28: Formula Semantics (2/2)

41

Term Semantics

[] : Term→ Context×Environment→ BinaryStateFunction

[R]ce(s,s′) = read(s, [R]c)
[R’]ce(s,s′) = read(s′, [R]c)
[$I]ce(s,s′) = venv(e)(I)
[f (T1, . . . ,Tn)]ce(s,s′) = [f]([T1]ce(s,s′), . . . , [Tn]ce(s,s′))
[if F then T1 else T2]ce(s,s′) =

IF [F]ce(s,s′) THEN [T1]ce(s,s′) ELSE [T2]ce(s,s′)
[let $I1=T1, . . . ,$In=Tn in T]ce(s,s′)⇔

LET

e1 = e[I1 7→ [T1]ce(s,s′)]v
. . .
en = en−1[In 7→ [Tn]cen−1

(s,s′)]v
IN [T]cen

(s,s′)
[U .value]ce(s,s′) = value([U]ce(s,s′))

[] : State→ Context×Environment→ ControlFunction

[now]ce(s,s′) = control(s)
[next]ce(s,s′) = control(s′)
[#I]ce(s,s′) = cenv(e)(I)

[] : Function→ Function

[. . .](v1, . . . ,vn) = . . .

Figure 2.29: Term Semantics

Chapter 3

Judgements

In this chapter, we define the syntax and formal semantics of program judgements
which we are going to derive in our calculus.

3.1 Syntax

Figure 3.1 lists the syntax of the judgements that we are going to deal with. Their
informal interpretations are:

se ` RMs S {C} states that for a given specification environment se which de-
scribes “predefined” methods, the program is correct with respect to the
specifications of its own methods and its main command. In particular, the
execution of the program

1. does not encounter the evaluation of “undefined expressions”,

2. does not change any variables protected by the frame conditions,

3. does not throw any exceptions prohibited by the exception conditions,

4. does not exhibit any state transitions that violate the postconditions,

5. terminates in those states that are demanded by the preconditions.

se ` RMs states that above holds for all methods declared in RMs.

se ` RM states that above holds for all methods declared in RM.

se, Is ` Ms states that above holds for all methods declared in method set Ms
provided that Ms is part of a “recursive method set” consisting of those
methods named in Is.

42

43

List of Judgements

se ` RMs S {C}

se ` RMs
se ` RM

se, Is ` Ms
se, Is ` M
se ` M

se, Is,Vs ` CXF
se, Is,Vs ` C : F
se, Is,Vs ` C ↓I F

se, Is,Vs ` PRE(C,Q) = P
se, Is,Vs ` POST(C,P) = Q
se, Is,Vs ` ASSERT(C,P) = C′

F § Ks
Rs

F §c Fc

F §b Fb

F §s
Qs
Rs

F §e
Ls
Ks

|=Rs F

Figure 3.1: List of Judgements

44 3.1 Syntax

se, Is ` s states that above holds for method M provided that M is contained in a
“recursive method set” consisting of those methods named in Is.

se ` M states that above holds for M provided that M is non-recursive.

se, Is,Vs ` CXF states that in a state that satisfies F the execution of C does not
encounter the evaluation of “undefined expressions”, provided that

1. se represents a correct specification environment for the methods visi-
ble to C,

2. Is is empty and C occurs in a non-recursive method or Is is not empty
and C occurs in a method that is part of a recursive method set consist-
ing of those methods named in Is,

3. C occurs in the scope of those local variables that are identified by Vs.

se, Is,Vs ` C : F states that the state relation of command C is described by the
formula F , provided that the same constraints concerning se, Is,Vs hold that
were described above.

se, Is,Vs ` C ↓I F states that in a state that satisfies formula F the execution
of command C terminates, provided that the same constraints concerning
se, Is,Vs hold that were described above.

se, Is,Vs ` PRE(C,Q) = P and se, Is,Vs ` POST(C,P) = Q state the same1: if
command C is executed in a prestate in which formula P holds it only gives
rise to such a poststate in which formula Q holds.

se, Is,Vs ` ASSERT(C,P) = C′ assert states that if command C is executed in a
state in which formula P holds, it can be substituted by command C′ without
difference to the behavior of the program.

F § Ks
Rs states that any transition relation satisfying formula F ensures that only

the program variables referenced by Rs are changed and that no other ex-
ceptions are thrown than those listed in Ks.

F §c Fc states that any transition relation satisfying formula F ensures that the
poststate is “continuing” only if formula Fc is true.

F §c Fb states that any transition relation satisfying formula F ensures that the
poststate is “breaking” only if formula Fb is true.

F §s
Qs
Rs ensures that any transition relation satisfying formula F and only chang-
ing those variables listed in Qs only changes those variables listed in Rs.

1However, there will be different rules for the two judgements.

45

F §e
Ls
Ks ensures that any transition relation satisfying formula F and only throw-
ing those exceptions listed in Ls only throws those exceptions listed in Ks.

|=Rs F ensures that F is true for every prestate and poststate that differ visibly
only by those variables referenced in Rs.

3.2 Semantic Algebras

Figures 3.2 to 3.11 introduce new semantic domains and operations which are
needed to formalize the semantics of the judgements stated in the previous section.
The core definitions are those of the following predicates:

• bspecifies (Figure 3.7) describes the correctness property for a pre-defined
“base” method (i.e. a method with a behavior of type Behavior0),

• dspecifiesi (Figure 3.7) describes the correctness property for a direct (non-
recursive) method defined in the program at stage i (i.e. a method with a
behavior of type Behaviori+1),

• rspecifiesi, j (Figure 3.8) describes the correctness property for a recursive
method defined in the program at stage i and with a recursion depth bound j
(i.e. for a behavior of type RecBehaviori

j).

Based on these definitions, the following predicates express the correctness of
method environments with respect to specification environments:

• specifiesi (Figure 3.10) states that a method environment me at stage i is
well specified with respect to specification environment se in context c;

• rspecifiesi, j (Figure 3.9) states that a method environment me at stage i
and with recursion depth bound j (where identifiers Is denote the recur-
sive methods) is well specified with respect to specification environment se
in context c.

Finally, the predicates

• wellspecified (Figures 3.9 and 3.10) and

• iscorrect (Figure 3.11)

describe the semantics of the judgements as stated in the following section.

46 3.2 Semantic Algebras

Definitions: Contexts

isvalid ⊆ View×Space
isvalid(v,s)⇔
∀I1, I2 ∈ Identifier : I1 6= I2 ⇒ v(I1) 6= v(I2) ∧
∀I ∈ Identifier : v(I) 6∈ s

isvalid ⊆ Context
isvalid(c)⇔

LET s = space(c) IN

isvalid(gview(c),s)∧ isvalid(lview(c),s)

global⊆ Context
global(c)⇔ isvalid(c)∧gview(c) = lview(c)

c0 = c1 EXCEPT I1, . . . , In ≡
∀I ∈ Identifier : I 6= I1∧ . . .∧ I 6= In ⇒ [I]c0 = [I]c1

c0 = c1 AT I1, . . . , In :≡
∀I ∈ Identifier : I = I1∨ . . .∨ I = In ⇒ [I]c0 = [I]c1

c0 EQUALS c1 ≡
∀I ∈ Identifier : [I]c0 = [I]c1

contexts⊆ Context×Context
contexts(cg,cl)⇔

global(cg)∧ isvalid(cl)∧gview(cg) = gview(cl) ∧
space(cl)⊆ space(cg)

contexts⊆ Context×Context× Identifier∗

contexts(cg,cl, Is)⇔
contexts(cg,cl) ∧
cg = cl EXCEPT Is∧{[I]cl : I ∈ Is} ⊆ space(cg)

Figure 3.2: Definitions: Contexts

47

Definitions: Formulas and Terms

F is closed≡
∀c ∈ Context,e0,e1 ∈ Environment,s,s′ ∈ State :

[F]ce0
(s,s′)⇔ [F]ce1

(s,s′)

F does not depend on the poststate≡
∀c ∈ Context,e ∈ Environment,s,s0,s1 ∈ State :

[F]ce(s,s0)⇔ [F]ce(s,s1)

T is closed≡
∀c ∈ Context,e0,e1 ∈ Environment,s,s′ ∈ State :

[T]ce0
(s,s′) = [T]ce1

(s,s′)

T does not depend on the poststate≡
∀c ∈ Context,e ∈ Environment,s,s0,s1 ∈ State :

[T]ce(s,s0) = [T]ce(s,s1)

F makes $I a natural number≡
∀e ∈ Environment,c ∈ Context,s,s′ ∈ State :

[F]ce(s,s′)⇒ e(I) ∈ N

F makes T a natural number ≡
∀e ∈ Environment,c ∈ Context,s,s′ ∈ State :

[F]ce(s,s′)⇒ [T]ce(s,s′) ∈ N

Figure 3.3: Definitions: Formulas and Terms

48 3.2 Semantic Algebras

Definitions: Method Specifications

Spec := Reference∗× Identifier∗×Formula×Formula×Term
MethodSpec := Identifier∗×Spec
SpecEnv := Identifier→MethodSpec

spec :
Reference∗× Identifier∗×Formula×Formula×Term→ Spec

spec(Rs,Ks,FC,FR,T) = 〈Rs,Ks,FC,FR,T〉

pre : Spec→ Formula
pre(Rs,Ks,FC,FR,T) = FC

mspec : Identifier∗×Spec→MethodSpec
mspec(Is,S) = 〈Is,S〉

wellformed ⊆MethodSpec
wellformed(〈(J1, . . . ,Jp),〈Rs,Ks,FC,FR,T 〉〉)⇔
|{J1, . . . ,Jp}|= p ∧
{J1, . . . ,Jp} ∩ Rs = /0 ∧
FC,FR and T are closed ∧
FC and T do not depend on the poststate ∧
FC makes T a natural number

wellformed ⊆ LoopSpec
wellformed(invariant F decreases T)⇔

F and T are closed ∧
T does not depend on the poststate ∧
F makes T a natural number

Figure 3.4: Definitions: Method Specifications (1/2)

49

Definitions: Method Specifications (Contd)

[]∗ : RecMethods→
(RecMethod×SpecEnv)∗×SpecEnv→
(RecMethod×SpecEnv)∗×SpecEnv

[]∗(s,se) = 〈s,se〉
[RMs RM]∗(s,se) =

LET 〈s′,se′〉= [RMs]∗(s,se),se′′ = [RM]S(se′) IN

〈s′[LENGTH(s′) 7→ 〈RM,se′〉],se′′〉

[]S : RecMethods→ SpecEnv→ SpecEnv
[]S(se) = se
[RMs RM]S(se) = [RM]S([RMs]S(se))

[]S : RecMethod→ SpecEnv→ SpecEnv
[M]S(se) = [M]S(se)
[recursive Ms]S(se) = [Ms]S(se)

[]I : RecMethod→ P(Identifier)
[M]I = {[M]I}
[recursive Ms]I = [Ms]I

Figure 3.5: Definitions: Method Specifications (2/3)

50 3.2 Semantic Algebras

Definitions: Method Specifications (Contd)

[]S : Methods→ SpecEnv→ SpecEnv
[]S(se) = se
[Ms M]S(se) = [M]S([Ms]S(se))

[]S : Method→ SpecEnv→ SpecEnv
[method Im(J1, . . . ,Jp) S {C}]S(se) =

se[Im 7→ [method Im(J1, . . . ,Jp) S {C}]S]

[]S : Method→MethodSpec
[method Im(J1, . . . ,Jp) S {C}]S = mspec((J1, . . . ,Jp), [S])

[] : Specification→ Spec
[writesonly R1, . . . ,Rn,throwsonly K1, . . . ,Km

requires FC ensures FR decreases T] =
spec((R1, . . . ,Rn),(K1, . . . ,Km),FC,FR,T)

Figure 3.6: Definitions: Method Specifications (3/3)

51

Definitions: Method Correctness

bspecifies⊆ SpecEnv×MethodEnv0×Context
bspecifies(se,me,c)⇔∀Im ∈ Identifier : bspecifies(se,me,c, Im)

bspecifies⊆ SpecEnv×MethodEnv0×Context× Identifier
bspecifies(se,me,c, Im)⇔

wellformed(se(Im))∧bspecifies(se(Im),me,c, Im)

bspecifies⊆MethodSpec×MethodEnv0×Context× Identifier
bspecifies(〈(J1, . . . ,Jp),〈Rs,Ks,FC,FR,T 〉〉,me,c, Im)⇔
∀c′ ∈ Context,s,s′ ∈ State,v1, . . . ,vp ∈ Value,e ∈ Environment :

contexts(c,c′)∧ executes(control(s)) ⇒
LET

com = method(me, Im,c′)(v1, . . . ,vp),
c′′ = push(c′,J1, . . . ,Jp),
s1 = writes(s,J1,v1, . . . ,Jp,vp)c′′

IN

(rel(com)(s,s′) ⇒
([FC]c

′′
e (s1,s′)⇒ [FR]c

′′
e (s1,s′)) ∧

s = s′ EXCEPT range(c′)∪ range(gview(c)) ∧
s = s′ EXCEPTc Rs ∧
(executes(control(s′))∨ throws(control(s′))) ∧
(throws(control(s′))⇒ key(control(s′)) ∈ Ks)) ∧

([FC]c
′′

e (s1,s1)⇒ cond(com)(s))

dspecifiesi ⊆ SpecEnv×DirMethodEnvi×Context
dspecifiesi(se,me,c)⇔∀Im ∈ Identifier : dspecifiesi(se,me,c, Im)

dspecifiesi ⊆ SpecEnv×DirMethodEnvi×Context× Identifier
dspecifiesi(se,me,c, Im)⇔

wellformed(se(Im))∧dspecifiesi(se(Im),me,c, Im)

dspecifiesi ⊆MethodSpec×DirMethodEnvi×Context× Identifier
dspecifiesi(〈(J1, . . . ,Jp),〈Rs,Ks,FC,FR,T 〉〉,me,c, Im)⇔

. . . (like above)

Figure 3.7: Definitions: Method Correctness (1/4)

52 3.2 Semantic Algebras

Definitions: Method Correctness (Contd)

rspecifiesi, j ⊆
SpecEnv×RecMethodEnvi

j×Context× Identifier×B
rspecifiesi(se,me,c, Im, isrec)⇔

wellformed(se(Im))∧ rspecifiesi, j(se(I),me,c, Im, isrec)

rspecifiesi, j ⊆
MethodSpec×RecMethodEnvi

j×Context× Identifier×B
rspecifiesi, j(〈(J1, . . . ,Jp),〈Rs,Ks,FC,FR,T 〉〉,me,c, Im, isrec)⇔
∀c′ ∈ Context,s,s′ ∈ State,v1, . . . ,vp ∈ Value,e ∈ Environment :

contexts(c,c′)∧ executes(control(s)) ⇒
LET

com = recmethodi, j(me, Im,c′)(v1, . . . ,vp),
c′′ = push(c′,J1, . . . ,Jp),
s1 = writes(s,J1,v1, . . . ,Jp,vp)c′′

IN

(rel(com)(s,s′) ⇒
([FC]c

′′
e (s1,s′)⇒ [FR]c

′′
e (s1,s′)) ∧

s = s′ EXCEPT range(c′)∪ range(gview(c)) ∧
s = s′ EXCEPTc Rs ∧
(executes(control(s′))∨ throws(control(s′))) ∧
(throws(control(s′))⇒ key(control(s′)) ∈ Ks)) ∧

([FC]c
′′

e (s1,s1)⇒
(¬isrec∨ j > [T]c

′′
e (s1,s1))⇒ cond(com)(s))

Figure 3.8: Definitions: Method Correctness (2/4)

53

Definitions: Method Correctness (Contd)

rspecifiesi, j ⊆ SpecEnv×MethodEnvi
j×Context ×

P(Identifier)×P(Identifier)
rspecifiesi, j(se,me,c, Is,Js)⇔
∀Im ∈ Js : rspecifiesi, j(se,me,c, Im, Im ∈ Is)

rspecifiesi, j ⊆ SpecEnv×MethodEnvi
j×Context×P(Identifier)

rspecifiesi, j(se,me,c, Is)⇔ rspecifiesi, j(se,me,c, Is, Identifier)

wellspecified ⊆Method×SpecEnv×P(Identifier)
wellspecified(M,se, Is)⇔
∀c ∈ Context,d ∈ B :
∀i, j ∈ N,me ∈MethodEnvi

j,me′ ∈MethodEnvi
j+1 :

rspecifiesi, j(se,me,c, Is)⇒
rspecifiesi, j+1(se, [M]gview(c)

d,i, j (me,me′),c, Is,{[M]I})

wellspecified ⊆Methods×SpecEnv×P(Identifier)
wellspecified(Ms,se, Is)⇔
∀c ∈ Context,d ∈ B :
∀i, j ∈ N,me ∈MethodEnvi

j,me′ ∈MethodEnvi
j+1 :

rspecifiesi, j(se,me,c, Is)⇒
rspecifiesi, j+1(se, [Ms]gview(c)

d,i, j (me,me′),c, Is, [Ms]I)

Figure 3.9: Definitions: Method Correctness (3/4)

54 3.2 Semantic Algebras

Definitions: Method Correctness (Contd)

specifiesi ⊆ SpecEnv×MethodEnvi×Context×P(Identifier)
specifiesi(se,me,c, Is)⇔

IF i = 0 THEN

bspecifies(se,me,c)
ELSE IF me ∈ DirMethodEnvi−1 THEN

dspecifiesi−1(se,me,c)
ELSE

∀ j ∈ N : rspecifiesi−1, j(se,me j,c, Is)

specifiesi ⊆ SpecEnv×MethodEnvi×Context×P(Identifier)
specifiesi(se,me,c)⇔ specifiesi(se,me,c, /0)

wellspecified ⊆Method×SpecEnv
wellspecified(M,se)⇔
∀c ∈ Context,d ∈ B :
∀i ∈ N,me ∈MethodEnvi :

specifiesi(se,me,c)⇒ specifiesi+1(se,envgview(c),me,M
d,i ,c)

wellspecified ⊆ RecMethod×SpecEnv
wellspecified(RM,se)⇔
∀c ∈ Context, i ∈ N,me ∈MethodEnvi,d ∈ B :

specifiesi(se,me,c)⇒
specifiesi+1([RM]S(se), [RM]gview(c)

d,i (me),c)

wellspecified ⊆ RecMethods×SpecEnv
wellspecified(RMs,se)⇔

LET r = [RMs]∗(/0,se).1 IN

∀i ∈ Nlength(r) : wellspecified(r(i).1,r(i).2)

Figure 3.10: Definitions: Method Correctness (4/4)

55

Definitions: Program Correctness

iscorrect ⊆ Spec×Context×Environment×State×State
iscorrect(〈Rs,Ks,FC,FR,T 〉,c,e,s,s′)⇔

([FC]ce(s,s)⇒ [FR]ce(s,s′)) ∧
s = s′ EXCEPTc Rs ∧
¬continues(control(s′))∧¬breaks(control(s′)) ∧
(throws(control(s′))⇒ key(control(s′)) ∈ Ks)

Figure 3.11: Definitions: Program Correctness

3.3 Judgement Semantics

Figures 3.12 to 3.16 introduce the semantic interpretation of the judgements based
on the predicates introduced in the previous sections. The definitions are intended
to formalize the informal semantics sketched at the beginning of this chapter. As
for the formalization of “does not encounter the evaluation of undefined expres-
sions”, we chose the strategy to state that the execution of the program does not
depend on the “definedness flag” d which decides whether an unevaluated ex-
pression gives rise to an “evaluation exception”; we may thus chose the (simpler)
semantics without such exceptions when reasoning about these programs.

56 3.3 Judgement Semantics

Method Judgements

se ` RMs S {C} ⇔
specifies(RMs,se) ∧
LET se′ = [RMs]S(se) IN

∀c ∈ Context, i ∈ N,me ∈MethodEnvi :
global(c)∧ specifiesi(se′,me,c) ⇒
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))⇒
([C]c,me

TRUE(s,s′)⇔ [C]c,me
FALSE(s,s′)) ∧

(〈〈C〉〉c,me
TRUE(s)⇔ 〈〈C〉〉c,me

FALSE(s)) ∧
([C]c,me

TRUE(s,s′)⇒ iscorrect([S]S,c,e,s,s
′)) ∧

([pre(S)]ce(s,s)⇒ 〈〈C〉〉c,me
TRUE(s))

se ` RMs ⇔ wellspecified(RMs,se)

se ` RM ⇔ wellspecified(RM,se)

se, Is ` Ms ⇔ wellspecified(Ms,se, Is)

se, Is ` M ⇔ wellspecified(M,se, Is)

se ` M ⇔ wellspecified(M,se)

Figure 3.12: Method Judgements

57

Command Judgements

se, Is,Vs ` CXF ⇔
F is closed ∧ F does not depend on the poststate ⇒
∀cg,cl ∈ Context, i ∈ N,me ∈MethodEnvi :

contexts(cg,cl,Vs)∧ specifiesi(se,me,cg, Is)⇒
∀e ∈ Environment,s,s′ ∈ State :

executes(control(s))∧ [F]cl
e (s,s)⇒

([C]cl ,me
TRUE(s,s′)⇔ [C]cl ,me

FALSE(s,s′)) ∧
(〈〈C〉〉cl ,me

TRUE(s)⇔ 〈〈C〉〉cl ,me
FALSE(s))

se, Is,Vs ` C : F ⇔
F is closed ∧
∀cg,cl ∈ Context, i ∈ N,me ∈MethodEnvi :

contexts(cg,cl,Vs)∧ specifiesi(se,me,cg, Is)⇒
∀e ∈ Environment,s,s′ ∈ State :

executes(control(s))∧ [C]cl ,me
TRUE(s,s′)⇒

[F]cl
e (s,s′)

se, Is,Vs ` C ↓I F ⇔
F is closed ∧ F does not depend on the poststate ∧
F makes $I a natural number⇒
∀cg,cl ∈ Context, i ∈ N,me ∈MethodEnvi :

contexts(cg,cl,Vs)∧ specifiesi(se,me,cg, Is)⇒
∀e ∈ Environment,s ∈ State :

executes(control(s))∧ [F]cl
e (s,s)∧ i≥ e(I)⇒

〈〈C〉〉cl ,me
TRUE(s)

Figure 3.13: Command Judgements

58 3.3 Judgement Semantics

Transformation Judgements

se, Is,Vs ` PRE(C,Q) = P ⇔
Q does not depend on the poststate⇒

P does not depend on the poststate ∧
∀cg,cl ∈ Context, i ∈ N,me ∈MethodEnvi :

contexts(cg,cl,Vs)∧ specifiesi(se,me,cg, Is)⇒
∀e ∈ Environment,s,s′ ∈ State :

executes(control(s))∧ [P]cl
e (s,s)⇒

([C]cl ,me
TRUE(s,s′)⇒ [Q]cl

e (s′,s′))

se, Is,Vs ` POST(C,P) = Q ⇔
P does not depend on the poststate⇒

Q does not depend on the poststate ∧
∀cg,cl ∈ Context, i ∈ N,me ∈MethodEnvi :

contexts(cg,cl,Vs)∧ specifiesi(se,me,cg, Is)⇒
∀e ∈ Environment,s,s′ ∈ State :

executes(control(s))∧ [P]cl
e (s,s)⇒

([C]cl ,me
TRUE(s,s′)⇒ [Q]cl

e (s′,s′))

se, Is,Vs ` ASSERT(C,P) = C′ ⇔
P does not depend on the poststate⇒
∀cg,cl ∈ Context, i ∈ N,me ∈MethodEnvi :

contexts(cg,cl,Vs) ∧ specifiesi(se,me,cg, Is)⇒
∀e ∈ Environment,s,s′ ∈ State :

executes(control(s))⇒
([C′]cl ,me

TRUE(s,s′)⇔
[P]cl

e (s)∧ [C]cl ,me
TRUE(s,s′)) ∧

(〈〈C′〉〉cl ,me
TRUE(s)⇔

[P]cl
e (s)∧〈〈C〉〉cl ,me

TRUE(s))

Figure 3.14: Transformation Judgements

59

Frame Judgements

F § Ks
Rs ⇔
∀c ∈ Context,s,s′ ∈ State,e ∈ Environment :

global(c)∧ executes(control(s)) ∧
[F]ce(s,s′)⇒
¬continues(control(s′))∧¬breaks(control(s′)) ∧
s = s′ EXCEPTc Rs ∧
(throws(control(s′))⇒ key(control(s′)) ∈ Ks)

F §c Fc ⇔
∀c ∈ Context,s,s′ ∈ State,e ∈ Environment :

global(c)∧ executes(control(s)) ∧
[F]ce(s,s′)∧ [Fc]ce(s,s)⇒
¬continues(control(s′))

F §b Fb ⇔
∀c ∈ Context,s,s′ ∈ State,e ∈ Environment :

global(c)∧ executes(control(s)) ∧
[F]ce(s,s′)∧ [Fb]ce(s,s)⇒
¬breaks(control(s′))

F §s
Qs
Rs ⇔
∀c ∈ Context,s,s′ ∈ State,e ∈ Environment :

global(c)∧ executes(control(s)) ∧
[F]ce(s,s′)∧ s = s′ EXCEPT Rs ⇒

s = s′ EXCEPT Qs

F §e
Ls
Ks ⇔
∀c ∈ Context,s,s′ ∈ State,e ∈ Environment :

global(c)∧ executes(control(s)) ∧
[F]ce(s,s′)∧ throws(control(s′)) ∧
key(control(s′)) ∈ Ks⇒

key(control(s′)) ∈ Ls

Figure 3.15: Frame Judgements

60 3.3 Judgement Semantics

Formula Judgements

|=Rs F ⇔
∀c ∈ Context,e ∈ Environment,s,s′ ∈ State :

s = s′ EXCEPTc Rs ⇒
[F]ce(s,s′)

Figure 3.16: Formula Judgements

Chapter 4

Rules

In this chapter we give rules for deriving judgements of the kinds introduced in
Chapter 3. We claim that the rules are sound, i.e. that by their application only
judgements can be derived that are true with respect to their formal semantics.

4.1 Definitions

Figures 4.1 and 4.2 give auxiliary definitions used in the formulation of the rules:

[F]Fc,Fb,Fr,{K1,...,Kn}
Rs denotes a transition relation by a particular pattern of a spec-

ification formula: its form makes explicit which variables may be changed
by the transition, which exceptions may be thrown, and whether the transi-
tion may result in a continuing, breaking, or returning poststate.

' and
D' translate program expressions to formulas respectively terms: ' trans-

lates an expression to an equivalent formula respectively term while
D' gen-

erates from an expression a formula that characterizes those states in which
the expression is defined1.

[R]Vs
R determines a canonical version of reference R in the scope of the local

variables names Vs: this version is identical to R, except that if R is a global
reference which is not shadowed by the declarations in Vs, then it is replaced
by the local version of R (which refers to the same variable).

1The translation depends on the expression language and the predicates/functions of the for-
mula language; we therefore give no rules for the translation in our calculus.

61

62 4.1 Definitions

[F]Fc,Fb,Fr,{K1,...,Kn}
Rs ≡
F and writesonly Rs and
(next.continues => Fc) and
(next.breaks => Fb) and
(next.returns => Fr) and
(next.throws =>

(next.throws K1 or . . . or next.throws Kn))

' ⊆ Expression×Formula
E ' F ⇔

F has no primed program variables ∧
F has no occurrence of next ∧
∀c ∈ Context,e ∈ Environment,s,s′ ∈ State :

[E]cV(s) = TRUE ⇔ [F]ce(s,s′)

' ⊆ Expression×Term
E ' T ⇔

T has no primed program variables ∧
T has no occurrence of next ∧
∀c ∈ Context,e ∈ Environment,s,s′ ∈ State :

[E]cV(s) = [T]ce(s,s′)

D' ⊆ Expression×Formula

E
D' FD ⇔
∀c ∈ Context,s ∈ State,s′ ∈ State :
∀s ∈ State : [E]cD(s)⇔ [FD]ce(s,s′)

Figure 4.1: Definitions (1/2)

63

[]R : Reference→ P(Identifier)→ Reference
[I]Vs

R = I
[?I]Vs

R = IF I ∈ Vs THEN ?I ELSE I

Invariant(G,H,F){R1,...,Rn} ≡
G is closed ∧
$I1, . . . ,$In,#Is,#It do not occur in G,H, and F ∧
|={R1,...,Rn}

forall $I1, . . . ,$In: allstate #Is,#It :
(G[#Is/next][$I1/R1’, . . . ,$In/Rn’]

and (#Is.executes or #Is.continues)
and #It .executes
and H[#It/now][$I1/R1, . . . ,$In/Rn]
and F [#It/now][$I1/R1, . . . ,$In/Rn])

=> G)

Figure 4.2: Definitions (2/2)

Invariant(G,H,F){R1,...,Rn} essentially describes the obligation of proving that G
is an invariant for a loop whose condition is denoted by formula H and
where the effect of every iteration (which changes only variables identified
by {R1, . . . ,Rn}) is described by formula F .

Based on these definitions, we give in the following section rules for each kind of
judgement.

64 4.2 Judgement se ` RMs S {C}

se ` RMs
wellformed(S)
S = writesonly Rs throwsonly Ks

requires FC ensures FR decreases T
se′ = [RMs]S(se)
se′, /0, /0 ` C : [F]Fc,Fb,Fr,Ls

Ms
[F]Fc,Fb,Fr,Ls

Ms § Ks
Rs

se′, /0, /0 ` CXFC
|=Rs (now.executes and F) => (FC => FR)
se′, /0, /0 ` C ↓J FC and $J = T
se ` RMs S {C}

Figure 4.3: Rules for se ` RMs S {C}

4.2 Judgement se ` RMs S {C}

Based on the rule depicted in Figure 4.3, to verify the correctness of a program
with respect to its specification, we have to

• verify correctness of the methods RMs with respect to their specifications,

• check well-formedness of the specification S of the main command C,

• compute the specification environment se′ established by the methods for
use in the further steps,

• compute the formula [F]Fc,Fb,Fr,Ls
Ms denoting the transition relation of C,

• check that this formula preserves several general constraints (command
does not result in a continuing or breaking postate, only modifies variables
and throws exceptions allowed by S),

• check that the execution of C does not encounter the evaluation of any un-
defined expression in those states that are allowed by precondition Fc,

• verify that F implies the core specification Fc => FR,

• verify that C terminates in every state allowed by FC.

The correctness of the last judgement does actually not depend on the correctness
of th main command’s termination measure T , because the command does not

65

appear in a recursive method set; the measure can therefore be skipped from the
specification and the clause “and $J = T ” can be omitted from the last judgement.

66 4.3 Judgement se ` RMs

se `
se ` RMs
se′ = [RMs]S(se)
se′ ` RM
se ` RMs RM

Figure 4.4: Rules for se ` RMs

4.3 Judgement se ` RMs

This judgement verifies the correctness of the method declarations RMs by ver-
ifying each component of RMs in the specification environment set up by the
previous components.

67

se ` M
se ` M

Is = [Ms]I
se, Is ` Ms
se ` recursive Ms

Figure 4.5: Rules for se ` RM

4.4 Judgement se ` RM

This judgement distinguishes between two kinds of method definitions, the defini-
tion of a non-recursive method M and the definition of a recursive method set Ms.
The verification tasks are correspondingly delegated to the respective judgements.

68 4.5 Judgement se, Is ` Ms

se, Is `
se, Is ` M
se, Is ` Ms
se, Is ` M Ms

Figure 4.6: Rules for se, Is ` Ms

4.5 Judgement se, Is ` Ms

To verify the correctness of a recursive method set, the correctness of each element
of the set can be independently verified.

69

wellformed((J1, . . . ,Jp),S)
S = writesonly Rs throwsonly Ks

requires FC ensures FR decreases T
se, Is,{J1, . . . ,Jp} ` C : [F]Fc,Fb,Fr,Ls

Ms
$J1, . . . ,$Jp,$L1, . . . ,$Lp do not occur in F
[exists $J1, . . . ,$Jp,$L1, . . . ,$Lp:

F [$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’]
]Fc,Fb,Fr,Ls
Ms\{J1,...,Jp} § Ks

Rs

se, Is,{J1, . . . ,Jp} ` CXFC
#Is does not occur in F
|=Rs

(now.executes and
exstate #Is:

F [#Is/next] and
if #Is.throws then

next == #Is
else

next.executes and
next.value = #Is.value) => (FC => FR)

se, Is,{J1, . . . ,Jp} ` C ↓J FC and $J = T
se, Is ` method Im(J1, . . . ,Jp) S {C}

Figure 4.7: Rules for se, Is ` M

4.6 Judgement se, Is ` M

This judgement verifies the correctness of a recursive method that occurs in a
recursive method set that consists of those methods named in Is. The overall
verification steps are similar as for establishing the correctness of the program’s
main command:

• check wellformedness of the specification S of the method,

• compute the formula [F]Fc,Fb,Fr,Ls
Ms denoting the transition relation of method

body C,

• check that this formula preserves several general constraints (the method
body does not result in a continuing or breaking postate, and only modifies
those variables and throws those exceptions that are allowed by S),

70 4.6 Judgement se, Is ` M

• check that the execution of C does not encounter the evaluation of any un-
defined expression in those states that are allowed by precondition Fc,

• verify that a modified version of F implies the core specification Fc => FR,

• verify that C terminates in every state allowed by precondition FC using not
more recursive invocations than denoted by the termination measure T .

The modification of F in the last but one step reflects the fact that a “returning”
poststate of the method body C is set to “executing” on return of the method.

71

se, /0 ` M
se ` M

Figure 4.8: Rules for se ` M

4.7 Judgement se ` M

The verification of a non-recursive method M is simply delegated to the rule for
the verification of a recursive method with, however, an empty set of recursive
methods. The only difference in the core verification will be the proof of termi-
nation where it will be not necessary to consider the termination measure in the
specification of M (which thus can be omitted from the specification of M).

72 4.8 Judgement se, Is,Vs ` CXF

4.8 Judgement se, Is,Vs ` CXF

The rules for this judgement verify that, for given specification environment se,
recursive method names Is, local variable names Vs, the execution of command C
in a state for which condition F holds does not encounter the evaluation of “un-
defined expressions”. By the application of the rules, for every expression E with
“definedness condition” FD, a proof obligation of form |=Rs . . . => FD is generated.
Some points to be highlighted are:

• For all local variables (introduced in variable declarations, variable defi-
nitions, and exception handler parameters), it is distinguished whether the
declaration shadows a global variable I (then I has to be replaced by ?I in
the respective state condition) or just another local variable I (then I has to
be replaced by a new mathematical variable $J).

• In the rules for command sequences and exception handlers, it is neces-
sary to generate the postconditions holding after the execution of the first
command C1.

• The handling of loops profits from the existence of a loop invariant G which
can be used to strengthen the condition P that holds before the execution of
the loop body C.

• The rule for method calls only verifies the well-definedness of the method’s
arguments. It could be, however, also easily strengthened to verify the cor-
rectness of the method’s precondition (since the violation of a precondition
typically indicates an error situation rather than a lack of interest in the
properties of the poststate).

73

E
D' FD

|= /0 (now.executes and F) => FD
se, Is,Vs ` I=E XF

I 6∈ Vs
se, Is,Vs∪{I} ` CXF [?I/I]
se, Is,Vs ` var I;CXF

I ∈ Vs
$J does not occur in F
se, Is,Vs ` CXexists $J : F [$J/I]
se, Is,Vs ` var I;CXF

I 6∈ Vs

E
D' FD

|= /0 (now.executes and F) => FD
E ' T
se, Is,Vs∪{I} ` CXF [?I/I] and I = T [?I/I]
se, Is,Vs ` var I=E;CXF

I ∈ Vs

E
D' FD

|= /0 (now.executes and F) => FD
E ' T
$J does not occur in F and T
se, Is,Vs ` CXexists $J : F [$J/I] and I = T [$J/I]
se, Is,Vs ` var I=E;CXF

Figure 4.9: Rules for se, Is,Vs ` CXF (1/4)

74 4.8 Judgement se, Is,Vs ` CXF

se, Is,Vs ` POST(C1,F) = G
se, Is,Vs ` C1 XF
se, Is,Vs ` C2 XG
se, Is,Vs ` C1;C2 XF

E
D' FD

|= /0 (now.executes and F) => FD
E ' G
se, Is,Vs ` CXF and G
se, Is,Vs ` if (E)CXF

E
D' FD

|= /0 (now.executes and F) => FD
E ' G
se, Is,Vs ` C1 XF and G
se, Is,Vs ` C1 XG and !G
se, Is,Vs ` if (E)C1 else C2 XF

Figure 4.10: Rules for se, Is,Vs ` CXF (2/4)

75

E
D' FD

|= /0 (now.executes and F) => FD
E ' H
se, Is,Vs ` C : [FR]Fc,Fb,Fr,Ks

R1,...,Rn

$I1, . . . ,$In,#Is do not occur in F
P = H and

exists $I1, . . . ,$In: exstate #Is:
F [#Is/now][$I1/R1, . . . ,$In/Rn]

se, Is,Vs ` CXP
se, Is,Vs ` POST(C,P) = Q
|= /0 ((now.executes or now.continues) and Q) => FD
se, Is,Vs ` while(E)CXF

E
D' FD

|= /0 (now.executes and F) => FD
E ' H
se, Is,Vs ` C : [FR]Fc,Fb,Fr,Ks

R1,...,Rn

Invariant(G,H,FR){R1,...,Rn}
$I1, . . . ,$In,#Is,#It do not occur in F and G
P = H and

exists $I1, . . . ,$In: exstate #Is,#It :
F [#Is/now][$I1/R1, . . . ,$In/Rn] and
(G[now/next][R1/R1’, . . . ,Rn/Rn’]

[#Is/now][$I1/R1, . . . ,$In/Rn] =>
G[#Is/now][$I1/R1, . . . ,$In/Rn]

[#It/next][R1/R1’, . . . ,Rn/Rn’] and
(!(#It .continues or #It .breaks) =>

now == #It))
se, Is,Vs ` CXP
se, Is,Vs ` POST(C,P) = Q
|= /0 ((now.executes or now.continues) and Q) => FD
se, Is,Vs `

invariant G decreases T while(E)CXF

Figure 4.11: Rules for se, Is,Vs ` CXF (3/4)

76 4.8 Judgement se, Is,Vs ` CXF

se, Is,Vs ` continueXF

se, Is,Vs ` breakXF

E ' FD
|= /0 (now.executes and F) => FD
se, Is,Vs ` return E XF

E ' FD
|= /0 (now.executes and F) => FD
se, Is,Vs ` throw Ik E XF

Iv 6∈ Vs
se, Is,Vs ` C1 XF
se, Is,Vs ` POST(C1,F) = G
#Is does not occur in G
se, Is,Vs∪{Iv} ` C2 X

exstate #Is:
G[#Is/now][?Iv/Iv] and
#Is.throws Ik and #Is.value = Iv

se, Is,Vs ` try C1 catch(Ik Iv)C2 XF

Iv ∈ Vs
se, Is,Vs ` C1 XF
se, Is,Vs ` POST(C1,F) = G
$I,#Is do not occur in G
se, Is,Vs ` C2 X

exists $I: exstate #Is:
G[#Is/now][$I/Iv] and
#Is.throws Ik and #Is.value = Iv

se, Is,Vs ` try C1 catch(Ik Iv)C2 XF

E1
D' F1, . . . ,EP

D' Fp
|= /0 (now.executes and F) => (F1 and . . . and Fp)
se, Is,Vs ` Ir = Im(E1, . . . ,Ep)XF

se, Is,Vs ` assert GXF

Figure 4.12: Rules for se, Is,Vs ` CXF (4/4)

77

4.9 Judgement se, Is,Vs ` C : F

The rules for this judgement are constructed in such a way that they compute for
given specification environment se, recursive method names Is, and local variable
names Vs, from a command C a formula F which captures the transition relation
of C; the formula is actually computed in the form

[F]Fc,Fb,Fr,{K1,...,Kn}
Rs

which makes the “external effects” of the transition explicit.

We highlight the following items:

• The first two rules are generic i.e. the do not depend on the kind of com-
mand: the first one allows to widen the frame Rs by another reference R,
while the second one allows to shrink the frame, if it can be proved that a
variable does not change from pre- to poststate. The first rule has to be es-
pecially applied in connection with the rules for the two-sided conditional,
command sequence, and exception handler, since these involve two com-
mands C1 and C2 whose transition relations have to be extended to a com-
mon frame (typically the smallest possible one).

• The rules for variable declarations, variable definitions, and exception han-
dlers come in three variants depending on whether the declared identifier I
shadows a global variable or not, and if not, whether the global variable is
changed by the command body or not.

• The first rule for command sequences handles the special case that the first
command C1 always results in an “executing” poststate while the second
rule handles the general case.

• There are two rules for each version of the while loop (with and without
invariants) that depend on the case whether the loop body may result in a
“breaking” state or not: only in the second case an “executing” poststate of
the loop indicates that the loop condition does not hold any more.

• If a loop is provided with an invariant G, a corresponding proof obligation
is generated (see the definition of Invariant); G may be used to strengthen
the generated transition formula (which is otherwise pretty weak).

• The rule for method calls comes in two variants depending on the fact
whether the reference Ir denotes a global variable or not. If the method
raises an exception, it may have changed Ir in the first case while Ir remains
unchanged in the second case.

78 4.9 Judgement se, Is,Vs ` C : F

se, Is,Vs ` C : [F]Fc,Fb,Fr,Ks
Rs

R 6∈ Rs
se, Is,Vs ` C : [F and R’= R]Fc,Fb,Fr,Ks

Rs∪{R}

se, Is,Vs ` C : [F]Fc,Fb,Fr,Ks
Rs

|=Rs F => R’= R
se, Is,Vs ` C : [F]Fc,Fb,Fr,Ks

Rs\{R}

E ' T

se, Is,Vs ` R = E : [R’=T and next.executes] false,false,false, /0
{[R]Vs

R }

I 6∈ Vs
se, Is,Vs∪{I} ` C : [F]Fc,Fb,Fr,Ks

Rs
?I ∈ Rs
$Ia,$Ib do not occur in F
se, Is,Vs ` var I;C :

[exists $Ia,$Ib: F [$Ia/I,$Ib/I’][I/?I, I’/?I’]]Fc,Fb,Fr,Ks
(Rs\{?I})∪{I}

I 6∈ Vs
se, Is,Vs∪{I} ` C : [F]Fc,Fb,Fr,Ks

Rs
?I 6∈ Rs
$Ia,$Ib do not occur in F
se, Is,Vs ` var I;C :

[exists $Ia,$Ib: F [$Ia/I,$Ib/I’][I/?I, I’/?I’]]Fc,Fb,Fr,Ks
Rs\{I}

I ∈ Vs
se, Is,Vs ` C : [F]Fc,Fb,Fr,Ks

Rs
$Ia,$Ib do not occur in F
se, Is,Vs ` var I;C :

[exists $Ia,$Ib: F [$Ia/I,$Ib/I’]]Fc,Fb,Fr,Ks
Rs\{I}

Figure 4.13: Rules for se, Is,Vs ` C : F (1/8)

79

I 6∈ Vs
se, Is,Vs∪{I} ` C : [F]Fc,Fb,Fr,Ks

Rs
?I ∈ Rs
$Ia,$Ib do not occur in F
E ' T
se, Is,Vs ` var I=E;C :

[exists $Ia,$Ib: $Ia = T and
F [$Ia/I,$Ib/I’][I/?I, I’/?I’]]Fc,Fb,Fr,Ks

(Rs\{?I})∪{I}

I 6∈ Vs
se, Is,Vs∪{I} ` C : [F]Fc,Fb,Fr,Ks

Rs
?I 6∈ Rs
$Ia,$Ib do not occur in F
E ' T
se, Is,Vs ` var I=E;C :

[exists $Ia,$Ib: $Ia = T and
F [$Ia/I,$Ib/I’][I/?I, I’/?I’]]Fc,Fb,Fr,Ks

Rs\{I}

I ∈ Vs
se, Is,Vs ` C : [F]Fc,Fb,Fr,Ks

Rs
$Ia,$Ib do not occur in F
E ' T
se, Is,Vs ` var I=E;C :

[exists $Ia,$Ib: $Ia = T and
F [$Ia/I,$Ib/I’]]Fc,Fb,Fr,Ks

Rs\{I}

Figure 4.14: Rules for se, Is,Vs ` C : F (2/8)

80 4.9 Judgement se, Is,Vs ` C : F

se, Is,Vs ` C1 : [F1] false,false,false, /0
{R1,...,Rn}

se, Is,Vs ` C2 : [F2]Fc,Fb,Fr,Ks
{R1,...,Rn}

$I1, . . . ,$In,#Is do not occur in F1 and F2
se, Is,Vs ` C1;C2 :

[exists $I1, . . . ,$In: exstate #Is:
F1[#Is/next][$I1/R1’, . . . ,$In/Rn’] and
F2[#Is/now][$I1/R1, . . . ,$In/Rn]]

Fc,Fb,Fr,Ks
{R1,...,Rn}

se, Is,Vs ` C1 : [F1]Fc1,Fb1,Fr1,Ks
{R1,...,Rn}

se, Is,Vs ` C2 : [F2]Fc2,Fb2,Fr2,Ls
{R1,...,Rn}

$I1, . . . ,$In,#Is do not occur in F1 and F2
se, Is,Vs ` C1;C2 :

[exists $I1, . . . ,$In: exstate #Is:
F1[#Is/next][$I1/R1’, . . . ,$In/Rn’] and
if #Is.executes then

F2[#Is/now][$I1/R1, . . . ,$In/Rn]
else

next==#Is and R1’=$I1 and . . . and Rn’=$In

]Fc1 or Fc2,Fb1 or Fb2,Fr1 or Fr2,Ks∪Ls
{R1,...,Rn}

C : [F]Fc,Fb,Fr,Ks
Rs

E ' F0

if (E) C : [if F0 then F else readsonly]Fc,Fb,Fr,Ks
Rs

C1 : [F1]Fc1,Fb1,Fr1,Ks
Rs

C2 : [F2]Fc2,Fb2,Fr2,Ls
Rs

E ' F0
if (E) C1 elseC2 :

[if F0 then F1 else F2]Fc1 or Fc2,Fb1 or Fb2,Fr1 or Fr2,Ks∪Ls
Rs

Figure 4.15: Rules for se, Is,Vs ` C : F (3/8)

81

se, Is,Vs ` C : [F]Fc,Fb,Fr,Ks
Rs

se, Is,Vs ` while (E)C :

[!next.continues and !next.breaks] false,false,Fr,Ks
Rs

se, Is,Vs ` C : [F]Fc,false,Fr,Ks
{R1,...,Rn}

E ' H
se, Is,Vs ` while (E)C :

[!next.continues and !next.breaks and
(next.executes => !H[next/now][R1’/R1, . . . ,Rn’/Rn])

] false,false,Fr,Ks
{R1,...,Rn}

Figure 4.16: Rules for se, Is,Vs ` C : F (4/8)

82 4.9 Judgement se, Is,Vs ` C : F

se, Is,Vs ` C : [F]Fc,Fb,Fr,Ks
{R1,...,Rn}

E ' H
Invariant(G,H,F){R1,...,Rn}
#Is does not occur in G
se, Is,Vs ` invariant G decreases T while (E)C :

[!next.continues and !next.breaks and
(G[now/next][R1/R1’, . . . ,Rn/Rn’] =>

exists #Is : G[#Is/next] and
if #Is.continues or #Is.breaks

then next.executes
else next == #Is)

] false,false,Fr,Ks
{R1,...,Rn}

se, Is,Vs ` C : [F]Fc,false,Fr,Ks
{R1,...,Rn}

E ' H
Invariant(G,H,F){R1,...,Rn}
#Is does not occur in G
se, Is,Vs ` invariant G decreases T while (E)C :

[!next.continues and !next.breaks and
(next.executes =>

!H[next/now][R1’/R1, . . . ,Rn’/Rn]) and
(G[now/next][R1/R1’, . . . ,Rn/Rn’] =>

exists #Is : G[#Is/next] and
if #Is.continues or #Is.breaks

then next.executes
else next == #Is)

] false,false,Fr,Ks
{R1,...,Rn}

Figure 4.17: Rules for se, Is,Vs ` C : F (5/8)

83

continue : [next.continues] true,false,false, /0
/0

break : [next.breaks] false,true,false, /0
/0

T ' E
return E :

[next.returns and next.value=T] false,false,true, /0
/0

T ' E
throw I E :

[next.throws I and next.value=T] false,false,false,{I}
/0

Iv 6∈ Vs
se, Is,Vs ` C1 : [F1]Fc1,Fb1,Fr1,Ks

{R1,...,Rn}
se,Vs∪{Iv} ` C2 : [F2]Fc2,Fb2,Fr2,Ls

{R1,...,Rn,Iv}
?Iv ∈ {R1, . . . ,Rn}
$I1, . . . ,$In,#Is do not occur in F1 and F2
$Ia,$Ib,#It do not occur in F2
{$Ia,$Ib,#Is}∩{$I1, . . . ,$In,#Is}= /0
se, Is,Vs ` try C1 catch(Ik Iv) C2 :

[exists $I1, . . . ,$In: exstate #Is:
F1[#Is/next][$I1/R1’, . . . ,$In/Rn’][Iv/?Iv, Iv’/?Iv’] and
if #Is.throws Ik then

exists $Ia,$Ib: exstate #It :
$Ia = #Is.value and #It .executes and
F2[#It/now][$Ia/Iv][$I1/R1, . . . ,$In/Rn][$Ib/Iv’]

[Iv/?Iv, Iv’/?Iv’]
else

R1’=$I1 and . . . and Rn’=$In and next==#Is

]Fc1 or Fc2,Fb1 or Fb2,Fr1 or Fr2,(Ks\{Ik})∪Ls
({R1,...,Rn}\{?Iv})∪{Iv}

Figure 4.18: Rules for se, Is,Vs ` C : F (6/8)

84 4.9 Judgement se, Is,Vs ` C : F

Iv 6∈ Vs
se, Is,Vs ` C1 : [F1]Fc1,Fb1,Fr1,Ks

{R1,...,Rn}
se,Vs∪{Iv} ` C2 : [F2]Fc2,Fb2,Fr2,Ls

{R1,...,Rn,Iv}
?Iv 6∈ {R1, . . . ,Rn}
$I1, . . . ,$In,#Is do not occur in F1 and F2
$Ia,$Ib,#It do not occur in F2
{$Ia,$Ib,#Is}∩{$I1, . . . ,$In,#Is}= /0
se, Is,Vs ` try C1 catch(Ik Iv) C2 :

[exists $I1, . . . ,$In: exstate #Is:
F1[#Is/next][$I1/R1’, . . . ,$In/Rn’][Iv/?Iv, Iv’/?Iv’] and
if #Is.throws Ik then

exists $Ia,$Ib: exstate #It :
$Ia = #Is.value and #It .executes and
F2[#It/now][$Ia/Iv][$I1/R1, . . . ,$In/Rn][$Ib/Iv’]

[Iv/?Iv, Iv’/?Iv’]
else

R1’=$I1 and . . . and Rn’=$In and next==#Is

]Fc1 or Fc2,Fb1 or Fb2,Fr1 or Fr2,(Ks\{Ik})∪Ls
{R1,...,Rn}

Iv ∈ Vs
se, Is,Vs ` C1 : [F1]Fc1,Fb1,Fr1,Ks

{R1,...,Rn}
se,Vs∪{Iv} ` C2 : [F2]Fc2,Fb2,Fr2,Ls

{R1,...,Rn,Iv}
$I1, . . . ,$In,#Is do not occur in F1 and F2
$Ia,$Ib,#It do not occur in F2
{$Ia,$Ib,#Is}∩{$I1, . . . ,$In,#Is}= /0
se, Is,Vs ` try C1 catch(Ik Iv) C2 :

[exists $I1, . . . ,$In: exstate #Is:
F1[#Is/next][$I1/R1’, . . . ,$In/Rn’] and
if #Is.throws Ik then

exists $Ia,$Ib: exstate #It :
$Ia = #Is.value and #It .executes and
F2[#It/now][$Ia/Iv][$I1/R1, . . . ,$In/Rn][$Ib/Iv’]

else
R1’=$I1 and . . . and Rn’=$In and next==#Is

]Fc1 or Fc2,Fb1 or Fb2,Fr1 or Fr2,(Ks\{Ik})∪Ls
{R1,...,Rn}

Figure 4.19: Rules for se, Is,Vs ` C : F (7/8)

85

se(Im) = 〈(J1, . . . ,Jp),〈Rs,Ks,FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
Ir ∈ {V1, . . . ,Vo}∨ Ir 6∈ {I1, . . . , In}
$I1, . . . ,$Ip,$L1, . . . ,$Lp,$R do not occur in FC and FR
se, Is,{V1, . . . ,Vo} ` Ir = Im(E1, . . . ,Ep) :

[exists $I1, . . . ,$Ip,$L1, . . . ,$Lp,$R:
$I1=T1 and . . . and $Ip=Tp and
(FC => FR)

[$I1/J1, . . . ,$Ip/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Ir’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] and

if next.executes
then Ir’ = next.value
else Ir’ = Ir

] false,false,false,Ks
(Is\{V1,...,Vo})∪{?I:I∈Is∩{V1,...,Vo}}∪{Ir}

se(Im) = 〈(J1, . . . ,Jp),〈Rs,Ks,FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
Ir ∈ Is\{V1, . . . ,Vo}
$I1, . . . ,$Ip,$L1, . . . ,$Lp,$R do not occur in FC and FR
se, Is,{V1, . . . ,Vo} ` Ir = Im(E1, . . . ,Ep) :

[exists $I1, . . . ,$Ip,$L1, . . . ,$Lp,$R:
$I1=T1 and . . . and $Ip=Tp and
(FC => FR)

[$I1/J1, . . . ,$Ip/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Ir’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] and

if next.executes
then Ir’ = next.value
else Ir’ = $R

] false,false,false,Ks
(Is\{V1,...,Vo})∪{?I:I∈Is∩{V1,...,Vo}}

se, Is,Vs ` assert F :

[if F then readsonly else false] false,false,false, /0
/0

Figure 4.20: Rules for se, Is,Vs ` C : F (8/8)

86 4.10 Judgement se, Is,Vs ` C ↓J F

4.10 Judgement se, Is,Vs ` C ↓J F

The rules for this judgement are constructed in such a way that they verify for
given specification environment se, recursive method names Is, and local variable
names Vs, whether command C terminates in every state in which formula F holds
provided that $J denotes a bound for the depth of method calls allowed by the
execution of C (if the bound is exceeded, the method does not terminate).

We highlight the following items:

• The overall structure of the rules resemble those for verifying the “well-
definedness” of expression evaluations; both kinds of judgements could be
correspondingly combined to a single “top-down checking” judgement.

• The only potential sources of non-termination are loops and method calls;
our focus is therefore on the rules for these constructs.

• Loops without a loop specification can only be verified in trivial cases (the
loop condition does already not hold at the very beginning).

• For loops with a specification, we have to verify

1. that formula G indeed represents an invariant and that G holds in the
initial state,

2. that the loop body C terminates whenever the loop is entered (i.e. it
holds in those states that are characterized by the loop expression E
and the invariant G),

3. that the loop terminates in a finite number of iterations.

The proof of the last item involves the loop termination measure T which
must denote a natural number that is decreased by every iteration.

• For method calls, we have to verify that the method’s precondition holds
and, if we call a method in the recursion set Is (which is only possible if the
current method is a member of this set) that the termination measure of that
method denotes a natural number that is smaller than the one denoted by $J.

Rather than natural numbers, any well-founded ordering might be chosen as the
domain of the termination measure; furthermore, different recursive method sets
in the same program may chose different well-founded orderings. Since a typ-
ical well-founded ordering are tuples of natural numbers under lexicographical
ordering, every recursive method set might choose a domain of tuples of a certain
length n with n = 1 being the case presented in this section.

87

se, Is,Vs ` I = E ↓J F

I 6∈ Vs
se, Is,Vs∪{I} ` C ↓J F [?I/I]
se, Is,Vs ` var I;C ↓J F

I ∈ Vs
$K does not occur in F
se, Is,Vs ` C ↓J exists $K: F [$K/I]
se, Is,Vs ` var I;C ↓J F

I 6∈ Vs
E ' T
se, Is,Vs∪{I} ` C ↓J I=T [?I/I] and F [?I/I]
se, Is,Vs ` var I=E;C ↓J F

I ∈ Vs
E ' T
$K does not occur in T and F
se, Is,Vs ` C ↓J exists $K: I = T [$K/I] and F [$K/I]
se, Is,Vs ` var I=E;C ↓J F

se, Is,Vs ` POST(C1,F) = G
se, Is,Vs ` C1 ↓J F
se, Is,Vs ` C2 ↓J G
se, Is,Vs ` C1;C2 ↓J F

Figure 4.21: Rules for se, Is,Vs ` C ↓J F (1/4))

88 4.10 Judgement se, Is,Vs ` C ↓J F

E ' G
se, Is,Vs ` C ↓J F and G
se, Is,Vs ` if (E)C ↓J F

E ' G
se, Is,Vs ` C1 ↓J F and G
se, Is,Vs ` C2 ↓J F and !G
se, Is,Vs ` if (E)C1 else C2 ↓J F

E ' G
|= /0 F => !G
se, Is,Vs ` while (E)C ↓J F

wellformed(LS)
LS = invariant G decreases T
E ' H
se, Is,Vs ` C : [FR]Fc,Fb,Fr,Ks

{R1,...,Rn}
Invariant(G,H,FR){R1,...,Rn}
|= /0 F => G[now/next][I1/I1’, . . . , In/In’]
$I1, . . . ,$In,#Is,#It do not occur in F,G,H
P =

#Is.executes and
F [#Is/now][$I1/R1, . . . ,$In/Rn] and
G[#Is/now,#It/next]

[$I1/R1, . . . ,$In/Rn,R1/R1’, . . . ,Rn/Rn’] and H and
(#It .executes or #It .continues)

C ↓J exists $I1, . . . ,$In: exstate #Is,#It : P
|={R1,...,Rn}

forall $I1, . . . ,$In: allstate #Is,#It :
P and now.executes and FR and
(next.executes or next.continues) =>

let $N=T,$M = T [R1’/R1, . . . ,Rn’/Rn]
in nat($M) and $M < $N

se, Is,Vs ` LS while (E)C ↓J F

Figure 4.22: Rules for se, Is,Vs ` C ↓J F (2/4))

89

se, Is,Vs ` continue ↓J F

se, Is,Vs ` break ↓J F

se, Is,Vs ` return E ↓J F

se, Is,Vs ` throw Ik E ↓J F

Iv 6∈ Vs
se, Is,Vs ` C1 ↓J F
se, Is,Vs ` POST(C1,F) = G
#Is does not occur in G
se, Is,Vs ` C2 ↓J

exstate #Is:
G[#Is/now][?Iv/Iv] and
#Is.throws Ik and #Is.value = Iv

se, Is,Vs ` tryC1 catch(Ik Iv)C2 ↓J F

Iv ∈ Vs
se, Is,Vs ` C1 ↓J F
se, Is,Vs ` POST(C1,F) = G
$I,#Is do not occur in G
se, Is,Vs ` C2 ↓J

exists $I: exstate #Is:
G[#Is/now][$I/Iv] and
#Is.throws Ik and #Is.value = Iv

se, Is,Vs ` tryC1 catch(Ik Iv)C2 ↓J F

Figure 4.23: Rules for se, Is,Vs ` C ↓J F (3/4))

90 4.10 Judgement se, Is,Vs ` C ↓J F

Im 6∈ Is
se(Im) = 〈(J1, . . . ,Jp),〈Rs,Ks,FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
$I1, . . . ,$Ip do not occur in FC
|= /0 now.executes and (exists $J : F) =>

forall $I1, . . . ,$Ip :
$I1=T1 and . . . and $Ip=Tp =>
FC[$I1/J1, . . . ,$Ip/Jp,$I1/J1’, . . . ,$Ip/Jp’]

[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’]
se, Is,{V1, . . . ,Vo} ` Ir = Im(E1, . . . ,Ep) ↓J F

Im ∈ Is
se(Im) = 〈(J1, . . . ,Jp),〈Rs,Ks,FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
$I1, . . . ,$Ip do not occur in FC and T
|= /0 forall $I1, . . . ,$Ip,$J:

now.executes and F and
$I1=T1 and . . . and $Ip=Tp =>

FC[$I1/J1, . . . ,$Ip/Jp,$I1/J1’, . . . ,$Ip/Jp’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] and

let $M=T [$I1/J1, . . . ,$Ip/Jp,$I1/J1’, . . . ,$Ip/Jp’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’]

in nat($M) and $M < $J
se, Is,{V1, . . . ,Vo} ` Ir = Im(E1, . . . ,Ep) ↓J F

se, Is,Vs ` assert G ↓J F

Figure 4.24: Rules for se, Is,Vs ` C ↓J F (4/4))

91

se, Is,Vs ` C : [F]Fc,Fb,Fr,Ks
{R1,...,Rn}

$I1, . . . ,$In,#Is do not occur in Q
se, Is,Vs ` PRE(C,Q) =

forall $I1, . . . ,$In: allstate #Is:
(now.executes and F [#Is/next][$I1/R1’, . . . ,$In/Rn’]) =>
Q[#Is/now][$I1/R1, . . . ,$In/Rn]

Figure 4.25: Rules for se, Is,Vs ` PRE(C,Q) = P

4.11 Judgement se, Is,Vs ` PRE(C,Q) = P

The rule for this judgement constructs (for given specification environment se,
recursive method names Is, and local variable names Vs), from a command C
and a condition Q on its poststate a suitable condition P on its prestate. It is
interesting to note that the precondition can be computed generically from the
formula denoting the command’s state transition relation.

The precondition is not necessarily the weakest one (it indeed is, if the command
does not contain loops).

This judgement is actually not used by any rule of the calculus; it might neverthe-
less be provided to the user on demand for exploring the properties of a program.

92 4.12 Judgement se, Is,Vs ` POST(C,P) = Q

se, Is,Vs ` C : [F]Fc,Fb,Fr,Ks
{R1,...,Rn}

$I1, . . . ,$In,#Is do not occur in P
se, Is,Vs ` POST(C,P) =

exists $I1, . . . ,$In: exstate #Is:
#Is.executes and
P[#Is/now][$I1/R1, . . . ,$In/Rn] and
F [#Is/now,now/next]

[$I1/R1, . . . ,$In/Rn,R1/R1’, . . . ,Rn/Rn’]

Figure 4.26: Rules for se, Is,Vs ` POST(C,P) = Q

4.12 Judgement se, Is,Vs ` POST(C,P) = Q

The generic rule for this judgement constructs (for given specification environ-
ment se, recursive method names Is, and local variable names Vs), from a com-
mand C and a condition P on its prestate a suitable condition Q on its poststate. It
is interesting to note that the postcondition can be computed generically from the
formula denoting the command’s state transition relation.

The postcondition is not necessarily the strongest one (but if the command does
not contain loops it indeed is).

The judgement is used in the rules for verifying the well-definedness, for comput-
ing the state transition relation, and for verifying the termination of a command.

93

4.13 Judgement se, Is,Vs ` ASSERT(C,P) = C′

The rules for this judgement construct (for given specification environment se, re-
cursive method names Is, and local variable names Vs), from command C and a
condition P on its prestate a version C′ of C in which every subcommand (includ-
ing C itself) is preceded by an annotation expressing all the information available
on the prestate of the subcommand.

The overall structure of the rule set closely resembles (a non-generic version of)
the rule set for the computation of a command’s postcondition.

This judgement is actually not used by any rule of the calculus; it might neverthe-
less be provided to the user on demand for exploring the properties of a program.

94 4.13 Judgement se, Is,Vs ` ASSERT(C,P) = C′

se, Is,Vs ` ASSERT(R=E,P) = assert P; R=E

I 6∈ Vs
se, Is,Vs∪{I} ` ASSERT(C,P[?I/I]) = C′

se, Is,Vs ` ASSERT(var I;C,P) = assert P; var I;C′

I ∈ Vs
$J does not occur in P
se, Is,Vs ` ASSERT(C,exists $J : P[$J/I]) = C′

se, Is,Vs ` ASSERT(var I;C,P) = assert P; var I;C′

I 6∈ Vs
E ' T
se, Is,Vs∪{I} ` ASSERT(C,P[?I/I] and I = T [?I/I]) = C′

se, Is,Vs ` ASSERT(var I=E;C,P) =
assert P; var I=E;C′

I ∈ Vs
E ' T
$J does not occur in P and in T
se, Is,Vs ` ASSERT(C,exists $J : P[$J/I] and I = T [$J/I]) = C′

se, Is,Vs ` ASSERT(var I=E;C,P) =
assert P; var I=E;C′

se, Is,Vs ` POST(C1,P) = Q
se, Is,Vs ` ASSERT(C1,P) = C′1
se, Is,Vs ` ASSERT(C2,Q) = C′2
se, Is,Vs ` ASSERT(C1;C2,P) = assert P;C′1;C′2
E ' F
se, Is,Vs ` ASSERT(C,P and F) = C′

se, Is,Vs ` ASSERT(if (E)C,P) = assert P; if (E) C′

E ' F
se, Is,Vs ` ASSERT(C1,P and F) = C′1
se, Is,Vs ` ASSERT(C2,P and !F) = C′2
se, Is,Vs ` ASSERT(if (E)C1 else C2,P) =

assert P; if (E) C′1 elseC′2

Figure 4.27: Rules for se, Is,Vs ` ASSERT(C,P) = C′ (1/3)

95

E ' H
se, Is,Vs ` C : [F]Fc,Fb,Fr,Ks

{R1,...,Rn}
$I1, . . . ,$In,#Is do not occur in P
se, Is,Vs ` ASSERT(C,

H and
exists $I1, . . . ,$In: exists #Is:

P[#Is/now][$I1/R1, . . . ,$In/Rn]) = C′

se, Is,Vs ` ASSERT(while(E)C,P) =
assert P; while(E)C′

E ' H
se, Is,Vs ` C : [F]Fc,Fb,Fr,Ks

{R1,...,Rn}
Invariant(G,H,F){R1,...,Rn}
$I1, . . . ,$In,#Is,#It do not occur in P
se, Is,Vs ` ASSERT(C,

H and
exists $I1, . . . ,$In: exstate #Is,#It :

P[#Is/now][$I1/R1, . . . ,$In/Rn] and
(G[now/next][R1/R1’, . . . ,Rn/Rn’]

[#Is/now][$I1/R1, . . . ,$In/Rn] =>
G[#Is/now][$I1/R1, . . . ,$Jn/Rn]

[#It/next][R1/R1’, . . . ,Rn/Rn’] and
(!(#It .continues or #It .breaks) =>

now == #It))) = C′

se, Is,Vs `
ASSERT(invariant G decreases T while(E) C,P) =
assert P; while(E)C′

Figure 4.28: Rules for se, Is,Vs ` ASSERT(C,P) = C′ (2/3)

96 4.13 Judgement se, Is,Vs ` ASSERT(C,P) = C′

se, Is,Vs ` ASSERT(continue,P) = assert P; continue

se, Is,Vs ` ASSERT(break,P) = assert P; break

se, Is,Vs ` ASSERT(return E,P) = assert P; return E

se, Is,Vs ` ASSERT(throw Ik E,P) = assert P; throw Ik E

Iv 6∈ Vs
#Is does not occur in Q
se, Is,Vs ` POST(C1,P) = Q
se, Is,Vs ` ASSERT(C1,P) = C′1
se, Is,Vs∪{Iv} ` ASSERT(C2,

exstate #Is:
Q[#Is/now][?Iv/Iv] and
#Is.throws Ik and #Is.value = Iv) = C′2

se, Is,Vs ` ASSERT(tryC1 catch(Ik Iv) C2,P) =
assert P; try C′1 catch(Ik Iv)C′2

Iv ∈ Vs
$J,#Is do not occur in Q
se, Is,Vs ` POST(C1,P) = Q
se, Is,Vs ` ASSERT(C1,P) = C′1
se, Is,Vs ` ASSERT(C2,

exists $J: exstate #Is:
Q[#Is/now][$J/Iv] and
#Is.throws Ik and #Is.value = Iv) = C′2

se, Is,Vs ` ASSERT(tryC1 catch(Ik Iv) C2,P) =
assert P; try C′1 catch(Ik Iv)C′2

se, Is,Vs ` ASSERT(Ir = Im(E1, . . . ,Ep),P) =
assert P; Ir = Im(E1, . . . ,Ep)

se, Is,Vs ` ASSERT(assert Q,P) = assert P; assert Q

Figure 4.29: Rules for se, Is,Vs ` ASSERT(C,P) = C′ (3/3)

97

F §c Fc
F §b Fb

F §s
Qs
Rs

F §e
Ls
Ks

[F]Fc,Fb,Fr,Ls
Qs § Ks

Rs

Figure 4.30: Rules for F § Ks
Rs

4.14 Judgement F § Ks
Rs

This judgement verifies that the state transition formula [F]Fc,Fb,Fr,Ls
Qs derived from

a command (the program’s main command or a method’s body) conforms to the
overall constraints of the command’s behavior and its specification. This task is
delegated to four “subjudgements”.

The rationale for this judgement is that is sometimes may not suffice to prove by
“static” program analysis the conformance of a command to general constraints
but that sometimes a “dynamic” proof might be necessary.

However, in practice only the third judgement might be of relevance (conformance
to a variable frame) whose purpose is also served by the “frame shrinking rule” in
the computation of command transition relations.

98 4.15 Judgement F §c Fc

F §c false

|= /0 (now.executes and F) => !next.continues
F §c true

Figure 4.31: Rules for F §c Fc

4.15 Judgement F §c Fc

This judgement verifies that a command does not result in a “continuing” post-
state; the first rule covers the typical situation where the command does not in-
volve a continue statement outside a loop body; the second rule handles the
general case where it can be proved that such a statement is never executed.

99

F §b false

|= /0 (now.executes and F) => !next.breaks
F §b true

Figure 4.32: Rules for F §b Fb

4.16 Judgement F §b Fb

This judgement verifies that a command does not result in a “breaking” poststate;
the first rule covers the typical situation where the command does not involve a
break statement outside a loop body; the second rule handles the general case
where it can be proved that such a statement is never executed.

100 4.17 Judgement F §s
Qs
Rs

Qs⊆ Rs
F §s

Qs
Rs

Qs\Rs = {Q1, . . . ,Qo}
|= /0 (now.executes and F) => (Q1=Qo’ and . . . and Qo=Qo’)
F §s

Rs
Qs

Figure 4.33: Rules for F §s
Qs
Rs

4.17 Judgement F §s
Qs
Rs

This judgement verifies that a command does not change any variables outside
the frame Rs; the first rule covers the typical situation where the command does
not change any variables outside of frame Qs which is contained in Rs; the second
rule handles the general case where it can be proved that all variables outside of Rs
have the same value before and after the execution of the command.

101

Ls⊆ Ks
F §s

Ks
Ls

Ls\Ks = {L1, . . . ,Lr}
|= /0 (now.executes and F) =>

(!next.throws L1 and . . . and !next.throws Lr)
F §s

Ls
Ks

Figure 4.34: Rules for F §e
Ls
Ks

4.18 Judgement F §e
Ls
Ks

This judgement verifies that a command does not throw any exceptions outside
the set Ks; the first rule covers the typical situation where the command does not
throw any exceptions outside Ls which is contained in Rs; the second rule handles
the general case where it can be proved no command is executed that throws some
exception outside of Rs.

102 4.19 Judgement |=Rs F

4.19 Judgement |=Rs F

This judgement verifies the validity of a specification formula F for pairs of pre-
and poststates that have the same values in all variables denoted by identifiers
except for those listed in Rs (this information is necessary for the handling of the
specification formulas writesonly and readsonly, see below).

The validity of this judgement can be proved by

1. translating F to a classical first order predicate logic formula F ′ and by

2. proving the validity of F ′ in first order predicate logic with equality over a
domain that includes the natural numbers.

The translation is informally sketched below:

• The specification predicates = and /= on values and == on states are trans-
lated to the predicates

=, 6=
with the classical interpretation of equality/inequality.

• The specification formulas isnat(T) and T1<T2 are translated to the corre-
sponding classical formulas interpreted over the domain of natural numbers.

• The specification constants now and next are translated to the uninterpreted
classical constants

now,next

• The specification formulas U .executes, U .continues, U .breaks U .returns,
U .throws and U .throws I are translated to the classical formulas

executes(U ′),breaks(U ′),returns(U ′)
throws(U ′), throws(U ′)∧ key(U ′) = Ic

where the predicate/function constants remain uninterpreted and Ic is a con-
stant that is uniquely derived from I.

• The specification term U .value is translated to the classical term

value(U ′)

where the function constant value remains uninterpreted.

• The formula readsonly is first translated to

103

R1 = R1’ and . . . and R1 = R1’

(where {R1, . . . ,Rn}= Rs) and is then translated further as described below.

• The formula writesonly S1, . . . ,Sm is first translated to

T1 = T1’ and . . . and To = T1’

(where {T1, . . . ,To}= Rs\{S1, . . . ,Sm}) and is then translated further as de-
scribed below.

• The specification constants true and false and the connectives not, and, or,
=>, <=>, xor are translated to the classical constants/connectives

TRUE, FALSE,¬,∧, ,∨,⇒,⇔, 6⇔
• The program variables I, I’,?I,?I’ are translated to the classical constants

Ila, Ilb, Iga, Igb

• The logical variables $I and #I are translated to the classical variables

Iv, Is

• The specification formulas forall $I: F and exists $I: F are translated to the
classical formulas

∀Iv : isvalue(Iv)⇒ F ′
∃Iv : isvalue(Iv)∧F ′

with an uninterpreted unary predicate isvalue.

• The specification formulas allstate #I: F and exstate #I: F are translated to
to the classical formulas

∀Is : isstate(Is)⇒ F ′
∃Is : isstate(Is)∧F ′

with an uninterpreted unary predicate isstate.

• The specification formula if F1 then F2 else F3 is translated to the logical
formula

(F ′1 ⇒ F ′2)∧ (¬F ′1 ⇒ F ′3)

• A specification formula F [if Fc then T1 else T2] (where F is the innermost
formula that includes the term if Fc then T1 else T2) is translated to the
classical formula

∃Iv : (F ′c ⇒ Iv = T ′1)∧ (¬F ′c ⇒ Iv = T ′2)∧F ′[Iv]

104 4.19 Judgement |=Rs F

• The specification formula let $I1=T1, . . . ,$In=Tn in F is translated to the clas-
sical formula

∃Iv1, . . . , Ivn : Iv1 = T ′1 ∧ . . .∧ Ivn = T ′n ∧F ′

• A specification formula F [let $I1=T1, . . . ,$In=Tn in T] (where F is the inner-
most formula that includes the term let $I1=T1, . . . ,$In=Tn in T) is translated
to the classical formula

∃Iv1, . . . , Ivn : Iv1 = T ′1 ∧ . . .∧ Ivn = T ′n ∧F ′[T ′]

Let {k1,k2,k3, . . . ,kn−1,kn} be the set of all constants derived from specification
formulas U .throws I as explained above. The validity of this formula can be
proven by using the axioms depicted in Figure 4.35 which give a meaning to the
uninterpreted predicate/function symbols.

105

k1 6= k2∧ k1 6= k3∧ . . .∧ k1 6= kn−1∧ k1 6= kn
k2 6= k3∧ . . .∧ k2 6= kn−1∧ k2 6= kn
. . .
kn−1 6= kn

∀I : isvalue(I) 6⇔ isstate(I)
∀I : isnat(I)⇒ isvalue(I)
isstate(now)
isstate(next)
∀Is : isstate(Is)⇒

isvalue(value(Is)) ∧
(key(Is) = k1∨ . . .∨ key(Is) = kn) ∧
(executes(Is)∨ continues(Is)∨breaks(Is) ∨

returns(Is)∨ throws(Is)) ∧
(executes(Is)⇒
¬(continues(Is)∨breaks(Is)∨ returns(Is)∨ throws(Is))) ∧

(continues(Is)⇒
¬(executes(Is)∨breaks(Is)∨ returns(Is)∨ throws(Is))) ∧

(breaks(Is)⇒
¬(executes(Is)∨ continues(Is)∨ returns(Is)∨ throws(Is))) ∧

(returns(Is)⇒
¬(executes(Is)∨ continues(Is)∨breaks(Is)∨ throws(Is))) ∧

(throws(Is)⇒
¬(executes(Is)∨ continues(Is)∨breaks(Is)∨ returns(Is)))

Figure 4.35: Axioms

Bibliography

[1] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduc-
tion. Springer, New York, 1998.

[2] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification
of Object-Oriented Software: The KeY Approach. Springer, Berlin, Ger-
many, 2007.

[3] Raymond T. Boute. Calculational Semantics: Deriving Programming The-
ories from Equations by Functional Predicate Calculus. ACM Transactions
on Programming Languages and Systems, 28(4):747–793, July 2006.

[4] Mike Gordon. Specification and Verification I. Lecture Notes, http://
www.cl.cam.ac.uk/ mjcg/Teaching/SpecVer1/SpecVer1.html.

[5] Eric C.R. Hehner. A Practical Theory of Programming. Springer, New York,
2006. http://www.cs.utoronto.ca/˜hehner/aPToP.

[6] C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice
Hall, London, UK, 1998.

[7] The Java Modeling Language (JML), 2008. http://www.cs.ucf.edu/ leav-
ens/JML.

[8] Cliff B. Jones. Systematic Software Devleopment Using VDM. Prentice Hall,
2nd edition, 1990.

[9] K. Rustan M. Leino and James B. Saxe and Raymie Stata. Checking Java
Programs via Guarded Commands. Compaq SRC Technical Note 1999-
002, Compaq, 1999. http://gatekeeper.dec.com/pub/DEC/SRC/technical-
notes/abstracts/src-tn-1999-002.html.

[10] Leslie Lamport. Specifying Systems; The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002. http:// re-
search.microsoft.com/users/lamport/tla/book.html.

106

BIBLIOGRAPHY 107

[11] Carroll Morgan. Programming from Specifications. Prentice Hall, London,
UK, 2nd edition, 1998.

[12] J. M. Morris. A Theoretical Basis for Stepwise Refinement and the Program-
ming Calculus. Science of Computer Programming, 9(3):287–306, Decem-
ber 1987.

[13] David A. Schmidt. Denotational Semantics: A Methodology for Lan-
guage Development. Allyn and Bacon, 1986. http://people.cis.ksu.edu/
˜schmidt/text/densem.html.

[14] Wolfgang Schreiner. Understanding Programs. Technical report, Research
Institute for Symbolic Computation (RISC), Johannes Kepler University,
Linz, Austria, July 2008.

[15] Spec#, 2008. http://research.microsoft.com/SpecSharp.

Appendix A

Mathematical Language

This appendix summarizes the mathematical language used in this document. Our
theoretical framework is classical Zermelo-Fraenkel set theory (ZF) formalized
in first-order predicate logic (FOL), as it is presented in typical introductions to
mathematics for computer scientists. We therefore mostly refrain from providing
formal definitions of the concepts but focus on a presentation of the notations
we use together with informal explanations of their interpretations. The exact
definitions can be looked up in various text books on this subject.

In the following descriptions, we use the meta-variables x,x1, . . . to denote ob-
ject variables, f , f1, . . . to denote function names, p, p1, . . . to denote predicate
names, T,T1, . . . to denote terms, F,F1, . . . to denote formulas, and P,P1, . . . to de-
note generic phrases (terms or formulas).

Terms We use the following kinds of terms to denote values:

• x : the variable x.

• f: the constant (0-ary function) f .

• f(T1, . . . ,Tn): the application of the n-ary function f to T1, . . . ,Tn (n≥ 1).

• SUCH x : F: some x such that F is true for x, if F is true for any value, and
x is arbitrary, otherwise.

Formulas We use the following kinds of formulas to denote propositions:

• p(T1, . . . ,Tn): the n-ary predicate p is true for T1, . . . ,Tn (n≥ 1).

108

109

• T1 = T2: T1 equals T2.

• ¬F: F is not true.

• F1∧F2: F1 is true and F2 is true.

• F1∨F2: F1 is true or F2 is true (also both may be true).

• F1 ⇒ F2: if F1 is true, then F2 is also true (but F1 may be false).

• F1 ⇔ F2: both F1 and F2 are true or both are false.

• ∀x : F: for every x, F is true.

• ∃x : F: for some x, F is true.

Generic Phrases We use the following generic phrases:

• IF F THEN P1 ELSE P2: if F is true, then P1, else P2.

• LET x = T IN P: P, where the value of x is the value of T (the meaning of
this phrase is the same as that of P[T/x], see below).

Free and Bound Variables An occurrence of a variable x in one of the phrases
SUCH x : F , ∀x : F , ∃x : F , or LET x = T IN P is called bound by that phrase. A
non-bound occurrence of a variable in a phrase is free in that phrase.

Term Substitutions We introduce the following substitutions of terms by other
terms in a phrase P:

• P[U1/T1, . . . ,Un/Tn]: that variant of P where all occurrences of terms
T1, . . . ,Tn (pairwise-different) are replaced by terms U1, . . . ,Un.

• P[U1(x)/T1(x), . . . ,Un(x)/Tn(x) : F]: that variant of P where, for every
term x for which F is true, all occurrences of terms T1(x), . . . ,Tn(x) (pair-
wise different and different for different x) are replaced by the correspond-
ing terms U1(x), . . . ,Un(x).

110 APPENDIX A. MATHEMATICAL LANGUAGE

Sets We use the following predicates, constants, and functions on sets:

• T1 ∈ T2: T1 is in T2.

• T1 ⊆ T2: T1 is a subset of T2, i.e., every x which is in T1 is also in T2.

• /0: the empty set.

• T1∩T2,T1∪T2, T1\T2: the intersection, union, and difference of T1 and T2.

• {T1, . . . ,Tn}: the set of values T1, . . . ,Tn.

• {x ∈ T : F}: the set of values x in T for which F is true.

• {f(x1, . . . ,xn) ∈ T : F}: the set of values f (x1, . . . ,xn) in T such that F is
true for x1, . . . ,xn.

• B: the set {TRUE, FALSE} of truth values (Boolean values).

• N: the set {0,1,2, . . .} of the natural numbers including 0.

• Nn: the set {0,1, . . . ,n− 1} of the n natural numbers less than n (hence
N0 = /0).

• Z: the set {0,1,−1,2,−2, . . .} of the integer numbers including 0 (hence
Z0 = /0).

• Zn: the set {−n, . . . ,−1,0,1, . . . ,n− 1} of the 2n integer numbers greater
than or equal −n and less than n.

• Q: the set of all rational numbers.

• P(T): the powers et of T (the set of its subsets), also considered as the set
of relations on T : for every r in P(T) (i.e. r ⊆ T) and for every x in T , r(x)
(i.e. x ∈ r) is true or false.

• P∞(T): the set of all infinite subsets of T .

Tuples The datatype tuple (ordered sequence of unnamed values) is introduced
as follows:

• T1× . . .×Tn: the set of tuples 〈v1, . . . ,vn〉 with v1 ∈ T1, . . . ,vn ∈ Tn; if t =
〈v1, . . . ,vn〉, then t.i = vi (1≤ i≤ n).

• Tt[i 7→ T]: the tuple which is identical to tuple Tt except that Tt .i = T (i.e.
Tt [i 7→ T].i′ = Tr.i′, for all i′ 6= i).

111

Records The datatype record (ordered sequence of named values) is introduced
as follows:

• t1 : T1× . . .× tn : Tn: the set of records 〈t1 : v1, . . . , tn : vn〉 (= {〈t1,v1〉, . . . ,
〈tn,vn〉}) where t1, . . . , tn are disjoint values (tags) and v1 ∈ T1, . . . ,vn ∈ Tn;
if r = 〈t1 : v1, . . . , tn : vn〉, then r.ti = vi (1≤ i≤ n).

• Tr[t 7→ T]: the record which is identical to record Tr except that Tr.t = T
(i.e. Tr[t 7→ T].t ′ = Tr.t ′, for all t ′ 6= t).

Maps The datatype map (the set-theoretic counterpart of a function) is intro-
duced as follows:

• T1
part.−→ T2: the set of partial maps from T1 to T2; for every f in T1

part.−→ T2
and for every x in domain(f) ⊆ T1, f (x) is in T2 and 〈x, f (x)〉 is in f (i.e.
T1

part.−→ T2 is a subset of T1×T2).

• T1 → T2: the set of total maps from T1 to T2 (a subset of T1
part.−→ T2); for

every f in T1 → T2 and for every x in T1, f (x) is in T2 (i.e. domain(f) = T1).

• Tm[Tx 7→ Ty]: the map which is identical to map Tm except that Tm[Tx 7→
Ty](Tx) = Ty (i.e. Tm[Tx 7→ Ty](x) = Tm(x) for every x 6= Tx).

• [Tx 7→ Ty]: the map m such that domain(m) = {Tx} and m(Tx) = Ty.

Sequences The domain sequence (finite sequence of arbitrary length) is intro-
duced as follows:

• Ak := Nk → A: the set of sequences of length k ∈N whose values are in A;
for every s ∈ Ak, i ∈ Nk,v ∈ A, we have s(i) ∈ A and s[i 7→ v] ∈ Ak.

• A∗ :=
⋃

k∈NAk: the set of finite sequences whose values are in A with func-
tion LENGTH : A∗→ N: for every s ∈ Ak ⊆ A∗, we have LENGTH(s) = k.

The domain of infinite sequences is correspondingly introduced:

• A∞ := N→ A: the set of infinite sequences whose values are in A; for every
s ∈ A∞, i ∈ N,v ∈ A, we have s(i) ∈ A and s[i 7→ v] ∈ A∞.

112 APPENDIX A. MATHEMATICAL LANGUAGE

Abbreviations We use the following syntactic abbreviations of terms and for-
mulas (“P1 ≡ P2” means “P1 is an abbreviation of P2”):

• SUCH x ∈ T : F ≡ SUCH x : x ∈ T ∧ F

• ∀x ∈ T : F ≡ ∀x : x ∈ T ⇒ F

• ∀x1 ∈ T1, . . . ,xn ∈ Tn : F ≡ ∀x1 ∈ T1 : . . . : ∀xn ∈ Tn : F

• ∀x1, . . . ,xn ∈ T : F ≡ ∀x1 ∈ T, . . . ,xn ∈ T : F

• ∃x ∈ T : F ≡ ∃x : x ∈ T ∧ F

• ∃x1 ∈ T1, . . . ,xn ∈ Tn : F ≡ ∃x1 ∈ T1 : . . . : ∃xn ∈ Tn : F

• ∃x1, . . . ,xn ∈ T : F ≡ ∃x1 ∈ T, . . . ,xn ∈ T : F

• LET x1 = T1, . . . ,xn = Tn IN P ≡ LET x1 = T1 IN LET . . . IN LET xn =
Tn IN P

• T[T1 7→ T′1, . . . ,Tn 7→ T′n] ≡ T [T1 7→ T ′1] . . . [Tn 7→ T ′n]

• [T1 7→ T′1, . . . ,Tn 7→ T′n] ≡ [T1 7→ T ′1] . . . [Tn 7→ T ′n]

• MIN x ∈ S : F ≡ SUCH x ∈ S : (F ∧¬∃y ∈ S : y < x∧F [y/x])

• MAX x ∈ S : F ≡ SUCH x ∈ S : (F ∧¬∃y ∈ S : y > x∧F [y/x])

Definitions of Relations and Maps We use the following formats to define re-
lations and maps.

• r⊆ T1× . . .×Tn, r(x1, . . . ,xn)⇔ F

This definition introduces a relation r on T1 × . . .× Tn such that, for all
x1 ∈ T1, . . . ,xn ∈ Tn, the formula r(x1, . . . ,xn) is true if and only if F is true.

The relation r ∈ P(T1× . . .×Tn) is the set

r = {〈x1, . . . ,xn〉 ∈ T1× . . .×Tn : F}

The formula r(x1, . . . ,xn) is the syntactic abbreviation

r(x1, . . . ,xn) ≡ 〈x1, . . . ,xn〉 ∈ r

113

• f : T1× . . .×Tn → T0, f(x1, . . . ,xn) = T
This definition introduces a total map f from T1× . . .×Tn to T0 such that,
for all x1 ∈ T1, . . . ,xn ∈ Tn, the value of the term f (x1, . . . ,xn) is in T0 and
equals the value of T .

The map f ∈ T1× . . .×Tn → T0 is the set

f = {〈x1, . . . ,xn,y〉 ∈ T1× . . .×Tn×T0 : y = T}

The term f (x1, . . . ,xn) is the syntactic abbreviation

f (x1, . . . ,xn) ≡ SUCH y ∈ T0 : 〈x1, . . . ,xn,y〉 ∈ f

Since relations and maps are just special sets, they may serve as the values of
variables in terms and formulas (in contrast to logical predicates and functions).
On the other hand, the abbreviations r(x1, . . . ,xn) and f (x1, . . . ,xn) make a relation
r and a map f usable like a predicate respectively function; we thus use the notions
“predicate” and ”relation” respectively “function” and “map” interchangeably.

