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Abstract

This paper presents a new geometry-based method to deter-
mine if a cable-driven robot operating in a d-degree-of-freedom
workspace (2 < d < 6) with n > d cables can generate a
given set of wrenches in a given pose, considering acceptable
minimum and maximum tensions in the cables. To this end, the
fundamental nature of the Available Wrench Set is studied. The
latter concept, defined here, is closely related to similar sets in-
troduced in [23, 4]. It is shown that the Available Wrench Set can
be represented mathematically by a zonotope, a special class of
convex polytopes. Using the properties of zonotopes, two meth-
ods to construct the Available Wrench Set are discussed. From
the representation of the Available Wrench Set, computationally-
efficient and non-iterative tests are presented to verify if this set
includes the Task Wrench Set, the set of wrenches needed for a
given task.

INTRODUCTION AND PROBLEM DEFINITION

A cable-driven robot, or simply cable robot, is a parallel robot
whose actuated limbs are cables. The length of the cables can
be adjusted in a coordinated manner to control the pose (po-
sition and orientation) and/or wrench (force and torque) at the
moving platform. Pioneer applications of such mechanisms are
the NIST Robocrane [1], the Falcon high-speed manipulator [15]
and the Skycam [7]. The fact that cables can only exert efforts
in one direction impacts the capability of the mechanism to gen-
erate wrenches at the platform. Previous work already presented
methods to test if a set of wrenches — ranging from one to all
possible wrenches — could be generated by a cable robot in a
given pose, considering that cables work only in tension. Some
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of the proposed methods focus on fully constrained cable robots
while others apply to unconstrained robots. In all cases, mini-
mum and/or maximum cable tensions is considered. A complete
section of this paper is dedicated to the comparison of the pro-
posed approach with previous methods.

A general geometric approach that addresses all possible
cases without using an iterative algorithm is presented here. It
will be shown that the results obtained with this approach are
consistent with the ones previously presented in the literature
[4, 5, 14, 17, 18, 22, 23, 24, 26]. This paper does not ad-
dress the workspace of cable robots. The latter challenging
problem was addressed in several papers over the recent years
[10, 11, 12, 19, 25]. Before looking globally at the workspace,
all proposed methods must go through the intermediate step of
assessing the capability of a mechanism to generate a given set
of wrenches. The approach proposed here is also compared with
the intermediate steps of the papers on the workspace determina-
tion of cable robots.

The task that a robot has to achieve implies that it will have
to be able to generate a given set of wrenches in a given pose
x. This Task Wrench Set, T', depends on the various applications
of the considered robot, which can be for example to move a
camera or other sensors [7, 6, 9, 3], manipulate payloads [15,
1] or simulate walking sensations to a user immersed in virtual
reality [21], just to name a few. The Available Wrench Set, A,
is the set of wrenches that the mechanism can generate. This set
depends on the architecture of the robot, i.e., where the cables
are attached on the platform and where the fixed winches are
located. It also depends on the configuration pose as well as on
the minimum and maximum acceptable tension in the cables. All
the wrenches that are possibly needed to accomplish a task can
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Figure 1 Planar mechanism n = 3,d = 2 with its asso-
ciated A drawn (bottom) and example of three
different 7.

be generated if the following condition is met:
T C A )

If the Task Wrench Set is a subset of the Available Wrench Set,
then all the wrenches in the Task Wrench Set can be generated
by the robot. Take for example the simple d = 2,n = 3 planar
mechanism presented in Figure 1. In the same figure, the Avail-
able Wrench Set is also shown, as well as three different 7. The
wrench that cable 7 can generate, in this case a force, is directed
along cable 7 toward the ¢th winch. Its magnitude can vary from
a minimum cable tension ¢; to a maximum cable tension ¢; and
the corresponding range is defined as At; = ¢; —t;. As shown in
Figure 1, if the Task Wrench Set is completely inside the Avail-
able Wrench Set (e.g. 77), then eq. (1) holds true and the task
wrenches can be generated. This is not the case if 7" is partly in
A (e.g. Ty) or if it is completely outside of it (e.g. T3).

This idea was suggested in [23]. The reader familiar with
the latter reference should note that the definitions of the sets A
and T proposed here differ slightly from the ones used in [23].
Indeed, in [23], A is defined considering the minimum tension to
be zero in all cables, while here the minimum tension can take
any value, it can also differ from one cable to another and change
with the pose. Also, set T is note used in [23] but rather a similar
concept that the authors refer to as the Desired Wrench Set. The
wrench needed to balance gravity is considered here as a subset
of T while it is not included in the Desired Wrench Set used in

[23]. Also, T here can be pose-dependent.
If a wrench w can be generated on the moving platform by
the cables, there must exist a solution to the equation

Wt =w 2

that satisfies the condition

I+
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-+
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3)
where

e t is a column vector whose ith component is the tension in
the ¢th cable;

e t and t are vectors whose components are respectively the
minimum and maximum acceptable tensions in the cables.
The inequalities in eq. (3) must be interpreted component
by component. For instance, t < t means that all compo-
nents of t are smaller the the corresponding component of
toie, b <ti,ta <tg, ., tn <tn;

e W is the d x n cable unit wrenches matrix. The ith column
w; of W is the unit wrench that cable ¢ can exert on the plat-
form. For a point-mass robot, w; will be a unit vector in the
direction of the cable, pointing toward the ith winch. For a
six degree-of-freedom (DOF) robot, the first three compo-
nents of w; will be a unit force along the cable and the last
three components will be the associated torque with respect
to the reference frame attached to the moving platform.

Another way of formulating eq. (1) is that there must be a
vector t that is a solution of eq. (2) for all w € T, and that
respects the tension limit conditions of eq. (3). In the rest of
this paper, a non-iterative method to verify this condition is pre-
sented. To do so, a geometry-based algorithm is developed that
consists of two parts. The first step is to define A. The second is
to determine if eq. (1) is valid.

It is noted that W and consequently A are pose-dependent.
Depending on the application, T', t and t might also change with
the pose.

NATURE OF THE AVAILABLE WRENCH SET

Cables can only pull. Hence, they can only apply a combination
of positively weighted unit wrenches. In this work, the weights
vary between a minimum and a maximum tension for each cable.
Starting from this, eq. (2) can be used to define A:

n
A={weR!|w=) tiw, L <t; <L} (4
i=1
With the change of variables

Bi =t — ti, )

eq. (4) can be expressed as

A={we R? | w= ZﬂiWH-WL 0< B < (ti—ti)}. (6)
i=1
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With another change of variables

Bi

= Aty )

Q;
and recalling At; = t; — t;, eq. (6) can now be written

n
A:{weR‘ﬂw:ZaiAtiwi—i—WL 0<a; <1}. (8)

=1

The latter expression corresponds to the definition of a zonotope
[13]: A zonotope is the vector sum of a finite number of closed
line segments in some Euclidean space. The zonotope gener-
ated by the set of vectors Y = {y1,y2, -+ ,yn} € R?, denoted
zone(Y), is given by:

zone(Y) = {x e R | x = Z%‘Yi, 0<a; <1} (9

i=1

It is pointed out that some authors use different conventions
for the range of o; (i.e. —1 < oy < 11in [16]). The line segments
used to define a zonotope are called its generators. In our case,
the generators are the At;w;. Using the definition of a zonotope,
eq. (8) can be written as

A = zone(G) @ {Wt}, (10)

where G = {Atywy, Atows, - -+, At, W, } and where @ stands
for the Minkowski sum of two sets, which is obtained by adding
each element of the second set to each element of the first set.
Adding {Wt}, the wrench caused by the minimum acceptable
tension in all the cables, produces a translation of zone(G) that
does not modify the shape of A. Indeed, the shape of the zono-
tope depends only on the directions of the unit wrenches (W) as
well as the difference between the maximum and minimum ac-
ceptable tensions (At). The translation depends also on the unit
wrench matrix and on the minimum tension vector. The zono-
tope before the translation, zone(G) is called for the rest of this
paper the base zonotope. It does not depend on the minimum
acceptable tensions. Its properties will be used to compare the
proposed approach with the other approaches presented in the
literature to define the Available Wrench Set.

A zonotope is a special class of convex polytope. A convex
polytope is the generalization, in an arbitrary number of dimen-
sions, of the concept of convex polygon in two dimensions or
convex polyhedron in three dimensions. It is the convex hull of
a finite set of points, which is the minimal convex set containing
the set of points. The zonotope exhibits special features that will
be discussed later.

Another way of defining a zonotope is by the Minkowski
sum of n line segments [8]. As defined above, the Minkowski
sum of two sets B and C' is obtained by taking the sum of each
element of B with each element of C"

BaC={b+c|beB,ceC}. (11)
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Figure 2 Minkowski sum of four line segments.
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Using this definition, A can be defined as
A=585ad...05,d{Wt}, (12)

where .S; is the set representing the line segment between the two
end-points of vector At;w;:

S;={weR|w=aAt;w;, 0< a; <1}, (13)

Figure 2 shows how four line segments can be added in this man-
ner to form a zonotope.

Physically, this definition as a combinatorial sum makes
sense: To obtain the set of wrenches that the mechanism can
generate, we add all wrenches that a cable can generate to all
wrenches that all the other cables can generate. The result is thus
the set of wrenches generated by all the acceptable tensions in
the cables.

Yet another way of defining a zonotope arising from n gen-
erators is as the image of the n-dimensional hypercube under an
affine transformation [27]. To this end, eq. (8) can be expressed
in matrix form as:

A={weR!|w=Ma+Wt, 0<a; <1}, (14)

where
M = Wdiag(At), (15)
At = [Aty, Aty, ..., At,]7T, (16)
a = a0, 0] (17)
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The following steps explain how A is constructed mathemati-
cally starting from a hypercube. The four steps are illustrated in
Figure 3 for the case d = 2,n = 3.

1. Because the n «; can have a value between 0 and 1, they
represent a hypercube in the n-dimensional space.

2. Matrix M modifies the hypercube in two ways. First, it
scales the length of the hypercube edge along axis ¢ from 1
to At;, transforming the hypercube into a hyper-rectangle.
This is due to the square matrix diag(At).

3. Second, the d x n unit wrench matrix W projects
the n-dimensional hyper-rectangle onto the d-dimensional
wrench-space. If d = n, the number of cables equals the
number of DOF. In this case, the hyper-rectangle keeps its
topology and is only deformed by W. If d < n, there are
more cables than DOF. In this case, the hyper-rectangle is
projected onto a space of smaller dimension.

4. The last step consists in adding {Wt}, which translates
the projected hyper-rectangle in the wrench-space so the
wrench corresponding to a« = 0 coincides with the wrench
induced by the minimum tension in all the cables.

The example of Figure 3 involves a small number of cables and
DOFs in order to allow the visualization of construction of the
zonotope. The mathematical expression remains the same for
larger numbers of DOFs and cables. Other base zonotopes are
illustrated in Figure 4 for d = 3, n = 6 and in Figure 5 for
d=2,n=>5.

To summarize, we can define the zonotope-shaped Available
Wrench Set in three different ways:

1. The linear combinations of a set of vectors with minimum
and maximum acceptable magnitude, eq. (8);

2. The Minkowski sum of line segments, eq. (12);
3. The affine transformation of a hypercube, eq. (14).

These three points of view provide different perspectives on the
nature of the Available Wrench Set. Zonotopes have other in-
teresting characteristics [27]. A zonotope is a type of polytope
that is centrally symmetric. Each face of a zonotope has another
face that is parallel to it. Faces of a zonotope are also them-
selves zonotopes and their edges correspond to generator seg-
ments. The faces which have a common generator form a belt
zone that wraps around the surface (see Figure 6), hence the
name zonotope. All these zones cover the whole surface. The
number of these zones is the main measure of the complexity of
a zonotope. For the Available Wrench Set of a cable robot, this
number corresponds to the number of cables.

Jf-EO

Figure 3 lllustration of the four steps in the mathemat-
ical construction of a zonotope for n» = 3 and
d = 2. The top image shows the mechanism.

(t>[t<[[n=d] n>d \
0 [ oo [[[19,5] ] [24,18,17,25]
0 t [23] [4]
t t [26, 14, 12, 22]

Table 1 Classification of the literature on the ability of
a cable mechanism to generate wrenches.

Special cases

Several papers have already addressed the capability of a ca-
ble mechanism to generate a set of wrenches. Some of the au-
thors addressed this issue with the ultimate goal of defining the
workspace of this type of robot. In this section, it is shown that
many of the previously proposed approaches are special cases of
the zonotope approach for which the minimum tension is zero
and/or the maximum tension is undefined. Table 1 classifies the
principal methods found in the literature according to the type of
tension limits considered and the relation between n and d. Note
that the row 0 < t < t is itself a special case of the last row. The
next three subsections correspond to the three rows of the table.
We discuss how the Available Wrench Set obtained using other
approaches can be compared with the one obtained in this paper.
This will show how the zonotope approach can encompass all the
different cases.
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Figure 4 Mechanism d = 3,n = 6 in three different
poses. The associated base zonotopes are
shown on the right.

=) Y
0

0 x
S0 w3
0

0 x
a0 w3
0

0 x

£, °

Figure 5 Mechanism d = 2,n = 5 in three different
poses. The associated base zonotopes are
shown on the right. The diamonds are the
projected vertices of the hyper-rectangle.

Figure 6 Three belt zones around a zonotope.
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Zero Minimum Tension, Undefined Maximum Ten-
sions In [24], the statics of cable mechanisms is studied using
the properties of the unit wrench matrix W. The authors suggest
that the Available Wrench Set is limited by hyperplanes that can
be defined from d — 1 unit wrenches. This is an important re-
sult that is also used in [25] and later in this paper to build the
zonotope. In fact, we will see that the faces of the zonotope are
supported by such hyperplanes. Because the analysis presented
in [24] does not consider maximum tensions, the convex hull of
the hyperplanes limiting the Available Wrench Set is an open set
corresponding to the open convex hull of the cable unit wrenches.
For n = d, as in [5], the hull is a hyper-cone bounded by hy-
perplanes. As no upper tension limit is imposed, unit wrenches
inside the open convex hull do not add any wrench-generating
capability to the mechanism at a given pose. By imposing the
maximum tension, the Available Wrench Set becomes a closed
set and the zonotope shape appears.

In references [18, 17], the authors analyze a fully con-
strained planar mechanism. At a given pose, they determine if
there exists a combination of positive tensions enabling the gen-
eration of the desired wrench. The solution corresponds to the
minimum norm solution obtained using the pseudo-inverse of
W, added to n — d vectors in the null space of W. In our ap-
proach, if a wrench is feasible, it will be inside the zonotope.
This point can be projected back into the hyper-rectangle using
the pseudo-inverse of W, which is equivalent to going from step
3 to step 2 in Figure 3. If n > d, there will also be other solu-
tions, which will be this point, added to vectors in the null space
of W. In the particular example with n = d + 1, the null-space
would be a line, as it is suggested in other papers. The set of all
possible tension combinations capable of generating a wrench is
the null space of W added to the minimum norm solution using
the pseudo-inverse, intersected with the hyper-rectangle.

In [10, 11], conditions for wrench-closure are stated.
Wrench-closure implies that a mechanism can generate wrenches
in all directions considering that it must have positive tensions in
all cables but without considering maximum tension. Consider
a mechanism in a wrench-closed pose. In this case, A is the
complete wrench-space. If you start from infinity in the wrench-
space and reduce the maximum acceptable tension in the cable,
the zonotope shape will appear. If the mechanism is in a wrench-
closed pose, even if the maximum tension limit becomes very
low, the origin of the wrench space w = 0 will still be included
in the Available Wrench Set. To relate it to the zonotope ap-
proach, it means that if w = 0 is strictly included inside the base
zonotope, the mechanism is in a wrench-closed pose. Otherwise,
the origin of the wrench space will be a vertex of the base zono-
tope. Examples are shown in Figures 4 and 5 where the middle
pose in each figure corresponds to a wrench-closed pose while
the other two poses do not.

In practice, the wrench-closure workspace has been used to
optimize mechanisms (e.g. [21]). Figure 7 shows how the meth-
ods not considering an upper bound on the tension must be used
with caution. In the figure, the mechanism is in a wrench-closed

S0

S,

Figure 7 Example of a wrench-closed pose and its cor-
responding base zonotope.

pose and hence it can generate wrenches in all directions. Ac-
cordingly, the origin of the wrench space is included in the base
zonotope, but it is very close to the limit. Using the zonotope,
one can see that the capability of the mechanism to generate a
force in the — f,, direction is very limited if an upper bound on
the tension is taken into account.

Zero Minimum Tension, Given Maximum Tensions
In [23], maximum tension limits are considered. The latter pa-
per treats the case of suspended point-mass cable robots. The
companion paper [4] treats the case of a mechanism with up to
n = 4, d = 3. In both of these publications, a reader that
is familiar with the nature of a zonotope will clearly recognize
them in some of the figures illustrating the Available Wrench
Set. Nevertheless, the authors did not identify this geometric
entity and hence could not come up with a general method to
obtain it for higher number of cables and DOF. They did notice,
however, that the Available Wrench Set has parallel faces so they
stated that it has the shape of a parallelepiped, which is almost
true. In fact, a parallelepiped is a special class of zonotope for
which n = d and thus their statement will only be true in this
condition. Because they consider a given maximum tension and
a minimum tension of zero, the Available Wrench Set that they
obtained corresponded to the base zonotope.

Non Zero Minimum Tension, Given Maximum Ten-
sions In practice, it is relevant to impose a minimum tension
larger than zero in order to ensure stiffness. In [26], the authors
consider the homogeneous problem using an acceptable ratio be-
tween maximum and minimum tensions. They consider this ratio
to be the same for all cables. The available tensions thus define
a hypercube in the tension-space. They come up with conditions
on the ratio to ensure that there exists a set of tensions inside
this hypercube. If solutions exist, they are in a region which is
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the intersection of the translated null space of W and the hy-
percube. The authors also address the relevant issues of finding
the optimal tension distribution and the continuity of solutions.
The main difference between this approach and the one proposed
here is that we consider absolute values of the tensions, not ra-
tios. The analysis presented in [26] is performed in the tension
domain while the one proposed here allows one to test the feasi-
bility of a wrench directly in the wrench-space where the hyper-
rectangle is projected.

Another approach based on the tension-space is also pre-
sented in [14]. In this case, the first objective is to minimize the
norm of the tension vector. The authors use Dykstra’s alternat-
ing projection algorithm to find the projection of a point on the
acceptable tension convex set, which corresponds to the hyper-
rectangle in this paper. With the proposed algorithm, the au-
thors determine whether there is a common subset to the hyper-
rectangle and the null space of W translated by the minimum
norm solution. If solutions exist, they find the one that mini-
mizes the norm of the tension vector. If there is no solution, the
algorithm returns the minimum distance between the two sets,
thereby providing insight on how the needed tensions are far
from the hyper-rectangle of acceptable tensions. The algorithm
exhibits good convergence but it is iterative and thus cannot be
used in real time.

In [12], interval analysis is used to determine the wrench-
feasible workspace considering minimum and maximum tension
limits that are constant across the workspace. Since the authors
are interested in the whole workspace, they do not study in detail
the Available Wrench Set at a given pose.

The ability of fully constrained mechanisms to generate the
efforts considering tension limits is approached from a different
angle in [22]. Stating that the geometrical analysis becomes too
complicated in higher dimensions, the authors reduce the prob-
lem to a set of inequalities in lower dimensions. Here again,
the reader can clearly recognize zonotopes in the figures of the
paper. However, the proposed numerical method does not cover
the wrench-space homogeneously and thus the Available Wrench
Set limits are not precise. Again, this type of calculation would
not be suitable in the context of the real-time control of a robot.

As the empty field in Table 1 indicates, the authors are not
aware of any paper that treats the case of upper and lower ten-
sion bounds for under constrained n = d robots. The method
presented here applies to this case as well.

CONSTRUCTING THE AVAILABLE WRENCH SET

Given the above results the shape of the Available Wrench Set
is now known. As previously mentioned, a zonotope is a convex
polytope. Two representations can be used to define such a poly-
tope [13]: V-representation (for vertices) and H-representation
(for hyperplanes). These representations define respectively the
vertices of the polytope or the hyperplanes supporting its faces.
A hyperplane is a geometrical object that splits a space into
two half-spaces. In one dimension (a line), a hyperplane is a

point. In two dimensions, a hyperplane is a line, in three di-
mensions, it is a plane. For higher dimensions, it has no special
name but the idea remains the same: it splits a space into two
half-spaces.

We say that a hyperplane supports a set E if:

e [/ is completely included in one of the two half-spaces;

e F has at least one point that is also included in the hyper-
plane.

The support plane theorem states that if F is a convex set and
X is a point on the boundary of E, then there exists at least one
support hyperplane that includes x.

The polytopes of interest in this work are convex. Hence, all
their faces are supported by hyperplanes. The polytope is com-
pletely on one side of each of these support hyperplanes. For this
reason, any convex polytope can be defined by the intersection
of half-spaces limited by hyperplanes. In its H-representation,
the zonotope-shaped Available Wrench Set A is expressed as:

A={wecRY Nw<d}, (18)

where N is a matrix whose ith line is n?’

5, a unit vector normal
to a hyperplane supporting a face, that points toward the exterior
of the zonotope. The corresponding element of d, d;, can be
obtained using a known point w;o included in the hyperplane,
such that

d; = nl'wy. (19)

For a zonotope, every line of N repeats itself with an opposite
sign because each face has a parallel face. However, the two
corresponding d; differ as the two parallel hyperplanes include
different points.

Using the V-representation is the same as describing a mesh:
A is defined using a table of points representing the vertices and
another table that comprises the indices of the vertices that form
the different faces. Both representations can be useful. The
V-representation is well suited for visualization. All the fig-
ures in this paper are based on it. On the other hand, the H-
representation is preferable for the second step of the algorithm
that tests the relation between A and 7. When all the support
hyperplanes are defined, we can verify for all of them if T is in-
cluded in all the half-spaces that intersect to form the polytope,
similarly to what was done in [24, 25, 5]. The H-representation
expresses this problem as a set of inequalities.

We now explain two methods to construct the zonotope: the
Convex Hull Method and the Hyperplane Shifting Method. The
first one must use an iterative algorithm and can output both rep-
resentations. The second one provides the H-representation and
does not use an iterative algorithm.

Convex Hull Method
Consider zone(Y') from eq. (9) and a set H being given as

H={xeR'|x=) oy, o; €{0,1}}. (20
=1
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The set H is thus the set of points obtained from the combina-
tions of the vectors y; being multiplied by 0 or 1. Let conv(H)
be its convex hull, it is shown in [20] that

zone(Y) = conv(H). 21

Hence, a zonotope is the convex hull of the set of points in eq. (9)
where all the «; are either O or 1:

i=1

zone(Y') = conw {x eRY | x = Z%‘Yi, a; ={0,1} 5.

(22)
This implies that by finding the convex hull of all the wrenches
produced when each cable has a tension equal to 0 or At;, the
base zonotope is obtained. In other words, the base zonotope is
the convex hull of the vertices of the hyper-rectangle projected in
the wrench-space. The diamonds in the base zonotope shown in
Figures 3, 5 and 7 show all these projected vertices and their con-
vex hulls for d = 2 planar mechanisms with different numbers
of cables.

The vertices of the zonotope correspond to a change in the
limiting condition. To generate a wrench at one of the zono-
tope’s vertices, all cables must be at their minimum or maximum
tension. Along the edges, one cable goes from minimum to max-
imum tension. The number of points from which the convex hull
must be calculated is 2™. It thus depends only on the number of
cables and not on the number of DOFs.

It is possible to obtain quickly a matrix C whose columns
represent all the possible combinations of extreme wrenches:

C=MA,, (23)

where M is defined in eq. (15). Each column of the permuta-
tion matrix A, is equivalent to a binary number that identifies
uniquely a vertex of the hypercube according to the convention
[ o ozn]T where «; is 0 or 1. This matrix has di-
mensions n X 2". For example, for n = 3, it is:

0000T1 111
A,=|001 100 11]/. 24)
0101010 1

In this matrix, a O in the ith row indicates a null tension in cable
¢ and 1 a tension being equal to At;. For example, the vector
[1 1 0]7 represents the situation where cables 1 and 2 have a
maximum tension while cable 3 has minimum tension. Thus, all
the columns of matrix C represent vertices of the hyper-rectangle
projected in the wrench-space. If n = d, all these wrenches will
be vertices of the zonotope. If n > d, then only some of them
will be vertices of the zonotope. The others will be included in-
side the convex hull. The convex hull of the column vectors in C
added to Wt can be calculated to obtain A. A numerical proce-
dure such as quickhull [2], which is implemented in Matlab, can
be utilized. This algorithm is widely used to find the convex hull
of a finite set of points in an arbitrary number of dimensions.
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Figure 8 Shifting of the four initial hyperplanes for a
d = 2,n = 4 mechanism.
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Figure 9 The intersection of all the half spaces defined
by the hyperplanes form the zonotope.

Hyperplane Shifting Method

Even if quickhull is usually fast, a method that is not iterative
is desirable, particularly in the context of robot control or opti-
mization. This hyperplane shifting method is inspired from [16].
The different steps are explained below. Step 2 is illustrated in
Figure 8 with the same generators as in Figure 2. The result of
this example, the support hyperplanes and their normal vectors,
is shown in Figure 9. If two unit wrenches are linearly depen-
dent and n = d, the mechanism is in a singularity and the robot
can no longer control all the DOFs. In this case, the method will
not work. If n > d the method will work as long as there is a
minimum of d linearly independent unit wrenches.

1. Defining an Initial Hyperplane — Take a combination of
d — 1 linearly independent cable unit wrenches w; that can
define n, a unit vector perpendicular to a hyperplane that
includes all these unit wrenches. The remaining n — d + 1
unit wrenches are noted w;. To obtain n, we normalize the
generalized cross product taken among the chosen w; so

n=_"_ (25)
(vl
where
V=W X X Wg_1 (26)
whose kth component is
vp = (=1 et [Fwy 0 Fwao] 27)

and the notation *w; represents w; with its kth component
removed. For example, ford = 3, v = w; X wa.

2. Shifting the initial hyperplane — Because of the nature of
the zonotope, two of its faces will have a normal parallel
to n. To define completely their distinct supporting hyper-
planes, we also need one point included in each of them,
namely p4 and p_. We start from an initial hyperplane
that includes the origin and whose normal is n. The unit
wrenches w; chosen at step 1 define the orientation of the
two faces parallel to this hyperplane. The remaining w;
will define the position of the faces, or how the initial hy-
perplane is shifted along n to coincide with the two support-
ing hyperplanes. The points p and p_ can be defined as a
distance along n. We want to find these two distances, h
and h_, that are the projection of the vertices inside the two
faces on vector n. The first step is to take /;, the individual
projections of the w; on n using the dot product:

lj =win. (28)

Again, all vertices correspond to combinations where all
the tensions are maximum or minimum so the w; are all
weighted by 0 or At;. For this reason, the two distances
will be the maximum and minimum combinations of the [;
weighted by 0 or At;:

n—(d—1)

hy = max Z a;At;l, o ={0,1} | (29)
j=1
n—(d—1)

he = min| Y a;jAtl;, a; ={0,1} | .(30)
j=1

The support hyperplane with n as outward pointing normal
will include the point

ps = hyn+ Wt, 31)

and the hyperplane with —n as outward pointing normal
will include the point

P- = h_n+ Wt. (32)

Note that these points are not necessarily on the faces of the
zonotope, they can be on the extension of the faces. Every
time this step is completed, two hyperplanes are completely
defined.

3. Obtaining d for the 7{-representation — Steps 1 and 2 are
repeated to define all the possible hyperplanes and then step
3 is performed: Vector d is determined using eq. (19) to
obtain the complete H-representation as in eq. (18).

Just like the convex hull method, the hyperplane shifting method
is combinatorial and can be treated using permutation matrices.
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Figure 10 Different possible shapes of Task Wrench
Set.

RELATION WITH THE TASK WRENCH SET

We have now defined A using its H-representation. From this
description and the definition of 7', the final step is to verify
if eq. (1) is valid in order to determine if all the possible task
wrenches can be generated. The Task Wrench Set can take many
forms, depending on the use of the robot. If the robot operates
in quasi-static conditions, 7" can be approximated by a unique
wrench, namely the wrench required to balance gravity. If one
wants to exert efforts in all directions up to a maximum magni-
tude [23], T" will be a sphere. If the goal is to generate plus or
minus a given range of efforts, then 7" will be a hyper-rectangle
[12]. Another possible shape of 7' is a disk around a given point
if the mechanism has to move a platform along a surface [9].
These examples are illustrated in Figure 10. Some other shapes
are obviously possible. In practice, most 7" will fall into three
types of shapes, namely the point, the convex polytope and the
ellipsoid. The next three subsections will explain how to test if a
Task Wrench Set with these shapes can be generated.

Point

If only one wrench wy, is considered, e.g. the wrench required to
balance gravity, it is the simplest case where 7" is a unique point,
namely:

T = {wo}. (33)

Using the H-representation, this problem is straight forward. It
consists in verifying the vector inequality of eq. (18):

If the inequality is verified, w( can be generated because it is on
the side of all support hyperplanes toward the interior of A.

Convex Polytope

The convex polytope that would most probably be encountered is
the hyper-rectangle shown in Figure 10. Because A is a convex
set, if two points are inside A, then all the points on the segment
between those two points will also be inside A. If T is also a
convex polytope, then if its vertices are inside A, so will be all
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Figure 11 Ellipse crossing a support plane of A.

the points in 7T'. Eq. (34) can thus be modified to obtain a matrix
inequality equation:
NV <D, (35)

where each column of the matrix V is a vertex of polytope T" and
D is a matrix whose columns are all identical to d. To determine
if a convex polytope 7' is inside A, the best way is to have T" in
its V-representation and A in its 7{-representation in order to be
able to use eq. (35) directly.

Ellipsoid

A ball-shaped Task Wrench Set will appear when a mechanism
has to generate efforts of a given magnitude in all directions.
In some cases, different axes can have different physical units
(forces and torques) so the ball will deform to become an ellip-
soid. In general, the axes of the ellipsoid will be aligned with
the axes of the wrench-space reference frame. This is the case
considered here.

Because an ellipsoid is a smooth convex set, every point on
its surface will have only one support hyperplane, and this hyper-
plane will be tangent to the surface at this point. The intersection
between a hyperplane and an ellipsoid is a subset of both. The
limit case when this subset includes only one point can only arise
for a point on the surface of the ellipsoid. In this case, the hyper-
plane will be a supporting one. There exist two points e; > on the
surface of an ellipsoid whose normal vectors will be parallel to
n, the normal vector defining a zonotope support hyperplane. If
these two points are in the same half-space limited by the hyper-
plane, then the hyperplane does not intersect the ellipsoid. For
example, let’s take the ellipsoid and hyperplane in two dimen-
sions in Figure 11 (ellipse and black line). The line intersects the
ellipse so e and es are in two distinct half spaces separated by
the line. From these observations, the method to determine if an
ellipsoid-shaped set 7" is included in A is the following:

1. Find all the points on the surface of the ellipsoid whose nor-
mals are the same as the normals of the support hyperplanes
of A.

2. Test the matrix inequality, eq. (35) with a matrix V whose
columns are the points obtained in step 1. If all these points
are included in A, then T C A and all the task wrenches
can be generated.
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We now explain how to find the different points e for the
first step. The equation of an ellipsoid in R? is given by

2 2 2
€5 e

S R e R B
as ad

— 36
P (36)
where ¢; is the coordinate of the point along axis j in the wrench-
space and the different a; are the half-axis of the ellipsoid. A
vector perpendicular to the surface q can be obtained by taking
the gradient of eq. (36):

€1 €2 €q T
q = [a? a2 g] ; (37
11 1
= diag(—, =5, ", — 38
Za/g(a%7 a%7 ) a?i)e ( )

This vector — which is not normalized — must be in the same
direction of a given vector n and hence

q = kn, 39)

where k is an unknown variable. Using eq. (38), eq. (39) be-
comes:
,a3)kn. (40)

Except for k, we obtain the solution for the desired point e.
Eq. (40) is substituted in eq. (36) to determine k£ and define e
completely:

e = diag(af, a3, -

1
V0@an1)? + (agn2)? + - + (agna)?

k=4 41)

The two possible values of &k account for the fact that there are
two points on the surface of the ellipsoid that have a normal par-
allel to a vector n. Because each support hyperplane of the zono-
tope has a parallel hyperplane, it is sufficient to find the points
e o for half of the support hyperplanes as long as no pair of cho-
sen hyperplanes are parallel. By finding all the points e, we find
the points on the ellipse that are possibly outside A. If they are
all in A, then all the points in the ellipsoid are.

CONCLUSION
In this paper, we presented a general and non-iterative method to
verify if a given set of wrenches can be generated at the moving
platform of a cable-driven robot. The proposed approach makes
use of the geometrical concept of zonotope, a particular class of
convex polytope. This method considers minimum and maxi-
mum acceptable tensions in the cables. It can be applied to an
under constrained (n = d) or a fully-constrained cable mecha-
nism that operates in a space from two to six degrees of freedom.
We discussed how the presented approach unifies previous work
on the capability of a cable-driven mechanism to generate a set of
wrenches. In the last section, paths were suggested to make use
of the method for three types of Task Wrench Sets that should
cover the majority of the cases encountered in practice.

It is believed that this geometrical approach could be used
in future work as a building block to study the more complex
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problem of the workspace considering bounded cable tensions.
Another potential application could be the development of a non-
iterative method to find the optimal cable tension distribution for
cases for which n > d. This could be useful in the context of
robot control to avoid the use of the computationally intensive
quadratic programming. A continuation method to make the hy-
perplane shifting method faster from one pose to the next — in
the context of control or architecture optimization — could also
be developed.

ACKNOWLEDGMENT

The results presented in this paper were obtained through re-
search made possible with funding from the National science
and Engineering Research of Canada (NSERC), the Fonds
Québécois de la Recherche sur la Nature et les Technologies
(FQRNT) as well as the Canada Research Chair Program
(CRCO). The authors hereby express their gratitude.

References

[1] Albus, J., Bostelman, R., and Dagalakis, N., 1993, “The
NIST Robocrane,” Journal of Robotics Systems, Vol. 10,
No. 5, pp. 709-724.

[2] Barber, C., Dobkin, D., and Huhdanpaa, H., 1996, “The
quickhull algorithm for convex hulls,” ACM Transactions on
Mathematical Software (TOMS), Vol. 22, No. 4, pp. 469-483.

[3] Borgstrom, H., Stealey, M., Batalin, M. A., and J. Kaiser, W.,
2006, “NIMSRD-3D: A novel rapidly deployable robot for 3-
dimensional applications,” in I[EEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Beijing, China.

[4] Bosscher, P. and Ebert-Uphoff, 1., 2004, “Wrench-based
analysis of cable-driven robots,” in Proceedings of the
IEEE International Conference on Robotics and Automation,
Vol. 5, pp. 4950-4955, New Orleans, USA.

[5] Bouchard, S. and Gosselin, C., 2007, “Workspace opti-
mization of a very large cable-driven parallel mechanism for
a radiotelescope application,” in Proceedings of the ASME
IDETC/CIE Mech. and Robotics Conference, Las Vegas,
USA.

[6] CableCam. http://www.cablecam.com/.

[7] Cone, L. L., 1985, “Skycam, an aerial robotic camera sys-
tem,” Byte, Vol. 10, pp. 122-132.

[8] de Berg, M., 2000, Computational Geometry: Algorithms
and Applications. Springer.

[9] Deschénes, J.-D., Lambert, P., Perreault, S., Martel-Brisson,
N., Zoso, N., Zaccarin, A., Hébert, P, Bouchard, S., and
Gosselin, C. M., 2007, “A cable-driven parallel mechanism
for capturing object appearance from multiple viewpoints,” in
Proceedings of the 6th International Conference on 3-D Dig-
ital Imaging and Modeling, Montréal, Canada.

Copyright © 2008 by ASME



[10] Gouttefarde, M., 2005, Analyse de I’espace des poses poly-
valentes des mécanismes paralléles entrainés par cables. PhD
thesis, Université Laval, Canada.

[11] Gouttefarde, M. and Gosselin, C. M., 2004, “On the prop-
erties and the determination of the wrench-closure workspace
of planar parallel cable-driven mechnisms,” in Proceedings of
the ASME IDETC/CIE Mech. and Robotics Conference, Salt
Lake City, USA.

[12] Gouttefarde, M., Merlet, J., and Daney, D., 2007, “Wrench-
feasible workspace of parallel cable-driven mechanisms,’
in Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 1492-1497, Rome, Italy.

[13] Griinbaum, B., 2003, Convex Polytopes. Springer.

[14] Hassan, M. and Khajepour, A., 2007, “Minimization of
bounded cable tensions in cable-based parallel manipulators,”
in Proceedings of the ASME IDETC/CIE Mech. and Robotics
Conference, Las Vegas, USA.

[15] Kawamura, S., Choe, W., Tanaka, S., and Pandian, S.,
1995, “Development of an ultrahigh speed robot FALCON
using wire drive system,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, Vol. 1,
pp- 215-220, Nagoya, Japan.

[16] McMullen, P., 1971, “On Zonotopes,” Transactions of the
American Mathematical Society, Vol. 159, pp. 91-109.

[17] Oh, S. and Agrawal, S., 2003, “Cable-suspended planar
parallel robots with redundant cables: Controllers with posi-
tive cable tensions,” in Proceedings of the IEEE International
Conference on Robotics and Automation, Vol. 3, pp. 3023—
3028, Taipei, Taiwan.

[18] Oh, S.-R. and Agrawal, S. K., 2005a, “Cable suspended
planar robots with redundant cables: Controllers with posi-
tive tensions,” IEEE Transactions on Robotics, Vol. 21, No. 3,
pp. 457-465.

[19] Oh, S.-R. and Agrawal, S. K., 2005b, “Guaranteed reach-
able domain and control design for a cable robot subject to
input constraints,” in Proceedings of the American Control
Conference, pp. 3379-3384, Portland, Oregon, USA.

[20] Onn, S. and Rothblum, U. G., 2007, “The use of edge-
directions and linear programming to enumerate vertices,’
Journal of Combinatorial Optimization, Vol. 14, No. 2-3,
pp. 153-164.

[21] Perreault, S. and Gosselin, C., 2007, “Cable-driven parallel
mechanisms: Application to a locomotion interface,” in Pro-
ceedings of the ASME IDETC/CIE Mech. and Robotics Con-
ference, Las Vegas, USA.

12

[22] Pham, C. B., Yeo, S. H., and Yang, G., 2005, “Tension
analysis of cable-driven mechanisms,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 257-262, Edmonton, Canada.

[23] Riechel, A. T. and Ebert-Uphoff, 1., 2004, “Force-Feasible
Workspace Analysis for Underconstrained, Point-Mass Cable
Robots,” in Proceedings of the IEEE International Conference
on Robotics and Automation, Vol. 5, pp. 4956-4962, New
Orleans, USA.

[24] Roberts, R. d. G., Graham, T., and Lippitt, T., 1998,
“On the inverse kinematics, statics, and fault tolerance of
cable-suspended robots,” Journal of Robotic Systems, Vol. 15,
No. 10, pp. 581-597.

[25] Stump, E. and Kumar, V., 2004, “Workspace Delienation
of Cable-Actuated Parallel Manipulators,” in Proceedings of
the ASME International Design Engineering Technical Con-
ferences, Mechanics and Robotics Conference, Salt Lake City,
USA.

[26] Verhoeven, R. and Hiller, M., 2002, “Tension distribution
in tendon-based stewart platforms,” in Proceedings of the 8th
International Symposium on Advances in Robot Kinematics,
pp. 117-124, Caldes de Malavella, Spain.

[27] Ziegler, G., 1995, Lectures on Polytopes. Springer-Verlag.

Copyright © 2008 by ASME



