General Polynomial Reduction with THEOREMA Functors Applications to Integro－Differential Operators and Polynomials

Abstract．We outline a prototype im－ plementation of the algorithms for integro－ differential operators and polynomials pre－ sented in［10］，programmed in the functor language of the TH \exists OREM \forall system［5］．

General Polynomial Reduction
We use a fixed Gröbner basis for normalizing integro－differential operators．Gröbner bases were invented by Buchberger $[2,3]$ for com－ mutative polynomials and reinvented in［1］ for noncommutative ones．Among the sys－ tems implementing noncommutative Gröbner bases［6］，none of them allows two features that are important for our present setting：
－Polynomials in infinitely many variables
－Reduction modulo infinite systems
Our generic approach encompasses commu－ tative／noncommutative polynomials as well as one／two－sided reduction．Polynomial alge－ bras are formulated as monoid algebras over a field K and a monoid W via the functor MonoidAlgebra［K，W］，leading to：

1．Commutative polynomials $W=$ additive monoid \mathbb{N}^{n} ．
2．Noncommutative polynomials $W=$ word monoid $\left\{x_{1}, \ldots, x_{n}\right\}^{*}$
3．Exponential polynomials $W=$ additive monoid $\mathrm{N} \times \mathbb{C}$ ．

Sample computations：
1．Commutative bivariate case
$(2 x+y) *(2 x-y)=4 x^{2}-y^{2}$


```
    <<2,\langle1,0\rangle\rangle,\langle-1,\langle0, 1\rangle>\rangle]
```

2. Noncommutative bivariate case:
$(2 x+y) *(2 x-y)=4 x^{2}-2 x y+2 y x-y^{2}$

```
    <<2, \"x">>, <-1, <"v">>]
```

3．Exponential polynomials： $\left(2 x e^{\sqrt{2} x}\right) *\left(4 x^{3} e^{-\sqrt{2} x}\right)=8 x^{4}$

TS＿nT（7）＝ $\operatorname{compute}\left[\left\langle\left\langle 2,\left\langle 1, \sqrt{2}_{2}\right\rangle\right\rangle\right\rangle_{\nabla}^{*}\left\langle\left\langle 4,\left\langle 3,-\sqrt{2}_{2}\right\rangle\right\rangle\right\rangle\right]$

Ts．outr｜$=\langle\langle 8,\langle 4,0\rangle\rangle\rangle$

Polynomial reduction is realized by a noncom－ mutative adaption of reduction rings（rings with so－called reduction multipliers in the sense of［4，11］；for a noncommutative approach along different lines，we refer to［7］．

```
red [f,g](* the reduction of f modulo g |)=
c
```


Example

Let $f(x, y)=x^{3} y^{2}+5, g(x, y)=x^{2} y+x y$ ．
－Commutative case： $\operatorname{rdm}(f, g)=x y$ ， $\operatorname{red}(f, g)=-x^{2} y^{2}+5$
－Noncommutative case： $\operatorname{lrdm}(f, g)=x$ ， $\operatorname{rrdm}(f, g)=y, \operatorname{red}(f, g)=-x x y y+5$

Georg Regensburger ${ }^{\dagger}$

The TH \exists OREM \forall System

The generic implementation of monoid al－ gebras with reduction multipliers is realized through functors whose principle and imple－ mentation in the TH \exists OREM \forall version of higher order predicate logic were introduced by Buch－ berger．The TH \exists OREM \forall system is designed as an integrated environment for doing math－ ematics［5］，in particular
－proving，
－computing，
－solving
in various domains of mathematics．Its core language is higher－order predicate logic，con－ taining a natural programming language such that algorithms can be coded and verified in a unified formal frame．In this logic－internal pro－ gramming language，functors are a powerful tool for realizing a modular and generic build－ up of hierarchical domains in mathematics．A functor is viewed as a function that produces a new domain from given domains by defin－ ing operations in the new domain in terms of operations in the underlying domains．
The following functor takes a linearly ordered alphabet L as input domain and builds the cor－

```
Definition["Word Monoid", any[I],
LexWords[I] = Functor[w, any [v,w, }\varepsilon,\eta,\overline{\xi},\overline{\eta}]
    s= <>
```



```
    \
    (\langle\eta, \overline{n}\rangle>⿱亠凶禸
```



```
    |\langle\eta,\overline{\eta}\rangle⿱亠䒑⿱幺小
```

responding words over it（here $\bar{\xi}, \bar{\eta}$ are se－ quence variables，i．e．they can be instantiated with finite sequences of terms）．The new do－ main W has the following properties：
－$W[\epsilon]$ ：all letters are in L
－$W[\square]$ ：neutral element
－$W[*]:$ concatenation
－$W[>]$ ：lexicographic ordering
The Monoid Algebra is the crucial functor that builds up polynomials．After adding reduc－ tion multipliers，the operations for handling Gröbner bases are added by virtue of an ex－ tension functor（a functor that leaves previous operations unchanged and adds new ones）．

Markus Rosenkranz†

Integro－Differential Operators

The notion of integro－differential operators was introduced in［10］as a generalization of the ＂Green＇s polynomials＂of［9］．They are par－ ticularly useful for treating boundary problem for LODEs as they express both the problems statement（differential equation and boundary conditions）and its solution operator（an in－

```
Definition["FreeIntDiffOP", any[F, K],
    FreeIntDiffop[F,K]= where[L= DegWords["\partial" म
```



```
    M= MonoidAlgebra[K, L],
    Functor [\mathscr{F}, any [b,c, f, \overline{w},\ldots],
    s={\
    <<>>g
```



```
    \langle\overline{w}," " "\ \
```



```
    \langle\overline{w},[b]\rangle⿱㇒⿴囗⿱一一口龰
```

tegral operator usually called＂Green＇s oper－ ator＂）．The integro－differential operators are realized by a suitable quotient of noncom－ mutative polynomials over a given integro－ differential algebra．

```
Definition["IntDiffop", any[F, k],
    IntDiffop[F, K] = where[ [{ FreeIntDiffop[f, K],
    QuotA1g[q, gr cr ]]
```

An ordinary integro－differential algebra（ $\mathcal{F}, \partial, \int$ is a differential algebra with a K－linear opera tion $\int: \mathcal{F} \rightarrow \mathcal{F}$ ，such that
$\partial \int f=f \quad$ and $\quad\left(\int f\right)\left(\int g\right)=\int f \int g+\int g \int f$.
In order to build up the integro－differential op erators，we first consider the monoid algebra for the word monoid over the infinite alphabet consisting of the letters ∂ and \int along with all basis elements $x^{n} e^{\lambda x}(n \in \mathbb{N}, \lambda \in \mathbb{C})$ of the exponential polynomials and all multiplicative functionals φ ．Then we factor out the nine （parametrized）rewrite rules：

$f g \rightarrow f \cdot g$	$\partial f \rightarrow \partial \cdot f+f \partial$
$\varphi \psi \rightarrow \psi$	$\partial \varphi \rightarrow 0$
$\varphi f \rightarrow(\varphi \cdot f) \varphi$	$\partial \int \rightarrow 1$
$\int f \int \rightarrow\left(\int \cdot f\right) S-\int\left(\int \cdot f\right)$	
$\int f \partial \rightarrow f-\int(\partial \cdot f)-(\mathrm{E} \cdot f) \mathrm{E}$	
$\int f \varphi \rightarrow\left(\int \cdot f\right) \varphi$	

These rules form a Gröbner basis in the un

Loredana TEC＊

derlying polynomial ring．Computing in the quotient algebra is realized by using the cor－ responding normal forms．

Integro－Differential Polynomials

The integro－differential polynomials over an algebra［8］form a commutative algebra．They model nonlinear differential and integral oper－ ators with an indeterminate u ，so a typical ele－ ment would be $\int\left(x^{4} u u^{\prime \prime 2} \int\left(x e^{3 x} u^{2} u^{\prime 3} \int u\right)\right)$ ．One can describe extentions of an integro－differen－ tial algebra by forming suitable quotients of the integro－differential polynomials．We are currently working on an implementation based on the functors presented here．

Acknowledgements

This work was supported by the Austrian Sci－ ence Fund FWF under the SFB grants F1302 and F1322．
We would also like to thank Manuel Kauers for assembling the practical $\left\lfloor A_{E} \mathrm{E}\right.$ class file used for preparing this poster．

References

［1］G．M．Bergman．The diamond lemma for ring the－ ory．Adv．in Math．，29（2）：179－218， 1978.
［2］B．Buchberger．An Algorithm for Finding the Bases Elements of the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal．PhD thesis， Univ．of Innsbruck，1965．English translation in J． Symbolic Comput．，41（3－4）：475－511， 2006.
［3］B．Buchberger．Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gle－ ichungssystems．Aequationes Math．，4：374－383， 1970．English translation in B．Buchberger，F．Win－ kler（eds．），Gröbner Bases and Applications，Cam－ bridge University Press，1998．
［4］B．Buchberger．Groebner rings and modules．In S．Maruster，B．Buchberger，V．Negru，and T．Je－ belean，eds．，Proc．of SYNASC 2001， 2001
［5］B．Buchberger et al．Theorema：Towards computer－aided mathematical theory exploration． J．Appl．Log．，4（4）：359－652， 2006.
［6］V．Levandovsky．Gröbner basis implementa－ tions．Functionality check and comparison http：／／www．ricam．oeaw．ac．at／Groebner－Bases－Im－ plementations， 2008.
［7］K．Madlener and B．Reinert．Non－commutative re－ duction rings．Rev．Col．Mat．，33（1）：27－49， 1999.
［8］M．Rosenkranz and G．Regensburger．Solving and factoring boundary problems for linear ordinary dif－ ferential equations in differential algebras．J．Sym－ bolic Comput．，43（8）：515－544， 2008.
［9］M．Rosenkranz．A new symbolic method for solv－ ing linear two－point boundary value problems on the level of operators．J．Symbolic Comput． 39（2）：171－199， 2005.
［10］M．Rosenkranz and G．Regensburger．Integro－ differential polynomials and operators．In D．Jef－ frey，ed．，Proc．of ISSAC＇08．ACM Press， 2008.
［11］S．Stifter．Gröbner bases of modules over reduc－ tion rings．J．Algebra，159（1）：54－63， 1993.

A Fourth Order Boundary Problem
Given $f \in C^{\infty}[0,1]$ ，we want to find the unique $u \in C^{\infty}[0,1]$ such that

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime \prime}=f, \\
u(0)=u^{\prime \prime}(0)=u(1)=u^{\prime \prime}(1)=0 .
\end{array}\right.
$$

The operator G ：$f \mapsto u$ ，known as the Green＇s operator of the problem，can be computed［8］by normalizing the polynomial $(1-P) \iiint \int$ ，with
$P=\frac{1}{6} x^{3}\lfloor 1\rfloor \partial \partial-\frac{1}{6} x^{3}\lfloor 0\rfloor \partial \partial+\frac{1}{2} x^{2}\lfloor 0\rfloor \partial \partial-\frac{1}{6} x\lfloor 1\rfloor \partial \partial-\frac{1}{3} x\lfloor 0\rfloor \partial \partial+x\lfloor 1\rfloor-x\lfloor 0\rfloor+\lfloor 0\rfloor$,
where $\lfloor 0\rfloor,\lfloor 1\rfloor$ denote evaluation at 0 and 1 ，respectively．
Thus，we obtain
$G=\frac{1}{6} x^{3}\lfloor 1\rfloor \int x+\frac{1}{6} x\lfloor 1\rfloor \int x^{3}-\frac{1}{2} x\lfloor 1\rfloor \int x^{2}+\frac{1}{3} x\lfloor 1\rfloor \int x-\frac{1}{6} x^{3}\lfloor 1\rfloor \int-\frac{1}{2} x^{2} \int x+\frac{1}{2} x \int x^{2}-\frac{1}{6} \int x^{3}+\frac{1}{6} x^{3} \int$
by our implementation．

