
General Polynomial Reduction with THEOREMA Functors
Applications to Integro-Differential Operators and Polynomials

BRUNO BUCHBERGER⋆

Abstract. We outline a prototype im-

plementation of the algorithms for integro-

differential operators and polynomials pre-

sented in [10], programmed in the functor

language of the TH∃OREM∀ system [5].

General Polynomial Reduction

We use a fixed Gröbner basis for normalizing

integro-differential operators. Gröbner bases

were invented by Buchberger [2, 3] for com-

mutative polynomials and reinvented in [1]

for noncommutative ones. Among the sys-

tems implementing noncommutative Gröbner

bases [6], none of them allows two features

that are important for our present setting:

• Polynomials in infinitely many variables

• Reduction modulo infinite systems

Our generic approach encompasses commu-

tative/noncommutative polynomials as well as

one/two-sided reduction. Polynomial alge-

bras are formulated as monoid algebras over

a field K and a monoid W via the functor

MonoidAlgebra[K, W], leading to:

1. Commutative polynomials

W = additive monoid Nn.

2. Noncommutative polynomials

W = word monoid {x1, . . . , xn}∗.
3. Exponential polynomials

W = additive monoid N×C.

Sample computations:

1. Commutative bivariate case :

(2x + y) ∗ (2x − y) = 4x2 − y2

2. Noncommutative bivariate case :

(2x + y) ∗ (2x − y) = 4x2 − 2xy + 2yx − y2

3. Exponential polynomials :

(2xe
√

2x) ∗ (4x3e−
√

2x) = 8x4

Polynomial reduction is realized by a noncom-

mutative adaption of reduction rings (rings

with so-called reduction multipliers in the sense

of [4, 11]; for a noncommutative approach

along different lines, we refer to [7].

Example:

Let f (x, y) = x3y2 + 5, g(x, y) = x2y + xy.

• Commutative case: rdm(f , g) = xy,

red(f , g) = −x2y2 + 5

• Noncommutative case: lrdm(f , g) = x,

rrdm(f , g) = y, red(f , g) = −xxyy + 5

GEORG REGENSBURGER†

The TH∃OREM∀ System

The generic implementation of monoid al-

gebras with reduction multipliers is realized

through functors whose principle and imple-

mentation in the TH∃OREM∀ version of higher

order predicate logic were introduced by Buch-

berger. The TH∃OREM∀ system is designed

as an integrated environment for doing math-

ematics [5], in particular

• proving,

• computing,

• solving

in various domains of mathematics. Its core

language is higher-order predicate logic, con-

taining a natural programming language such

that algorithms can be coded and verified in a

unified formal frame. In this logic-internal pro-

gramming language, functors are a powerful

tool for realizing a modular and generic build-

up of hierarchical domains in mathematics. A

functor is viewed as a function that produces

a new domain from given domains by defin-

ing operations in the new domain in terms of

operations in the underlying domains.

The following functor takes a linearly ordered

alphabet L as input domain and builds the cor-

responding words over it (here ξ̄, η̄ are se-

quence variables, i.e. they can be instantiated

with finite sequences of terms). The new do-

main W has the following properties:

• W [∈]: all letters are in L

• W [2]: neutral element

• W [∗]: concatenation

• W [>]: lexicographic ordering

The Monoid Algebra is the crucial functor that

builds up polynomials. After adding reduc-

tion multipliers, the operations for handling

Gröbner bases are added by virtue of an ex-

tension functor (a functor that leaves previous

operations unchanged and adds new ones).

MARKUS ROSENKRANZ†

Integro-Differential Operators

The notion of integro-differential operators was

introduced in [10] as a generalization of the

”Green’s polynomials” of [9]. They are par-

ticularly useful for treating boundary problem

for LODEs as they express both the problems

statement (differential equation and boundary

conditions) and its solution operator (an in-

tegral operator usually called ”Green’s oper-

ator”). The integro-differential operators are

realized by a suitable quotient of noncom-

mutative polynomials over a given integro-

differential algebra.

An ordinary integro-differential algebra (F , ∂,
r
)

is a differential algebra with a K-linear opera-

tion
r

: F → F , such that

∂
r

f = f and (
r

f)(
r

g) =
r

f
r

g +
r

g
r

f .

In order to build up the integro-differential op-

erators, we first consider the monoid algebra

for the word monoid over the infinite alphabet

consisting of the letters ∂ and
r

along with all

basis elements xneλx (n ∈ N, λ ∈ C) of the

exponential polynomials and all multiplicative

functionals ϕ. Then we factor out the nine

(parametrized) rewrite rules:

f g → f · g ∂ f → ∂ · f + f ∂

ϕψ → ψ ∂ϕ → 0

ϕ f → (ϕ · f) ϕ ∂
r
→ 1

r
f
r
→ (

r
· f)

r
−

r
(
r
· f)

r
f ∂ → f −

r
(∂ · f) − (E · f) E

r
f ϕ → (

r
· f) ϕ

These rules form a Gröbner basis in the un-

LOREDANA TEC⋆

derlying polynomial ring. Computing in the

quotient algebra is realized by using the cor-

responding normal forms.

Integro-Differential Polynomials

The integro-differential polynomials over an

algebra [8] form a commutative algebra. They

model nonlinear differential and integral oper-

ators with an indeterminate u, so a typical ele-

ment would be
r
(x4uu′′2

r
(xe3xu2u′3

r
u)). One

can describe extentions of an integro-differen-

tial algebra by forming suitable quotients of

the integro-differential polynomials. We are

currently working on an implementation based

on the functors presented here.

Acknowledgements

This work was supported by the Austrian Sci-

ence Fund FWF under the SFB grants F1302

and F1322.

We would also like to thank Manuel Kauers for

assembling the practical LATEX class file used

for preparing this poster.

References

[1] G. M. Bergman. The diamond lemma for ring the-

ory. Adv. in Math., 29(2):179–218, 1978.

[2] B. Buchberger. An Algorithm for Finding the Bases

Elements of the Residue Class Ring Modulo a

Zero Dimensional Polynomial Ideal. PhD thesis,

Univ. of Innsbruck, 1965. English translation in J.

Symbolic Comput., 41(3-4):475–511, 2006.

[3] B. Buchberger. Ein algorithmisches Kriterium

für die Lösbarkeit eines algebraischen Gle-

ichungssystems. Aequationes Math., 4:374–383,

1970. English translation in B. Buchberger, F. Win-

kler (eds.), Gröbner Bases and Applications, Cam-

bridge University Press, 1998.

[4] B. Buchberger. Groebner rings and modules. In

S. Maruster, B. Buchberger, V. Negru, and T. Je-

belean, eds., Proc. of SYNASC 2001, 2001.

[5] B. Buchberger et al. Theorema: Towards

computer-aided mathematical theory exploration.

J. Appl. Log., 4(4):359–652, 2006.

[6] V. Levandovsky. Gröbner basis implementa-

tions. Functionality check and comparison.

http://www.ricam.oeaw.ac.at/Groebner-Bases-Im-

plementations, 2008.

[7] K. Madlener and B. Reinert. Non-commutative re-

duction rings. Rev. Col. Mat., 33(1):27–49, 1999.

[8] M. Rosenkranz and G. Regensburger. Solving and

factoring boundary problems for linear ordinary dif-

ferential equations in differential algebras. J. Sym-

bolic Comput., 43(8):515–544, 2008.

[9] M. Rosenkranz. A new symbolic method for solv-

ing linear two-point boundary value problems

on the level of operators. J. Symbolic Comput.,

39(2):171–199, 2005.

[10] M. Rosenkranz and G. Regensburger. Integro-

differential polynomials and operators. In D. Jef-

frey, ed., Proc. of ISSAC’08. ACM Press, 2008.

[11] S. Stifter. Gröbner bases of modules over reduc-

tion rings. J. Algebra, 159(1):54–63, 1993.

TS_In[25]:= ComputeBXX2, X1, 0\\, X1, X0, 1*
P

XX2, X1, 0\\, X-1, X0, 1\\\F
TS_Out[25]= XX4, X2, 0\\, X-1, X0, 2\\\

TS_In[32]:= ComputeBXX2, X"x"\\, X1, X"y"*
P

XX2, X"x"\\, X-1, X"y"\\\F
TS_Out[32]= XX4, Xx, x\\, X-2, Xx, y\\, X2, Xy, x\\, X-1, Xy, y\\\

TS_In[74]:= ComputeBZZ2, Z1, ,2^^^*
P

ZZ4, Z3, -,2^^^F
TS_Out[74]= XX8, X4, 0\\\

red
G
@f, gDH* the reduction of f modulo g *L =

f -
P
lrdm

P
@f, gD*

P
g*

P
rrdm

P
@f, gD

DefinitionB"Word Monoid", any@LD,
LexWords@LD = FunctorBW, anyAv, w, Ξ, Η, Ξ

�
, Η
�E,

s = X\

Î
W
@wD�í

is|tuple@wD
"

i=1,¼, w¤
Î
L
@wiD

î
W
= X\

v*
W
w = v ^ w

KXΗ, Η�\ >
W
X\O � True

KX\ >
W
XΗ�\O � False

KXΗ, Η�\ >
W
YΞ, Ξ�]O �ë

Η >
L
Ξ

HΗ = ΞL íXΗ�\ >
W
XΞ�\

FF

DefinitionB"Monoid Algebra", any@K, WD,
MonoidAlgebra@K, WD = FunctorBP, any@c, d, f, g, ¼D,

s = X\

Î
P
@fD�í

is|tuple@fD

"
i=1,¼, f¤

í

is|tuple@fiD
 fi¤ = 2
Î
K
@HfiL1D
Î
W
@HfiL2D

HfiL1 ¹ 0
K

"
i=1,¼, f¤-1

HfiL2 >
W
Hfi+1L2

1
P
= ZZ1

K
, î

W
^^

0
P
= X\
X*

P
g = X\

f*
P
X\ = X\

XXc, Ξ\, m
�*

P
XXd, Η\, n

�\ =
JZZc*

K
d, Ξ *

W
Η^^ +

P
Xc, Ξ*

P
Xn�\N +

P
Xm�*

P
XXd, Η\, n

�\
f +

P
g = ¼

FF

DefinitionB"IntDiffOp", any@F, KD,
IntDiffOp@F, KD = whereBA = FreeIntDiffOp@F, KD,
QuotAlgBA, G

Gr

FFF

DefinitionB"FreeIntDiffOp", any@F, KD,
FreeIntDiffOp@F, KD = whereBL = DegWordsA"¶" -

I"Ù " - DoubleBasis@Basis@FD, CharBasis@KDDME,
M = MonoidAlgebra@K, LD,
FunctorBA, any@b, c, f, w

�
, ¼D,

s = X\
ÎA@fD�ÎM@fD
¼

X\�A fH* action of int-diff operator *L = f
Xw�, "¶"\�A f = Xw

�\�A ¶F f
Yw�, "Ù "]�A f = Xw

�\�A ÙFf
Xw�, dct\�A f = evalF @f, cD×F Xw

�\�A 1F
Xw�, `bp\�A f = Xw

�\�A ew
A
@bD*F f

FFF

A Fourth Order Boundary Problem

Given f ∈ C∞[0, 1], we want to find the unique u ∈ C∞[0, 1] such that
{

u
′′′′

= f ,

u(0) = u′′(0) = u(1) = u′′(1) = 0.

The operator G : f 7→ u, known as the Green’s operator of the problem, can be computed [8] by

normalizing the polynomial (1− P)
r r r r

, with

P = 1
6x3⌊1⌋∂∂ − 1

6x3⌊0⌋∂∂ + 1
2x2⌊0⌋∂∂ − 1

6x⌊1⌋∂∂ − 1
3x⌊0⌋∂∂ + x⌊1⌋ − x⌊0⌋ + ⌊0⌋,

where ⌊0⌋, ⌊1⌋ denote evaluation at 0 and 1, respectively.

Thus, we obtain

G = 1
6x3⌊1⌋

r
x + 1

6x⌊1⌋
r

x3 − 1
2x⌊1⌋

r
x2 + 1

3x⌊1⌋
r

x − 1
6x3⌊1⌋

r
− 1

2x2r x + 1
2x

r
x2 − 1

6

r
x3 + 1

6x3r

by our implementation.

⋆ RISC, Johannes Kepler Universität . † RICAM, Austrian Academy of Sciences . Altenberger Straße 69 . Linz, Austria

