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Abstract. We outline a prototype im-

plementation of the algorithms for integro-

differential operators and polynomials pre-

sented in [10], programmed in the functor

language of the TH∃OREM∀ system [5].

General Polynomial Reduction

We use a fixed Gröbner basis for normalizing

integro-differential operators. Gröbner bases

were invented by Buchberger [2, 3] for com-

mutative polynomials and reinvented in [1]

for noncommutative ones. Among the sys-

tems implementing noncommutative Gröbner

bases [6], none of them allows two features

that are important for our present setting:

• Polynomials in infinitely many variables

• Reduction modulo infinite systems

Our generic approach encompasses commu-

tative/noncommutative polynomials as well as

one/two-sided reduction. Polynomial alge-

bras are formulated as monoid algebras over

a field K and a monoid W via the functor

MonoidAlgebra[K, W], leading to:

1. Commutative polynomials

W = additive monoid Nn.

2. Noncommutative polynomials

W = word monoid {x1, . . . , xn}∗.
3. Exponential polynomials

W = additive monoid N×C.

Sample computations:

1. Commutative bivariate case :

(2x + y) ∗ (2x − y) = 4x2 − y2

2. Noncommutative bivariate case :

(2x + y) ∗ (2x − y) = 4x2 − 2xy + 2yx − y2

3. Exponential polynomials :

(2xe
√

2x) ∗ (4x3e−
√

2x) = 8x4

Polynomial reduction is realized by a noncom-

mutative adaption of reduction rings (rings

with so-called reduction multipliers in the sense

of [4, 11]; for a noncommutative approach

along different lines, we refer to [7].

Example:

Let f (x, y) = x3y2 + 5, g(x, y) = x2y + xy.

• Commutative case: rdm( f , g) = xy,

red( f , g) = −x2y2 + 5

• Noncommutative case: lrdm( f , g) = x,

rrdm( f , g) = y, red( f , g) = −xxyy + 5
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The TH∃OREM∀ System

The generic implementation of monoid al-

gebras with reduction multipliers is realized

through functors whose principle and imple-

mentation in the TH∃OREM∀ version of higher

order predicate logic were introduced by Buch-

berger. The TH∃OREM∀ system is designed

as an integrated environment for doing math-

ematics [5], in particular

• proving,

• computing,

• solving

in various domains of mathematics. Its core

language is higher-order predicate logic, con-

taining a natural programming language such

that algorithms can be coded and verified in a

unified formal frame. In this logic-internal pro-

gramming language, functors are a powerful

tool for realizing a modular and generic build-

up of hierarchical domains in mathematics. A

functor is viewed as a function that produces

a new domain from given domains by defin-

ing operations in the new domain in terms of

operations in the underlying domains.

The following functor takes a linearly ordered

alphabet L as input domain and builds the cor-

responding words over it (here ξ̄, η̄ are se-

quence variables, i.e. they can be instantiated

with finite sequences of terms). The new do-

main W has the following properties:

• W [∈]: all letters are in L

• W [2]: neutral element

• W [∗]: concatenation

• W [>]: lexicographic ordering

The Monoid Algebra is the crucial functor that

builds up polynomials. After adding reduc-

tion multipliers, the operations for handling

Gröbner bases are added by virtue of an ex-

tension functor (a functor that leaves previous

operations unchanged and adds new ones).

MARKUS ROSENKRANZ†

Integro-Differential Operators

The notion of integro-differential operators was

introduced in [10] as a generalization of the

”Green’s polynomials” of [9]. They are par-

ticularly useful for treating boundary problem

for LODEs as they express both the problems

statement (differential equation and boundary

conditions) and its solution operator (an in-

tegral operator usually called ”Green’s oper-

ator”). The integro-differential operators are

realized by a suitable quotient of noncom-

mutative polynomials over a given integro-

differential algebra.

An ordinary integro-differential algebra (F , ∂,
r
)

is a differential algebra with a K-linear opera-

tion
r

: F → F , such that

∂
r

f = f and (
r

f )(
r

g) =
r

f
r

g +
r

g
r

f .

In order to build up the integro-differential op-

erators, we first consider the monoid algebra

for the word monoid over the infinite alphabet

consisting of the letters ∂ and
r

along with all

basis elements xneλx (n ∈ N, λ ∈ C) of the

exponential polynomials and all multiplicative

functionals ϕ. Then we factor out the nine

(parametrized) rewrite rules:

f g → f · g ∂ f → ∂ · f + f ∂

ϕψ → ψ ∂ϕ → 0

ϕ f → (ϕ · f ) ϕ ∂
r
→ 1

r
f
r
→ (

r
· f )

r
−

r
(
r
· f )

r
f ∂ → f −

r
(∂ · f ) − (E · f ) E

r
f ϕ → (

r
· f ) ϕ

These rules form a Gröbner basis in the un-

LOREDANA TEC⋆

derlying polynomial ring. Computing in the

quotient algebra is realized by using the cor-

responding normal forms.

Integro-Differential Polynomials

The integro-differential polynomials over an

algebra [8] form a commutative algebra. They

model nonlinear differential and integral oper-

ators with an indeterminate u, so a typical ele-

ment would be
r
(x4uu′′2

r
(xe3xu2u′3

r
u)). One

can describe extentions of an integro-differen-

tial algebra by forming suitable quotients of

the integro-differential polynomials. We are

currently working on an implementation based

on the functors presented here.
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A Fourth Order Boundary Problem

Given f ∈ C∞[0, 1], we want to find the unique u ∈ C∞[0, 1] such that
{

u
′′′′

= f ,

u(0) = u′′(0) = u(1) = u′′(1) = 0.

The operator G : f 7→ u, known as the Green’s operator of the problem, can be computed [8] by

normalizing the polynomial (1− P)
r r r r

, with

P = 1
6x3⌊1⌋∂∂ − 1

6x3⌊0⌋∂∂ + 1
2x2⌊0⌋∂∂ − 1

6x⌊1⌋∂∂ − 1
3x⌊0⌋∂∂ + x⌊1⌋ − x⌊0⌋ + ⌊0⌋,

where ⌊0⌋, ⌊1⌋ denote evaluation at 0 and 1, respectively.

Thus, we obtain

G = 1
6x3⌊1⌋

r
x + 1

6x⌊1⌋
r

x3 − 1
2x⌊1⌋

r
x2 + 1

3x⌊1⌋
r

x − 1
6x3⌊1⌋

r
− 1

2x2r x + 1
2x

r
x2 − 1

6

r
x3 + 1

6x3r

by our implementation.
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