
J O H A N N E S K E P L E R
U N I V E R S I T Ä T L I N Z

N e t z w e r k f ü r F o r s c h u n g , L e h r e u n d P r a x i s

Automated Formal Static Analysis and Retrieval of Source Code

MASTER’S THESIS

for obtaining the academic title

MASTER OF SCIENCE

in

INTERNATIONALER UNIVERSITÄTSLEHRGANG: ENGINEERING &
MANAGEMENT

Composed at ISI – Hagenberg

Handed in by: Mădălina Eraşcu, 0656410

Finished on: July 2008

Scientific Management:

Name of adviser: a.Univ.-Prof. Dr. Tudor Jebelean

Grade:

Name of the grader: a.Univ.-Prof. Dr. Tudor Jebelean

Linz, July 2008

Johannes Kepler Universität
A-4040 Linz · Altenbergerstraße 69 · Internet: http://www.uni-linz.ac.at · DVR 0093696

Automated Formal Static Analysis and
Retrieval of Source Code

Master’s Thesis

Mădălina Eraşcu

Advised by:

a.Univ.-Prof. Dr. Tudor Jebelean

International School for Informatics
Johannes Kepler University, Linz, Austria

iv

Abstract

In this thesis two approaches to source code analysis are theoretically investigated and imple-
mented in two prototype systems: formal static analysis and retrieval. An integration of the formal
static analysis prototype into the code search prototype is designed.

The formal static analysis method is based on forward symbolic execution and functional
semantics. It systematically generates the verification conditions which are necessary for program
correctness.

We formalize the notions of syntax, semantics, partial correctness and termination of impera-
tive recursive programs in a purely logic manner. The partial correctness and the termination prin-
ciples are expressed in the underlying theory of programs. The termination property is expressed
as an induction principle depending on the structure of the program with respect to recursion and it
plays a central role in the existence and the uniqueness of the function computed by the program,
without which the total correctness formula is trivial due to inconsistency of the assumptions. The
method is implemented in a verification condition generator (FwdVCG) which generates the proof
obligations that insure the correctness of the program. A formulae simplifier is then applied and
reduces them to [system(s)] of equalities and/or inequalities.

Another achievement in this thesis is the integration of a source code retrieval engine Mind-
breeze Code Search into an information retrieval system Mindbreeze Enterprise Search. The
integration required slight modifications of the information retrieval system architecture and com-
ponents: a database, a source code custom crawler, a new data source representing the source
code files category were integrated. The context interface of the Query Service was enhanced to
provide context items specific to source code files category.

One of the components of the custom crawler is a tagger which extracts rapidly programming
languages constructs. The crawled source code is made available for retrieval by being structured
and inserted into an index or database. A new data source, representing the source code files,
was integrated into the system by deploying on the server a context provider, category icon and
category descriptor source code category specific. Moreover, we had to provide to this new data
source, category specific icons and menus. To this aim, we improved the Query Service Context
Interface with category icons and menus specific for the source code category specific.

Keywords : program verification, symbolic execution, forward reasoning, functional semantics,
Theorema, tagging, parsing, crawling, indexing, Mindbreeze Enterprise Search.

vi

Acknowledgements

Foremost, I would like to thank Tudor Jebelean and Bruno Buchberger.
From Professor Jebelean, my thesis advisor, I learned new and interesting things from the

courses he taught and the discussions we had. Moreover, I was nicely surprised by his proposal to
continue my master thesis work in a Ph.D. thesis. Thank you very much for your clear explana-
tions, challenging ideas, permanent encouragements, help and support!

I thank Professor Buchberger for accepting me in the Theorema group, for giving me the
possibility to finish my master studies at JKU Linz in the first series of the International School
for Informatics graduates, for all he tried and did for the ISI students.

I am very grateful to the Mindbreeze Software GmbH for the financial support during the
second year of master studies and also for giving me the opportunity to work on an interesting
project, as a part of my master thesis. Special thanks to Jakob Praher, from the Mindbreeze com-
pany, for his help in understanding the technologies they use and for sharing his implementation
ideas with us. Also the discussions with my colleague, Laci Lukacs, helped me during the work
on this project. Thank you Laci!

Many thanks to the members of Theorema group for their constructive critics, promising ideas
and all discussions from the seminar.

I would like to thank my professors from Timişoara, Viorel Negru and Dana Petcu, for their
help and support.

The ,,guilty” persons for beginning my master studies at JKU were Florin Fortiş, my bachelor
thesis supervisor, and Laura Kovács; they advised me to apply for an Erasmus-Socrates scholar-
ship at JKU, told me about RISC and the interesting things the people are working on here. Thank
you!

My RISC colleagues Manuel Kauers and Veronika Pillwein helped me very much with LATEX
and give me some technical advices regarding my thesis. I wish to thank them too.

I can not forget to mention my RISC friends, especially Dana, Camelia and Mădălina and all
the friends I made here in Austria. With them I spent a lot joyful moments.

The spiritual and psychological support came from God and my family. Vă multumesc buni,
Iulică, tati şi mai ales ţie Iti pentru că aţi crezut ı̂ntotdeauna ı̂n mine!

viii

Contents

1 Introduction 1

2 Program Verification by Symbolic Execution in Theorema 7
2.1 Background . 7

2.1.1 Program Verification . 7
2.1.2 Symbolic Execution . 9
2.1.3 Program Verification in the Theorema System 12

2.2 Forward Symbolic Execution in the Theorema System 13
2.2.1 Basic Notions . 13
2.2.2 A Meta-Logic for Reasoning about Imperative Programs 13

2.3 The Simplification of the Verification Conditions 18
2.4 Implementation and Examples . 21

2.4.1 Greatest Common Divisor using the Euclidean Algorithm 22
2.4.2 Solving First Degree Equations . 24
2.4.3 Solving Second Degree Equations . 25

3 Code Search Integration Facility into Mindbreeze Enterprise Search 27
3.1 Background . 27

3.1.1 Information Retrieval . 27
3.1.2 Source Code Retrieval . 28
3.1.3 Mindbreeze Enterprise Search . 32

3.2 Integration of Mindbreeze Code Search into Mindbreeze Enterprise Search . . . 32
3.2.1 Crawling and Indexing . 32
3.2.2 Query Service Context Provider Interface Enhancements 41
3.2.3 CodeSearch Data Source Integration . 45
3.2.4 Mindbreeze Code Search - Use Cases 48

4 Conclusions 53

References 56

ix

Chapter 1

Introduction

From the hand-proof from the 1950’s until the nowadays sophisticated automated tools, the main
goal was the same: proving program (algorithm, software) correctness.

Program testing and debugging lost from the very beginning the war in being the suitable
techniques for proving the program correctness. The only hope remained in the program verifi-
cation. But because ,,Everything interesting about the behavior of programs is undecidable.”
[paraphrase of H.G. Rice, 1953] (from A. Mœller slides on An Introduction to Analysis and Ver-
ification of Software), the task that had to be solved by the program verification techniques is a
very challenging one.

We are interested in the imperative program verification using a formal static analysis method
which uses an axiomatic approach in the Hoare triple style; we are given the input (IP) and the
output (OP) specification for an imperative program P and we want to show that the program
fulfils its specification. We approach this problem using automated theorem proving, namely we
automatically generate the verification conditions which arise from the program analysis and try
to prove them automatically.

Following the ideas of the axiomatic approach used for the generation of the verification con-
ditions (symbolic execution and forward reasoning techniques) and for computing the program
function (functional semantics method), we developed, in a logical manner, the syntax, the se-
mantics, the partial correctness and the termination for the imperative programs which contain
Return statements, assignments (including recursive calls) and conditionals (If with one and
two branches).

For expressing these notions we use, besides the underlying theory of the programs – object
theory, the environment of a meta–theory, in which the notions about reasoning about programs
are expressed. In this way, one could reason also about the system which would automatize these
theoretical notions.

The program termination problem is known to be undecidable, but some gains were achieved
in the last years in [CS02], [B. 06a], were the main goal was to find termination proofs for pro-
grams (liveness property) and in [HJMS], [B. 06b], were the emphasis is to prove that a program
is not error prone (safety property).

We approach the termination property in a purely logical manner, in the underlying theory of
programs, without requiring any model of computations of programs. For example, in the case of

1

2 CHAPTER 1. INTRODUCTION

the primitive recursive programs, we formulated the termination principle as an induction princi-
ple developed from the shape of recursion. The termination principle insures also the existence
and the uniqueness of the function computed by the program.

The method is implemented and tested in a prototype system composed by two parts: (i) a
verification conditions generator (FwdVCG) which generates proof obligations that are checked
for validity and (ii) a simplifier. The prototype FwdVCG is built on top of the computer algebra
system Mathematica and uses the Theorema procedural language for writing imperative programs.

With more impact in industry, we integrated in an information retrieval system (Mindbreeze
Enterprise Search) a facility for code search retrieval with the purpose of helping the programmer
in software development (code reusability, code comprehension, code quality, etc.).

The integration was made by building a custom crawler, adding a database besides the existing
index, enhancing the Query Interface.

One of the components of the custom crawler is a tagger which crawls source code files from
the repositories subject to code retrieval. The necessity of the tagger usage came up from the
desire that we want to have, in a short amount of time, structured information from the files of
the repositories. It came up that the capabilities of the tagger are limited; more powerful semantic
information, like the relationships between the programming languages objects, were impossible
to be retrieved. And this feature urged to be implemented because it adds supplementary func-
tionality to the system (context actions, query by reformulation). At this purpose, a parser was
used.

The next step was to merge the information obtained from tagging and parsing into an uniform
representation. Files with XML representation were used for this purpose, which after parsed by
a DOM parser and filtered by the Mindbreeze Filter Service, are stored in the index or in the
database (more precisely the relevant information – hit-types and their meta-data).

From the user point of view, the Query Service Context Interface had to be enhanced with
context icons and menus specific to the source code elements. This enhancement was equivalent
to building a context provider, source code files specific, which after being deployed on the server
together with a category icon and category descriptor, makes possible the user interaction with the
new feature of the system.

The verification conditions generator can be used for verifying the correctness of programs
which were crawled. For more effective operation, we have to:

• either include in our approach the while – loops, either to built a translator such that every
loop is unfolded to If and recursive call statements.

• keep in mind that in the parsing process the methods and their specification are not siblings
nodes in the abstract syntax tree and an algorithm which associates to a method the right
specification has to be built. Moreover, the parser has support only for Java programming
language.

• built a theorem prover such that the proving process to be completely done for various
classes of problems.

3

Contributions of the Thesis

The statical approach for checking the program correctness is based on forward symbolic execu-
tion and functional semantics, but, additionally, gives formal definitions in a meta-theory for the
meta-level functions (describing the semantics, the partial correctness and the termination condi-
tion of the programs) and predicate (defining the syntax of the programs) which characterize the
object computation.

While most of the work which treats the problem of forward symbolic execution and func-
tional semantics describes textually these principles ([BEL75]), we formalize them in predicate
logic because the formalization gives the possibility of reflective view of the system by describing
how the data (the state, the program, the verification conditions) are manipulated and by intro-
ducing a causal connection between the data and the status of computation (a certain statement
of the program determines a certain computation of the function describing the semantics, of the
functions generating the verification conditions and of the termination condition to be performed).

We mention that our approach keeps the verification process very simple: the verification
conditions insuring the partial correctness are first order logic formulae, the termination principle
is expressed as an induction principle in the underlying logic of the programs, without introducing
any model of computation like, for example, the Scott fix-point theory ([LSS84]).

Approaches for solving the correctness of symbolic executed programs exists due to [LSS84,
Top75, Deu73]; for the imperative programs containing assignments, conditionals and while
loops bounded on the number of times they are executed, the proof of correctness is given by
analyzing the verification conditions on each branch of the program. For the programs containing
loops with unbounded number of iterations, the branches of the program are infinite and have to
be traversed inductively in order to prove/disprove their correctness. In the inductive traversal of
the tree, additional assertions have to be provided, called inductive assertions. But the inductive
assertions method applies to partial correctness proofs ([LSS84]), while our approach concentrates
in proving the total correctness of programs.

For code search engines there is a lot of expertise both theoretical and practical ([GAL+06]),
where the main issues are emphasized as being the accuracy and the reuse of the results. Some
results were already achieved in the prototypes like Maracatu (as part of RiSE – Reuse in Software
Engineering), but the main objective is to provide a framework for helping organizations in all
aspects of implementing a reuse program.

Regarding this problem, our task was to integrate in an information retrieval system (Mind-
breeze Enterprise Search (MES)) the facility of source code retrieval. This was relatively easy
achievable due to the loosely-coupled architecture of the MES system.

Our tasks consisted in: (i) the construction of a custom crawler, specialized for source code
files crawling, (ii) the integration of a new data source, representing source code files category,
and (iii) the enhancing of Query Service Context Interface such that it provides context items
(context icons, context menus, context actions) specific to the new category integrated.

One of the components of the custom crawler is a tagger which crawls the relevant information
(hit – types and their metadata) from the source code files repositories. The tagger is applied
first because it structures the information fast and has support for many programming languages.
Its disadvantage (the metadata retrieved have not very powerful semantic meaning) required the
integration of another component, namely a parser. But the information obtained from tagging

4 CHAPTER 1. INTRODUCTION

and parsing has not an uniform structure. Files with XML structure solved this problem.
Next step was to make persistent the information crawled by inserting it in a index or a

database.
From the tagger side, all the information crawled is inserted into the index. Therefore, the

source code files are tagged, the output files from the tagging process are transformed into an
XML structure, a DOM parser was built such that the information from the XML files is inserted
into the index.

The integration of the new data source, representing the source code files, was possible by
deploying on the server side a category icon, category descriptor and a context provider. The
deployment was realized by using an existing Mindbreeze tool called mesextension, we only
had to provide it their implementation.

The result set matching the query of the user and involving source code category has to have
category items specific to this category. For this purpose, the Query Service Context Provider
Interface was enhanced to provide category icons, menus and actions source code files category
specific.

All these features are available in a prototype implementation.

Structure of the Thesis

The Chapter 2 presents the theoretical basis and the implementation of a method for formal static
verification of the imperative programs as follows.

In Section 2.1 we introduce and motivate the necessity of the software verification. We are
interested in proving/disproving the software correctness using a static analysis method based on
logical inference rules where the main challenge is the automatization of the whole verification
process. The informal description of the method and, additional, references to existing symbolic
execution systems, are presented in Section 2.1.2.

Section 2.1.3 contains the presentation of the Theorema environment and of the existing ap-
proaches for program verification in the system, environment constituting the basis of the verifi-
cation conditions generator and of the simplifier described in sections 2.3 and 2.4.

In Section 2.2 we describe the method for static program analysis, first by introducing some
preliminary notions, like the syntax and semantics of the program, and then how the partial cor-
rectness and termination can be insured. All these notions are completely formalized in predicate
logic. The formalization is done in a [meta –] logic expressive enough for allowing reflection
about the system which automates the method.

The method presented in Section 2.2 is implemented in a prototype environment written in
Mathematica, using the Theorema working language. The prototype (verification conditions gen-
erator and simplifier) is exemplified in sections 2.3 and 2.4.

The Chapter 3 introduces the theoretical basis and the implementation of the system special-
ized in code search retrieval.

In 3.1 and 3.2 we present the benefits of information retrieval, in particular code search re-
trieval: we present a short survey on the techniques developed during the years for the accuracy
and fast retrieval of data and on some systems for source code retrieval which implement the latest
research approaches.

5

Next section starts by describing the underlaying system (Mindbreeze Enterprise Search (MES))
into which the code search facility will be integrated; it is an information retrieval system based
on a client-server technology, whose loosely coupled architecture allows the integration of custom
components. Thus, the integration of a new component, for making possible the search within the
data source representing source code files, can be done easily: a source code crawler has to be
developed (Section 3.3.2), the data source representing the crawled data has to be deployed on the
server (Section 3.3.4) and the context interface has to be enhanced with context actions specific
for the new integrated data source (Section 3.3.3).

User interface and use cases illustrating the retrieval process from simple text search to data-
drilling operations and also the re-query by context actions operation are presented in Section
3.3.5.

In the last chapter (Chapter 4) we conclude by emphasizing what was achieved in this thesis
and by presenting some ideas for further work, both from program analysis and retrieval points of
view.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Program Verification by Symbolic
Execution in Theorema

2.1 Background

2.1.1 Program Verification

The desire of the software developers was, is and will be to write programs without bugs. For the
achievement of this goal they try to combine the following techniques: programming language
design, debugging, testing.

Programming language design represents the main step in writing a correct software. The
facilities of the nowadays programming languages (type systems, abstract data types, inheritance
and encapsulation for object oriented programming, etc.) provide writing software at high level
of abstraction and implicitly reduce the number of possible errors.

By debugging, one can reduce the number of bugs in a software program in a systematic way
such that it behaves as expected.

Testing is an empirical step towards the software verification. It is performed with the intention
of finding software bugs but it can not provide the certainty of software correctness.

Nighter of these techniques, nor their combination give a software correctness proof.
Program verification is, instead, the technique which insures or disproves the correctness of a

computer program with respect to a specification.
We are interested in verifying programs using theorem proving, more specifically automated

theorem proving.

2.1.1.1 Theorem Proving in Program Verification

We approach the problem of program (algorithm) verification from the formal static point of view,
that is, we analyze the program without executing it. More precisely, we use an approach in the
Hoare ([Hoa69]) like style.

In this formal system, the program correctness problem is formulated as follows: using a
calculus involving the program statements, the verification conditions which arise from program
analysis are generated and proven to be theorems. They are logical formulae and state the fact that

7

8 CHAPTER 2. PROGRAM VERIFICATION BY SYMBOLIC EXECUTION IN THEOREMA

the postcondition of the program is a logical consequence of a set of statements (the axioms and
hypotheses) which were collected during the program analysis.

Theorem proving becomes interesting for industrial software verification only if the tech-
niques developed for the verification process are implemented in a computer program which
means that the theorems concerned in the verification process are automated. Obviously, the sys-
tems which would automatize the verification process (called automated theorem provers), have
to be adapted and combined with other application systems ([Sch00]).

The trends in automated theorem proving for program verification are: development of meth-
ods for proving that the algorithms used in software are correct, the high degree of automation
of the correctness proof techniques, invariant generation, integration with model checking and
decision procedures, etc.

2.1.1.2 Program Verification Software Systems. State-of-the-Art

KeY
The KeY system is a software tool integrating design, implementation, formal specification (UML/
OCL and JML), and formal verification (dynamic logic, decision procedures) of object-oriented
software (with focus on Java) as seamlessly as possible.

The KeY system uses a deductive verification component (which also can be used as a stand-
alone prover) which combines symbolic execution, first-order reasoning, arithmetic simplification
and external decision procedures for the program proving purposes (with focus on programs com-
plying the Java Card standard).

The desired features of the system, as expressed in [ABH+07] are: the separate integration (as
much as possible) of an automated and interactive prover, a better user interface for presentation
of proof states and rule application, a higher level of automation.

Spec#
The Spec# is a static program verifier codenamed Boogie developed at Microsoft Research. It
generates the verification conditions for a Spec# (a C# extension with non-null types, checked
exceptions and throw clauses, methods specification, invariants) program and uses an automatic
theorem prover (Simplify) as well as a set of decision procedures developed internally (Zap) to
prove/disprove their validity ([LM08]). Proving/disproving the verification conditions yields to
correct/incorect program.

The main contribution of the system is that allows reasoning about invariants also when call-
backs are present.

ESC/Java (or more recently ESC/Java2)
ESC/Java2 ([KPC]) is a static analysis tool used for finding run-time errors in JML-annotated Java
programs. The programmer can annotate the program with a special kind of comments called
pragmas (kinds of specification) in order to help the programmer in finding the errors quickly.
The goal of the system is not concentrated in rigorous program verification, but more in helping
the programmer to test and review the code.

ESC/Java2 translates JML-annotated Java code into series of proof obligations and then uses
the theorem prover Simplify to prove these obligations. The proving process is completely hidden
from the user.

2.1. BACKGROUND 9

From the practical point of view, ESC/Java2 is incomplete with respect to the Java language:
no support for multi-threading).

Theoretically, it is not sound nor complete. Incompleteness is due to the lack of power of
the current theorem prover, unsoundness results from the lack of support for integer overflow or
multi-threaded execution.

2.1.2 Symbolic Execution

2.1.2.1 Method Description

Before the symbolic execution technique was used in program proving, the existing approaches
used the notion of a domain for the variables involved in the program execution.

In program proving using symbolic execution ([Kin75]), the numeric values for the input
variables are supplied with symbolic values and the expressions standing for the program variables
are represented by symbolic expressions.

Three notions are involved in the program proving using this approach: state, path condition,
program counter.

A state contains symbolic expressions for each variable used in the program.
A path condition represents a set of assumptions that the inputs must satisfy in order to reach

the respective branch. Basically, the path condition is a conjunction of predicates upon the sym-
bolic values of the input variables. There exists a path condition corresponding to each program
path.

The program counter determines which statement will be executed next.
For the generation of the path condition it turned out that forward reasoning (used in the the

majority of the systems implementation – see Section 2.1.2.2) is more suitable than backward
reasoning ([How73]), because it follows naturally the execution of a program.

The symbolic execution tree can also characterize the execution of a procedure: each program
statement represents a node and each transition between statements is a directed arc. From nodes
representing conditionals there is more than one arc leaving it; the node associated with the first
statement has not incoming arcs, the terminal node has no outgoing arcs.

If the procedure contains while loops whose number of iterations depend on the input vari-
ables then the associated symbolic execution tree is infinite.

Symbolic execution is used in many approaches for program analysis: path domain checking,
partition analysis, program reduction, program testing, but we are interested in applying symbolic
execution in program proving.

2.1.2.2 Symbolic Execution Systems

The early symbolic execution systems (EFFIGY, SELECT, ATTEST, Interactive Programming
System, etc.) use theorem proving for checking the correctness of programs.

EFFIGY ([Kin75]) follows the rules and principles of the symbolic execution approach. The
language supported by EFFIGY is a simple imperative programming language. The input values
for the programs can be both symbolic and concrete values.

10CHAPTER 2. PROGRAM VERIFICATION BY SYMBOLIC EXECUTION IN THEOREMA

For handling module calls, EFFIGY uses the lemma approach: once the module is proved to
be correct with respect to its specification, then the specification is used each time the module is
invoked.

EFFIGY generates verification conditions for each path of the program whose truth value is
determined using a formulae simplifier ([Kin70]) and a theorem prover ([KF70]).

SELECT ([BEL75]), developed after EFFIGY, incorporates the features of a theorem prover.
Programs written in SELECT use a Lisp subset statements.

SELECT provides: (i) an expressions simplifier and (ii) a proof that an output specification of
the program is fulfilled by a path of the program when the variables are supplied with symbolic
values.

During the program analysis, the program paths are analyzed for feasibility thus the initial
number of paths is reduced significantly.

The limitation of the SELECT system is that it does not have the minimum requirements for
program abstraction, namely module calls. The implementation just replaces during the program
analysis each module call with the module’s source code itself, approach named macro-expansion.
This approach is not reasonable because it produces an explosion of paths to be analyzed.

SELECT solves also the loop’s problem (by specifying the number of times a loop is executed)
and the arrays indexed by symbolic values problem (by introducing virtual paths). The drawback
of the virtual path approach is that increases the flow graph of a program: a new branch is added
for each element of the array.

ATTEST ([Cla76]) was used for the verification of Fortran programs thus it was a step forward
for the usage of symbolic execution in larger programs. The system uses an inequality checker
for formulae simplifications.

Interactive Programming System ([ADL+79]) is used for testing programs in a subset of
imperative language statements. Although the language is not too rich, it was integrated into
Olivetty system and used for commercial purposes.

The system uses a typed programming language, the programs are structured in modules.
Each module is composed by a declaration of types, procedures and data, and can contain calls of
other modules.

The system is interactive, allowing the user to save the current state of the program, to choose
a certain branch in the execution of the program, to restore a previously saved state.

The path condition (symbolic expression) is simplified and proved using provers for the theory
of equality and propositional calculus, and an algebraic simplifier.

More recently developed symbolic execution systems combine various techniques in order to
verify the correctness of industrial software.

For example, DART (Directed Automated Random Testing) combines random testing and
dynamic test generation using symbolic execution to verify C programs.

The system generates all the paths involved in a program using a simplified approach intro-
duced in [God97]: all the paths in the program are tested systematically. The drawbacks of the
symbolic execution, namely imprecision of static analysis and theorem provers, are avoided in the
implementation of DART. DART supplies the symbolic input values with the results obtained by
the dynamic test generation and checks if they have the expected result on the program.

2.1. BACKGROUND 11

A program is seen as a black-box and from here the big advantage of DART: it does not require
any information about the termination of the modules involved.

An important practical applicability of symbolic execution for verifying safety-critical soft-
ware systems ([CPDGP01]) is SAVE (Symbolic execution Aided Verification Environment). It
handles with programs written in Safer-C ([Hat95]) programming language, a subset of C. SAVE
has the following components:

1. Execution Model Generator takes as input a program written in Safer–C and builds the cor-
responding execution model, with the user intervention. The module is basically a symbolic
executor with features similar to EFFIGY and the model is, actually, a symbolic execution
tree that can be visualized due to a publicly available graph layout tool, Dotty. The nodes
of the tree represent states.

2. PDL Property Checker takes as input is an expression in PDL (Path Description Language)
language which is tested over the model generated by the Execution Model Generator. It
generates all paths of the execution model that satisfy the input specification.

3. Execution Model Inspector is used by the symbolic executor each time the symbolic states
are updated and has the role of updating the data memorized by the symbolic execution tree:
symbolic values associated to the program variable and the path condition.

SAVE was used for industrial applications; it managed to prove some important properties of
TCAS (Traffic Alert and Collision Avoidance System) – an on–board aircraft conflict detection and
resolution system used by all US commercial aircraft.

The drawback of the SAVE system (as mentioned in [KPV03]) is that it uses dedicated tool
(e.g. PDL) in order to perform the program analysis and also does not handle analysis of concur-
rent programs.

The authors of [KPV03] exploit this drawback in their system, defining a translator which
allows symbolic execution to be performed using a model checker without the aid of a dedicated
tool. The translator’s output can be symbolically executed by any model checker that supports
nondeterministic choice. Program analysis is performed then by manipulating logical formulae
on program data values (using a decision procedure).

The system operates as follows: the original program is translated such that it can be exe-
cuted using any model checker that supports backtracking and nondeterministic choice to perform
symbolic execution. Code instrumentation and was done on top on Korat ([BKM02]). Then,
the model checker used, Java PathFinder ([VHBP00]), checks the translated program using its
state (heap configuration, path condition on primitive fields and thread scheduling) exploration
approaches. A path condition is checked for satisfiability each time it is updated using appropri-
ates decision procedures from the Omega library ([Pug92]). If the path condition is unsatisfiable,
the model checker backtracks. The translated program can be supplied with specification in a
language known by the model checker or a predicate abstraction upon which is checked the cor-
rectness. Counterexamples that violate the specification are provided while the correctness is
checked. Test data are generated for the program paths that are witnesses of the specification cri-
teria. Recent progress of this work was made in [PV04] by dealing with automatically generation
of loop invariants for programs dealing also with arrays and dynamically allocated structures.

12CHAPTER 2. PROGRAM VERIFICATION BY SYMBOLIC EXECUTION IN THEOREMA

PREfix ([BPS00]) is also based essentially on symbolic execution. It is a tool used for detect-
ing dynamic memory bugs of C/C++ commercial applications.

2.1.3 Program Verification in the Theorema System

Theorema ([BCJ+06]) is a computer aided mathematical software which is being developed at the
Research Institute for Symbolic Computation (RISC) in Hagenberg, Austria.

The system offers support for computing, proving and solving mathematical expressions using
specified knowledge bases, by applying several simplifiers, solvers and provers in natural style,
which imitate the heuristics used by human provers

Composing, structuring and manipulating mathematical texts is also possible in the Theorema
system, using labeling (Definition, Theorem, Proposition).

For our approach (imperative program verification), it is very important that the Theorema
system provides a very expressive way to express algorithms: they are written in the language of
predicate logic with equality as rewrite rules.

Theorema provides elegant proofs (because of natural style inferences used) in the verification
process of programs. Moreover, being built on top of the computer algebra system Mathematica
([Wol03]), it has access to many computing and solving algorithms.

Currently, Theorema system has support for imperative and functional program verification.
Imperative program verification using Hoare logic and weakest precondition strategy was

started in [Kir99] and continued with [Kov07].
The verification environment built in [Kir99] aims at educational purposes, namely for for-

mal program specification, annotations, correctness proofs. It provides a Theorema language
for writing imperative programs together with their specification, a tool for executing them and
also a tool for the generation of the verification conditions (VCG). The verification conditions are
proved/disproved to be valid using the various Theorema simplifiers and provers.

Insight to the problem of invariant generation is given by [Kov07], where logical, combina-
torial and algebraic techniques work together for the automatic generation (using the Aligator
package) of the invariants for loops containing assignments, sequences and conditionals.

Functional program verification environment in the Theorema system ([PJ03]) considers a
main function (with its specification) and a tail recursive auxiliary function (without specification).
A method which generates automatically the specification of the auxiliary function using algebraic
techniques is developed. The specification is then used for generating the verification conditions
for both the auxiliary and the main functions using fixpoint theory technique.

2.2. FORWARD SYMBOLIC EXECUTION IN THE THEOREMA SYSTEM 13

2.2 Forward Symbolic Execution in the Theorema System

We integrated in the Theorema system a new verification environment based on symbolic exe-
cution ([Cow88, Kin76, HK76]), forward reasoning ([Dro90, LSS84]) and functional semantics
[McC63] for imperative program verification.

2.2.1 Basic Notions

A state σ is a set of replacements of the form {var → expr}with the meaning that every program
variable is initialized. We call the initialized variables – active variables. We also write sometimes
{var → expr} instead of {var1 → expr1, var2 → expr2, ...}.

Statements are used for building up programs. We use the following programming language
constructs: the abrupt statement Return, assignments (including recursive calls) and conditionals
(If with one and two branches). Recursive calls and conditionals insure the universality of the
programming language.

The specification of a program P is the tuple 〈IP , OP 〉, where IP is a first-order logic in-
put condition predicate and OP is a first-order logic output condition predicate. The program
correctness is proved relatively to its specification.

Forward reasoning was chosen in conjunction with symbolic execution for program analysis
because it follows naturally the execution of programs. The principle is as follows: we start from
the precondition of the program and apply a set of inference rules, depending on the type of the
program statement currently analyzed, and obtain a conjunction of formulae. The postcondition
of the program must be a logical consequence of the modified input condition.

In the program verification approaches using functional semantics, the flowchart of a program
is transformed into a function from its input state to its output state. We use this approach for
computing the program function which helps in defining the program semantics.

The approach that we integrated in the Theorema system is purely logical. We assume that the
properties of the constants, functions and predicates which are used in the program are specified
in an object theory Υ. (By a theory we understand a set of formulae in the language of predicate
logic with equality.) For the purpose of reasoning about imperative programs we construct a
certain meta–theory containing the properties of the meta–predicate Π (which checks a program
for syntactical correctness) and the meta–functions Σ (which defines the semantics of a program),
Γ (which generates the verification conditions) and Θ (which generates the termination condition).
The programming language constructs (statements), the program itself, as well as the terms and
the formulae from the object theory are meta–terms from the point of view of the meta-theory,
and they behave like quoted (because the meta–theory does not contain any equalities between
programming constructs, and also does not include the object theory).

2.2.2 A Meta-Logic for Reasoning about Imperative Programs

2.2.2.1 Syntax

We define the meta–level predicate Π for checking the appropriate syntax for the programs and,
additionally, if every variable used in the program is active and if every branch of the program has
a Return statement.

14CHAPTER 2. PROGRAM VERIFICATION BY SYMBOLIC EXECUTION IN THEOREMA

The formulae composing the meta–definitions below are to be understood as universally quan-
tified over the meta–variables of various types as described in the sequel: We denote by t ∈ T a
term from the set of object level terms, by v ∈ V a variable from the set of variables, by V ⊂ V
the set of active variables and by ϕ an object level formula. PT , PF , P are tuples of statements
representing parts of programs: PT is the tuple of statements executed if ϕ is evaluated to True,
PF in the case of False evaluation of ϕ, while P represents the rest of the program to be executed.
The tuple PF can be also empty, case which corresponds to the one branch If statement.

The meta–function Vars returns the set of variables which occur in a term.

Definition 2.2.1.

1. Π[P] ⇐⇒ Π[{x̄}, P]

2. Π[V, 〈Return[t]〉 ^ P] ⇐⇒ V ars[t] ⊆ V

3. Π[V, 〈v : = t〉 ^ P] ⇐⇒ ∧ {
V ars[t] ⊆ V
Π[V ∪ {v}, P]

4. Π[V, 〈If[ϕ,PT , PF]〉 ^ P] ⇐⇒ ∧




V ars[ϕ] ⊆ V
Π[V, PT ^ P]
Π[V, PF ^ P]

5. Π[V, P] ⇐⇒ F, in all other cases

The 2-arity predicate symbol Π analyzes the program P statement by statement, updating
eventually the set of active variables. The first argument is used, in conjunction with the function
Vars, for inactive variables detection.

The initial active variables are the input variables of the program (Definition 2.2.1.1).
A term a term t can be returned (Definition 2.2.1.2) only if the variables occurring in the term

construction are active.
An assignment (Definition 2.2.1.3) is performed with active variables only and the result con-

sists of a new active variable which can be used further in the computations.
The conditional (Definition 2.2.1.4) requires that the conditional expression ϕ must contain

active variables and the PT , PF and P branches have to fulfill the requirements of the predicate
Π. If PF is the empty tuple, we have the case of If with one branch.

These definitions are conditionals equalities. If no definitions 2.2.1.1–2.2.1.4 applies then the
Definition 2.2.1.5 is applied.

2.2.2.2 Semantics

The meta–level function Σ creates an object–level level formula with the shape:

F [P] : ∀
x:IP

∧ {
pi[x] ⇒ (f [x] = gi[x])

}n

i=1
. (2.1)

(We denoted by ,,x̄ : If ” in the condition “x̄ satisfies If ”.)

2.2. FORWARD SYMBOLIC EXECUTION IN THE THEOREMA SYSTEM 15

Here f is a new (second order) symbol – a name for the function defined by the program. In
the case of recursive programs, f may occur in some pi’s and gi’s.

Each of the n paths of the program has associated a object–level formula pi[x] – the accumu-
lated If–conditions on that path, and the object–level term gi[x] – the symbolic expression of the
return value obtained by composing all the assignments (symbolic execution). Note that pi[x] and
gi[x] do not contain other free variables than x.

The computing idea for the program semantics Σ is as follows: Σ works by forward symbolic
execution on all branches of the program, using as state the current substitution for the active
variables. Σ produces a conjunction of clauses – conditional definitions for f [x]. Each clause de-
pends on the accumulated [negated] conditions of the If statements leading to a certain Return
statement, whose argument (symbolically evaluated) represents the corresponding value of f [x].

Definition 2.2.2.

1. Σ[P] = ∀̄
x

(
Σ[{x̄ → x̄0}, P]{x̄0→x̄}

)

2. Σ[σ, 〈Return[t]〉 ^ P] = (f [x̄0] = tσ)

3. Σ[σ, 〈v := t〉 ^ P] = Σ[σ ◦ {v → tσ}, P]

4. Σ[σ, 〈If[ϕ,PT , PF]〉 ^ P] =
∧{

ϕσ =⇒ Σ[σ, PT ^ P]
¬ϕσ =⇒ Σ[σ, PF ^ P]

When the execution of the program starts, all the input variables become active by instantiating
them with corresponding symbolic values. After the program is processed all the input variables
become universally quantified (Definition 2.2.2.1).

A Return statement (Definition 2.2.2.2) determines the computation of the output state. From
this state we are interested in the program function and its computed values (the argument t of the
Return statement).

The assignment statement (Definition 2.2.2.3) updates the current state.
For a conditional (Definition 2.2.2.4), there are two different expressions for the program

function to be computed: one when the symbolic formula ϕσ might hold and one in the opposite
case.

Remarks. 1. The way Σ handles the If statement ensures:
∨

i=1,n

pi = If (all branches are

covered) and ∀
i6=j

pi ∧ pj = F (branches are mutually disjoint).

2. The program function Σ effectively translates an imperative program into a functional pro-
gram. From this point on, one could reason about the program using the Scott fixpoint
theory ([LSS84], pag. 86), however we prefer a purely logical approach.

16CHAPTER 2. PROGRAM VERIFICATION BY SYMBOLIC EXECUTION IN THEOREMA

2.2.2.3 Partial Correctness

We define inductively the meta–level function Γ, generating the verification conditions (at object-
level) insuring the partial correctness of the programs.

The function Γ has three arguments:

• σ is the current state of the program;

• Φ is an object-level formula representing the accumulated conditions on the path currently
analyzed;

• P is the program (or the rest of it) which is analyzed.

We consider: (i)γ, γ – a variable or a constant and respectively a sequence of variable and/or
constants from the theory Υ, (ii) basic functions h (i.e. functions from the object theory), (iii)
additional functions g (i.e. functions computed by other programs), (iv) arbitrary functions u.
The symbol y is a new constant name standing for the program function. An expression like
eτ←w denotes that τ is replaced by w in e, where w is a new variable name.

The coherence (safety) conditions are generated for each call of a function h and state that the
function h is called upon arguments which satisfy its input specification (h may be also P , case
which corresponds to the recursive call) (see definitions 2.2.3.4 and 2.2.3.5).

The functional conditions are generated at the end of each branch, insuring that the return
value satisfies the output specification OP (see definitions 2.2.3.2 and 2.2.3.3).

Definition 2.2.3.

1. Γ[P] = ∀̄
x

(
Γ[{x̄ → x̄0}, If [x̄0], P]{x̄0→x̄}

)

2. Γ[σ, Φ, 〈Return[γ]〉 ^ P] =
(
Φ ⇒ Of [x̄0, γσ]

)

3. Γ[σ, Φ, 〈Return[tτ←u[γ]]〉 ^ P] = Γ[σ, Φ, 〈w := u[γ], Return[tτ←w]〉 ^ P]

4. Γ[σ, Φ, 〈v := γ〉 ^ P] = Γ[σ ◦ {v → γσ}, Φ, P]

5. Γ[σ, Φ, 〈v := h[γ]〉 ^ P] =
∧ {

Φ ⇒ Ih[γσ]
Γ[σ ◦ {v → h[γσ]}, Φ ∧ Ih[γσ], P]

6. Γ[σ, Φ, 〈v := g[γ]〉 ^ P] =
∧ {

Φ ⇒ Ig[γσ]
Γ[σ ◦ {v → c}, Φ ∧ Ig[γσ] ∧Og[γσ, c], P]

7. Γ[σ, Φ, 〈v := tτ←u[γ]〉 ^ P] = Γ[σ, Φ, 〈w := u[γ], v := tτ←w〉 ^ P]

2.2. FORWARD SYMBOLIC EXECUTION IN THE THEOREMA SYSTEM 17

8. Γ[σ, Φ, 〈If[ϕτ←u[γ], PT , PF]〉 ^ P] =
Γ[σ, Φ, 〈w := u[γ], If[ϕτ←w, PT , PF]〉 ^ P]

9. Γ[σ, Φ, 〈If[ϕ, PT , PF]〉 ^ P] =
∧ {

Γ[σ, Φ ∧ ϕσ, PT ^ P]
Γ[σ, Φ ∧ ¬ϕσ, PF ^ P]

The verification conditions corresponding to the program P are generated as follows: we
start analyzing the program P and, in the first step (Definition 2.2.3.1), we create the substitution
{x̄ → x̄0} (all the input variables are initialized in the initial state) and the path condition IP [x̄0]
(the input condition has to be fulfilled before the program analysis).

The meta-level function Γ analyzes each statement of the program as follows:

• a composed term (definitions 2.2.3.3, 2.2.3.7 and 2.2.3.8) is first decomposed such that no
nested functions are present. After the decomposition, we analyze its parts separately.

• a Return statement (Definition 2.2.3.2) finishes the execution of the program on the current
path and a functional verification condition is generated. The formula representing the
postcondition depends on the input variable and the term returned by the Return statement.
The statements after the Return statement are ignored;

• a constant or variable assignment (Definition 2.2.3.4) updates the substitution σ, while a
function (definitions 2.2.3.5 and 2.2.3.6) and term assignments (Definition 2.2.3.7), have to
be treated in the following way: safety verification conditions have to be generated for every
function (including f): the arguments of them must satisfy the respective input condition
and afterwards the analysis of the program continues with the input condition of the function
as new assumption ;

• a conditional analysis determines the forking of the program into two branches: one when
ϕ evaluates to True and one in the opposite case. The branch PF of the program might be
also the empty tuple, case which corresponds to the If statement with one branch.

The order of the above clauses of Γ has a semantic meaning. Namely, we use this as an
abbreviation for additional conditions which should be added to the clauses of the definition in
order to specify that, for instance, the equality from the Definition 2.2.3.9 is applied only if no
subterm of ϕ is of the form u[γ] – as specified in the clause from the Definition 2.2.3.7.

2.2.2.4 Termination

We want to generate verification conditions which insure that a program is correct with respect
to a specification composed of two object–level formulae: the input condition If [x] and the
output condition Of [x, y]. Apparently, the correctness could be expressed as: “The formula
∀
x
If [x] ⇒ Of [x, P [x]] is a logical consequence of the theory Υ augmented with Σ[P] and with

the verification conditions.” However, this always holds in the case that Σ[P] is contradictory to
Υ, which may happen when the program is recursive. Therefore, it is crucial that the existence
(and possibly the uniqueness) of a f satisfying Σ[P] is a logical consequence of the object theory
augmented with the verification conditions. More concretely, before using Σ[P] as an assumption,

18CHAPTER 2. PROGRAM VERIFICATION BY SYMBOLIC EXECUTION IN THEOREMA

one should prove ∃
f
Σ[P]. The later is ensured by the termination condition which is expressed as

an induction scheme developed from the structure of the recursion.
The meta–function Θ generates the termination condition (for simplicity of presentation we

assume that Return, assignments, and If conditions do not contain composite terms – the elim-
ination of these by introducing new assignments can be done as in the definition of Γ).

Definition 2.2.4.

1. Θ[P] =
(∀
x̄:If

Θ[{x̄ → x̄0}, T, P]{x̄0←x̄}
)

=⇒ ∀
x̄:If

π[x̄]

2. Θ[σ, Φ, 〈Return[γ]〉 ^ P] =
(
Φ ⇒ π[x̄0]

)

3. Θ[σ, Φ, 〈v := γ〉 ^ P] = Θ[σ ◦ {v → γσ}, Φ, P]

4. Θ[σ, Φ, 〈v := h[γ]〉 ^ P] = Θ[σ ◦ {v → h[γσ]}, Φ, P]

5. Θ[σ, Φ, 〈v := f [γ]〉 ^ P] = Θ[σ ◦ {v → y}, Φ ∧Of [γσ, y] ∧ π[γσ], P]

6. Θ[σ, Φ, 〈v := g[γ]〉 ^ P] = Θ[σ ◦ {v → y}, Φ ∧Og[γσ, y], P]

7. Θ[σ, Φ, 〈If[ϕ, PT , PF]〉 ^ P] =
∧ {

Θ[σ, Φ ∧ ϕσ, PT ^ P]
Θ[σ, Φ ∧ ¬ϕσ, PF ^ P]

One single formula is generated, which uses a new constant symbol π standing for an arbi-
trary predicate. The function Θ operates similarly to Γ by inspecting all possible branches and
collecting the respective If conditions (in Φ). Moreover it collects the characterizations by output
conditions of the values produced by calls to additional functions (Definition 2.2.4.6), including
for the currently defined function f . However, in the case of f (Definition 2.2.4.5) one also col-
lects the condition π[γσ] – that is the arbitrary predicate applied to the current symbolic values
of the arguments of the recursive call to f . On each branch, the collected conditions are used as
premise of π[x̄0], and then the conjunction of all these clauses (after reverting to free variables x̄)
is universally quantified over the input condition and is used as a premise in the final formula.

2.3 The Simplification of the Verification Conditions

The output of the verification conditions generator is logical formulae which are harder to see that
they are valid/invalid without a [automatic] proof. We are interested mainly in numerical programs
and, as a consequence, the verification conditions generated contain also equalities and inequal-
ities between the program variables. Our goal is to simplify these conditions until system(s) of
equalities and inequalities point when one can apply computer algebra and combinatorics tech-
niques in order to reason about the program correctness.

In the first step of the verification conditions simplification process we applied logical infer-
ences, namely truth constants elimination and natural style inference rules.

2.3. THE SIMPLIFICATION OF THE VERIFICATION CONDITIONS 19

The truth constants appear, usually, when safety verification conditions are generated in order
to insure the input condition of the basic functions. A list with the possible occurrences of the truth
constants, either on the left-hand-side, either on the right-hand-side of the logical connectives, is
applied recursively to the initial set of verification conditions, until the formulae do not change
anymore.

Example 2.1.

...
(*truth constants elimination on the rhs*)
•[lhs ⇒ True]:→ •[True],
•[lhs ⇒ False]:→ •[Not[lhs]],
•[lhs ⇔ True]:→ •[lhs],
•[lhs ⇔ False]:→ •[Not[lhs]]
...

In the next step we normalize the formulae by transforming the equalities and inequalities such
that they have 0 on the right-hand-side and ≥, >, =, 6= occur only. Afterwards, the inequalities
and equalities from the assumptions or from the goal are then rearranged such that the order is:
6=, =, ≥ and >.

Some simplifications involving the relationships between 6=, =, ≥, > are done in the next
steps:

Example 2.2.

•[And[pre ,g 6= 0,body ,g =0,post]]:→ •[False],
•[And[pre ,g 6= 0,body ,g ≥ 0,post]]:→ •[And[pre,g>0,body,post]],
•[And[pre ,g 6= 0,body ,g >0,post]]:→ • [And[pre,g>0,body,post]],
...

For the inference rules:

Quantifiers elimination
From the assumptions From the goal

Φ,φx←a`Ψ
Φ,∃

x
φ`Ψ (∃ `) a is new

Φ`Ψ,ψx←t

Φ`Ψ,∃
x
ψ (` ∃) t has to be found

Φ,φx←t`Ψ
Φ,∀

x
φ`Ψ (∀ `) t has to be found

Φ`Ψ,ψx←a

Φ`Ψ,∀
x
ψ (` ∀) a is new

we introduce new skolem constants and meta-variables, namely:

• skolem constants for universally quantified formulae in the goal and existentially quantified
formulae in the assumptions;

• meta-variables for universally quantified formulae in the assumptions and existentially quan-
tified formulae in the goal.

20CHAPTER 2. PROGRAM VERIFICATION BY SYMBOLIC EXECUTION IN THEOREMA

Meta-variables correspond to the problem of finding the witness terms in natural deduction.
In the implementation of the meta-variables method, one constructs first a partial proof contain-
ing the meta-variables and then appropriate substitutions (concrete terms) for the meta-variables
transform the partial proof into a concrete proof.

Our simplifier generates partial proof, but not a complete proof.

Example 2.3.
For example in the program which computes the factorial of a natural number with the precon-

dition n ≥ 0 and the postcondition ∀
m

m≥0∧m<n

∃
k

k≥0

(y = k ∗m), one of the verification conditions

is:

n ≥ 0∧n 6= 0∧True∧n−1 ≥ 0∧ ∀
m

m≥0∧m<n−1

∃
k

k≥0

(t2 = k∗m)∧True =⇒ ∀
m

m≥0∧m<n

∃
k

k≥0

(n∗t2 = k∗m)

After the simplification of the truth constants and the introduction of the skolem and meta-
variables, the formula becomes:

(n > 0 ∧ n− 1 ≥ 0 ∧ ((m∗
0 ≥ 0 ∧ (−m∗

0) + (n− 1) > 0 ⇒ (t2 = k∗2 ∗m∗
0))∧

(m∗
0 ≥ 0 ∧ (−m∗

0) + (n− 1) > 0 ⇒ k∗2 ≥ 0)) ⇒ (m1 ≥ 0 ∧ (−m1) + n > 0 =⇒ k∗1 ≥ 0))
∧

(n > 0 ∧ n− 1 ≥ 0 ∧ ((m∗
0 ≥ 0 ∧ (−m∗

0) + (n− 1) > 0 ⇒ (t2 = k∗2 ∗m∗
0))∧

(m∗
0 ≥ 0 ∧ (−m∗

0) + (n− 1) > 0 ⇒ k∗2 ≥ 0)) ⇒ (m1 ≥ 0 ∧ (−m1) + n > 0 =⇒ (n ∗ t2 = k∗1 ∗m1)))

In the previous example we also use the inference rule:

Φ ⇒ Ψ, C[x∗] Φ ⇒ Ψ, ψ

Φ ⇒ Ψ, C[x∗] ∧ ψ

Φ ⇒ Ψ, ∃
x

C[x]

ψ

Some of the verification conditions generated do not contain universal and existential logical
connectors. Therefore some of the formulae which do not involve skolem constants and meta-
variables can be simplified using the Mathematica built in FullSimplify construct. Before
the application of the FullSimplify, we transformed the formulae from the Theorema into the
Mathematica syntax.

Example 2.4.
For the algorithm which computes xn using few operations (algorithm known as Binary Pow-

ering because is trying to write n using binary notation), we were able to prove that the algorithm
is correct using our version of simplifier.

2.4. IMPLEMENTATION AND EXAMPLES 21

We present in the following the sequence of transformations after the logical and algebraic
simplifications:

n ≥ 0 ⇒ (1 = x0)

n > 0 ⇒ (x = x1)
True, True

n > 0 ∧ (Mod[n, 2] = 0) ∧ n− 1 > 0 ∧ (−n) + 1 > 0 ⇒ n ≥ 0

n > 0 ∧ (Mod[n, 2] = 0) ∧ n− 1 > 0 ∧ (−n) + 1 > 0 ⇒ ((x2)
n
2 = xn)

True, True, True

n > 0 ∧Mod[n, 2] 6= 0 ∧ n− 1 > 0 ∧ (−n) + 1 > 0 ⇒ n− 1 ≥ 0
True

n > 0 ∧Mod[n, 2] 6= 0 ∧ n− 1 > 0 ∧ (−n) + 1 > 0 ⇒ (x ∗ (x2)
n−1

2 = xn)

In this version, the verification conditions are written in the Theorema version (quoted formu-
lae). We transformed them into the Mathematica syntax and apply the built-in FullSimplify,
we reduced them to the truth constant True, one for each formula. With a special list simplifica-
tion rule, we reduced them to one truth constant True.

In the next sections, we exemplify the features of the verification conditions generator and
formulae simplifier on three small programs. We have chosen them in order to distinguish the
features of the system.

2.4 Implementation and Examples

The prototype environment (called FwdVCG) which follows the theoretical basis presented in
Section 2.2 is built on top of the computer algebra system Mathematica and uses the existing
Theorema environment for imperative program verification which supposes that:

• the programs are considered procedures with input parameters and mandatory return values
(output parameters);

• expressions are Theorema boolean and arithmetic expressions;

• the specification and the program are identified by specific commands: Pre, Post and
Program respectively.

The verification conditions generator takes as input a program together with its specification
and generates the corresponding proof obligations which arise from its analysis.

For specifying a program in the Theorema system we use the command Program and for
writing the specification, the keywords Pre, Post. All these constructs and also the syntax of
the imperative programs is based on [Kir99].

22CHAPTER 2. PROGRAM VERIFICATION BY SYMBOLIC EXECUTION IN THEOREMA

The input variables are denoted by a ,,↓” in front of them. The input specification is expressed
in terms of the input variables and the output specification in terms of the input variables and the
function computed by the program via the Return (output variable).

In the next examples we show how the verification conditions and the termination condition
is generated for basic, additional and recursive functions respectively.

2.4.1 Greatest Common Divisor using the Euclidean Algorithm

The next example computes the greatest common divisor of two natural numbers.
1. Program[”GCD”, GCD[↓ a, ↓ b]],
2. Module[{}],
3. If[a = 0,
4. Return[b]];
5. If[b ! = 0,
6. If[a > b,
7. a := GCD[a - b, b],
8. a := GCD[a, b - a]]];
9. Return[a]],
10. Pre→ a ≥ 0 ∧ b ≥ 0,
11. Post→ ∃

k1
∃
k2

((a = k1 ∗ y) ∧(b = k2 ∗ y))

The automatically generated verification conditions and termination condition for the previous
example are generated with the command:

FwdVCG[Program[”GCD”]]

and are the following universally quantified first order logic formulae:

(a ≥ 0 ∧ b ≥ 0) ∧ (a = 0) ⇒ ∃
k1
∃
k2

((a = k1 ∗ b) ∧ (b = k2 ∗ b)) (2.2)

(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a > b ⇒ a ≥ b (2.3)

(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a > b ∧ a ≥ b ⇒ a− b ≥ 0 ∧ b ≥ 0 (2.4)

(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a > b ∧ a ≥ b ∧ (a− b ≥ 0 ∧ b ≥ 0)∧
∃
k1
∃
k2

((a− b = k1 ∗ y1) ∧ (b = k2 ∗ y1)) ⇒ ∃
k1
∃
k2

((a = k1 ∗ y1) ∧ (b = k2 ∗ y1)) (2.5)

(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a ≯ b ⇒ a ≥ b (2.6)

(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a ≯ b ∧ a ≥ b ⇒ a ≥ 0 ∧ b− a ≥ 0 (2.7)

(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a ≯ b ∧ a ≥ b ∧ (a ≥ 0 ∧ b− a ≥ 0)∧
∃
k1
∃
k2

((a = k1 ∗ y2) ∧ (b− a = k2 ∗ y2)) ⇒ ∃
k1
∃
k2

((a = k1 ∗ y2) ∧ (b = k2 ∗ y2)) (2.8)

(a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ ¬(b 6= 0) ⇒ ∃
k1
∃
k2

((a = k1 ∗ a) ∧ (b = k2 ∗ a)) (2.9)

The termination condition is:

2.4. IMPLEMENTATION AND EXAMPLES 23

(
∀
a,b

a≥0,b≥0

∧




a = 0 ⇒ π[a, b]
(a 6= 0 ∧ b 6= 0 ∧ a > b ∧ π[a− b, b]) ⇒ π[a, b]
(a 6= 0 ∧ b 6= 0 ∧ a 6=> b ∧ π[a, b− a]) ⇒ π[a, b]
(a 6= 0 ∧ b = 0) ⇒ π[a, b]

)
=⇒

(
∀
a,b

a≥0,b≥0

π[a, b]
)

Description. The previously verification conditions were generated by analyzing each path of
the program and applying the notions of program syntax, semantics, partial correctness and ter-
mination introduced previously.

Before the program starts to be analyzed, the substitution {a → a0, b → b0} and the formula
representing the accumulated assumptions a0 ≥ 0 ∧ b0 ≥ 0 are created. After the program is
completely analyzed, the input variables are universally quantified thus the reverting substitution
is done.

On the path 10, 1, 2, 3, 4, 11, the verification conditions were generated as follows: we add
to the formula a0 ≥ 0 ∧ b0 ≥ 0 the conjunct a = 0, corresponding to the True evaluation of the
If conditional. The Return statement determines the generation of the functional verification
condition 2.2, where the value of y from the postcondition was replaced by the value returned by
the program on this branch, namely b.

On the path 10, 1, 2, 5, 6, 7, 9, 11, the assignment from the line 7 requires a term de-
composition from the innermost to the outermost function symbol. The assumptions collected
before the term analysis is the formula a ≥ 0 ∧ b ≥ 0 ∧ a 6= 0 ∧ b 6= 0. The specifi-
cation of the functions composing the term GCD[a-b, b] has to be fulfilled. First the func-
tion ,,-” is analyzed, generating the safety condition 2.3, insuring the respective precondition.
The assumptions on this path are updated with the specification of the function ,,-”, namely
a ≥ 0 ∧ b ≥ 0) ∧ a 6= 0 ∧ b 6= 0 ∧ a > b ∧ a ≥ b.

The analysis of the function GCD is done similarly: the precondition has to hold for the
arguments of the recursive call, the output value as well. The functional verification condition
(2.5) is generated, where all the occurrences of the function GCD are replaced by the new constant
y1.

The path 10, 1, 2, 5, 8, 9, 11 is analyzed similar to the path 10, 1, 2, 5, 6, 7, 9, 11 and the path
10, 1, 2, 9, 11, similar to the path 10, 1, 2, 3, 4, 11.

The termination condition is obtained similarly to the verification conditions. It is an implica-
tion of two first order logical formulae (we consider that the predicate π is fixed), both universally
quantified upon the input variables. The right hand side is always the predicate π with the input
variables as arguments and the left hand side is a conjunction of formulae, each conjunct (having
the shape of an implication) corresponding to the analysis of a single path. If on the path there
exists a recursive call then the new introduced predicate symbol π occurs in the both sides of the
implication within the conjunct (the second and the third conjunct corresponding to the second
and the third path of the program). The π occurring on the left hand side has the arguments of the
recursive call on the respective branch. If there is not a recursive call then the π occurs only on
the right hand side (the first and the forth conjunct).

24CHAPTER 2. PROGRAM VERIFICATION BY SYMBOLIC EXECUTION IN THEOREMA

The simplified list of verification conditions is:

((a = 0) ∧ b ≥ 0 ∧ a ≥ 0 =⇒ (a = k1∗0 ∗ b))
∧

((a = 0) ∧ b ≥ 0 ∧ a ≥ 0 =⇒ (b = k2∗0 ∗ b))

True

(a > 0 ∧ b 6= 0 ∧ b ≥ 0 ∧ a− b > 0 =⇒ b ≥ 0)
∧

(a > 0 ∧ b 6= 0 ∧ b ≥ 0 ∧ a− b > 0 =⇒
a− b ≥ 0)

(a > 0 ∧ b 6= 0 ∧ b ≥ 0 ∧ (b = k20 ∗ t2) ∧ a− b > 0 ∧ (a− b = k10 ∗ t2) =⇒ (a = k1∗1 ∗ t2))
∧

(a > 0 ∧ b 6= 0 ∧ b ≥ 0 ∧ (b = k20 ∗ t2) ∧ a− b > 0 ∧ (a− b = k10 ∗ t2) =⇒ (b = k2∗1 ∗ t2))
True

(a > 0 ∧ b 6= 0 ∧ b ≥ 0 ∧ −(a− b) ≥ 0 =⇒ a ≥ 0)
∧

(a > 0 ∧ b 6= 0 ∧ b ≥ 0 ∧ −(a− b) ≥ 0

=⇒ b− a ≥ 0)
(a > 0 ∧ b 6= 0 ∧ b ≥ 0 ∧ (a = k11 ∗ t4) ∧ b− a ≥ 0 ∧ (b− a = k21 ∗ t4) ∧ −(a− b) ≥ 0

=⇒ (a = k1∗2 ∗ t4))
∧

(a > 0 ∧ b 6= 0 ∧ b ≥ 0 ∧ (a = k11 ∗ t4) ∧ b− a ≥ 0 ∧ (b− a = k21 ∗ t4)∧
−(a− b) ≥ 0 =⇒ (b = k2∗2 ∗ t4))

(a > 0 ∧ b ≥ 0 =⇒ (0 = k2∗3 ∗ a))
∧

(a > 0 ∧ b ≥ 0 =⇒ (a = k1∗3 ∗ a))

2.4.2 Solving First Degree Equations

1. Program[”FirstDegreeSolver”, FDS[↓ a, ↓ b]],
2. Module[{}],
3. If[a = 0,
4. If[b = 0,
5. Return[R];
6. Return[∅];
7. Return[{-(b/a)}]];
8. Pre→ True,
9. Post→ ∀

x
((x ∈ y) ⇐⇒ (a ∗ x + b = 0))

The verification conditions generated are:

True ∧ (a = 0) ∧ (b = 0) ⇒ ∀
x

(
x ∈ R⇔ (a ∗ x + b = 0)

)

True ∧ (a = 0) ∧ (b 6= 0) ⇒ ∀
x

(
x ∈ {} ⇔ (a ∗ x + b = 0)

)

True ∧ a 6= 0 ⇒ ∀
x

(
x ∈

{
− b

a

}
⇔ (a ∗ x + b = 0)

)

The termination condition generated is:

(
∀

a,b

∧




True ∧ (a = 0) ∧ (b = 0) ⇒ π[a, b]
True ∧ (a = 0) ∧ (b 6= 0) ⇒ π[a, b]
True ∧ (a 6= 0) ⇒ π[a, b]

)
=⇒ ∀

a,b
π[a, b]

2.4. IMPLEMENTATION AND EXAMPLES 25

The simplified list of verification conditions is:

True, True,

a 6= 0 =⇒ (
x12 = (− b

a
) ⇒ (a ∗ x12 + b = 0)

)∧
(a 6= 0 =⇒ (

(a ∗ x12 + b = 0) ⇒ x12 = (− b

a
)
)
)

2.4.3 Solving Second Degree Equations

1. Program[”SecondDegreeSolver-calling-FirstDegreeSolver”,SDS[↓ a,↓ b,↓ c],
2. Module[{delta ,sqrtDelta,x1,x2,sol},
3. If[a==0,
4. sol := FDS[b,c]; Return[sol],
4. delta :=(b*b)-(4*a*c);
5. If[delta =0,
6. x1 := -(b/(2*a));x2:=x1,
7. If[delta > 0,
8. sqrtDelta:=Sqrt[delta]; x1 := (-b+sqrtDelta)/(2*a); x2 := (-b-sqrtDelta)/(2*a),
9. sqrtDelta := Sqrt[-delta]; x1 := (-b-(i*sqrtDelta))/(2*a); x2:= (-b+(i*sqrtDelta))/(2*a)]];
10. sol:={x1, x2};Return[sol]]],
11. Pre← True,
12. Post← ∀

x
((x ∈ y) ⇐⇒ (a ∗ x2 + b ∗ x + c = 0))

We display the verification conditions after simplification.

True,(
(x∗1 = FDS[b, c]) ⇒ (b ∗ x∗1 + c = 0)

∧
(b ∗ x∗1 + c = 0) ⇒ (x∗1 = FDS[b, c])

)
=⇒

(
(x4 = FDS[b, c]) ⇒ (b ∗ x4 + c = 0)

∧
(b ∗ x4 + c = 0) ⇒ (x4 = FDS[b, c])

)
,

T rue, True, True, True, True, True, True,

a 6= 0 ∧ (b ∗ b− 4 ∗ a ∗ c = 0) =⇒
(
(a ∗ x2

5 + b ∗ x5 + c = 0) ⇒ (x5 = − b

2 ∗ a
)∨

((a ∗ x2
5 + b ∗ x5 + c = 0) ⇒ (x5 = − b

2 ∗ a
))

∧
(((x5 = − b

2 ∗ a
)) ⇒ (a ∗ x2

5 + b ∗ x5 + c = 0))∨

((x5 = (− b

2 ∗ a
)) ⇒ (a ∗ x2

5 + b ∗ x5 + c = 0))
)
,

a 6= 0
∧

b ∗ b− 4 ∗ a ∗ c > 0
∧

(−b ∗ b) + 4 ∗ a ∗ c > 0 =⇒ b ∗ b− 4 ∗ a ∗ c ≥ 0,

T rue, True, True, True, True, True, True, True, True,

a 6= 0 ∧ b ∗ b− 4 ∗ a ∗ c > 0 ∧ (−b ∗ b) + 4 ∗ a ∗ c > 0 =⇒
(
(((a ∗ x2

6 + b ∗ x6 + c = 0) ⇒

(x6 =
(−b) + (

√
b ∗ b− 4 ∗ a ∗ c)
2 ∗ a

)) ∨ ((a ∗ x2
6 + b ∗ x6 + c = 0) ⇒ (x6 =

(−b)− (
√

b ∗ b− 4 ∗ a ∗ c)
2 ∗ a

)))
∧

(((x6 =
(−b) + (

√
b ∗ b− 4 ∗ a ∗ c)
2 ∗ a

) ⇒ (a ∗ x2
6 + b ∗ x6 + c = 0))∨

((x6 =
(−b)− (

√
b ∗ b− 4 ∗ a ∗ c)
2 ∗ a

) ⇒ (a ∗ x2
6 + b ∗ x6 + c = 0)))

)
,

26CHAPTER 2. PROGRAM VERIFICATION BY SYMBOLIC EXECUTION IN THEOREMA

True,

a 6= 0
∧

b ∗ b− 4 ∗ a ∗ c > 0
∧

(−b ∗ b) + 4 ∗ a ∗ c > 0
∧
−(b ∗ b− 4 ∗ a ∗ c) ≥ 0 =⇒

− (b ∗ b− 4 ∗ a ∗ c) ≥ 0,

T rue, True, True, True, True, True, True, True, True, True, True,

a 6= 0 ∧ b ∗ b− 4 ∗ a ∗ c > 0 ∧ −(b ∗ b− 4 ∗ a ∗ c) ≥ 0 ∧ (−b ∗ b) + 4 ∗ a ∗ c > 0 =⇒
(
(((a ∗ x2

7 + b ∗ x7 + c = 0) ⇒ (x7 =
(−b)− i ∗ (

√
−(b ∗ b− 4 ∗ a ∗ c))
2 ∗ a

))∨

((a ∗ x2
7 + b ∗ x7 + c = 0) ⇒ (x7 =

(−b) + i ∗ (
√
−(b ∗ b− 4 ∗ a ∗ c))
2 ∗ a

)))
∧

(((x7 =
(−b)− i ∗ (

√
−(b ∗ b− 4 ∗ a ∗ c))
2 ∗ a

) ⇒ (a ∗ x2
7 + b ∗ x7 + c = 0))∨

((x7 =
(−b) + i ∗ (

√
−(b ∗ b− 4 ∗ a ∗ c))
2 ∗ a

) ⇒ (a ∗ x2
7 + b ∗ x7 + c = 0)))

)

The simplified termination condition is:

∀
a,b

∧




(x∗1 = FDS[b, c]) ⇒ (b ∗ x∗1 + c = 0)
∧

(b ∗ x∗1 + c = 0) ⇒ (x∗1 = FDS[b, c]) ⇒ π[a, b]
a 6= 0 ∧ (b ∗ b− 4 ∗ a ∗ c = 0) ⇒ π[a, b]
a 6= 0 ∧ b ∗ b− 4 ∗ a ∗ c > 0 ∧ (−b ∗ b) + 4 ∗ a ∗ c > 0 ⇒ π[a, b]
a 6= 0 ∧ b ∗ b− 4 ∗ a ∗ c > 0 ∧ −(b ∗ b− 4 ∗ a ∗ c) ≥ 0 ∧ (−b ∗ b) + 4 ∗ a ∗ c > 0 ⇒ π[a, b]

=⇒

∀
a,b

π[a, b]

We described a prototype implementation of a system which includes the capabilities of a
verification conditions generator and formulae simplifier.

Using logical inference rules and algebraic manipulations, we were able to simplify the ver-
ification conditions. From this point on, relations between the program variables can be proved
using advanced algebraic, combinatorial methods and decision procedures in various theories.

Chapter 3

Code Search Integration Facility into
Mindbreeze Enterprise Search

3.1 Background

3.1.1 Information Retrieval

The necessity of information storage and retrieval earned attention since the amounts of informa-
tion increased and it should be fast and accurate retrieved. Therefore, requirements of efficient
methods for information retrieval were necessary; important data are then not ignored and the
force of work and effort is not wasted. Moreover, the implementation of the information retrieval
methods into computers (retrieval systems) provides effective, intelligent and fast search results
within a huge amount of data.

The scenario of information storage and retrieval is as follows ([Rij79]): there exists a reposi-
tory of documents and a person formulates requests (queries). The result of the query it is a set of
documents satisfying the query. The perfect result can be obtained by reading all the documents,
keeping in mind the interest one and discarding the others.

Introducing the computers to perform the retrieval of relevant documents for one needs, was,
in a first phase, not to efficient because the search algorithms used textual search instead of using
the semantics of the documents.

Next step was to characterize and structure the documents in such a way that it is relevant to a
query and more, to be accessible in a reasonable amount of time. For the second feature, indexing
came out to be a good technique. Nowadays, the information retrieval systems implement complex
indexing algorithms, but there is still the question of the accuracy of the data retrieved.

Artificial Intelligence disciplines help in the accuracy problem by combining both syntax
(automatic text categorization [LRS99]) and semantics (semantic inference, ontology reasoning
[dB03]) of a document trying to overcome the query formulation problem.

Query Formulation Techniques

While most of the time was spent on constructing retrieval algorithms because it was thought that
they play the central role in retrieving relevant information, William Frakes and Thomas Pole

27

28CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

proved by their work that constructing meaningful queries is also very important.
The most popular technique for formulating the queries, widely implemented in the code

search engines, is query by reformulation ([Hen94]).
Query by reformulation technique is so popular because the retrieval of relevant information

involves not only relationships between queries and their results in the incipient phase (when the
user introduces the query), but also after (when the result set is displayed), when it is necessary
an interaction between the user and the information retrieval system. This interaction yields to
complex information retrieval.

The benefit of this technique is that it keeps the query language very simple by avoiding the
big number of syntactical and semantical terms.

3.1.2 Source Code Retrieval

Source code retrieval, as a branch of the information retrieval, became a very important topic
both in industry and in the research area in the last decades, mainly because of the large software
systems developed for the market. Bright ideas applied in practice (e.g. source code engines)
work together in the information retrieval, classification and extraction and therefore improving
or solving the tasks of software analysis, programming language objects lookup, code duplication,
plagiarism detection, etc.

In software analysis, source code retrieval helps the software developers in finding the right
information that they need to modify, especially in the so-called legacy systems, and gives a quick
and deep understanding of the software system. The problem with the legacy systems is that they
are hard to understand because of the lack of the documentation and of the accelerated ageing of
the technologies. Therefore, a good maintenance of the legacy systems consumes the software
budget.

Source code retrieval is also important for code reusability, especially in large scale software
products were there might exist the desire to consult the realization of the tasks from the old
versions and their use or adaptation in the newer ones. In [Mil92], there are presented some
issues, but also research problems, of the information retrieval in source code analysis for lookup
purposes: location and retrieval problem (there have to be methods for fast search and access into
libraries), adaptation problem (a software developer has to understand the code snippet in order
to be able to modify it), etc.

The mechanism behind the source code retrieval ([MMM95]) is depicted in Figure 3.1 and
can be seen separately from user’s and technical side, or combined.

1. From the user side: a problem is the subject of querying as it is understood by the user.

2. From the technical side, for retrieval purposes, the information from a repository must be
encoded (indexed).

3. The query is compared with the indexes by the matcher and returns the instances that match
the query.

There exists some issues from the both sides, all involving the loss of information:

3.1. BACKGROUND 29

Figure 3.1: Source Code Retrieval Model

• different users can have different understandings of the same problem;

• the query language used by the users might be not too expressive for their needs;

• information can be lost during the indexing process.

3.1.2.1 History and State of the Art

The work from the early 90’s proposed classification schemes for the classification and storage of
the source code.

A classification scheme provides a network of predefined relationships, thus introducing some
semantic information absent in free-text analysis.

Such classification schemes are: facet-based ([PD91]), sampling behavior ([PP93]), automatic
retrieval ([MBK91]), user adaptable ([Hen97]), etc.

3.1.2.2 Facet-Based Scheme

The idea behind this scheme ([PD91]) is that the source code objects can be classified (faceted)
in a limited number, and retrieved using a keyword associated to each facet can be attached a
keyword (Table 3.1).

Callable Object Type Container
Method Enum File

Field Package
Interface

Class

Table 3.1: A Simplified Faceted Scheme for Java Programming Language Objects

30CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

3.1.2.3 Sampling Behavior

In [PP93] the property that the source code, in distinction to the ordinary text, can be executed
is exploited: a new method, called behavior sampling is proposed for the automated retrieval of
programming languages constructs.

The method has to steps: in the first step, the user specifies a name to be searched for together
with the specification. From the result set the user chooses those objects that can be executed
and provides input values for them. The routines are then executed (second step) with these input
values and give a certain result. Any routine whose output over the input matches the output
specified by the user is retrieved, together with the specification.

3.1.2.4 Query Formulation Techniques in Source Code Retrieval

A solution to a stringent problem, How to formulate queries that output the desired result?, is
given in [Hen94].

The author emphasizes that the problem with formulating queries comes from the fact that
the user specifies them thinking of ,,what“ he wants as result while the objects are stored by
functionality performed (,,how“) and these two ,,to do“ terms rarely coincide.

As a solution, these two techniques are combined in: retrieval by reformulation and spreading
activation.

In retrieval by reformulation the user is asked to refine his previous queries while the interme-
diate results are stored for being consulted. The result set matches exactly the query.

By spreading activation, the result set matches partially the query. The partial matching rela-
tion is expressed using relations between the objects, not only information about them.

Latest approaches use technical and cognitive approaches to effective and quick code search
retrieval ([YF02]).

From the cognitive point of view is well-known that a user has more levels of understanding
the content of the source code files from a repository (Figure 3.2).

Figure 3.2: User’s Different Knowledge Levels

3.1. BACKGROUND 31

The programming objects known by the user are represented by L1, L2, L3; some are much
known (L1) some are less (L3). The relevant information for the user (information presented in
the cloud) could be found on the levels L3 and/or L4.

An ideal method should retrieve just the task-relevant information.
When faced to a search problem, the user concentrates his attention to the information from

L2 and L3, forgetting about L3 and L4 where the result space is present. Hence, the repository
has to be kept active to anticipate the user needs . The active feature of the repository is realized
by repository exploration with implicit queries – the partially written programs.

These ideas were implemented in the CodeBroker system. It autonomously retrieves and
displays the classes and methods from a repository. Moreover, it can be used as a programmers
assistant in learning Java API or supports the components reuse for in-house repositories.

3.1.2.5 Code Search Engines

CodeBroker

CodeBroker ([YF02]) can be considered in the last generation of code search engines, developed
in 2002. It has an interface agent (runs permanently in background) and a back-end search engine.

The interface agent has the role of inferring and extracting queries by permanent monitoring
of the changes made by the developers. The search results obtained in the previous sessions are
still included in the current search result although are not interesting for the current session.

The indexer memorizes items from the Java documentation (obtained from Javadoc).
Whenever a Javadoc comment or an object signature is entered in the interface agent, Code-

Broker displays the results in three different abstraction layers.
The first level displays first predefined n programming language objects by their relevance. If

the user is interested in the items of the results set, he has to interact with the second display level.
The second level is activated by mouse movements and allows also the refinement of the

queries.
The third level displays complex information about the objects in a separate HTML window.

Maracatu

A notable success in the industry was recorded by the code search engine Maracatu.
The tool is based on the client-server technology; the client is a plug-in integrated in Eclipse

IDE and the server is a web-application responsible for accessing the source code repositories.
It is based on pure text retrieval but also on the powerful faceted technique.
The new version of the system ([VDM+07]) introduces folksonomy concepts in the existing

approach. In this new model of code search engine, the users are encouraged to add new keywords
(process known as tagging) to the new defined properties of a programming object. It is thought
that in this way the gap between user’s needs and the real storage scenario ([LdPdA04]) is avoided.

Some characteristics of the system are:

• the tag cloud area is displayed in the client interface; it represents the set of user defined
tags that are frequently used in the querying process by the users and helps searching by
tags;

32CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

• the database assures the persistence of some tags that are specific to some objects; they are
accessible all the time by the tool;

• the folksonomy classifier insures the storage of the (predefined/user-defined) tags in a database.

3.1.3 Mindbreeze Enterprise Search

Mindbreeze Enterprise Search (MES) is a software product developed within Mindbreeze Soft-
ware GmbH Linz. It can be used for searching within the file system, e-mail systems, content
management systems, etc.
Architecture
The system has a distributed architecture: there is a main machine responsible for the config-
uration (via a web-based interface) of all the others nodes and services involved in the system
installation.

The functionality of the system is ensured by a number of four services: crawler, filter, index,
query, easy configurable.
MES Services One of the biggest features of the system is that custom data sources can be inte-
grated if valid security certificate is provided.

The Crawler Service reads data from a specific data source and sends it to the Filter Service.
The Filter Service extracts data provided by the Crawler Service using a set of filters for

standard file formats.
The Index Service permits the indexing (storage into a dictionary) of the information provided

by the Crawler Service and it is accessible to the Query Service, responsible to generate a result
set from the data provided by the Index Service.

3.2 Integration of Mindbreeze Code Search into Mindbreeze Enter-
prise Search

Mindbreeze Code Search (MCS) is a subsystem which is integrated into the existing MES infras-
tructure as a new data source (see Section 3.2.3) as well as from the crawling (see Section 3.2.1.1)
and query enhancement by context interface (see Section 3.2.2) points of view.

MES infrastructure will suffer a small modification for MCS Engine integration, namely a
database will be integrated (see Section 3.2.1.7).

The MCS architecture is depicted in the Figure 3.4.

3.2.1 Crawling and Indexing

One of the main attributes of the code search engines is to crawl as much information as possible
such that it can be queried by the user.

In the crawling process we have to keep in mind the fact that source code files belong to the
structured documents category. Therefore, they contain embedded information in their structure.
Because of the mixture of contents (including natural language and programming language con-
structs) and structure, it is difficult and not recommendable that their content is stored directly in
the index (inverted index) (facility provided by MES) or in the database (which will be integrated

3.2. INTEGRATION OF MINDBREEZE CODE SEARCH INTO MINDBREEZE ENTERPRISE SEARCH33

Figure 3.3: Mindbreeze Enterprise Search Services, Communication and Dependencies (from
[***])

Figure 3.4: Mindbreeze Code Search Architecture

34CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

in the Mindbreeze Code Search). Therefore, as stated in many research papers ([Wil94]), it is
better to structure the knowledge for improving significantly the retrieval results.

3.2.1.1 Crawling

Crawling is the operation of reading raw-data from a data source. The crawled data are sent to the
Filter Service and then indexed.

In MCS the crawling phase involves two operations:

1. extract from the repository subject to crawling the relevant objects (hit-types) and their
attributes (metadata) ;

2. structure the information retrieved.

Hit-Types Extraction
Hit-types and their metadata extraction is done using two tools: the tagger (CTAGS) and the parser
(Rats!).

The tagger is applied first upon a repository of source code files insuring fast structuring of
information, while the parser is applied in a second phase, adding more structured information,
especially relationships between the hit types.

The tagger is specialized in retrieving static information about the hit types (e.g. signature,
type, some modifiers, etc.), excepting the case of the hit-type ,,class” for which some dynamic
information are obtained: if there are nested classes, the name(s) of the outer class(es) is obtained.

The parser is used mostly for dynamic information retrieval (relations between hit types) but
also to obtain static information above the tagger capabilities.

The information retrieved by the tagger and parser can be structured on three levels:

• first order information - static information obtained from tagging;

• second order information - static information obtained from parsing;

• third order information - dynamic information.

CTAGS File Processing
As we mentioned above, the tagger CTAGS is used for a first phase processing. It is a program
that attach labels (tags) to the relevant programming language objects existent in a source code
file. The relevant information is kept in the form of a structured text file.

The tagger has support for many programming languages. We were interested mostly in: Java,
C, Php, Javascript and Lisp.

For illustrating the tools usage and the other concepts we consider the following Java source-
code snippet (Person.java):

3.2. INTEGRATION OF MINDBREEZE CODE SEARCH INTO MINDBREEZE ENTERPRISE SEARCH35

Example 3.1.

package com.mycompany;

public class Person{
public static class Address{
public String street;
public String location;
public String zipcode;

public int hashCode() { /* ... */ }
}

public String firstname;
public String lastname;
// ...

public int hashCode(){
int h = 23;
h += h * 23 + ((firstname == null)? 0 :firstname.hashCode());
h += h * 23 + ((lastname == null)? 0: lastname.hashCode());
//...
return h;

}
}

CTAGS output file structure
The structure of a CTAGS file is: tag name〈TAB〉file name〈TAB〉ex cmd;"〈TAB〉extension fields
where:

• tag name is the name of the tag;

• file name is the name of the file which is currently processed by CTAGS;

• ex cmd is a command used to locate the tag within a file (search pattern or line number);

• extension fields supplementary information for the object tag name.

The CTAGS output file for the Example 3.1 is:

Person.java c:\ctags57\Person.java 1;" file line:1 language:Java
...
Person c:\ctags57\Person.java /ˆpublic class Person{$/;" class line:2
language:Java

Address c:\ctags57\Person.java /ˆpublic static class Address{$/;" class
line:3 language:Java class:Person access:public
...

36CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

This output was obtained running CTAGS with the following options:

• -u: determines the listing of the tags increasingly after the line numbers;

• --excmd=pattern determines the type of ex cmd, in this case the fully qualified name;

• --extra=f displays an extra line with information about the file analyzed;

• --fields=aiKlmnsSt adds, where applicable, extension fields for each tag: +a (access/
export information), +i (inheritance information), +K (kind of the tag information), +l
(source file language information), +m (implementation information), +n (line number of
the tag information), +s (scope information), +S (signature information), +t (”typedef”
field information);

• --tag-relative=yes displays the file path relative to the directory containing the tag
file, rather than relative to the current directory.

Rats! File Processing
A parser was chosen for retrieving more detailed information about the hit-types. This is possible
because the parser analyzes the structure of tokens and determines the grammatical structure with
respect to a formal grammar. Therefore, the hierarchy of the input text is captured and transformed
into an abstract representation (usually syntax trees).

The Rats! parser generates grammars only in Java and C but was chosen as a tool for files
preprocessing because is easily extensible.

Its features are:

• organizes the grammar into modules;

• generates parsing expressions instead of context-free grammars;

• generates automatically abstract syntax trees.

The integration of the parser was necessary because:

• the information that the tagger retrieves has not a very powerful semantic meaning: they
refer to some static attributes of a single hit-type;

• we want to express queries where it is necessary to know the relationships between the
hit-types;

• we want to extract also the comments from the source code files.

The information obtained for a hit-type from parsing is merged with the existing information
obtained from tagging (for the same hit-type). Consistent merging is possible due to an identifica-
tion algorithm (see Section 3.2.1.4) used by both tagger and parser: the information obtained from
parsing is associated to the right hit-type whose metadata are already indexed. If the information
expresses some relations between the hit-types, then it is stored into the database, otherwise it is
indexed into the dictionary.

The processing of the source code files with the Rats! parser and its integration into the MCS
(Crawler Service) is presented in detail in [Luk08].

3.2. INTEGRATION OF MINDBREEZE CODE SEARCH INTO MINDBREEZE ENTERPRISE SEARCH37

3.2.1.2 Information Structuring

The tagger and the parser work together in order to retrieve as much information (static and
dynamic) as possible for a hit-type. Because the information retrieved by the parser and the
tagger does not have a uniform representation, we have to unify the representation of their output
data.

This issues can be solved by structuring the information in a file with XML structure. The
benefits gained are:

• we keep the structure of the document apart from the content;

• we obtain a lot of structured information.

Therefore a XML structure is given to the CTAGS output file, a XML element for each CTAGS
output file entry. The information stored for each element (corresponding to a hit-type) is enriched
by the parser, the only hard point is to add information to the right hit-type.

We came up with the following XML structure for the indexing needs:

Example 3.2.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<file>

...
<Document category="CodeSearch" categoryclass="field" catinst="C:\ctags57\"

key="tag:mindbreeze.com,2008/codesearch/unit:C:\ctags57\XMLToIndex.java#
java:codesearch.indexer:XMLToIndex.Test:x#32"

securitytoken="" title="x">
<Metadata>

<Meta key="file" value="C:\ctags57\XMLToIndex.java" />
<Meta key="language" value="java" />
<Meta key="name" value="x" />
<Meta key="file" value="C:\ctags57\XMLToIndex.java" />
<Meta key="type" value="field" />
<Meta key="line" value="32" />
<Meta key="language" value="Java" />
<Meta key="class" value="XMLToIndex.Test" />
<Meta key="access" value="default" />
<Meta key="modifiers" value="int" />

</Metadata>
<Content>int x = 6;</Content>

...
</Document>

The Document element attributes have the following meaning:

• category – the name of the data source;

• categoryclass – the type of the hit-type analyzed;

38CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

• catinst – the directory which is crawled and indexed;

• key – the unique identifier of the hit-type;

• security token – unique identifier used for authorization purposes;

• title – the title of the hit-type.

Each Document element has a Metadata and a Content nodes and each Metadata node contains
a set specific metadata with key, value attributes.

3.2.1.3 Indexing

In the MCS system, indexing means storing in an index (dictionary) data obtained from the Filter
Service such that the Query Service is able to perform search within it.

Indexing is done by issuing a FilterService object and an indexing method.

Example 3.3.

try{
FilterService filter = null;
filter = InitializeMindbreeze();
filter.indexRawData(content.getBytes(), metaData, indexURL,

"CodeSearch", catInst, key,
categoryClass,
"txt", title,
getCalendarFromDate(new Date()),
getCalendarFromDate(new Date()), null);

catch (ServiceException ex) {}
catch (MalformedURLException e) {}}

...

The method indexRawData is called once per translation unit (file). Its parameters are filled
in by parsing the XML files previously created (see Section 3.2.1.2).

3.2.1.4 Creating and Referring Hit-Types Unique Keys

The hit-types metadata like category, category instance, language, return type, type, etc. do not
uniquely identify a hit-type. Therefore, a unique identification of the hit-type has to exist for the
scenarios when the user or system requests it for operations: displaying it in the client together
with specific metadata (client requests) or insertion, update, deletion (system requests, more pre-
cisely IndexService requests). These scenarios involve working with an inverted index (index),
therefore there must exist hit-type unique identification.

Moreover, the uniqueness property of the hit-type key has to be related to the category and
categoryinstance metadata of the object.

3.2. INTEGRATION OF MINDBREEZE CODE SEARCH INTO MINDBREEZE ENTERPRISE SEARCH39

3.2.1.5 Hit-Types Keys at Defining Side

Before inserting a metadata into the index a unique key has to be constructed. We construct the
key before structuring the content of a translation unit in a XML file.

A hit-type key has, at the defining side, the following structure:

tag:mindbreeze.com,2008:codesearch/unit:pathToFile#
programmingLanguageName:hitType1Name:...:hitTypeKName#
hitTypeKLineNumber

The key is structured in three parts: the first and the last are used for determining the hit
location in the file, while the second one defines the hit-type programming language membership
as well as hierarchical level of the hit-type analyzed.

The first part of the key contains a tagging prefix used for making distinction between the type
of files indexed.

The hierarchical level is mostly helpful for object oriented programming hit types keys con-
struction, where hierarchical structure is well-defined.

3.2.1.6 Hit-Types Keys at Referring Side

Referring the key of a hit-type appears in the the situations:

1. when re-queries are necessary such that the results fulfill the exact requirements of the user;

2. when syntactic ambiguities are present.

Case 1. Consider the following use-case: Give me all the methods from the class Y.
To solve this query the user has to perform the following steps:

1. textual search: ,,Y“;

2. restrict the result set by choosing just the callable artifact;

3. select the menu entry Get methods for the classes from the result set which might be inter-
esting for the user.

Remark. In this prototype version, we categorized the hit-types in the following artifacts: file –
includes the hit-type file, package – includes the hit-type package, comment – includes all types of
comments, object-type – includes the hit-types: class, enumerate, enum, macro, field and callable
– includes the hit-types function and method.

When the selection of a menu entry is present (context action) a reference to a hit-type speci-
fied by name is needed. We do not know anything about its key but we can define a pattern for it,
more precisely a query which returns all the hit-types with the name hitTypeName, no matter on
which hierarchy level and line number.

40CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

Case 2. We consider the following code snippet:

class ClassA{
static void caller(){

ClassB.callme(new ArrayList());
}
}
class ClassB{

static void callme(java.utils.List list){
// ...
}
static void callme(myutils.List list){
// ...
}
}
package myutils;
public class List{
//...
}

In the previous example, the analyzer does not know which method callme() to take into
consideration when the method caller() is called - no reference to any class List is explicitly
presented, although the calls callme(ArrayList), callme(List), callme(Object) are all correct. Thus,
the key generated uses only the name of the method.

In both cases there exists references to hit-types, without really knowing the exact one.
To solve this issues, we came up with a pattern for the keys generated at the referring side:

tag:mindbreeze.com,2008:codesearch/unit:*#java:*:hitTypeName#*

Although this introduces a certain amount of ambiguity, we prefer this query shape of the
keys generated at the referring side because it is hit-type programming language membership
independent.

3.2.1.7 The Database

A database is integrated in the MES architecture for storing information about the relations be-
tween the hit-types, thus for solving queries which involve third order information.

In this prototype version of MCS we used SQLite database engine.
The reasons why SQLite was used is that it is small, fast, simple and reliable, reasonable

features for our needs.
Its important characteristics are:

• zero-configuration – it does not necessitates any setup procedure, no server procedure has
to be started, stopped, or configured, no permission to be set;

• serverless, but allows multiple applications to access it;

• single database file is a disk file that if accessible, then it can read anything from the
database;

3.2. INTEGRATION OF MINDBREEZE CODE SEARCH INTO MINDBREEZE ENTERPRISE SEARCH41

We created tables for each CodeSearch artifact, for some of their metadata and the relations
that were established between the hit-types of the artifacts. For instance, the table callables

refers to the callables artifacts, the table returns refers to its return value, the table is descendant

refers to the artifact one level up in the hierarchy.
The client application that connects to the SQLite database engine uses a generic database

access class for this purpose.
More details about the integration can be found in [Luk08].

3.2.2 Query Service Context Provider Interface Enhancements

Scenarios like 3.2.1.6, involving relations between the hit-types, are not possible with simple text
and faceted search using the existing Mindbreeze Query Language.

How the services and interfaces interact as well as where is necessary an enhancement of the
infrastructure or interfaces involved is depicted in the Figure 3.5.

Figure 3.5: Scenario requiring Query Service Context Provider Interface Enhancements

What components of the MCS architecture interact and how is explained as follows.
Step 1. A query is introduced in the client interface by the user. The query is taken over by

the Query Service which creates a Query object, an instance of the IQueryFactory interface and
of Constraint class.

Step 2. The query might be performed into the index. In this case the user is querying static
information about a hit-type. This kind of query is done by simple and faceted text searching,
when the central role is played by the query language.

We assume the structure of the index like in Table 3.3.
Step 3. The hit types fulfilling the query are a subset of the hit types stored into the index

Table 3.3.

42CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

id1 metadataid1

id2 metadataid2

... ...

Table 3.2: A Sample Index

id13 metadataid13

id55 metadataid55

id78 metadataid78

Table 3.3: A Sample Result Set

Step 4. (Optional) We might want to refine the results obtained at Step 3. For this, it is
necessary to formulate re-queries, either by textual and faceted search, either by certain actions
on the individual hit-types from the result set.

We call context action the type of re-query that is performed on the hit-types from the result
set by choosing a certain entry from the menu (context menu) associated to each of them.

Each hit-type from the result set is characterized by an unique id, and corresponding context
icon and menu.

id13 ContextIconid13 ContextMenuid13

id55 ContextIconid55 ContextMenuid55

id78 ContextIconid78 ContextMenuid78

Table 3.4: A Sample Result Set and their Context Items

For context actions type re-queries, the context interface has to be enhanced.
Depending on the type of the context action (relationships between the hit-types), the database

is accessed.
Step 5. If the user is asking for dynamical information about a hit-type (queries involving

relations between the hit-types) then the query is performed into the database. In this case the
Query Service Context Provider Interface has to be upgraded such that it provides CodeSearch
specific items.

Step 6. The results are displayed to the user.

The enhancement of the Query Service interface with context actions is done by deploying on
the server side an appropriate context provider which provides context items CodeSearch artifacts
specific.

The implementation of CodeSearch context provider contains:

1. metadata keys for the identification of the appropriate context item for a search hit-type;

2. the types of items it provides: context icons, context menus, context actions;

3.2. INTEGRATION OF MINDBREEZE CODE SEARCH INTO MINDBREEZE ENTERPRISE SEARCH43

3. the context items for a search hit (or artifact).

For building up a context provider we provide implementations for a ContextIcon class,
namely Icon, and a ContextMenu class, namely Menu.

The class CodeSearchContextProvider, which implements the context provider, initial-
izes the classes Icon and Menu thus implementing the three types of context items: context menu,
context action and context icon.

A ContextIcon class represents artifact icons and context menu entries icons.
A ContextMenu class represents context menus, a set of context actions.
A ContextAction class represents a single context menu entry.
The two classes (Menu and Icon) (see Figure 3.6) provide parameterless constructors which

are called via the CodeSearchContextProvider constructor.

Figure 3.6: CodeSearchContextProvider Class and Inner Classes

The class Menu implements specific context menus and actions for the hit-types from the
CodeSearch category. The methods implemented by this class are:

• public ContextMenu[] getBulked(Principal identity, String lang,

int itemCount, String[] metadataKeys, Collection<String[]>) – returns
a context menu for the given hits. It uses the method getMenu() for retrieving the hit-
types stored in a Map structure.

44CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

• private ContextMenu getMenu(Map<String, String> metadata) – creates a con-
text menu for the hit type specified by its metadata. For creating a suitable pattern action for
a menu entry, the unique key of a hit type plays an important role. The way we approach the
key construction turned out to be very fruitful because information like the category class,
category instance, programming language needed for constructing pattern actions are easily
identifiable in the key construction.

I want to exemplify here with two types of re-query context actions; one type uses the key of
the hit-type and the a special construct for formulating re-queries, similar to the Mindbreeze
Query Language.

Example 3.4.
[Sample Context Actions Implementation]

//default context action
ContextAction openAction = new ContextAction();
openAction.setIcon(null);
openAction.setName("Open");
openAction.setPattern(getPathFromKey(metadata.get(MetadataKeys.DOCUMENT_KEY)));
actions.add(openAction);

String cc = metadata.get(getCategoryClass());
if (cc.equals("callable")){

ContextAction similarCallableinLang = new ContextAction();
similarCallableinLang.setIcon(null);
similarCallableinLang.setName("Similar Callable in the Same Language");
similarCallableinLang.setPattern("tag:mindbreeze.com,2007/actions/query/

signature:"+ metadata.get(getSignature())+ " AND language:"+
metadata.get(getLanguage()));

actions.add(similarCallableinLang);
}

...

The methods getLanguage() and getSignature() use the method getRequiredMetadataKeys()
in order to retrieve the respective metadata for the hit-type. We mention that they have to be writ-
ten exactly in the same way as they are stored in the index.

Example 3.5.
[The metadata keys required by this context provider]

public String[] getRequiredMetadataKeys() {
return new String[] {

MetadataKeys.HIT_GROUP_ID, MetadataKeys.CATEGORY_CLASS,
MetadataKeys.DOCUMENT_KEY, "signature",
"language", "categoryclass"
} ;

}

3.2. INTEGRATION OF MINDBREEZE CODE SEARCH INTO MINDBREEZE ENTERPRISE SEARCH45

The class Icon provides icons specific for every search hit. It contains methods for retrieving
a collection of search hits and then provides them icons depending on their categoryclass.

• public ContextItem[][] getBulked(Class<? extends ContextItem>[] types,

Principal arg1, String arg2, int itemCount, String[] metadataKeys,

Collection<String[]> metadataValues) – returns an array of context items for the
hits specifies by their keys and values;

• ContextIcon getIconForType(String categoryType)– returns a context icon ar-
tifact specific.

These classes are becoming active after instantiating them in the constructor of the
CodeSearchContextProvider class.

The CodeSearchContextProvider class represents a custom implementation of the exist-
ing AbstractContextProvider class and implements also the following methods:

• public String[] getRequiredMetadataKeys() – returns the metadata which are
necessary for identifying the hit type;

• public Class<? extends ContextItem>[] getSupportedItemTypes() – re-
turns an array of context items specific to the CodeSearch category;

• public ContextItem[][] getQueryConstraints(Class<?extends

ContextItem>[] types, Principal user, String lang) – returns an array of
context items for each CodeSearch artifact and creates, for each of them, a ContextSearch-
InConstraint object. A ContextSearchInConstraint object distinguishes the type of artifacts
displayed to the end users: by query constraints involving a single search term - the name
of the artifact and by unique names and icons for the artifacts.

• methods for retrieving parts of the key of the hit-type needed for various context actions
implementation.

The auxiliary class AbstractTypeInfo.java provides implementation for a method re-
turning the contents of the files representing images which is a mandatory information for context
icons creation. It is used by the classes FileTypeInfo, PackageTypeInfo,

CallableTypeInfo, ObjectTypeInfo, CommentsTypeInfo respectively, which creates
ContextIcon objects for each CodeSearch artifact.

The static structural view of the subsystem which implements the CodeSearch context provider
is depicted in the UML diagram from the Figure 3.7:

3.2.3 CodeSearch Data Source Integration

In this chapter we present how the functionality of MES can be extended by adding custom com-
ponents to the existing services.

We integrated into the system the custom data source CodeSearch, standing for the files which
have a certain structure, namely are written in a programming language.

The integration of the custom data sources, in particular CodeSearch category, depends on:

46CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

Figure 3.7: CodeSearch Context Provider Classes

1. a unique category identifier and category display name;

2. the description of the metadata for each CodeSearch artifact;

3. a graphical icon representing the category in the user interface.

These requirements are solved by deploying on the server a category descriptor file and a
category icon file, respectively.

Moreover, we want that the results displayed to the end users to have context specific informa-
tion. For this purpose, we have to provide to the Query Service (again by deploying on the server)
an appropriate context provider implementation for the CodeSearch data source.

Deployment is done by the command line tool mesextension used for the infrastructure
configuration. In was created during the MES development and used installing or uninstalling
context or authorization provider plug-ins, category descriptors and category icons.

Usage: mesextension [OPTIONS] install|uninstall

3.2.3.1 Deploying the CodeSearch Category Descriptor, Category Icon and Context Provider

Deploying the CodeSearch Category Descriptor
A category descriptor is a XML file which contains the unique identifier, the display name and
descriptions for each artifact for the data source CodeSearch.

A fragment of the CodeSearch category descriptor (CodeSearchCategoryDescriptor.xml)
is listed:

3.2. INTEGRATION OF MINDBREEZE CODE SEARCH INTO MINDBREEZE ENTERPRISE SEARCH47

Example 3.6.

...
categorytype id="objecttype">

<metadata>
<metadatum id="location" selectable="false">

<name xml:lang="de">Ort</name>
<name xml:lang="en">Location</name>

</metadatum>
<metadatum id="author" selectable="false">

<name xml:lang="de">Autor</name>
<name xml:lang="en">Author</name>

</metadatum>
<!-- specific to callable -->
<metadatum id="file" selectable="true">

<name xml:lang="de">File</name>
<name xml:lang="en">File</name>

</metadatum>
...

<metadatum id="class" selectable="true">
<name xml:lang="de">Klasse</name>
<name xml:lang="en">Class</name>

</metadatum>
<metadatum id="modifiers" selectable="true">

<name xml:lang="de">Modifiers</name>
<name xml:lang="en">Modifiers</name>

</metadatum>
...

</metadata>
</categorytype>

The deploying command is:
mesextension --interface=categorydescriptor

--category=CodeSearch --file=codeSearchCategoryDescriptor.xml install

The schema for a category descriptor file is in Table 3.2.3.1 (from [***], simplified).

Deploying the CodeSearch Category Icon
Mindbreeze Enterprise Search provides an interface that links a category icon with an existing
category, the only requirements being: the file representing the icon must have PNG format with
the image dimensions 16x16 pixels.

mesextension --interface=categoryicon --category=CodeSearch

--file=mcs-logo-16x16.png install

48CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

category@id The unique category identifier.
category/name A display name for the category.
category/metadata The category metadata.
category/metadatum The category metadatum (optional)
category/metadatum@id The category metadatum identifier

category/metadatum@selectable

Specifies that the metadatum should be selectable in
MCS enabled applications. This attribute can be taken
into consideration for search result refinement, for ex-
ample.

category/metadatum/name A display name for the meta datum

Table 3.5: Category Descriptor Schema Documentation

Deploying the CodeSearch Context Provider
There are two steps for installing the CodeSearch context provider:

1. properly installation of the context provider.
mesextension --interface=context --category=CodeSearch

--library=mcs-context.jar install

2. providing access to it for insuring that the results returned by the system obey the autho-
rization rules of the original data source.
mesextension --interface=access --category=CodeSearch

--library=CodeSearchAuthorization.jar install

3.2.4 Mindbreeze Code Search - Use Cases

We present the system as it is shown to the user and how interaction with it is possible, including
explorative search and data-drilling operations. We exemplify with two use-cases: Find all the
hit-types named sort and Find all the methods named sort.

We will consider the following Java code snippet for exemplification:

Example 3.7.

package algorithms;
...
public class Sort{
...
public static void sort (double[] a){
...
sort(a, 0, a.length-1);

}
public static void sort (double[] a, int left, int right){
...

}

3.2. INTEGRATION OF MINDBREEZE CODE SEARCH INTO MINDBREEZE ENTERPRISE SEARCH49

...

Use Case 1 - Find all the hit-types named sort
This example is a typical text search in the CodeSearch data source which is provided to the main
node.

Figure 3.8: Find all the hit-types named sort

With this result set (see Figure 3.8), the user can perform drill operations, namely refinements
(in the current state are displayed those common for all the artifacts), can display the information
about it on different levels (current is displayed the first level) and can choose that just a subset of
artifacts is displayed.

Use Case 2 - Find all the methods named sort
This example is representative for illustrating the explorative search in the Mindbreeze Code
Search system: for retrieving a certain hit-type, from a certain artifact, first is performed a text
based search and then, from the domain of results, the user can choose the task-relevant artifacts.

• Step 1 is identical to the Use Case 1 (see Figure 3.8)

50CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

• in Step 2 user chooses ,,callable“ artifact from the predefined artifacts and gets the desired
results (see Figure 3.9)

Figure 3.9: Find all the methods named sort

Representation of Information on Levels
MCS Engine is also able to display different information about a hit-type, depending on the level
chosen. This facility is inherited from the base product (MES), we just defined the structure of
information on each level.

Level 1: On this level we display for each item of the result set the title, the size of the file
where it is declared and the modification date (see Figure 3.9).

Level 2: Besides the information presented at the Level 1, we display the [available] informa-
tion corresponding to the fields in the refinements section see (see Figure 3.10).

Level 3: In this level we add also some representative code for the hit-type (from its body),
for example the other hit types with the same name, or similar (see Figure 3.11).

3.2. INTEGRATION OF MINDBREEZE CODE SEARCH INTO MINDBREEZE ENTERPRISE SEARCH51

Figure 3.10: Find all the methods named sort (information level: 2)

52CHAPTER 3. CODE SEARCH INTEGRATION FACILITY INTO MINDBREEZE ENTERPRISE SEARCH

Figure 3.11: Find all the methods named sort (information level: 3)

Chapter 4

Conclusions

In this thesis we presented two approaches for analyzing the source code: formal static analysis
and retrieval.

The formal static analysis method of source code is based on forward symbolic execution
and functional semantics. A prototype environment (FwdVCG) combining these techniques was
implemented which generates the verification conditions necessary for checking the imperative
program correctness. We implemented it in the Theorema system and we tested it on programs
written in our mini-programming language.

For checking the validity of the verification conditions we built a prototype simplifier that
reduces the verification conditions to (systems of) equalities and inequalities. The simplified
formulae were obtained using first order logic inference rules, truth constants and simple algebraic
simplifications.

As future work we want to apply and automate advanced algebraic and combinatorial al-
gorithms and methods in order to check their validity. A promising approach seems to be the
Fourier-Motzkin Elimination method ([Sch86]), especially for systems of inequalities with small
number of constraints and variables because of the time complexity reasons.

The automated retrieval of source code objects was done by extending the functionality of the
MES, namely: (i) implementing a custom crawler, CodeSearch category specific, that interacts
with MES services; (ii) integration of the CodeSearch data source into the MES infrastructure for
making possible the search within the source code files; (iii) enhancing the user interface with
CodeSearch category specific context actions and data-drilling operations.

Some of the open functionalities of the MCS are: (i) the implementation of complex context
actions which require the information stored in the database; (ii) the synchronization of the in-
dex with the data obtained from crawling to avoid inconsistencies; (iii) add authentication and
authorization rules CodeSearch category specific, etc.

We also propose a design solution for the integration of FwdVCG into Mindbreeze Code Search,
which shows how the formal methods can be used in real software programs rather than being used
for verification of small programs.

Problem Specification. We are interested in the retrieval of the callables artifacts and their
specification from the source code files repositories crawled.

Due to the Rats! parser, we are able to retrieve just the Java methods and the JML specifica-

53

54 CHAPTER 4. CONCLUSIONS

tions. After the retrieval of their content, they have to be transformed into Theorema syntax and
sent as input to FwdVCG which generates the corresponding verification conditions.

Retrieving Methods and Specifications. The attempts of retrieving the methods together
with their specification is above the capabilities of the tagger. The problem is solved by the parser
which is able to retrieve JML specifications and methods body from the Java source code files.

XForm Queries for Abstract Syntax Tree Transformations. For querying and transforming
the abstract syntax trees for source code files we use XForm. The language allows queries for
retrieving meaningful metadata about the hit-types, but we are interested in the queries for special
type comments retrieval (JML-like specification) and content of the methods.

The language XForm has a syntax and semantics similar to XPath 2.0 XML query language,
but additional has support for abstract syntax trees (AST) transformations and queries.

An XForm query is composed of a serie of one or more comma-separated expressions, each
returning a sequence of tree items. All XForm queries generate ordered sets of tree items that
match the specified query template. A tree item may be a node within the AST, a string, or null.
Nested sequences are not allowed.

The model of tree built by the parser is in the Figure 4.1

Figure 4.1: The Model of the Syntax Tree

When parsing a Java source code file, the model of AST built has the disadvantage that the
comment (specification) node is not located right before or after the method declaration; they
are inserted as nodes on the same level as the class declaration node. Because of this drawback
the AST’s processing and the retrieval of the right specification for a method necessitates a long
processing time and a complex algorithm that associates to a method the right specification.

The implementation details for retrieving the content of the methods and the specifications
can be found in [Luk08].

55

How the database is used. For each method and specification we build the unique key and
retrieve its content. For making persistent the information, we insert it in the database, where the
tables for callables and specifications have the structure from the tables 4.1 and 4.2.

CREATE TABLE IF NOT EXISTS callables (

key INTEGER PRIMARY KEY,

hit def key TEXT NOT NULL,

specification id INTEGER)

Table 4.1: Callables Table

CREATE TABLE IF NOT EXISTS specifications (

key INTEGER PRIMARY KEY,

hit def key TEXT NOT NULL)

Table 4.2: Specification Table

In the callables table there must exist a column where the id of the corresponding specification
has to be inserted, if the specification exists.
With the query:
SELECT callables.hit def key, specifications.hit def key FROM callables,

specifications WHERE callables.specification id = specifications.key,
one can obtain the name of the method and the corresponding specification that are further trans-
formed into Theorema syntax, syntax recognized by our verification conditions generator.

For full integration of the methods, the Java methods have to be transformed such that the
Return statement occurs on every branch. On the other side, we must add support for the while
statement in the program analysis with FwdVCG.

56 CHAPTER 4. CONCLUSIONS

Bibliography

[***] ***. Mindbreeze Enterprise Search 3.0.1 SDK. Mindbreeze Software GmbH,
Honauerstrasse 4, 4020 Linz, Austria.

[ABH+07] W. Ahrendt, B. Beckert, R. Hähnle, P. Rümmer, and P. Schmitt. Verifying object-
oriented programs with KeY: A tutorial. In 5th International Symposium on Formal
Methods for Components and Objects, Amsterdam, The Netherlands, volume 4709
of LNCS, pages 70–101. Springer, 2007.

[ADL+79] P. Asirelli, P. Degano, G. Levi, A. Martèlli, U. Montanari, G. Pacini, F. Sirovich, and
F. Turini. A flexible environment for program development based on a symbolic in-
terpreter. In ICSE ’79: Proceedings of the 4th international conference on Software
engineering, pages 251–263, Piscataway, NJ, USA, 1979. IEEE Press.

[B. 06a] B. Cook and A. Podelski and A. Rybalchenko. Termination proofs for systems
code. SIGPLAN Not., 41(6):415–426, 2006.

[B. 06b] B. Gulavani and T. Henzinger and Y. Kannan and A. Nori and S. Rajamani.
Synergy: A new algorithm for property checking. In SIGSOFT ’06/FSE-14: Pro-
ceedings of the 14th ACM SIGSOFT international symposium on Foundations of
software engineering, pages 117–127, New York, NY, USA, 2006. ACM.

[BCJ+06] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa, F. Piroi,
N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger. Theorema: Towards
Computer-Aided Mathematical Theory Exploration. Journal of Applied Logic,
4(4):470–504, 2006.

[BEL75] R. Boyer, B. Elspas, and K. Levitt. SELECT - a formal system for testing and
debugging programs by symbolic execution. In Proceedings of the international
conference on Reliable software, pages 234–245, New York, NY, USA, 1975. ACM.

[BKM02] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on Java
predicates. In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, pages 123–133, New York, NY, USA,
2002. ACM.

[BPS00] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic program-
ming errors. Software - Practice and Experience, 30(7):775–802, 2000.

57

58 BIBLIOGRAPHY

[Cla76] L. Clarke. A System to Generate Test Data and Symbolically Execute Programs.
Software Engineering, IEEE Transactions on, SE–2(3):215–222, 1976.

[Cow88] D. Coward. Symbolic execution systems – a review. Softw. Eng. J., 3(6):229–239,
1988.

[CPDGP01] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezzé. Using symbolic execution
for verifying safety-critical systems. In ESEC/FSE-9: Proceedings of the 8th Eu-
ropean software engineering conference held jointly with 9th ACM SIGSOFT inter-
national symposium on Foundations of software engineering, pages 142–151, New
York, NY, USA, 2001. ACM.

[CS02] M. Colón and H. Sipma. Practical Methods for Proving Program Termination. In
CAV ’02: Proceedings of the 14th International Conference on Computer Aided
Verification, pages 442–454, London, UK, 2002. Springer-Verlag.

[dB03] J. de Bruijn. Using ontologies – enabling knowledge sharing and reuse on the se-
mantic web. Technical Report DERI-2003-10-29, DERI, 2003.

[Deu73] L. Deutsch. An interactive program verifier. PhD thesis, University of California -
Berkley, USA, 1973.

[Dro90] G. Dromey. Program derivation: the development of programs from specifications.
Addison-Wesley Longman Publishing Co., Inc., 1990.

[GAL+06] V. Garcia, E. Almeida, L. Lisboa, A. Martins, S. Meira, D. Lucredio, and R. Fortes.
Toward a code search engine based on the state-of-art and practice. In APSEC ’06:
Proceedings of the XIII Asia Pacific Software Engineering Conference, pages 61–70,
Washington, DC, USA, 2006. IEEE Computer Society.

[God97] P. Godefroid. Model checking for programming languages using VeriSoft. In POPL
’97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 174–186, New York, NY, USA, 1997. ACM.

[Hat95] L. Hatton. Safer C: Developing Software for in High-Integrity and Safety-Critical
Systems. McGraw-Hill, Inc., New York, NY, USA, 1995.

[Hen94] S. Henninger. Using Iterative Refinement to Find Reusable Software. IEEE Soft-
ware, 11(5):48–59, 1994.

[Hen97] S. Henninger. An Evolutionary Approach to Constructing Effective Software Reuse
Repositories. ACM Trans. Softw. Eng. Methodol., 6(2):111–140, 1997.

[HJMS] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.

[HK76] S. Hantler and J. King. An Introduction to Proving the Correctness of Programs.
ACM Comput. Surv., 8(3):331–353, 1976.

BIBLIOGRAPHY 59

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun. ACM,
12(10):576–580, 1969.

[How73] W. Howden. Methodology for the authomatic generation of program test data. Tech-
nical Report 41, Standford Artificial Inteligence Laboratory, Standford, California,
1973.

[KF70] J. King and R. Floyd. An interpretation oriented theorem prover over integers. In
STOC ’70: Proceedings of the second annual ACM symposium on Theory of com-
puting, pages 169–179, New York, NY, USA, 1970. ACM.

[Kin70] J. King. A program verifier. PhD thesis, Pittsburgh, PA, USA, 1970.

[Kin75] J. King. A new approach to program testing. In Proceedings of the international
conference on Reliable software, pages 228–233, New York, NY, USA, 1975. ACM.

[Kin76] J. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,
1976.

[Kir99] M. Kirchner. Program Verification with the Mathematical Software System Theo-
rema. Technical Report 99-16, July 1999.

[Kov07] L. Kovacs. Automated Invariant Generation by Algebraic Techniques for Imperative
Program Verification in Theorema. PhD thesis, RISC, Johannes Kepler University
Linz, Austria, October 2007. RISC Technical Report No. 07-16.

[KPC] J. Kiniri, E. Poll, and D. Cok. Design by Contract and Automatic Verification for
Java with JML and ESC/Java2.

[KPV03] S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic execution for model
checking and testing, 2003.

[LdPdA04] D. Lucredio, A. do Prado, and E. de Almeida. A Survey on Software Components
Search and Retrieval. In EUROMICRO ’04: Proceedings of the 30th EUROMICRO
Conference, pages 152–159, Washington, DC, USA, 2004. IEEE Computer Society.

[LM08] R. Leino and R. Monahan. Program Verification Using the Spec# Programming
System. Tutorial presented at ETAPS, 2008.

[LRS99] W. Lam, M. Ruiz, and P. Srinivasan. Automatic Text Categorization and Its Appli-
cation to Text Retrieval. IEEE Transactions on Knowledge and Data Engineering,
11(6):865–879, 1999.

[LSS84] J. Loeckx, K. Sieber, and R. Stansifer. The foundations of program verification. John
Wiley & Sons, Inc., New York, NY, USA, 1984.

[Luk08] L. Lukacs. Automated Modeling and Analysis of Object Oriented Source Code.
Master’s thesis, Johannes Kepler University, Linz, Austria, 2008. ongoing.

60 BIBLIOGRAPHY

[MBK91] Y. Maarek, D. Berry, and G. Kaiser. An information retrieval approach for auto-
matically constructing software libraries. IEEE Trans. Softw. Eng., 17(8):800–813,
1991.

[McC63] John McCarthy. A Basis for a Mathematical Theory of Computation. In P. Braffort
and D. Hirschberg, editors, Computer Programming and Formal Systems, pages 33–
70. North-Holland, Amsterdam, 1963.

[Mil92] K. Mills. Requirements Engineering for Software Reuse, 1992.

[MMM95] H. Mili, F. Mili, and A. Mili. Reusing Software: Issues and Research Directions.
IEEE Transactions on Software Engineering, 21(6):528–562, 1995.

[PD91] R. Prieto-Dı́az. Implementing Faceted Classification for Software Reuse. Commun.
ACM, 34(5):88–97, 1991.

[PJ03] N. Popov and T. Jebelean. A Practical Approach to Verification of Recursive Pro-
grams in Theorema. In T. Jebelean, V. Negru, and A. Popovici, editors, Proceedings
of SYNASC’03 (International Workshop on Symbolic and Numeric Algorithms for
Scientific Computing Timisoara, Romania, 2003), pages 329–332. Mirton, October
2003.

[PP93] A. Podgurski and L. Pierce. Retrieving Reusable Software by Sampling Behavior.
ACM Trans. Softw. Eng. Methodol., 2(3):286–303, 1993.

[Pug92] W. Pugh. A practical algorithm for exact array dependence analysis. Commun. ACM,
35(8):102–114, 1992.

[PV04] C. Pasareanu and W. Visser. ”verification of java programs using symbolic execution
and invariant generation”. In Proceedings of the 11th International SPIN Workshop
on Model Checking of Software, volume 2989 of LNCS. Springer-Verlag, 2004.

[Rij79] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton, MA,
USA, 1979.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc.,
New York, USA, 1986.

[Sch00] J. Schumann. Automated Theorem Proving in Software Engineering. Springer-
Verlag, 2000.

[Top75] R. Topor. Interactive Program Verification using Virtual Programs. PhD thesis,
University of Edinburgh, Scotland, 1975.

[VDM+07] T. Vanderlei, F. Durao, A. Martins, V. Garcia, E. Almeida, and S. Meira. A Cooper-
ative Classification Mechanism for Search and Retrieval Software Components. In
SAC ’07: Proceedings of the 2007 ACM symposium on Applied computing, pages
866–871, New York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 61

[VHBP00] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In Proc. of
the 15th IEEE International Conference on Automated Software Engineering, 2000.

[Wil94] R. Wilkinson. Effective Retrieval of Structured Documents. In SIGIR ’94: Pro-
ceedings of the 17th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 311–317, New York, NY, USA, 1994.
Springer-Verlag New York, Inc.

[Wol03] S. Wolfram. The Mathematica Book, Fifth Edition. Wolfram Media, 2003.

[YF02] Y. Ye and G. Fischer. Supporting Reuse by Delivering Task-Relevant and Person-
alized Information. In ICSE ’02: Proceedings of the 24th International Conference
on Software Engineering, pages 513–523, New York, NY, USA, 2002. ACM.

CURRICULUM VITAE
MĂDĂLINA ERAŞCU

Personal Data

Full Name: Mădălina Eraşcu
E-mail address: merascu@risc.uni-linz.ac.at
Date and Place of Birth: October 10, 1983, Oraviţa, Romania
Nationality: Romanian.

Education

• Master Studies (2006 – now) in Computer Science

– at Johannes Kepler University Linz, Austria, as Erasmus – Socrates student

– at International School for Informatics (Johannes Kepler University) – Informatics:
Engineering and Management
Master thesis: ,,Automated Formal Static Analysis and Retrieval of Source Code”
Thesis advisor: a.Univ.-Prof. Dr. Tudor Jebelean

• Bachelor Studies (2002 – 2006) in Computer Science
West University of Timişoara, Romania.
Bachelor thesis: ,,XML Web Services using ADO.NET”
Thesis advisor: Lect. Dr. Florin Fortiş

• High School Studies (1998 – 2002)
Theoretical High School ”General Dragalina”, Oraviţa, Romania.

Publications and Talks

• M. Erascu and T. Jebelean. Practical Program Verification by Forward Symbolic Execution:
Correctness and Examples. In: Austrian-Japan Workshop on Symbolic Computation in
Software Science, Bruno Buchberger, Tetsuo Ida, Temur Kutsia (ed.), pp. 47-56. 2008.

• M. Erascu and T. Jebelean. Verification of Imperative Programs using Forward Reasoning.
Apr., 11-14, 2007. Contributed talk at SFB Statusseminar, Strobl, Austria.

• M. Erascu and T. Jebelean. Verification of Imperative Programs using Symbolic Execution
and Forward Reasoning in the Theorema System. RISC Linz. Technical report no. 07-12,
July 1 2007. Presented at First Austria-Japan Workshop on Symbolic Computation and
Software Verification, Linz, Austria, July 1st 2007

Eidesstattliche Erklärung

Ich erkläre an Eides statt, da ich die vorliegende Diplomarbeit selbständig und ohne fremde Hilfe
verfat habe. Ich habe dazu keine weiteren als die angeführten Hilfsmittel benutzt und die aus
anderen Quellen entnommenen Stellen als solche gekennzeichnet.

Linz, July 2008.

.........................
Mădălina Eraşcu

