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Abstract

This work-in-progress document describes our understanding of the semantics of
programs written in imperative languages, of the specification of program behav-
iors, and of the rules for verifying that programs behave as specified. The presen-
tation is based on the formal modeling of programs as state relations; it may serve
as a foundation for computer-supported program reasoning.
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Chapter 1

Introduction

In this “work in progress” report, we present the main ideas for a program rea-
soning calculus which is based on the semantics of commands as state relations:
the execution of a command in a pre-state may result in zero, one, or more pos-
sible post-states; the semantics of a command is thus defined by describing the
relationship between the command’s pre- and poststates as a logical formula.

The core idea of the corresponding program reasoning calculus is to lift the “com-
mands as relations” principle from the meta-level (the definition of the semantics)
to the object-level (the judgements of the calculus): a command/program imple-
mentation is translated to a predicate logic formula I that captures the program
semantics; the specification of the command/program given by the user is also
such a formula S; the implementation is correct with respect to the specification,
if I ⇒ S holds.

We believe that, independent of the actual verification, the translation of com-
mands to logical formulas may give (after appropriate simplification) crucial in-
sight into the behavior of a program by pushing through “the syntactic surface” of
a program and disclosing its “semantic essence”; this is similar to Schmidt’s ap-
proach to denotational program semantics [13] (which however uses a functional
model rooted in Scott’s domain theory). For this purpose, the calculus is settled
in classical predicate logic (in contrast to other approaches based on e.g. dynamic
logic [2]); this is the logic that (if any) most software developers are familiar with.

The idea of programs as state relations is not new: it is the core idea of the
Lamport’s “Temporal Logical of Actions” [10] where the individual actions of
a process are described by formulas relating pre- to post-states; Boute’s “Calcu-
lational Semantics” [3] defines program behavior by program equations; related
approaches are Hehner’s “Practical Theory of Programming” [5] and Hoare and
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Jifeng’s “Unifying Theories of Programming” [6]. Calculi for program refine-
ment [1, 12, 11, 4] allow specifications as first-order language constructs at the
same level as program commands with which they may be freely intermixed.

While the present report builds upon these ideas, it has a different focus. Most of
the calculi described above work on simple “while languages” that have clean and
elegant calculi but neglect “messy” constructs that would complicate the calculus.
Our goal, however, is to model the full richness of program structures including

• local variable declarations (and thus commands with different scopes),

• commands that break the control flow (continue, break, return),

• commands that raise and handle exceptions (throw, try . . .catch),

• expressions that raise exceptions (1/0).

Furthermore, our calculus includes program procedures (“methods”) with static
scoping; it supports modular reasoning about programs on the basis of method
specifications (rather than on the basis of method implementations). A core mo-
tivation of our work was to understand in depth the semantics of modern “be-
havioral interface specification languages” such as JML [7] or Spec# [14] (which
build upon earlier specification languages such as VDM [8]) as the basis of soft-
ware systems for specifying and verifying computer programs; the method spec-
ifications in the present paper are derived from these. The current version of the
calculus handles most aspects of imperative programming languages with the ma-
jor exception of datatypes and pointer/reference semantics semantics (programs
operate on mathematical values). It does also not address object-oriented features
(object methods, inheritance, overriding) or concurrency.

Since our language model is much closer to real programming languages, the rules
are frequently considerably more complicated than those in the calculi presented
above. However, we wanted to deal with the current programming reality “as it
is” in contrast to what one might think it “should be”. We also wanted to stay
as close to the source language as possible and avoid translations to simple core
languages (such as performed in ESC/Java2 [9]) since these tend to obfuscate the
relationship between the program text accessible to the user and the ultimately
constructed semantic interpretation which is used for reasoning/verification.

While relational frameworks are good for modeling “partial correctness” (no ter-
minating computation exhibits a wrong result), they have problems with model-
ing “total correctness” (every computation terminates). There have been various
attempts to embed “termination” into the relational structure, e.g. including “non-
termination states” (⊥) into the domains of the relations or by simply demanding
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that for correct programs all computations must terminate. We find these ap-
proaches not satisfactory and therefore treat “termination” as an issue orthogonal
to (partial) correctness: every program/command is, in addition to a state rela-
tion R, specified by an accompanying state condition C: only if C is satisfied in
a pre-state, the command is required to terminate (in some post-state allowed by
R); the only connection between C and R is that that for every prestate on which C
holds, R must allow some post-state (otherwise, the specification is inconsistent).

The present report describes “work in progress” towards the envisioned calculus;
it is written from front to back in chronological order and thus documents our
increase in understanding over time. It starts with a simple programming language
and corresponding reasoning calculus whose soundness is proved with respect
to the semantics of the language (completeness is not addressed in this report).
Proofs have been elaborated in reasonable depth relative to numerous lemmas
(listed in the appendix) which have mostly not been proved. The programming
language has been repeatedly extended and the corresponding calculus has been
further refined and modified; sometimes critical proofs are repeated, sometimes
previously derived correctness assumptions are (if plausible) taken over to the
new version of the calculus. In some parts (e.g. semantics of undefined program
expressions), alternative versions are discussed.

As should become clear from above description, the report is not a refined pre-
sentation of the envisioned calculus; it has however built up the elements of our
understanding. As a next step, we will summarize in a short reference paper a con-
sistent form of the calculus that can serve as the basis of further implementation
in a computer-assisted program exploration and reasoning framework.



Chapter 2

States and Commands

In this chapter, we lay the foundation of our treatment on program reasoning.
We introduce the core idea of considering programs as relations between system
states, introduce the syntax of a command language for manipulating such states,
give this language a formal semantics, introduce a language for formally spec-
ifying properties of such programs, present a calculus for verifying such spec-
ifications and show that this calculus is sound with respect to the semantics of
programs and specifications. On this basis, we will in later chapters extend the
command language to a full programming language with loops, methods, recur-
sion, exceptions, and expressions with side-effects.

2.1 Programs and their Meaning

Our goal is to describe the behavior of programs whose core principle of operation
is to modify the state of a system (imperative programs as opposed to e.g. func-
tional programs). The most important part of a state is typically the store which
holds the values of variables that may be read and written by the program. We
thus assume the existence of a set Variable of program variables and a non-empty
set Value of variable values and define

Store := Variable→ Value
State := Store

(later State will be redefined to capture additional features than just the store).
If we assume Variable = {x,y} and Value = N, then a possible state is s = [x 7→
2,y 7→ 3] which holds in variable x the value 2 and in variable y the value 3.
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Consequently, we will assume that B⊆ Value i.e. that Value contains the Boolean
values TRUE and FALSE.

If a program starts execution in a prestate s and terminates after some while, it
leaves the system in a poststate s′. For instance, the execution of a program with
single command

x = x+y

in the prestate s = [x 7→ 2,y 7→ 3] yields the poststate s = [x 7→ 5,y 7→ 3]. For a
given program, the poststate is often uniquely determined by the prestate (as in
above example), but this need not be the case. Take the program

var z;
x = x+y*z;

which introduces a temporary variable z which is not initialized (and thus may
have an arbitrary value from Value =N). If this program is executed in the prestate
s = [x 7→ 2,y 7→ 3], we now about the poststate s′ only s′ = [x 7→ 2 + 3 · z,y 7→ 3]
for some value z∈N. Possible poststates are therefore [x 7→ 2,y 7→ 3], [x 7→ 5,y 7→
3],[x 7→ 8,y 7→ 3], . . . ; however [x 7→ 3,y 7→ 3] is not a possible poststate.

In general, a program thus describes a relation on states; we say that the semantics
(meaning) of a program is that of a relation on states. Consequently we define

StateRelation := P(State×State)

as the set of possible program semantics. Given a set “Program” of possible pro-
grams, our goal is now to define a valuation function

[ ] : Program→ StateRelation

which maps every program P ∈ Program to its semantics [P ] ∈ StateRelation i.e.
to a relation on states.

2.2 The Syntax of Programs

Our first task is to define the set “Program” of possible programs, or in other
words, the (abstract) syntax of the programs whose semantics we are going to
describe. Figure 2.1 shows the definition of “Program” which is based on three
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Command Language: Abstract Syntax

P ∈ Program,
C ∈ Command,
E ∈ Expression,
I ∈ Identifier.

P ::= C.
C ::= I = E | var I;C | var I=E;C |C1;C2

| if (E) C | if (E) C1 elseC2.
E ::= . . .
I ::= . . .

Figure 2.1: A Command Language

other sets “Command”, “Expression”, and “Identifier”; these sets are called syn-
tactic domains because their elements are (abstract) syntax trees.

Each syntactic domain is introduced by an enumeration of all possible forms that
an element of this domain may have. In our language, every P∈ Program has only
one choice: it is a C ∈ Command. However for every C′ ∈ Command there exist
six possibilities:

I = E C′ may be an assignment composed of some I ∈ Identifier and some E ∈
Expression .

var I; C C′ may be a declaration block composed of some I ∈ Identifier and
some C ∈ Command.

var I = E; C may be a definition block composed of some I ∈ Identifier, some
E ∈ Expression and some C ∈ Command.

C1;C2 C′ may be a command sequence composed of some C1,C2 ∈ Command.

if (E) C C′ may be a one-sided conditional composed of some E ∈ Expression
and some C ∈ Command.

if (E) C1 else C2 C′ may be a two-sided conditional composed of some E ∈
Expression and some C1,C2 ∈ Command.

The definition of “Command” is inductive in the sense that it contains some
“atomic” elements whose components are not from “Command” (I = E) as well
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as some “compound” elements that already contain elements from “Command”
(e.g. var I; C). The meaning of such an inductive definition is taken as the
smallest set that contains the atomic elements and all compound elements that can
be constructed from other elements of the set.

The inductive definition of syntactic domains is accompanied by a correspond-
ing proving principle: to show that a property P holds for every element C ∈
Command, it suffices to show that P holds for every possible form of the element.
This however may be shown under the additional assumption that P already holds
for those components of C that are elements of “Command”. For example, for
showing that P holds for C = if (E) C1 else C2, we may already assume that
P holds for C1 and for C2.

Figure 2.1 does not elaborate the composition of the elements of the domains
“Expression” and “Identifier”; at the moment we are primarily interested in the
definition of the semantics of programs respectively their constituting commands.

2.3 The Semantics of Programs

To define the meaning of programs we have to define the meaning of every element
of every syntactic domain of the language in which the program is written. For
this purpose we introduce for every syntactic domain a valuation function that
maps every element of this domain to an element of a corresponding semantic
domain (a set that holds the meanings of the syntactic elements). As a convention,
we denote every valuation function by the name [ ]; in every application [T ], the
type of the abstract syntax tree T makes clear which valuation function is applied.

For the language of Figure 2.1, we use valuation functions of the following types:

StateRelation := P(State×State)
StateFunction := State→ Value

[ ] : Program→ StateRelation
[ ] : Command→ StateRelation
[ ] : Expression→ StateFunction
[ ] : Identifier→ Variable

Each valuation function is described by a collection of equations, one equation for
each possible form of the syntactic argument to which it may be applied. In the
case of programs, we have just one form:

[ ] : Program→ StateRelation
[C ] = [C ]
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This equation looks strange because both sides are syntactically equal. However,
the left side refers to the valuation function on programs applied to some value
P ∈ Program (which can have in our language only the form P = C), while the
right side refers to the valuation function on commands. The former function is
thus defined in terms of the later one.

If the result of a valuation function is a relation or a function, we generally prefer
to write the definition in a format that makes clear what the result of the applica-
tion of this relation/function when applied to specific arguments is. For instance,
we write above definition as

[ ] : Program→ StateRelation
[C ](s,s′)⇔ [C ](s,s′)

which states that the meaning of a program P = C is a state relation which holds
for two states s and s′ if and only if the state relation of command C holds for s
and s′.

The definition of the valuation function for commands will make use of the fol-
lowing auxiliary notions:

read : State× Identifier→ Value
read(s, I) = s([ I ])

write : State× Identifier×Value→ State
write(s, I,v) = s[ [ I ] 7→ v ]

writes(s, I1,v1, . . . , In,vn)≡ s[ [ I1 ] 7→ v1 ] . . .[ [ In ] 7→ vn ]

s0 EQUALS s1 ≡
∀I ∈ Identifier : read(s0, I) = read(s1, I)

s0 = s1 AT I1, . . . , In ≡
∀I ∈ Identifier : I = I1∨ . . .∨ I = In ⇒ read(s0, I) = read(s1, I)

s0 = s1 EXCEPT I1, . . . , In ≡
∀I ∈ Identifier : I 6= I1∧ . . .∧ I 6= In ⇒ read(s0, I) = read(s1, I)

read(s, I) is the value of the variable denoted by I that is held in s (remember
that a state maps variables to values and that an identifier denotes a variable).
The reason that we distinguish between an identifier I (which may appear in a
program) and a variable [ I ] (by which a store may be accessed) is that there is not
necessarily a one-to-one relationship between both; in general different identifiers
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may denote the same variable (i.e. storage location), i.e. one identifier may be an
alias of another one.

write(s, I,e) denotes the store that is equal to s except that the variable denoted
by identifier I is mapped to value v. writes(s, I1,v1, . . . , In,vn) denotes the store
that maps the variables denoted by the identifiers I1, . . . , In to the values v1, . . . ,vn.
The proposition s0 EQUALS s1 states that s0 and s1 hold the same values for all
variables that can be denoted by identifiers. The proposition s0 = s1 AT I1, . . . , In
states that s0 and s1 hold the same values for the variables denoted by identi-
fiers I1, . . . , In. The proposition s0 = s1 EXCEPT I1, . . . , In states that s0 and s1 are
identical except that they may hold different values for the variables denoted by
I1, . . . , In. The semantic domains and the corresponding operations are summa-
rized in Figure 2.2.

The definition of the valuation function for commands consists of six equations,
one for each possible kind of command (all are summarized in Figure 2.3).

I = E The poststore of an assignment is identical to the prestate except that the
variable denoted by the identifier I is mapped the value of expression E in
the prestate:

[ I = E ](s,s′)⇔
s′ = write(s, I, [E ](s))

var I; C If a declaration block is executed in a prestate s, the command C is
executed in a state identical to s except that I may have a different value; the
execution of the command yields a state which is identical to the poststate
s′ except that s′ holds the same value for I as s:

[var I;C ](s,s′)⇔
∃s0,s1 ∈ State :

s0 = s EXCEPT I∧ [C ](s0,s1)∧
s′ = write(s1, I,read(s, I))

var I=E; C The execution of a definition block differs from that of a declaration
block only in that the the state in which C is executed holds for I the value
of E:

[var I=E;C ](s,s′)⇔
∃s0,s1 ∈ State :

s0 = write(s, I, [E ](s))∧ [C ](s0,s1)∧
s′ = write(s1, I,read(s, I))

C1;C2 If a command sequence is executed in a prestate s, command C1 is exe-
cuted in that state yielding some state s0 in which command C2 is executed
yielding the overall poststate s′:
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Command Language: Semantic Domains and Operations

Variable := . . .
Value := . . .
Store := Variable→ Value
State := Store
StateRelation := P(State×State)
StateFunction := State→ Value

read : State× Identifier→ Value
read(s, I) = s([ I ])

write : State× Identifier×Value→ State
write(s, I,v) = s[ [ I ] 7→ v ]

writes(s, I1,v1, . . . , In,vn)≡ s[ [ I1 ] 7→ v1 ] . . .[ [ In ] 7→ vn ]

s0 EQUALS s1 ≡
∀I ∈ Identifier : read(s0, I) = read(s1, I)

s0 = s1 AT I1, . . . , In ≡
∀I ∈ Identifier : I = I1∨ . . .∨ I = In ⇒ read(s0, I) = read(s1, I)

s0 = s1 EXCEPT I1, . . . , In ⇔
∀I ∈ Identifier : I 6= I1∧ . . .∧ I 6= In ⇒ read(s0, I) = read(s1, I)

Figure 2.2: The Semantic Domains of the Command Language
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Command Language: Valuation Functions

[ ] : Program→ StateRelation
[C ] = [C ]

[ ] : Command→ StateRelation
[ I = E ](s,s′)⇔

s′ = write(s, I, [E ](s))
[var I;C ](s,s′)⇔
∃s0,s1 ∈ State :

s0 = s EXCEPT I∧ [C ](s0,s1)∧
s′ = write(s1, I,read(s, I))

[var I=E;C ](s,s′)⇔
∃s0,s1 ∈ State :

s0 = write(s, I, [E ](s))∧ [C ](s0,s1)∧
s′ = write(s1, I,read(s, I))

[C1;C2 ](s,s′)⇔
∃s0 ∈ State : [C1 ](s,s0)∧ [C2 ](s0,s′)

[if (E)C ](s,s′)⇔
IF [E ](s) = TRUE THEN [C ](s,s′) ELSE s′ = s

[if (E)C1 else C2 ](s,s′)⇔
IF [E ](s) = TRUE THEN [C1 ](s,s′) ELSE [C2 ](s,s′)

[ ] : Expression→ StateFunction
. . .

[ ] : Identifier→ Variable
. . .

Figure 2.3: The Valuation Functions of the Command Language
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[C1;C2 ](s,s′)⇔
∃s0 ∈ State : [C1 ](s,s0)∧ [C2 ](s0,s′)

if (E) C If a one-sided conditional is executed in a prestate s, then there are two
possibilities: if the value of E in s is TRUE, then C is executed in that state
yielding the overall poststate s′; otherwise, the state remains unchanged, i.e.
s′ is identical to s:

[if (E)C ](s,s′)⇔
IF [E ](s) = TRUE THEN [C ](s,s′) ELSE s′ = s

if (E) C1 else C2 If a two-sided conditional is executed, there are two pos-
sibilities: if the value of E in s is TRUE, then C1 is executed in that state
yielding the overall poststate s′; otherwise, C2 is executed in that state and
yields s′:

[if (E)C1 elseC2 ](s,s′)⇔
IF [E ](s) = TRUE THEN [C1 ](s,s′) ELSE [C2 ](s,s′)

As we did not describe the construction of the domains “Expression” and “Identi-
fier”, also the valuation functions for expressions and identifiers are omitted.

2.4 The Specification of Programs

Having defined a programming language, we are now going to introduce a lan-
guage which allows us to specify the behavior of programs. The essential phrases
of this language are formulas that describe the relationship between the prestate of
a command and its poststate. For this purpose, a formula may contain two kinds
of variables: plain variables such as x and y that refer to the values of program
variables in the prestate and primed variables such as x’ and y’ that refer to the
values of program variables in the poststate. For example, the behavior of the
assignment

x = x+y

can be described by the formula

x’ = x+y

which states that the value of program variable x in the poststate equals the sum
of the values of x and y in the prestate. However, there is a catch: above formula
does not say anything about the variable y which thus might have different values
in both states. The behavior of the command is therefore better described as
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x’ = x+y AND y’ = y

which also states that the value of y remains unchanged (the conjunction operator
AND is used to state that both parts of the formula are true). However, this formula
is still not sufficient because the store holds many other variables. Rather than
stating for each individual variable that its value remains unchanged, we can write

x’ = x+y AND writesonly x

to denote that the prestate and the poststate may only differ in their values for the
variable x. This formula is a precise description of the behavior of the assign-
ment x = x+y.

Apart from the two kinds of variables denoting the values of program variables in
different states, the formulas may also make use of a third kind of variables tagged
with the prefix $. Such variables, e.g. $x or $y, denote mathematical variables
that receive their denotation not from a program state but from the environment of
the formulas in which they occur. For instance, the behavior of the program

var y;
x = x+y;

can be described the formula

(EXISTS $y: x’ = x+$y) AND writesonly x

In this formula the quantifier EXISTS introduces a mathematical variable $y.
The formula states that there exists some unknown value named $y such that the
value of the program variable x in the poststate equals the sum of the value of x
in the prestate and this unknown value.

Based on the ideas outlined above, Figure 2.4 describes the complete syntax of the
language of formulas that we will use to describe program behaviors. The con-
struction of the syntactic domain “Formula” of formulas is based on the domain
“Term” of terms, the domain “Predicate” of predicates and the domain “Func-
tion” of functions; the later two domains are not further specified. The meanings
of these four domains are defined by the following valuation functions that map
the syntactic phrases to the semantic domains introduced in Figure 2.5:

[ ] : Formula→ Environment → StateRelation
[ ] : Term→ Environment → StateFunction
[ ] : Predicate→ Predicate
[ ] : Function→ Function
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Formula Language: Abstract Syntax

F ∈ Formula
T ∈ Term
p ∈ Predicate
f ∈ Function

F ::= TRUE | FALSE
| p(T1, . . . ,Tn) | T1 = T2 | T1 /= T2
| readsonly | writesonly I1, . . . , In
| !F | F1 AND F2 | F1 OR F2 | F1 => F2 | F1 <=> F2
| F1 XOR F2 | IF F THEN F1 ELSE F2 |
| FORALL $I1, . . . ,$In: F | EXISTS $I1, . . . ,$In: F
| LET $I1=T1, . . . ,$In=Tn IN F

T ::= I | I’ | $I | f(T1, . . . ,Tn)
| IF F THEN T1 ELSE T2
| LET $I1=T1, . . . ,$In=Tn IN T | SUCH $I: F

p ::= . . .
f ::= . . .

Figure 2.4: A Formula Language

Formula Language: Semantic Domains

ValueEnv := Identifier→ Value
Environment := ValueEnv
Predicate := P(Value∗)
Function := Value∗→ Value
BinaryStateFunction := (State×State)→ Value

Figure 2.5: The Semantic Domains of the Formula Language
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Formula Language: Valuation Functions (Formulas)

[ ] : Formula→ Environment→ StateRelation
[TRUE ](e)(s,s′) ⇔ TRUE

[FALSE ](e)(s,s′) ⇔ FALSE

[p(T1, . . . ,Tn) ](e)(s,s′)⇔ [ p ]([T1 ](e)(s,s′), . . . , [Tn ](e)(s,s′))
[T1 = T2 ](e)(s,s′)⇔ [T1 ](e)(s,s′) = [T2 ](e)(s,s′)
[T1 /= T2 ](e)(s,s′)⇔ [T1 ](e)(s,s′) 6= [T2 ](e)(s,s′)
[readsonly ](e)(s,s′)⇔ s = s′
[writesonly I1, . . . , In ](e)(s,s′)⇔ s = s′ EXCEPT I1, . . . , In
[!F ](e)(s,s′)⇔¬[F ](e)(s,s′)
[F1 AND F2 ](e)(s,s′)⇔ [F1 ](e)(s,s′)∧ [F2 ](e)(s,s′)
[F1 OR F2 ](e)(s,s′)⇔ [F1 ](e)(s,s′)∨ [F2 ](e)(s,s′)
[F1 => F2 ](e)(s,s′)⇔ [F1 ](e)(s,s′)⇒ [F2 ](e)(s,s′)
[F1 <=> F2 ](e)(s,s′)⇔ [F1 ](e)(s,s′)⇔ [F2 ](e)(s,s′)
[F1 XOR F2 ](e)(s,s′)⇔ [F1 ](e)(s,s′) 6⇔ [F2 ](e)(s,s′)
[IF F THEN F1 ELSE F2 ](e)(s,s′)⇔

IF [F ](e)(s,s′) THEN [F1 ](e)(s,s′) ELSE [F2 ](e)(s,s′)
[FORALL $I1, . . . ,$In: F ](e)(s,s′)⇔

∀v1, . . . ,vn ∈Value : [F ](e[ I1 7→ v1, . . . , In 7→ vn ])(s,s′)
[EXISTS $I1, . . . ,$In: F ](e)(s,s′)⇔

∃v1, . . . ,vn ∈Value : [F ](e[ I1 7→ v1, . . . , In 7→ vn ])(s,s′)
[LET $I1=T1, . . . ,$In=Tn IN F ](e)(s,s′)⇔

LET

e1 = e[ I1 7→ [T1 ](e)(s,s′) ]
. . .
en = en−1[ In 7→ [Tn ](s,s′,en−1) ]

IN [F ](s,s′,en)

[ ] : Predicate→ Predicate
. . .

Figure 2.6: The Valuation Functions of the Formula Language (Formulas)
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Formula Language: Valuation Functions (Terms)

[ ] : Term→ Environment→ BinaryStateFunction
[ I ](e)(s,s′) = read(s, I)
[ I’ ](e)(s,s′) = read(s′, I)
[$I ](e)(s,s′) = e(I)
[ f(T1, . . . ,Tn) ](e)(s,s′) = [ f ]([T1 ](e)(s,s′), . . . , [Tn ](e)(s,s′))
[IF F THEN T1 ELSE T2 ](e)(s,s′) =

IF [F ](e)(s,s′) THEN [T1 ](e)(s,s′) ELSE [T2 ](e)(s,s′)
[LET $I1=T1, . . . ,$In=Tn IN T ](e)(s,s′)⇔

LET

e1 = e[ I1 7→ [T1 ](e)(s,s′) ]
. . .
en = en−1[ In 7→ [Tn ](s,s′,en−1) ]

IN [T ](s,s′,en)
[SUCH $I: F ](e)(s,s′) = SUCH v ∈ Value : [F ](s,s′,e[ I 7→ v ])

[ ] : Function→ Function
. . .

Figure 2.7: The Valuation Functions of the Formula Language (Terms)
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According to these declarations, a formula denotes a mapping from a value en-
vironment to a state relation (the meaning of a program command) while a term
denotes a function from an environment to a state function (the meaning of a
program expression). A predicate denotes a relation on value sequences and a
function denotes a map from value sequences to values.

The definitions of the valuation functions for the various kinds of formulas and
terms are given in Figures 2.6 and 2.7; some further explanation is given below.

Formulas Most kinds of formulas are known in classical predicate logic and take
their standard interpretation. The exceptions are:

readsonly This formula states that all program variables have the same
value in the prestate and in the poststate.

writesonly I1, . . . ,In This formula states that only the program vari-
ables I1, . . . , In may have different values in the pres-state and in the
post-state (while all other program variables have the same value).

unchanged I1, . . . ,In This formula states that the program variables de-
noted by I1, . . . , In have the same values in the pres-state and in the
post-state (while all other variables may have different values).

Please note how the quantifiers ALL, EX, and LET introduce mathematical
variables by defining their interpretations in the environment in which the
body formula is evaluated..

Terms Most kinds of formulas are known in classical predicate logic and take
their standard interpretation. The exceptions are:

I A plain identifier denotes the value of the corresponding program variable
in the pre-state.

I’ A primed identifier denotes the value of the corresponding program vari-
able in the post-state.

$I An identifier qualified by the prefix $ denotes the value of the corre-
sponding mathematical variable in the environment of the formula.

Similar to the formula quantifiers, the term quantifiers LET and SUCH in-
troduce mathematical variables by defining their interpretations in the envi-
ronment in which the body term is evaluated.
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2.5 The Verification of Programs

Using the command language and the formula language introduced in the previous
sections, our goal is now to develop a verification calculus which consists of rules
for deriving judgements of the form

C : F

where C is a command and F is a formula. Such a judgement can be read as
“command C implements specification F” or vice versa as “formula F describes
the behavior of command C”. The semantic interpretation of this judgement is

∀s,s′ ∈ State,e ∈ Environment : [C ](s,s′)⇒ [F ](e)(s,s′)

i.e. only such pairs of states are related by C that are also related by F (for any
environment e). We will later show that the presented calculus is (under some ad-
ditional assumption) sound in the sense that only such judgements can be derived
for which this interpretation is true.

Every (derivation) rule of the calculus has form

premise1
. . .
premisen
conclusion

Such a rule states that the judgement conclusion can be derived, if the judgements
premise1, . . . ,premisen can be derived, again by the application of the rules of the
calculus. The derivation of a judgement can thus be depicted as the construction
of a derivation tree

L...

. . .
J11 . . .

L...

. . .
J1m1

J1 . . .

L...

. . .
Jn1 . . .

L...

. . .
Jnmn

Jn
J

whose root J is the judgement to be derived and where each node
Ji1, . . . ,Jimi

Ji
corresponds to the application of some rule whose conclusion matches Ji and
whose premises match Ji1, . . . ,Jimi . The leaves L... of this tree are judgements
that match axioms, i.e. derivation rules that have no premises.
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Verification Calculus: Definitions

[F ] I1,...,In ≡ (F) AND writesonly I1, . . . , In

' : P(Expression×Term)
E ' T ⇔

T has no free variables ∧
T has no primed program variables ∧
∀s,s′ ∈ Store,e ∈ Environment : [E ](s) = [T ](e)(s,s′)

' : P(Expression×Formula)
E ' F ⇔

F has no free variables ∧
F has no primed program variables ∧
∀s,s′ ∈ Store,e ∈ Environment :

[E ](s) = TRUE ⇔ [F ](e)(s,s′)

Verification Calculus: Judgements

C : F ⇔
∀s,s′ ∈ State,e ∈ Environment : [C ](s,s′)⇒ [F ](e)(s,s′)

Figure 2.8: The Verification Calculus of the Command Language (Part 1 of 3)
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Verification Calculus: Rules

C : [F ] I1,...,In

p is a permutation of {1, . . . ,n}
C : [F ] Ip(1),...,Ip(n)

C : [F ] I1,...,In

I 6= I1∧ . . .∧ I 6= In
C : [F AND I’= I ] I1,...,In,I

E ' T
I = E : [ I’= T ] I

C : [F ] I1,...,In,I
Ia 6= Ib
$Ia and $Ib do not occur in F
var I;C :

[EXISTS $Ia,$Ib : F [$Ia/I,$Ib/I’] ] I1,...,In

C : [F ] I1,...,In,I
Ia 6= Ib
$Ia and $Ib do not occur in F
E ' T
var I=E;C :

[EXISTS $Ia,$Ib : $Ia=T AND F [$Ia/I,$Ib/I’] ] I1,...,In

Figure 2.9: The Verification Calculus of the Command Language (Part 2 of 3)
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Verification Calculus: Rules (Continued)

C1 : [F1 ] I1,...,In

C2 : [F2 ] I1,...,In

$I1, . . . ,$In do not occur in F1 and F2
C1;C2 :

[EXISTS $I1, . . . ,$In :
F1[$I1/I1’, . . . ,$In/In’] AND F2[$I1/I1, . . . ,$In/In] ] I1,...,In

C : [F ] I1,...,In

E ' F0
if (E) C : [IF F0 THEN F ELSE readsonly ] I1,...,In

C1 : [F1 ] I1,...,In

C2 : [F2 ] I1,...,In

E ' F0
if (E) C1 elseC2 : [IF F0 THEN F1 ELSE F2 ] I1,...,In

Figure 2.10: The Verification Calculus of the Command Language (Part 2 of 3)

Figures 2.8, 2.9, and 2.10 presents the verification calculus by listing the form
of judgements, their interpretation, and the rules for deriving judgements. The
individual rules will be explained later; for the moment it suffices to note that
only judgements of the form

C : [F ] I1,...,In

can be derived where the formula [F ] I1,...,In is a syntactic abbreviation of the for-
mula (F) AND writesonly I1, . . . , In. The set {I1, . . . , In} is called the spec-
ification frame; it describes which variables the command may change. In the
presented calculus, the frame is thus an inherent part of every specification.

Some premises in the rules have form E ' T respectively E ' F where E is an ex-
pression of the programming language and T respectively F is a term respectively
formula of the formula language that is closed and only refers to the prestate. Ac-
cording to the definition of ' given in Figure 2.8, this means that both E and T
denote the same value in any state respectively that E yields TRUE in a state if
and only if F is true in that state (since T respectively F are closed, their values
are not influenced by the environment respectively poststate).

The main reason that we distinguish between program expressions and mathemat-
ical terms is that in general they are of different expressive power and may also
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differ in their interpretations of operations. For example, the program expression
x+y typically denotes the addition of two computer words using 32 bit arithmetic;
the identical mathematical term typically denotes plain addition. An appropriate
translation to a mathematical term then actually is

SUCH $z: LET $n=2ˆ32 IN
-$n/2<=$z AND $z<$n/2 AND $n|(x+y-$z)

The individual rules of the verification calculus will be further explained in the
following section. For the moment it suffices to note that the rules allow a bottom-
up construction of the specification of a command from the specifications of its
subcommands starting with the specifications derived from the atomic commands.
For instance, to construct the specification of a program

y = y+1; if (x < y) x = x+y else y = x+1

we first construct the specifications of the atomic commands

y=y+1 : [y’=y+1 ]y
x=x+y : [x’=x+y ]x
y=x+1 : [y’=x+1 ]y

The specifications can be rewritten to include a common frame

y=y+1 : [y’=y+1 AND x’=x ]x,y
x=x+y : [x’=x+y AND y’=y ]x,y
y=x+1 : [y’=x+1 AND x’=x ]x,y

The specifications of the conditional branches can be composed to the specifica-
tion of the conditional statement itself:

if (x < y) x = x+y else y = x+1 :
[IF x < y

THEN x’=x+y AND y’=y
ELSE y’=x+1 AND x’=x ]x,y

This specification can be composed with the specification of y=y+1 to the speci-
fication of the program

y = y+1; if (x < y) x = x+y else y = x+1 :
[EXISTS $x, $y:

$y=y+1 AND $x=x AND
IF $x < $y

THEN x’=$x+$y AND y’=$y
ELSE y’=$x+1 AND x’=$x ]x,y
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which can be further simplified by conventional logical reasoning to

y = y+1; if (x < y) x = x+y else y = x+1 :
[IF x < y+1

THEN x’=x+(y+1) AND y’=y+1
ELSE y’=x+1 AND x’=x ]x,y

This makes the state relation expressed by the program very explicit.

One should also note that by the rules of the calculus only closed specification
formulas can be derived i.e. only formulas that do not not have any occurrence
of a mathematical variable $I outside the scope of the quantifiers FORALL $I,
EXISTS $I, LET $I= . . ., or SUCH $I.

Lemma (Closed Specifications) If a judgement C : F can be derived by the
rules of the verification calculus of the command language, then F is closed, i.e.
does not contain free occurrences of mathematical variables.

Proof The proof of the lemma proceeds by induction on the derivation of C :
F . All derived specification formulas have form [F ] I1,...,In which abbreviates
F AND writesonly I1, . . . , In. Since the writesonly formula does not re-
fer to any mathematical variables, we can focus on the first part of the formula.

We now distinguish which rule matches the last step of this derivation:

Permutation The formula F of the conclusion is derived from a premise from
which, by the induction hypothesis, we can conclude that F is closed.

Frame Extension The formula F AND I′ = I can only have mathematical vari-
ables in F . F is derived from a premise from which, by the induction hy-
pothesis, we can conclude that F is closed.

Assignment The formula I’=T can only have mathematical variables in T which
is derived from the premise E ' T ; by the definition of ', T is closed.

Variable Declaration The formula EXISTS $Ia,$Ib : F [$Ia/I,$Ib/I’] can only
have free occurrences of mathematical variables that are also free in F . F
is derived from a premise from which, by the induction hypothesis, we can
conclude that F is closed.

Variable Definition Formula EXISTS $Ia,$Ib : $Ia=T AND F [$Ia/I,$Ib/I’]
can only have free occurrences of mathematical variables that are also free
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in T or in F ; T is derived from the premise E ' T ; by the definition of
', T is closed. F is derived from a premise from which, by the induction
hypothesis, we can conclude that F is closed.

Command Sequence The specification formula

EXISTS $I1, . . . ,$In :
F1[$I1/I1’, . . . ,$In/In’] AND F2[$I1/I1, . . . ,$In/In]

can only have free occurrences of mathematical variables that are also free
in F1 or in F2. Both formulas are derived from premises from which, by the
induction hypothesis, we can conclude that the formulas are closed.

One-Sided Conditional The formula IF T THEN F ELSE readsonly can
only have free occurrences of mathematical variables that are also free in
T or in F ; T is derived from the premise E ' T ; by the definition of ', T is
closed. F is derived from a premise; by induction hypothesis, F is closed.

Two-Sided Conditional The formula IF T THEN F1 ELSE F2 can only have
free occurrences of mathematical variables that are also free in T or in F1
or in F2. T is derived from the premise E ' T ; by the definition of ', T is
closed. F1 and F2 are derived from premises from which, by the induction
hypothesis, we can conclude that they are closed. ¤

2.6 Soundness of the Verification Calculus

We are now going to state that the presented calculus is indeed sound with respect
to the intended interpretation of its judgements. However, the soundness is stated
relative to the property

DifferentVariables :⇔∀I1, I2 ∈ Identifier : I1 6= I2 ⇒ [ I1 ] 6= [ I2 ]

which says that different program identifiers denote different storage variables.
The truth of DifferentVariables depends on the definition of the valuation function
[ ] : Identifier→ Variable (which we have deliberately left open).

Theorem (Soundness of the Verification Calculus) Under the assumption de-
noted by DifferentVariables, the following is true: if a judgement C : F can be
derived from the rules of the verification calculus of the command language, then

∀s,s′ ∈ State,e ∈ Environment : [C ](s,s′)⇒ [F ](e)(s,s′)

In other words, if different identifiers denote different variables, then the deriva-
tion of C : F implies that command C implements specification F .
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Proof We assume

(1) DifferentVariables

Take C and F such that C : F can be derived and take arbitrary s,s′ ∈ State,e ∈
Environment. We prove

[C ](s,s′)⇒ [F ](e)(s,s′)

by induction on the derivation of C : F . The following subsections cover all cases
for the last step of such a derivation; each subsection essentially shows the sound-
ness of one derivation rule, i.e. that the interpretation of its conclusion is true
under the assumption that the interpretations of its premises are true. ¤
The subsequent proofs will make use of various lemmas stated in Appendix B that
describe properties of states/stores and of syntactic phrases (formulas and terms).

2.6.1 Frame Permutation

C : [F ] I1,...,In

p is a permutation of {1, . . . ,n}
C : [F ] Ip(1),...,Ip(n)

This rule states that the identifiers of a frame may be permuted in an arbitrary way.
For example, from the judgement

x=x+y : [x’=x+y ]x,y

also the following judgement can be derived:

x=x+y : [x’=x+y ]y,x

Soundness Proof We have to show

(a) [C ](s,s′)⇒ [ [F AND I’= I ] Ip(1),...,Ip(n) ](e)(s,s′)

Assume

(2) [C ](s,s′)

By the definition of [ ] , we have to show
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(b) [F AND writesonly Ip(1), . . . , Ip(n) ](e)(s,s′)

By the definition of [ ], it suffices to show

(b.1) [F ](e)(s,s′)

(b.2) s = s′ EXCEPT Ip(1), . . . , Ip(n)

From the premises we know

(3) ∀s,s′ ∈ State,e ∈ Environment : [C ](s,s′)⇒ [ [F ] I1,...,In ](e)(s,s′)
(4) p is a permutation of {1, . . . ,n}

From (2), (3), and the definition of [ ] we know

(5) [F AND writesonly I1, . . . , In ](e)(s,s′)

By the definition of [ ], we thus know

(6) [F ](e)(s,s′)
(7) s = s′ EXCEPT I1, . . . , In

From (6), we know (b.1). From (4), (7), and (SVE), we also know (b.2). ¤

2.6.2 Frame Extension

C : [F ] I1,...,In

I 6= I1∧ . . .∧ I 6= In
C : [F AND I’= I ] I1,...,In,I

This rule states that the frame of a specification may be extended by an identi-
fier I not present in the frame, if the condition I’= I is added to the specification
formula. For example, from the judgement

x=x+y : [x’=x+y ]x,y

also the following judgement can be derived:

x=x+y : [x’=x+y AND z’=z ]x,y,z
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Soundness Proof We have to show

(a) [C ](s,s′)⇒ [ [F AND I’= I ] I1,...,In,I ](e)(s,s′)
Assume

(2) [C ](s,s′)
By the definition of [ ] , we have to show

(b) [(F AND I’= I) AND writesonly I1, . . . , In, I ](e)(s,s′)
By the definition of [ ], it suffices to show

(b.1) [F ](e)(s,s′)
(b.2) read(s′, I) = read(s, I)

(b.3) s = s′ EXCEPT I1, . . . , In, I

From the premises we know

(3) ∀s,s′ ∈ State,e ∈ Environment : [C ](s,s′)⇒ [ [F ] I1,...,In ](e)(s,s′)
(4) I 6= I1∧ . . .∧ I 6= In

From (2), (3), and the definition of [ ] we know

(5) [F AND writesonly I1, . . . , In ](e)(s,s′)
By the definition of [ ], we thus know

(6) [F ](e)(s,s′)
(7) s = s′ EXCEPT I1, . . . , In

From (6), we know (b.1). From (4), (7), and (RSE), we know (b.2). From (7)
and (AVE), we also know (b.3). ¤

2.6.3 Assignment

E ' T
I = E : [ I’= T ] I

This rule describes the construction of a specification for the assignment of the
value a program expression E to a variable I. It states that the value of I in the
poststate equals the value of T where T is a term of the formula language describ-
ing the value of E. For instance, we may have

x=x+y : [x’=ADD32(x,y) ]x

if the operator + in the programming language and and the operator ADD32 in the
formula language denote the same function.
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Soundness Proof We have to show

(a) [ I = E ](s,s′)⇒ [ [ I’= T ] I ](e)(s,s′)

Assume

(2) [ I = E ](s,s′)

By the definitions of [ ] and [ ], we have to show

(a.1) read(s′, I) = [T ](e)(s,s′)
(a.2) s = s′ EXCEPT I

From (2), we know by the definition of [ ]
(3) s′ = write(s, I, [E ](s))

From the premise and the definition of ', we know

(4) [E ](s) = [T ](e)(s,s′)

From (3) and (4), we know

(5) s′ = write(s, I, [T ](e)(s,s′))

From (5) and (RW1), we know (a.1). From DifferentVariables, (3), and (WS), we
know (a.2). ¤

2.6.4 Variable Declaration

C : [F ] I1,...,In,I
Ia 6= Ib
$Ia and $Ib do not occur in F
var I;C :

[EXISTS $Ia,$Ib : F [$Ia/I,$Ib/I’] ] I1,...,In

This rule shows how the specification of a declaration of a program variable I can
be constructed from the specification of its base command: in the specification
formula, any occurrence I respectively I′ referring to the prestate/poststate value
of I has to be replaced by an occurrence of a mathematical variable $Ia respec-
tively $Ib that is existentially quantified. For instance, from the judgement

y=y*y; x=x+y : [y’=y*y AND x’=x+y’ ]x,y

the following judgement can be derived:

var y; y=y*y; x=x+y :
[EXISTS $y0,$y1:

$y1=$y0*$y0 AND x’=x+$y1 ]x
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Soundness Proof We have to show

(a)
[var I;C ](s,s′)⇒

[ [EXISTS $Ia,$Ib : F [$Ia/I,$Ib/I’] ] I1,...,In ](e)(s,s′)

Assume

(2) [var I;C ](s,s′)

By the definitions of [ ] and [ ], we have to show

(a.1) [EXISTS $Ia,$Ib : F [$Ia/I,$Ib/I’] ](e)(s,s′)
(a.2) s = s′ EXCEPT I1, . . . , In

From (2) and the definition of [ ], we know

(3)
∃s0,s1 ∈ State :

s0 = s EXCEPT I∧ [C ](s0,s1)∧ s′ = write(s1, I,read(s, I))

Let s0,s1 ∈ State be such that

(4) s0 = s EXCEPT I

(5) [C ](s0,s1)

(6) s′ = write(s1, I,read(s, I))

From the premises, we know

(7) [C ](s0,s1)⇒ [ [F ] I1,...,In,I ](e)(s0,s1)

(8) Ia 6= Ib

(8a) $Ia and $Ib do not occur in F

and by Lemma “Closed Specifications”

(9) F has no free variables

From (5), (7), and the definitions of [ ] and [ ] , we know

(10) [F ](e)(s0,s1)

(11) s1 = s0 EXCEPT I1, . . . , In, I

From DifferentVariables, (6), and (WS), we know
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(12) s′ = s1 EXCEPT I

To show (a.1), we have by the definition of [ ] to show

(a.1.a) ∃va,vb ∈ Value : [F [$Ia/I,$Ib/I’] ](e[ Ia 7→ va, Ib 7→ vb ])(s,s′)

It thus suffices to show

(a.1.b) [F [$Ia/I,$Ib/I’] ](e[ Ia 7→ read(s0, I), Ib 7→ read(s1, I) ])(s,s′)

This is true from (4), (8), (8a), (10), (12), (PMVF1), and (PMVF2).

From (6) and (RW1), we know

(13) read(s′, I) = read(s, I)

From (4) and (AVE), we know

(14) s0 = s EXCEPT I1, . . . , In, I

From (12) and (AVE), we know

(15) s′ = s1 EXCEPT I1, . . . , In, I

From (11), (14), (15), and (TRE), we know

(16) s = s′ EXCEPT I1, . . . , In, I

From (13), (16), and (RVE), we know (a.2). ¤

2.6.5 Variable Definition

C : [F ] I1,...,In,I
Ia 6= Ib
$Ia and $Ib do not occur in F
E ' T
var I=E;C :

[EXISTS $Ia,$Ib : $Ia=T AND F [$Ia/I,$Ib/I’] ] I1,...,In

This rule shows how the specification of a definition of a program variable I by
the value of a program expression E can be constructed from the specification of
its base command: in the specification formula, any occurrence I respectively I′
referring to the prestate/poststate value of I has to be replaced by an occurrence
of a mathematical variable $Ia that is defined by a mathematical term T with the
same value as E respectively by a mathematical variable $Ib that is existentially
quantified. For instance, from the judgements
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y/2 ' DIV32(y,2)
y=y*y; x=x+y : [y’=y*y AND x’=x+y’ ]x,y

the following judgement can be derived:

var y = z/2; y=y*y; x=x+y :
[EXISTS $y0,$y1: $y0 = DIV32(y,2) AND

$y1=$y0*$y0 AND x’=x+$y1 ]x

Soundness Proof We have to show

(a)
[var I=E; C ](s,s′)⇒

[ [EXISTS $Ia,$Ib : $Ia=T AND F [$Ia/I,$Ib/I’] ] I1,...,In ](e)(s,s′)

Assume

(2) [var I=E; C ](s,s′)

By the definitions of [ ] and [ ], we have to show

(a.1) [EXISTS $Ia,$Ib : $Ia=T AND F [$Ia/I,$Ib/I’] ](e)(s,s′)
(a.2) s = s′ EXCEPT I1, . . . , In

From (2) and the definition of [ ], we know

(3)
∃s0,s1 ∈ State :

s0 = write(s, I, [E ](s))∧ [C ](s0,s1)∧ s′ = write(s1, I,read(s, I))

Let s0,s1 ∈ State such that

(4) s0 = write(s, I, [E ](s))
(5) [C ](s0,s1)

(6) s′ = write(s1, I,read(s, I))

From the premises, we know

(7) [C ](s0,s1)⇒ [ [F ] I1,...,In,I ](e)(s0,s1)

(8) Ia 6= Ib

(8a) $Ia and $Ib do not occur in F

(9) E ' T

and by Lemma “Closed Specifications”
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(10) F has no free variables

From (5), (7), and the definitions of [ ] and [ ] , we know

(11) [F ](e)(s0,s1)

(12) s1 = s0 EXCEPT I1, . . . , In, I

From DifferentVariables, (4), (6), and (WS), we know

(13) s0 = s EXCEPT I

(14) s′ = s1 EXCEPT I

To show (a.1), we have by the definition of [ ] to show

(a.1.a)
∃va,vb ∈ Value :

va=[T ](e)(s,s′)∧
[F [$Ia/I,$Ib/I’] ](e[ Ia 7→ va, Ib 7→ vb ])(s,s′)

From (8), (8a), (11), (13), (14), (PMVF1), and (PMVF2), we know

(15) [F [$Ia/I,$Ib/I’] ](e[ Ia 7→ read(s0, I), Ib 7→ read(s1, I) ])(s,s′)

From (4) and (RW1), we know

(16) read(s0, I) = [E ](s)

From (9) and the definition of ', we know

(17) [E ](s) = [T ](e)(s,s′)

From (15), (16), and (17) we know

(18) [F [$Ia/I,$Ib/I’] ](e[ Ia 7→ [T ](e)(s,s′), Ib 7→ read(s1, I) ])(s,s′)

and thus (a.1.a).

From (6) and (RW1), we know

(19) read(s′, I) = read(s, I)

From (13) and (AVE), we know

(20) s0 = s EXCEPT I1, . . . , In, I

From (14) and (AVE), we know

(21) s′ = s1 EXCEPT I1, . . . , In, I

From (12), (20), (21), and (TRE), we know

(22) s = s′ EXCEPT I1, . . . , In, I

From (19), (22), and (RVE), we know (a.2). ¤
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2.6.6 Command Sequence

C1 : [F1 ] I1,...,In

C2 : [F2 ] I1,...,In

$I1, . . . ,$In do not occur in F1 and F2
C1;C2 :

[EXISTS $I1, . . . ,$In :
F1[$I1/I1’, . . . ,$In/In’] AND F2[$I1/I1, . . . ,$In/In] ] I1,...,In

This rule shows how the specification of a sequence of commands C1 and C2 can
be constructed from the specifications of the individual commands (provided that
these specifications have the same frame I1, . . . , In) by introducing mathematical
variables $I1, . . . ,$In that describe the values of these variables in the intermedi-
ate state (the one after the execution of C1 and before the execution of C2). For
example, from the judgements

x=x+1 : [x’=x+1 AND y’=y ]x,y
y=x+y : [y’=x+y AND x’=x ]x,y

the following judgement can be derived

x=x+1; y=x+y :
[EXISTS $x, $y:

$x=x+1 AND $y=y AND
y’=$x+$y AND x’=$x ]x,y

which can be further simplified by the semantics of EXISTS to

x=x+1; y=x+y : [x’=x+1 AND y’=(x+1)+y ]x,y

Soundness Proof We have to show

(a)

[C1;C2 ](s,s′)⇒
[ [EXISTS $I1, . . . ,$In :

F1[$I1/I1’, . . . ,$In/In’] AND
F2[$I1/I1, . . . ,$In/In] ] I1,...,In ](e)(s,s′)

Assume

(2) [C1;C2 ](s,s′)

By the definitions of [ ] and [ ], we have to show
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(a.1)
[ EXISTS $I1, . . . ,$In :

F1[$I1/I1’, . . . ,$In/In’] AND F2[$I1/I1, . . . ,$In/In] ](e)(s,s′)
(a.2) s = s′ EXCEPT I1, . . . , In

From (2) and the definition of [ ], we know

(3) ∃s0 ∈ State : [C1 ](s,s0)∧ [C2 ](s0,s′)

Let s0 ∈ State such that

(4) [C1 ](s,s0)

(5) [C2 ](s0,s′)

From the premises, we know

(6) [C1 ](s,s0)⇒ [ [F1 ] I1,...,In ](e)(s,s0)

(7) [C2 ](s0,s′)⇒ [ [F2 ] I1,...,In ](e)(s0,s′)
(7a) $I1, . . . ,$In do not occur in F1 and F2

From (4), (5), (6), (7), and the definitions of [ ] and [ ] , we know

(8) [F1 ](e)(s,s0)

(9) [F2 ](e)(s0,s′)
(10) s = s0 EXCEPT I1, . . . , In

(11) s0 = s′ EXCEPT I1, . . . , In

From (10) and (11), and (TRE), we know (a.2). To show (a.1), we have by the
definition of [ ] to show

(a.1.a)
∃v1, . . . ,vn ∈ Value :

[F1[$I1/I1’, . . . ,$In/In’] ](e[ I1 7→ v1, . . . , In 7→ vn ])(s,s′)∧
[F2[$I1/I1, . . . ,$In/In] ](e[ I1 7→ v1, . . . , In 7→ vn ])(s,s′)

It thus suffices to show

(a.1.a.1)
[F1[$I1/I1’, . . . ,$In/In’] ]

(e[ I1 7→ read(s0, I1), . . . , In 7→ read(s0, In) ])(s,s′)

(a.1.a.2)
[F2[$I1/I1, . . . ,$In/In] ]

(e[ I1 7→ read(s0, I1), . . . , In 7→ read(s0, In) ])(s,s′)

From (7a), (8), (11), and (PMVF2), we know (a.1.a.1). From (7a), (9), (10), and
(PMVF1), we know (a.1.a.2). ¤
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2.6.7 One-Sided Conditional

C : [F ] I1,...,In

E ' F0
if (E) C : [IF F0 THEN F ELSE readsonly ] I1,...,In

This rule shows how the specification of a one-sided conditional can be con-
structed from the specification of its branch. For instance from the judgement

y = y+x : [y’=y+x AND x’=x ]x,y

the following judgement may be derived:

if (x > 0) y = y+x :
[IF x > 0

THEN y’ = y+x AND x’=x
ELSE readsonly ]x,y

Soundness Proof We have to show

(a)
[if (E)C ](s,s′)⇒

[ [IF F0 THEN F ELSE readsonly ] I1,...,In ](e)(s,s′)
Assume

(2) [if (E)C ](s,s′)

By the definitions of [ ] and [ ], we have to show

(a.1) IF [F0 ](e)(s,s′) THEN [F ](e)(s,s′) ELSE s = s′

(a.2) s = s′ EXCEPT I1, . . . , In

From (2) and the definition of [ ], we know

(3) IF [E ](s) = TRUE THEN [C ](s,s′) ELSE s′ = s

From the premises and the definition of ', we know

(4) [C ](s,s′)⇒ [ [F ] I1,...,In ](e)(s,s′)
(5) [E ](s) = TRUE ⇔ [F0 ](e)(s,s′)

From (4) and the definitions of [ ] and [ ], we know

(6) [C ](s,s′)⇒ [F ](e)(s,s′)
(7) [C ](s,s′)⇒ s = s′ EXCEPT I1, . . . , In

From (3), (5), and (6), we know (a.1). From (3), (7), (AVE), and (REE), we know
(a.2). ¤
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2.6.8 Two-Sided Conditional

C1 : [F1 ] I1,...,In

C2 : [F2 ] I1,...,In

E ' F0
if (E)C1 elseC2 : [IF F0 THEN F1 ELSE F2 ] I1,...,In

This rule shows how the specification of a two-sided conditional can be con-
structed from the specifications of its branches. For instance from the judgements

y = y+x : [y’=y+x AND x’=x ]x,y
x = y-x : [x’=y-x AND y’=y ]x,y

the following judgement may be derived:

if (x > 0) y = y+x else y = y-x :
[IF x > 0

THEN y’ = y+x AND x’=x
ELSE x’ = y-x AND y’=y ]x,y

Soundness Proof We have to show

(a)
[if (E)C1 else C2 ](s,s′)⇒

[ [IF F0 THEN F1 ELSE F2 ] I1,...,In ](e)(s,s′)

Assume

(2) [if (E)C1 else C2 ](s,s′)

By the definitions of [ ] and [ ], we have to show

(a.1) IF [F0 ](e)(s,s′)THEN [F1 ](e)(s,s′) ELSE [F2 ](e)(s,s′)
(a.2) s = s′ EXCEPT I1, . . . , In

From (2) and the definition of [ ], we know

(3) IF [E ](s) = TRUE THEN [C1 ](s,s′) ELSE [C2 ](s,s′)

From the premises and the definition of ', we know

(4) [C1 ](s,s′)⇒ [ [F1 ] I1,...,In ](e)(s,s′)
(5) [C2 ](s,s′)⇒ [ [F2 ] I1,...,In ](e)(s,s′)
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(6) [E ](s) = TRUE ⇔ [F0 ](e)(s,s′)

From (4) and the definitions of [ ] and [ ], we know

(7) [C1 ](s,s′)⇒ [F1 ](e)(s,s′)
(8) [C1 ](s,s′)⇒ s = s′ EXCEPT I1, . . . , In

Likewise, from (5) and the definitions of [ ] and [ ], we know

(9) [C2 ](s,s′)⇒ [F2 ](e)(s,s′)
(10) [C2 ](s,s′)⇒ s = s′ EXCEPT I1, . . . , In

From (3), (6), (7), and (9), we know (a.1). From (3), (8), and (10), we know
(a.2). ¤



Chapter 3

Loops and Non-Termination

In this chapter, we extend the command language of Chapter 2 by a loop com-
mand. We give the syntax and semantics of this command and corresponding
verification rules whose soundness we prove. In contrast to the previously intro-
duced commands, a loop does (due to possible non-termination) not necessarily
yield a poststate for every prestate. We therefore extend our notion of program
specifications by the description of the termination behavior of a program and
introduce a calculus for verifying the termination of programs.

3.1 Loops and their Semantics

We extend the command language of Figure 2.1 by the following command:

while (E) C A command may be a (while) loop composed of an expression E
and a command C.

The command shall have the classical interpretation: if the evaluation of E yields
true, the command C is executed and we execute the while loop again; otherwise,
the command has no effect i.e. it leaves the state unchanged.

Above definition implies that the relationship between a prestate s and a post-
state s′ of this command is provided by a sequence of states such that

• the first state in the sequence is s,

• for every state in the sequence the evaluation of E yields true except for the
last one,
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Command Language with Loops
An extension of the language of Figure 2.1.

Abstract Syntax

C ::= . . . | while (E)C.

Semantic Operations

finiteExecution :
P(N×State∞×State×StateFunction×StateRelation)

finiteExecution(k, t,s,E,C)⇔
t(0) = s∧∀i ∈ Nk : E(t(i)) = TRUE∧C(t(i), t(i+1))

Valuation Function

[while (E) C ](s,s′)⇔
∃k ∈ N, t ∈ State∞ :

finiteExecution(k, t,s, [E ], [C ])∧
[E ](t(k)) 6= TRUE∧ t(k) = s′

Figure 3.1: The Command Language with Loops

• the relationship between every successive pair of states is established by the
execution of C, and

• the last state in the sequence is s′.

This relationship is illustrated by the following picture

2 k−1 k

true true true true false
C C C. . . s’s

10

and formalized by the following definition of the state relation which demands the
existence of a finite state sequence t with the properties described above:

[while (E) C ](s,s′)⇔
∃k ∈ N, t ∈ State∞ :

t(0) = s∧∀i ∈ Nk : E(t(i)) = TRUE∧C(t(i), t(i+1))∧
[E ](t(k)) 6= TRUE∧ t(k) = s′

Figure 3.1 summarizes the syntax and semantics of loops (with the help of a pred-
icate finiteExecution that will be reused later).
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Verification Calculus: Definitions

Invariant(G,H,F)I1,...,In ≡
G has no free variables ∧
$I1, . . . ,$In do not occur in G,H, and F ∧
∀e ∈ Environment,s,s′ ∈ Store :

[FORALL $I1, . . . ,$In :
(G[$I1/I1’, . . . ,$In/In’] AND H[$I1/I1, . . . ,$In/In]

AND F [$I1/I1, . . . ,$In/In]) => G) ](e)(s,s′)

Verification Calculus: Rules

C : [F ] I1,...,In

E ' H
while (E)C : [!H[I1’/I1, . . . , In’/In] ] I1,...,In

C : [F ] I1,...,In

E ' H
Invariant(G,H,F)I1,...,In

while (E)C : [!H[I1’/I1, . . . , In’/In] AND
(G[I1/I1’, . . . , In/In’] => G) ] I1,...,In

Figure 3.2: The Verification Calculus for Loops

3.2 The Verification of Loops

Figure 3.2 gives two rules for the verification of the loop command that extend the
verification calculus presented in the previous chapter. Also by these rules (which
will be explained in the following subsections), only closed specification formulas
can be derived.

Lemma (Closed Specifications) If C : F can be derived by the rules of the ver-
ification calculus for loops, then F is closed.

Proof By induction on the structure of the derivation of C : F . For the last step
of the derivation, we have two additional cases:

Basic Rule The formula !H[I1’/I1, . . . , In’/In] can only have free variables that
are also free in H. Because of the premise E ' H and the definition of ',
H does not have free variables.
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Invariant Rule The formula

!H[I1’/I1, . . . , In’/In] AND (G[I1/I1’, . . . , In/In’] => G)

can only have free variables that are also free in H or in G. Because of
the premise E ' H and the definition of ', H does not have such vari-
ables. Because of the premise Invariant(G,H,F)I1,...,In and the definition of
Invariant, G does also not have such variables. ¤

3.2.1 Basic Rule

As for a calculus for verifying respectively/deriving the specification of a loop,
the only property which is immediately clear from the information explicit in the
command is that in a terminal state the loop condition does not hold (any more).
We thus can give the following rule:

C : [F ] I1,...,In

E ' H
while (E)C : [!H[I1’/I1, . . . , In’/In] ] I1,...,In

This rule derives as a specification the negation of the termination condition (i.e.
the negation of a mathematical formula H that corresponds to the program ex-
pression E, see the definition of ' in Figure 3.1) where all occurrences of poten-
tially changed program variables are replaced by their primed counterparts. For
instance, if we can derive the judgements

s=s+i; i=i+1 : [s’=s+i AND i’=i+1 ]s,i
i<n ' LESS(i,n)

then we can also derive

while (i<n) {s=s+i; i=i+1} : [!(LESS(i,n) ]s,i

This judgement is not really very impressive since the specification does not say
anything about the variable s changed in the body of the loop. The rule therefore
only allows to derive very weak specifications but, on the other hand, its soundness
(in the sense of Section 2.6) can be easily proved.

Soundness Proof We have to show

(a) [while (E)C ](s,s′)⇒ [ [!H[I1’/I1, . . . , In’/In] ] I1,...,In ](e)(s,s′)
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Assume

(2) [while (E)C ](s,s′)

By the definitions of [ ] and [ ], we have to show

(a.1) ¬[H[I1’/I1, . . . , In’/In] ](e)(s,s′)
(a.2) s = s′ EXCEPT I1, . . . , In

From (2) and the definition of [ ], we know

(3)
∃k ∈ N, t ∈ State∞ :

finiteExecution(k, t,s, [E ], [C ])∧
[E ](t(k)) 6= TRUE∧ t(k) = s′

Let k ∈ N, t ∈ State∞ such that

(4) finiteExecution(k, t,s, [E ], [C ])
(5) [E ](t(k)) 6= TRUE

(6) t(k) = s′

From (4) and the definition of finiteExecution, we know

(7) t(0) = s

(8) ∀i ∈ Nk : [E ](t(i)) = TRUE∧ [C ](t(i), t(i+1))

From the premises, we know

(9) ∀e ∈ Environment,s,s′ ∈ State : [C ](s,s′)⇒ [ [F ] I1,...,In ](e)(s,s′)
(10) E ' H

From (8) and (9), we know

(11) ∀i ∈ Nk : [ [F ] I1,...,In ](e)(t(i), t(i+1))

From (11), we know by the definitions of [ ] and [ ]

(12) ∀i ∈ Nk : [F ](e)(t(i), t(i+1))

(13) ∀i ∈ Nk : t(i) = t(i+1) EXCEPT I1, . . . , In

From (6), (7), (13) and (TRE), we know (a.2).

From (5) and (6), we know
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(14) [E ](s′) 6= TRUE

From (10) and the definition of ', we know

(15) [E ](s′) = TRUE ⇔ [H ](e)(s′,s′)

From (14), and (15), we know

(16) ¬[H ](e)(s′,s′)

We define

(17) s′′ := writes(s, I1,read(s′, I1), . . . , In,read(s′, In))

From (17) and (WSE), we know

(18) s′′ = s EXCEPT I1, . . . , In

From (18), (a.2), and (TRE), we know

(19) s′′ = s′ EXCEPT I1, . . . , In

From DifferentVariables, (17), and (RWE), we know

(20) read(s′′, I1) = read(s′, I1)∧ . . .∧ read(s′′, In) = read(s′, In)

From (19), (20), (RVE), and (NEQ), we know

(21) s′′ EQUALS s′

From (REE) and (NEQ), we know

(22) s′ EQUALS s′

From (16), (21), (22), and (ESF), we know

(24) ¬[H ](e)(s′′,s′)

From (17), (24), and (PPVF1), we know (a.1). ¤
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3.2.2 Invariant Rule

The basic loop verification rule is unsatisfactory because it does not relate the post-
state of the loop to its prestate. Our goal is thus to derive from the loop expression
E (respectively its formula counterpart H) and from the loop body C (respectively
its specification formula [F ] I1,...,In) a formula G that provides such a relationship.
If we comprise this construction under the predicate name Invariant(G,T,F)I1,...,In

(which will be explained later), we get the following rule which results in a judge-
ment that is apparently stronger than the one obtained by the basic rule:

C : [F ] I1,...,In

E ' H
Invariant(G,H,F)I1,...,In

while (E)C : [!H[I1’/I1, . . . , In’/In] AND
(G[I1/I1’, . . . , In/In’] => G) ] I1,...,In

Rather than giving an explicit construction of G (which is hardly possible), the
predicate Invariant describes the properties from which we can conclude that G
is indeed a relation between the prestate of the loop and its poststate (provided
that it is also relation between the prestate and itself). The core idea is that G must
describe the relationship between the prestate of the loop and the poststate after an
arbitrary number of iterations i.e. that G remains invariant through the execution
of the loop. This can be shown by some sort of induction:

Induction Base We show that G describes the relationship between the prestate s
and the poststate s′ = s (i.e. the poststate after 0 iterations). This induction
base is captured by the premise

G[I1/I1’, . . . , In/In’]

in the derived specification where all references I1’, . . . , In’ to the poststate
values of potentially modified variables are replaced by references I1, . . . , In
to their prestate values.

Induction Step Assuming that G describes the relationship between the prestate s
and the state s0 after k iterations, we show that G also describes the rela-
tionship between s and the state s′ after k+1 iterations; since one additional
iteration is performed, we may assume that the loop condition H holds in s0
and that the specification F of the loop body relates s0 to s′. This obligation
is illustrated by the following figure:
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G

G H F

s s0 s′. . .

This induction step is captured by the predicate Invariant which introduces
mathematical variables $I1, . . . ,$In to describe the values of the potentially
modified program variables in the intermediate state s0:

Invariant(G,H,F)I1,...,In ≡
G has no free variables ∧
∀e ∈ Environment,s,s′ ∈ Store :

[FORALL $I1, . . . ,$In :
(G[$I1/I1’, . . . ,$In/In’] AND H[$I1/I1, . . . ,$In/In]

AND F [$I1/I1, . . . ,$In/In]) => G) ](e)(s,s′)

For example, for the loop

while (i<n) {s=s+i; i=i+1}

with judgements

s=s+i; i=i+1 : [s’=s+i AND i’=i+1 ]s,i
i<n ' i<n

a suitable invariant might be

nat(i) AND i<=n AND nat(s) =>
nat(i’) AND i’<=n AND s’=s+sum(i,i’)

where nat(i) shall express that i is a natural number and sum(i, j) shall denote
the sum of all natural numbers greater than or equal to i and less than j.

It is then necessary to show the validity of the induction step

FORALL $i, $s:
((nat(i) AND i<=n AND nat(s) =>

nat($i) AND $i<=n AND $s=s+sum(i,$i)) AND
$i < n AND
(s’=$s+$i AND i’=$i+1 AND writesonly s,i)) =>

(nat(i) AND i<=n AND nat(s) =>
nat(i’) AND i’<=n AND s’=s+sum(i,i’))
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Since the induction base

nat(i) AND i<=n AND nat(s) =>
nat(i) AND i<=n AND s=s+sum(i,i)

is valid in every state, the loop specification

(nat(i) AND i<=n AND nat(s) =>
nat(i’) AND i’<=n AND s’=s+sum(i,i’))

AND !(i<n)

can be derived.

Soundness Proof We have to show

(a)
[while (E)C ](s,s′)⇒

[ [!H[I1’/I1, . . . , In’/In] AND
(G[I1/I1’, . . . , In/In’] => G) ] I1,...,In ](e)(s,s′)

Assume

(2) [while (E)C ](s,s′)

By the definitions of [ ] and [ ], we have to show

(a.1) ¬[H[I1’/I1, . . . , In’/In] ](e)(s,s′)
(a.2) [G[I1/I1’, . . . , In/In’] ](e)(s,s′)⇒ [G ](e)(s,s′)
(a.3) s = s′ EXCEPT I1, . . . , In

The proofs of (a.1) and (a.3) proceed as shown in the soundness proof of the basic
version of the rule. We are now going to show (a.2).

We assume

(3) [G[I1/I1’, . . . , In/In’] ](e)(s,s′)

and show

(a.2.a) [G ](e)(s,s′)

From (2) and the definitions of [ ] and finiteExecution, we know that there exist
some k ∈ N, t ∈ State∞ such that
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(4) t(0) = s

(5) ∀i ∈ Nk : [E ](t(i)) = TRUE∧ [C ](t(i), t(i+1))

(6) [E ](t(k)) 6= TRUE

(7) t(k) = s′

From the premises, we know

(8) ∀e ∈ Environment,s,s′ ∈ State : [C ](s,s′)⇒ [ [F ] I1,...,In ](e)(s,s′)
(9) E ' H

(10) Invariant(G,T,F)I1,...,In

From (5) and (8), we know by the definitions of [ ] and [ ]

(11) ∀i ∈ Nk : [F ](e)(t(i), t(i+1))

(12) ∀i ∈ Nk : t(i) = t(i+1) EXCEPT I1, . . . , In

From (10) and the definition of Invariant, we know

(13) G has no free variables

(13a) $I1, . . . ,$In do not occur in G,H, and F

(14)

∀e ∈ Environment,s,s′ ∈ Store :
[FORALL $I1, . . . ,$In :

(G[$I1/I1’, . . . ,$In/In’] AND H[$I1/I1, . . . ,$In/In]
AND F [$I1/I1, . . . ,$In/In]) => G) ](e)(s,s′)

We are now going to show

(a.2.b) ∀i ∈ Nk+1 : [G ](e)(s, t(i))

from which with (7) we know (a.2.a). The proof proceeds by induction on i with
bound k.

Induction Base We show

(a.2.b.1) [G ](e)(s, t(0))

By (4), it suffices to show

(a.2.b.1.a) [G ](e)(s,s)
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We define

(15) s′′ := writes(s′, I1,read(s, I1), . . . , In,read(s, In))

From (3), (15), and (PPVF1), we know

(16) [G ](e)(s,s′′)

From (15) and (WSE), we know

(17) s′′ = s′ EXCEPT I1, . . . , In

From (a.3), (17), and (TRE), we know

(18) s′′ = s EXCEPT I1, . . . , In

From (15) and (RWE), we know

(19) read(s′′, I1) = read(s, I1)∧ . . .∧ read(s′′, In) = read(s, In)

From (18), (19), (RVE), and (NEQ), we know

(20) s′′ EQUALS s

From (REE) and (NEQ), we know

(21) s EQUALS s

From (16), (20), (21), and (PPVF2), we know (a.2.b.1.a).

Induction Step Take arbitrary i ∈ Nk. We assume

(15) [G ](e)(s, t(i))

and show

(a.2.b.2) [G ](e)(s, t(i+1))

From (14) and the definition of [ ], we know

(16)

∀v1, . . . ,vn ∈ Value :
[G[$I1/I1’, . . . ,$In/In’] ](e[ I1 7→ v1, . . . , In 7→ vn ])(s, t(i+1))∧
[H[$I1/I1, . . . ,$In/In] ](e[ I1 7→ v1, . . . , In 7→ vn ])(s, t(i+1))∧
[F [$I1/I1, . . . ,$In/In] ](e[ I1 7→ v1, . . . , In 7→ vn ])(s, t(i+1))⇒

[G ](e[ I1 7→ v1, . . . , In 7→ vn ])(s, t(i+1))
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To prove (a.2.b.2), by (13) and (MVF), it suffices to prove

(a.2.b.2.a) [G ](e[ I1 7→ read(t(i), I1), . . . , In 7→ read(t(i), In) ])(s, t(i+1))

To prove this, by (16), it suffices to prove

(a.2.b.2.a.1)
[G[$I1/I1’, . . . ,$In/In’] ]

(e[ I1 7→ read(t(i), I1), . . . , In 7→ read(t(i), In) ])(s, t(i+1))

(a.2.b.2.a.2)
[H[$I1/I1, . . . ,$In/In] ]

(e[ I1 7→ read(t(i), I1), . . . , In 7→ read(t(i), In) ])(s, t(i+1))

(a.2.b.2.a.3)
[F [$I1/I1, . . . ,$In/In] ]

(e[ I1 7→ read(t(i), I1), . . . , In 7→ read(t(i), In) ])(s, t(i+1))

From (12), we know

(17) t(i) = t(i+1) EXCEPT I1, . . . , In

From (13a), (15), (17), and (PMVF2), we know (a.2.b.2.a.1).

From (5), (9), and the definition of ', we know

(18) [H ](e)(t(i), t(i+1))

From (4), (12), and (TRE), we know

(19) s = t(i) EXCEPT I1, . . . , In

From (13a), (18), (19), and (PMVF1), we know (a.2.b.2.a.2).

From (11), we know

(20) [F ](e)(t(i), t(i+1))

From (13a), (19), (20), and (PMVF1), we know (a.2.b.2.a.3). ¤

3.3 The Problem of Non-Termination

The loop command introduces a problem that we have not encountered so far:
a command does not necessarily relate every prestate to some poststate i.e. the
command may not terminate for some prestates. For example, the program

while (x>0) x=x-i;
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Command Language: Termination Conditions

Definitions

StateCondition := P(State)

infiniteExecution :
P(State∞×State×StateFunction×StateRelation)

infiniteExecution(t,s,E,C)⇔
t(0) = s∧∀i ∈ N : E(t(i)) = TRUE∧C(t(i), t(i+1))

Valuation Functions

[ ]T : Program→ StateCondition
[C ]T = [C ]T

[ ]T : Command→ StateCondition
[ I = E ]T(s)⇔ TRUE

[var I; C ]T(s)⇔∀v ∈ Value : [C ]T(write(s, I,v))
[var I=E;C ]T(s)⇔ [C ]T(write(s, I, [E ](s)))
[C1;C2 ]T(s)⇔

[C1 ]T(s)∧∀s′ ∈ State : [C1 ](s,s′)⇒ [C2 ]T(s
′)

[if (E)C ]T(s)⇔
[E ](s) = TRUE ⇒ [C ]T(s)

[if (E)C1 else C2 ]T(s)⇔
IF [E ](s) = TRUE THEN [C1 ]T(s) ELSE [C2 ]T(s)

[while (E)C ]T(s)⇔
∀t ∈ State∞,k ∈ N :
¬infiniteExecution(t,s, [E ], [C ])∧
(finiteExecution(k, t,s, [E ], [C ])⇒

[E ](t(k)) = TRUE ⇒ [C ]T(t(k)))

Figure 3.3: The Termination Conditions of the Command Language
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only terminates for a prestate s with read(s,i) > 0. To make explicit for which
prestates a program/command yields a poststate, we introduce in Figure 3.3 valu-
ation functions

[ ]T : Program→ StateCondition
[ ]T : Command→ StateCondition

with the properties stated below.

Theorem (Termination Condition) If the termination condition of a program
respectively command is true on a prestate s, then the program respectively com-
mand relates s to some poststate s′:

∀P ∈ Program,s ∈ State : [P ]T(s)⇒∃s′ ∈ State : [P ](s,s′)
∀C ∈ Command,s ∈ State : [C ]T(s)⇒∃s′ ∈ State : [C ](s,s′)

Proof The first part of the theorem is immediately clear by the definition of
[ ]T : Program→ StateCondition and by the second part of the theorem. We are
now going to show this second part i.e.

(a) ∀C ∈ Command,s ∈ State : [C ]T(s)⇒∃s′ ∈ State : [C ](s,s′)

Take arbitrary C0 ∈ Command,s ∈ State and assume

(1) [C0 ]T(s)

We show

(b) ∃s′ ∈ State : [C0 ](s,s′)

We proceed by induction on the structure of C0.

I = E From the definition of [ ], we know

(2) [ I = E ](s,write(s, I, [E ](s)))

and thus (b).

var I; C From (1) and the definition of [ ]T, we know

(2) ∀v ∈ Value : [C ]T(write(s, I,v))

From the definition of [ ], it suffices to show
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(c)
∃s0,s1,s′ ∈ State :

s0 = s EXCEPT I∧ [C ](s0,s1)∧ s′ = write(s1, I,read(s, I))

which can be simplified to

(d) ∃s0,s1 ∈ State : s0 = s EXCEPT I∧ [C ](s0,s1)

From (ID), we know

(3) s = write(s, I,s(I))

From (2) and (3), we know

(4) [C ]T(s)

From (4) and the induction hypothesis, we know form some s1 ∈ State

(5) [C ](s,s1)

To show (d), it suffices to show

(d.1) s = s EXCEPT I
(d.2) [C ](s,s1)

From (RE), we know (c.1). From (5), we know (d.2).

var I=E; C From (1) and the definition of [ ]T, we know

(2) [C ]T(write(s, I, [E ](s)))

From the definition of [ ], it suffices to show

(c)
∃s0,s1,s′ ∈ State :

s0 = write(s, I, [E ](s))∧ [C ](s0,s1)∧
s′ = write(s1, I,read(s, I))

which can be simplified to

(d) ∃s1 ∈ State : [C ](write(s, I, [E ](s)),s1)

From (2) and the induction hypothesis, we know (d).

C1;C2 From (1) and the definition of [ ]T, we know

(2) [C1 ]T(s)
(3) ∀s′ ∈ State : [C1 ](s,s′)⇒ [C2 ]T(s

′)

From the definition of [ ], it suffices to show

(c) ∃s0,s′ ∈ State : [C1 ](s,s0)∧ [C2 ](s0,s′)

From (2) and the induction hypothesis, we know for some s0 ∈ State
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(4) [C1 ](s,s0)

From (3) and (4), we know

(5) [C2 ]T(s0)

From (5) and the induction hypothesis, we know for some s′ ∈ State

(6) [C2 ](s0,s′)

From (4) and (6), we know (c).

if (E) C From (1) and the definition of [ ]T, we know

(2) [E ](s) = TRUE ⇒ [C ]T(s)

From the definition of [ ], it suffices to show

(c) ∃s′ ∈ State : IF [E ](s) = TRUE THEN [C ](s,s′) ELSE s′ = s

which can be rewritten to

(d)
IF [E ](s) = TRUE

THEN (∃s′ ∈ State : [C ](s,s′))
ELSE (∃s′ ∈ State : s′ = s)

which can be further simplified to

(e) [E ](s) = TRUE ⇒∃s′ ∈ State : [C ](s,s′)

Assume

(3) [E ](s) = TRUE

We have to show

(f) ∃s′ ∈ State : [C ](s,s′)

From (2) and (3), we know

(4) [C ]T(s)

From (4) and the induction hypothesis, we know (f).

if (E) C1 else C2 From (1) and the definition of [ ]T, we know

(2) IF [E ](s) = TRUE THEN [C1 ]T(s) ELSE [C2 ]T(s)

From the definition of [ ], it suffices to show

(c) ∃s′ ∈ State : IF [E ](s) = TRUE THEN [C1 ](s,s′) ELSE [C2 ](s,s′)

which can be rewritten to
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(d)
IF [E ](s) = TRUE

THEN (∃s′ ∈ State : [C1 ](s,s′))
ELSE (∃s′ ∈ State : [C2 ](s,s′))

1. Case [E ](s) = TRUE: We have to show
(e.1) ∃s′ ∈ State : [C1 ](s,s′)

From (2) and the case condition, we know
(4) [C1 ]T(s)

From (4) and the induction hypothesis, we know (e.1).

2. Case semanticsE(s) 6= TRUE: We have to show
(e.2) ∃s′ ∈ State : [C2 ](s,s′)

From (2) and the case condition, we know
(5) [C2 ]T(s)

From (5) and the induction hypothesis, we know (e.2).

while (E) C From (1) and the definition of [ ]T, we know

(2)

∀t ∈ State∞,k ∈ N :
¬infiniteExecution(t,s, [E ], [C ])∧
(finiteExecution(k, t,s, [E ], [C ])⇒

[E ](t(k)) = TRUE ⇒ [C ]T(t(k)))

From the definition of [ ], it suffices to show

(c)
∃k ∈ N, t ∈ State∞,s′ ∈ State :

finiteExecution(k, t,s, [E ], [C ])∧
[E ](t(k)) 6= TRUE∧ t(k) = s′

which can be simplified to

(d)
∃k ∈ N, t ∈ State∞ :

finiteExecution(k, t,s, [E ], [C ])∧ [E ](t(k)) 6= TRUE

We define t ∈ State∞ inductively as follows:

(3) t(0) := s

(4) t(i+1) :=
IF ∃s ∈ State : [C ](t(i),s)

THEN SUCH s IN State : [C ](t(i),s)
ELSE t(i)

From (2), we know

(5) ¬infiniteExecution(t,s, [E ], [C ])

i.e. by the definition of infiniteExecution
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(6) t(0) 6= s∨∃i ∈ N : [E ](t(i)) 6= TRUE∨¬[C ](t(i), t(i+1))

From (3) and (6), we know

(7) ∃i ∈ N : [E ](t(i)) 6= TRUE∨¬[C ](t(i), t(i+1))

We define

(8) k := MIN i ∈ N : [E ](t(i)) 6= TRUE∨¬[C ](t(i), t(i+1))

From (7) and (8), we know

(9 ) [E ](t(k)) 6= TRUE∨¬[C ](t(k), t(k +1))
(10) ∀i ∈ Nk : [E ](t(i)) = TRUE∧ [C ](t(i), t(i+1))

From (3), (10), and the definition of finiteExecution, we thus know

(11) finiteExecution(k, t,s, [E ], [C ])

It now suffices to show

(e) [E ](t(k)) 6= TRUE

because from this and (11), we know (d).

To show (e), we assume

(12) [E ](t(k)) = TRUE

and show a contradiction.

From (12) and (9), we know

(13) ¬[C ](t(k), t(k +1))

From (4) and (13), we know

(14) ¬∃s ∈ State : [C ](t(k),s)

But from (2), (11), and (12), we know

(15) [C ]T(t(k))

which contradicts (14) by the induction hypothesis. ¤

3.4 Verifying the Termination of Programs

Figures 3.4, 3.5, and 3.6 present a calculus for deriving judgements of the form

C ↓ F
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Termination Calculus: Definitions

[ ] : Formula→ StateCondition
[F ](s) = ∀e ∈ Environment : [F ](e)(s,s)

Termination Calculus: Judgements

C ↓ F ⇔
∀s ∈ State : [F ](s)⇒ [C ]T(s)

Figure 3.4: The Termination Calculus of the Command Language (Part 1 of 3)

which can be read as “command C terminates if formula F is true”. F does not
have any free occurrence of a mathematical variable (i.e. does not depend on a
mathematical environment) and does also not depend on the poststate1. The se-
mantics of such a formula can thus be defined by a valuation function

[ ] : Formula→ StateCondition
[F ](s)⇔∀e ∈ Environment : [F ](e)(s,s)

The rules of the calculus (explained below) are sound with respect to the termina-
tion semantics of the previous section in the sense stated by the following theorem.

Theorem (Soundness of the Termination Calculus) Assume the condition de-
noted by DifferentVariables. If a judgement C ↓ F can be derived from the rules
of the termination calculus of the command language, then it is true that

F has no free variables ∧
F does not depend on the poststate ⇒
∀s ∈ State : [F ](s)⇒ [C ]T(s)

Corollary (Existence of Poststate) If C ↓ F can be derived, then for every
prestate s with [F ](s), there exists some poststate s′ with [C ](s,s′).

1We deliberately do not require that the formula must not contain primed program variables:
the calculus demands in two cases (command sequences and loops) as parts of such conditions
formulas derived from specifications which may make arbitrary use of such variables. Rather than
a syntactic restriction, we thus demand a semantic restriction as stated above.
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Termination Calculus: Rules

I = E ↓ F

$I does not occur in F
C ↓ EXISTS $I : F [$I/I]
var I;C ↓ F

E ' T
$I does not occur in T and F
C ↓ EXISTS $I : I=T [$I/I] AND F [$I/I]
var I=E; C ↓ F

C1 ↓ F
C2 ↓ TRUE
C1;C2 ↓ F

C1 ↓ F
C1 : [S ] I1,...,In

$I1, . . . ,$In do not occur in F and S
C2 ↓ EXISTS $I1, . . . ,$In :

F [$I1/I1, . . . ,$In/In] AND
S[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’]

C1;C2 ↓ F

E ' T
C ↓ F AND T
if (E) C ↓ F

E ' T
C1 ↓ F AND T
C2 ↓ F AND !T
if (E) C1 elseC2 ↓ F

Figure 3.5: The Termination Calculus of the Command Language (Part 2 of 3)
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Termination Calculus: Rules

∀s ∈ State : [F => !E ](s)
while (E)C ↓ F

E ' H
C : [S ] I1,...,In

Invariant(G,H,S)I1,...,In

T has no free variables and no primed program variables

∀s ∈ State : [F => G[I1/I1’, . . . , In/In’] ](s)
C ↓ EXISTS $I1, . . . ,$In : F [$I1/I1, . . . ,$In/In] AND

G[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H

∀e ∈ Environment,s,s′ ∈ Store,v1, . . . ,vn ∈ Value :
LET e0 = e[ I1 7→ v1, . . . , In 7→ vn ] IN

[F [$I1/I1, . . . ,$In/In] AND
G[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H AND
[S ] I1,...,In ](e0)(s,s′)⇒

LET

m = [T ](e0)(s,s′),
m′ = [T [I1’/I1, . . . , In’/In ](e0)(s,s′)

IN m ∈ N∧m > m′

while (E)C ↓ F

Figure 3.6: The Termination Calculus of the Command Language (Part 3 of 3)



66 Chapter 3. Loops and Non-Termination

Proof (Soundness Theorem and Corollary) Assume

(1a) DifferentVariables

Take C and F such that C ↓ F can be derived and assume

(1b) F has no free variables

(1c)
∀s,s′,s′′ ∈ State,e ∈ Environment :

[F ](e)(s,s′)⇔ [F ](e)(s,s′′)

Take arbitrary s ∈ State. We prove

[F ](s)⇒ [C ]T(s)

by induction on the derivation of C ↓ F . The following subsections cover all cases
for the last step of such a derivation.

In these proofs, we will assume that the induction hypothesis immediately implies

∀s ∈ State : [F ′ ](s)⇒ [C′ ]T(s)

which can be justified as follows (a formal proof is omitted):

• From (1b) and the rules, we can easily deduce that in every derivation C′ ↓F ′
matching the premise of a rule with conclusion C ↓ F , the formula F ′ has
no free variables.

• Likewise, from (1c) and the rules, we can deduce that in every such deriva-
tion, the formula F ′ does not depend on the poststate: we never explicitly
introduce primed variables, we only use expressions T with E ' T for some
E, and we only use formulas that are either termination conditions or (in the
rules for command sequences and loops) specifications; in the later case,
all primed variables are removed from the condition whose values in the
poststate is different from their values in their prestate.

The corollary follows from the soundness theorem and Theorem “Termination
Condition”. ¤

3.4.1 Assignment

I = E ↓ F

This rule states that an assignment always terminates. Thus we can e.g. derive

x = x+x*y ↓ TRUE
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Soundness Proof We have to show

(a) [F ](s)⇒ [ I = E ]T(s)

By the definition of [ ]T, it suffices to show

(b) TRUE

such that we are done. ¤

3.4.2 Variable Declaration

$I does not occur in F
C ↓ EXISTS $I : F [$I/I]
var I;C ↓ F

This rule says that, for proving that a variable declaration terminates under some
condition, it suffices to prove that the declaration body terminates under this con-
dition where a mathematical variable replaces the program variable declared. For
instance, to prove

var x; while (i<n) i=i+j ↓ x>0 AND j=x

it suffices to prove

while (i<n) i=i+j ↓ EXISTS $x: $x>0 AND j=$x

which can be simplified to

while (i<n) i=i+j ↓ j > 0

Soundness Proof We have to show

(a) [F ](s)⇒ [var I; C ]T(s)

We assume

(2) [F ](s)

By the definition of [ ]T, it suffices to show

(b) ∀v ∈ Value : [C ]T(write(s, I,v))
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Take arbitrary v ∈ Value. We show

(c) [C ]T(write(s, I,v))

From the first premise, we know

(2a) $I does not occur in F

From the second premise and the induction hypothesis we know

(3) ∀s ∈ State : [EXISTS $I : F [$I/I] ](s)⇒ [C ]T(s)

We define

(4) s0 := write(s, I,v)

From (3) and (4), it thus suffices to show

(d) [EXISTS $I : F [$I/I] ](s0)

i.e., by the definition of [ ], for arbitrary e ∈ Environment,

(e) ∃v ∈ Value : [F [$I/I] ](e[ I 7→ v ])(s0,s0)

From (2) and the definition of [ ], we know

(5) [F ](e)(s,s)

From (1a), (4), and (WS), we know

(6) s0 = s EXCEPT I

From (2a), (5), (6), and (PMVF1), we know

(7) [F [$I/I] ](e[I 7→ read(s, I)])(s0,s0)

and thus (e). ¤
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3.4.3 Variable Definition

E ' T
$I does not occur in T and F
C ↓ EXISTS $I : I=T [$I/I] AND F [$I/I]
var I=E;C ↓ F

This rule says that, for proving that a variable definition terminates under some
condition, it suffices to prove that the declaration body terminates under this con-
dition where a mathematical term replaces the program expression that yields the
variable value. For instance, to prove

var x=j*x; while (i<n) i=i+x ↓ x>0 AND j=x

it suffices to prove

j*x ' TIMES(j,x)
while (i<n) i=i+x ↓

EXISTS $x: x=TIMES(j,$x) AND $x>0 AND j=$x

where the latter can be simplified to

while (i<n) i=i+x ↓ x=TIMES(j,j) AND j>0

Soundness Proof We have to show

(a) [F ](s)⇒ [var I=E;C ]T(s)

We assume

(2) [F ](s)

By the definition of [ ]T, it suffices to show

(b) [C ]T(write(s, I, [E ](s)))

From the first premise, we know

(2a) $I does not occur in T and F

From the other premises, the definition of ', and the induction hypothesis, we
know
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(3) T has no free variables

(4) ∀s,s′ ∈ Store,e ∈ Environment : [E ](s) = [T ](e)(s,s′)
(5) ∀s ∈ State : [EXISTS $I : I=T [$I/I] AND F [$I/I] ](s)⇒ [C ]T(s)

We define

(6) s0 := write(s, I, [E ](s))

From (5) and (6), it suffices to show

(c) [EXISTS $I : I=T [$I/I] AND F [$I/I] ](s0)

i.e., by the definition of [ ], for arbitrary e ∈ Environment,

(d)
∃v ∈ Value :

read(s0, I) = [T [$I/I] ](e[ I 7→ v ])(s0,s0)∧
[F [$I/I] ](e[ I 7→ v ])(s0,s0)

We show this for v := read(s, I), i.e.

(d.1) read(s0, I) = [T [$I/I] ](e[ I 7→ read(s, I) ])(s0,s0)

(d.2) [F [$I/I] ](e[ I 7→ read(s, I) ])(s0,s0)

From (1a), (6), (WS), we know

(7) s0 = s EXCEPT I

From (2) and the definition of [ ], we know

(8) [F ](e)(s,s)

From (2a), (7), (8), and (PMVF1), we know (d.2).

From (4) and (6), we know

(9) s0 = write(s, I, [T ](e)(s,s))

From (9) and (RW1), we know

(10) read(s0, I) = [T ](e)(s,s)

From (10), to show (d.1), it suffices to show

(d.1.a) [T ](e)(s,s) = [T [$I/I] ](e[ I 7→ read(s, I) ])(s0,s0)

We know this from (2a), (7), and (PMVT1). ¤
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3.4.4 Command Sequence (Basic Rule)

C1 ↓ F
C2 ↓ TRUE
C1;C2 ↓ F

This rule says that, for proving that a command sequence terminates under a cer-
tain condition, it suffices to prove that the first command of the sequence termi-
nates under this condition and that the second command terminates in any case.
For instance, for proving

while (x>0) x=x-i; y=x+1 ↓ i > 0

it suffices to prove

while (x>0) x=x-i ↓ i > 0
y=x+1 ↓ TRUE

This rule therefore puts on the one hand a strong obligation on the termination
proof of the second command, but has on the other hand the advantage that it does
not depend on the specification of the transition relation of the first command.

Soundness Proof We have to show

(a) [F ](s)⇒ [C1;C2 ]T(s)

We assume

(2) [F ](s)

By the definition of [ ]T, it suffices to show

(b.1) [C1 ]T(s)

(b.2) ∀s′ ∈ State : [C1 ](s,s′)⇒ [C2 ]T(s
′)

From the premises, the induction hypothesis, and the definition of [ ], we know

(3) ∀s ∈ State : [F ](s)⇒ [C1 ]T(s)

(4) ∀s ∈ State : [C2 ]T(s)

From (2) and (3), we know (b.1). From (4), we know (b.2). ¤
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3.4.5 Command Sequence (Advanced Rule)

C1 ↓ F
C1 : [S ] I1,...,In

$I1, . . . ,$In do not occur in F and S
C2 ↓ EXISTS $I1, . . . ,$In :

F [$I1/I1, . . . ,$In/In] AND
S[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’]

C1;C2 ↓ F

This rule says that, for proving that a command sequence terminates under a cer-
tain condition, it suffices to prove that the first command of the sequence termi-
nates under this condition and that the second command terminates in all states
that may result from the execution of the first command. For instance, for proving

while (i<0) i=i+n; while (j>0) j=j-i ↓
n>0 AND !(n|i)

it suffices to prove

while (i<0) i=i+n ↓
n>0 AND !(n|i)

while (i<0) i=i+n :
[i’>=0 AND n|(i’-i) ]i

while (j>0) j=j-i ↓
EXISTS $i:

n>0 AND !(n|$i) AND i>=0 AND n|(i-$i)

Soundness Proof We have to show

(a) [F ](s)⇒ [C1;C2 ]T(s)

We assume

(2) [F ](s)

By the definition of [ ]T, it suffices to show

(b.1) [C1 ]T(s)

(b.2) ∀s′ ∈ State : [C1 ](s,s′)⇒ [C2 ]T(s
′)

From the premises, the induction hypothesis, and the definition of [ ], we know
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(3) ∀s ∈ State : [F ](s)⇒ [C1 ]T(s)

(4) ∀s,s′ ∈ State,e ∈ Environment : [C1 ](s,s′)⇒ [ [S ] I1,...,In ](e)(s,s′)
(4a) $I1, . . . ,$In do not occur in F and S

(5)

∀s ∈ State :
[EXISTS $I1, . . . ,$In :

F [$I1/I1, . . . ,$In/In] AND
S[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ](s)⇒ [C2 ]T(s)

From (2) and (3), we know (b.1).

To show (b.2), we take arbitrary s′ ∈ State and assume

(6) [C1 ](s,s′)

We have to show

(b.2.a) [C2 ]T(s
′)

To prove this, by (5) and the definition of [ ], it suffices to prove for arbitrary but
fixed e ∈ Environment

(b.2.b)

∃v1, . . . ,vn ∈ Value :
[F [$I1/I1, . . . ,$In/In] ]

(e[I1 7→ v1, . . . , In 7→ vn])(s′,s′)∧
[S[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ]

(e[I1 7→ v1, . . . , In 7→ vn])(s′,s′)

We prove this for v1 := read(s, I1), . . . ,vn := read(s, In) i.e.

(b.2.b.1)
[F [$I1/I1, . . . ,$In/In] ]

(e[I1 7→ read(s, I1), . . . , In 7→ read(s, In)])(s′,s′)

(b.2.b.2)
[S[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ]

(e[I1 7→ read(s, I1), . . . , In 7→ read(s, In)])(s′,s′)

From (4), (6), and the definition of [ ] and [ ] , we know

(7) [S ](e)(s,s′)
(8) s = s′ EXCEPT I1, . . . , In

From (2) and the definition of [ ], we know

(9) [F ](e)(s,s)
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From (1c) and (9), we know

(10) [F ](e)(s,s′)

From (4a), (8), (10), and (PMVF1), we know (b.2.b.1).

From (4a), (7), (8), and (PMVF1), we know

(11)
[S[$I1/I1, . . . ,$In/In] ]

(e[I1 7→ read(s, I1), . . . , In 7→ read(sIn)])(s′,s′)

From (IDE), we know

(12) s′ = writes(s′, I1,read(s′, I1), . . . , In,read(s′, In))

From (11), (12), and (PPVF2), we know (b.2.b.2). ¤

3.4.6 One-Sided Conditional

E ' T
C ↓ F AND T
if (E) C ↓ F

This rule says that, for proving that a one-sided conditional statement terminates
under condition F , it suffices to prove that the command in the if-branch of the
statement terminates when both F and the branch condition are true.

For example, for proving

if (k>0) while (i>0) i=i+j*k ↓ j>0

it suffices to prove

k>0' k>0
while (i>0) i=i+j*k ↓ j>0 AND k>0

Soundness Proof We have to show

(a) [F ](s)⇒ [if (E)C ]T(s)

We assume

(2) [F ](s)
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By the definition of [ ]T, it suffices to show

(b) [E ](s) = TRUE ⇒ [C ]T(s)

We assume

(3) [E ](s) = TRUE

and show

(c) [C ]T(s)

From the premises and the induction hypothesis, we know

(4) E ' T

(5) ∀s ∈ State : [F AND T ](s)⇒ [C ]T(s)

By (5) and the definition of [ ], to show (c) it suffices to show

(c.1) [F ](s)
(c.2) [T ](s)

From (2), we know (c.1). From (3), (4), and the definition of ', we know (c.2). ¤

3.4.7 Two-Sided Conditional

E ' T
C1 ↓ F AND T
C2 ↓ F AND !T
if (E)C1 elseC2 ↓ F

This rule says that, for proving that a two-sided conditional statement terminates
under condition F , it suffices to prove that the command in each branch of the
statement terminates when both F and the branch condition (respectively its nega-
tion) are true.

For example, for proving

if (k>0)
while (i>0) i=i-k

else
while (i>0) i=i+k ↓ k!=0

it suffices to prove

k!=0' k!=0
while (i>0) i=i-k ↓ k!=0 AND k>0
while (i>0) i=i+k ↓ k!=0 AND !(k>0)
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Soundness Proof We have to show

(a) [F ](s)⇒ [if (E)C1 else C2 ]T(s)

We assume

(2) [F ](s)

By the definition of [ ]T, it suffices to show

(b.1) [E ](s) = TRUE ⇒ [C1 ]T(s)

(b.2) [E ](s) 6= TRUE ⇒ [C ]T(s)

From the premises and the induction hypothesis, we know

(4) E ' T

(5) ∀s ∈ State : [F AND T ](s)⇒ [C1 ]T(s)

(6) ∀s ∈ State : [F AND !T ](s)⇒ [C2 ]T(s)

To show (b.1), we assume

(7) [E ](s) = TRUE

and show

(b.1.a) [C1 ]T(s)

By (5) and the definition of [ ], it suffices to show

(b.1.a.1) [F ](s)
(b.1.a.2) [T ](s)

From (2), we know (b.1.a.1). From (4), (7), and the definition of ', we know
(b.1.a.2).

To show (b.2), we assume

(8) [E ](s) 6= TRUE

and show

(b.2.a) [C2 ]T(s)

By (6) and the definition of [ ], it suffices to show

(b.2.a.1) [F ](s)
(b.2.a.2) ¬[T ](s)

From (2), we know (b.2.a.1). From (4), (8), and the definition of ', we know
(b.2.a.2). ¤
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3.4.8 While Loop (Without Invariant)

∀s ∈ State : [F => !E ](s)
while (E)C ↓ F

If no invariant is given, the only way to make sure that a loop terminates is to
make sure that it is never entered.

Soundness Proof We have to show

(a) [F ](s)⇒ [while (E)C ]T(s)

We assume

(2) [F ](s)

By the definition of [ ]T, it suffices to show for arbitrary t ∈ State∞,k ∈ N

(b.1) ¬infiniteExecution(t,s, [E ], [C ])

(b.2)
finiteExecution(k, t,s, [E ], [C ])⇒

[E ](t(k)) = TRUE ⇒ [C ]T(t(k))

From the premise and the definition of [ ], we know

(3) ∀s ∈ State : [F ](s)⇒¬[E ](s)

From (2) and (3), we know

(4) ¬[E ](s)

From (4) and the definition of infiniteExecution, we know (b.1).

To show (b.2), we assume

(5) finiteExecution(k, t,s, [E ], [C ])
(6) [E ](t(k)) = TRUE

(7) ¬[C ]T(t(k))

and show a contradiction.

From (4), (5), and the definition of finiteExecution, we have a contradiction. ¤
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3.4.9 While Loop (With Invariant)

E ' H
C : [S ] I1,...,In

Invariant(G,H,S)I1,...,In

T has no free variables and no primed program variables

∀s ∈ State : [F => G[I1/I1’, . . . , In/In’] ](s)
C ↓ EXISTS $I1, . . . ,$In : F [$I1/I1, . . . ,$In/In] AND

G[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H

∀e ∈ Environment,s,s′ ∈ Store,v1, . . . ,vn ∈ Value :
LET e0 = e[ I1 7→ v1, . . . , In 7→ vn ] IN

[F [$I1/I1, . . . ,$In/In] AND
G[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H AND
[S ] I1,...,In ](e0)(s,s′)⇒

LET

m = [T ](e0)(s,s′),
m′ = [T [I1’/I1, . . . , In’/In ](e0)(s,s′)

IN m ∈ N∧m > m′

while (E)C ↓ F

This rule essentially says that, for proving that a while loop terminates under
condition F , it suffices to derive a loop invariant G and a “termination term” T
that only contains plain program variables such that

1. F implies that G holds in the initial state (i.e. before the loop is entered),

2. the loop body C terminates in every prestate related to the initial state by G
for which the loop expression E yields true, and

3. T denotes a natural number which is decreased by every loop iteration (from
which it follows that the number of iterations is bounded).

For instance, for proving

while (i>=0 && i>=j) {i=i-j; j=j+k} ↓
int(i) AND int(j) AND int(k) AND k>0

with the knowledge

i<j ' i<j
i=i-j; j=j+k : [i’=i-j AND j’=j-k ]i,j
Invariant(int(i’) AND int(j’),

i<j, i’=i-j AND j’=j-k)
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it suffices to derive the termination term

IF j>0 THEN i ELSE i+j*j+1

and then to show

(1)
∀s ∈ State :

[int(i) AND int(j) AND int(k) AND k>0 =>
int(i) AND int(j) ](s)

(2)

i=i-j; j=j+k ↓
EXISTS $i, $j:

int($i) AND int($j) AND int(k) AND k>0 AND
int(i) AND int(j) AND i>=0 AND i>=j

(3)

∀e ∈ Environment,s,s′ ∈ Store,vi,v j ∈ Value :
LET e0 = e[i 7→ vi,j 7→ v j ] IN

[int($i) AND int($j) AND int(k) AND k>0 AND
int(i) AND int(j) AND i>=0 AND i>=j AND
i’=i-j AND j’=j+k AND writesonly i,j ]

(e0)(s,s′)⇒
LET

m = [IF j>0 THEN i ELSE i+j*j+1 ](e0)(s,s′)
m′ = [IF j’>0 THEN i’ ELSE i’+j’*j’+1 ]

(e0)(s,s′)
IN m ∈ N∧m > m′

Obligation (3) can be replaced by

(3’)

∀e ∈ Environment,s,s′ ∈ State :
[FORALL $i,$j:

int($i) AND int($j) AND int(k) AND k>0 AND
int(i) AND int(j) AND i>=0 AND i>=j AND
i’=i-j AND j’=j+k AND writesonly i,j =>
LET

m0 = IF j>0 THEN i ELSE i+j*j+1,
m1 = IF j’>0 THEN i’ ELSE i’+j’*j’+1

IN nat(m0) AND m0>m1 ](e)(s,s′)

assuming that the predicates nat and > have the corresponding interpretation.
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Soundness Proof We have to show

(a) [F ](s)⇒ [while (E) C ]T(s)

We assume

(2) [F ](s)

By the definition of [ ]T, it suffices to show for arbitrary t ∈ State∞,k ∈ N

(a.1) ¬infiniteExecution(t,s, [E ], [C ])

(a.2)
finiteExecution(k, t,s, [E ], [C ])⇒

[E ](t(k)) = TRUE ⇒ [C ]T(t(k))

From the premises, the soundness of the verification calculus, and the induction
hypothesis, we know

(3) E ' H

(4) ∀s,s′ ∈ State,e ∈ Environment : [C ](s,s′)⇒ [ [S ] I1,...,In ](e)(s,s′)
(5) Invariant(G,H,S)I1,...,In

(6) T has no free variables and no primed program variables

(7) ∀s ∈ State : [F => G[I1/I1’, . . . , In/In’] ](s)

(8)
∀s ∈ State :

[EXISTS $I1, . . . ,$In : F [$I1/I1, . . . ,$In/In] AND
G[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H ](s)⇒ [C ]T(s)

(9)

∀e ∈ Environment,s,s′ ∈ Store,v1, . . . ,vn ∈ Value :
LET e0 = e[ I1 7→ v1, . . . , In 7→ vn ] IN

[F [$I1/I1, . . . ,$In/In] AND
G[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H AND
[S ] I1,...,In ](e0)(s,s′)⇒

LET

m = [T ](e0)(s,s′),
m′ = [T [I1’/I1, . . . , In’/In ](e0)(s,s′)

IN m ∈ N∧m > m′

From (5) and the definition of Invariant, we know

(9a) $I1, . . . ,$In do not occur in G,H, and F

To show (a.2), we assume
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(10) finiteExecution(k, t,s, [E ], [C ])
(11) [E ](t(k)) = TRUE

and show

(a.2.a) [C ]T(t(k))

From (8), it suffices to show

(a.2.b)
[EXISTS $I1, . . . ,$In : F [$I1/I1, . . . ,$In/In] AND

G[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H ](t(k))

From the definition of [ ], it suffices to show for arbitrary e ∈ Environment,

(a.2.c)

∃v1, . . . ,vn ∈ Value :
LET e0 = e[ I1 7→ v1, . . . , In 7→ vn ] IN

[F [$I1/I1, . . . ,$In/In] ](e0)(t(k), t(k))∧
[G[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ](e0)(t(k), t(k))∧
[H ](e0)(t(k), t(k))

We show this for v1 = read(s, I1), . . . ,vn = read(s, In), i.e. we define

(12) e0 := e[ I1 7→ read(s, I1), . . . , In 7→ read(s, In) ]

and show

(a.2.c.1) [F [$I1/I1, . . . ,$In/In] ](e0)(t(k), t(k))

(a.2.c.2) [G[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ](e0)(t(k), t(k))

(a.2.c.3) [H ](e0)(t(k), t(k))

From (10) and the definition of finiteExecution, we know

(13) t(0) = s

(14) ∀i ∈ Nk : [E ](t(i)) = TRUE∧ [C ](t(i), t(i+1))

From (4), (14), and the definition of [ ] , we know

(15) ∀i ∈ Nk : [S ](e)(t(i), t(i+1))∧ t(i) = t(i+1) EXCEPT I1, . . . , In

From (13), (15), and (TRE), we know

(16) s = t(k) EXCEPT I1, . . . , In
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From (1c), (2), and the definition of [ ], we know

(17) [F ](e)(s,s′)

From (9a), (12), (16), (17), and (PMVF1), we know (a.2.c.1).

From (7), (17), and the definition of [ ], we know

(18) [G[I1/I1’, . . . , In/In’] ](e)(s,s)

From (9a), (12), (16), (18), and (PMVF1), we know (a.2.c.2).

From (3), (11), and the definition of ', we know (a.2.c.3).

To show (a.1), we assume

(19) infiniteExecution(t,s, [E ], [C ])

and show a contradiction. We take an arbitrary e ∈ Environment and define

(20) m : Value∞,m(i) = [T ](e)(t(i), t(i+1))

Since 〈N,>〉 is a well-founded ordering, it suffices to show

(a.1.b) ∀i ∈ N : m(i) ∈ N∧m(i) > m(i+1)

Take arbitrary i ∈ N. We show

(a.1.b.1) m(i) ∈ N
(a.1.b.2) m(i) > m(i+1)

We define

(21) e0 := e[ I1 7→ read(s, I1), . . . , In 7→ read(s, In) ]

From (9), (21), and the definition of [ ], we know

(22)

([F [$I1/I1, . . . ,$In/In] ](e0)(t(i), t(i+1))∧
[G[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ](e0)(t(i), t(i+1))∧
[H ](e0)(t(i), t(i+1))∧
[S ](e0)(t(i), t(i+1)∧
t(i) = t(i+1) EXCEPT I1, . . . , In)⇒

LET

m = [T ](e0)(t(i), t(i+1)),
m′ = [T [I1’/I1, . . . , In’/In ](e0)(t(i), t(i+1))

IN m ∈ N∧m > m′
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From (2) and the definition of [ ], we know

(23) [F ](e)(s,s)

From (19), and the definition of infiniteExecution, we know

(24) t(0) = s

(25) ∀i ∈ N : [E ](t(i)) = TRUE

(26) ∀i ∈ N : [C ](t(i), t(i+1))

From (4), (26), and the definition of [ ] , we know

(27) ∀i ∈ N : [S ](e0)(t(i), t(i+1))

(28) ∀i ∈ N : t(i) = t(i+1) EXCEPT I1, . . . , In

From (24), (28), and (TRE), we know

(29) s = t(i) EXCEPT I1, . . . , In

(30) s = t(i+1) EXCEPT I1, . . . , In

From (1c) and (23), we know

(31) [F ](e)(s, t(i+1))

From (9a), (21), (29), (31), and (PMVF1), we know

(32) [F [$I1/I1, . . . ,$In/In] ](e0)(t(i), t(i+1))

From (3), (4), (5), and (19), we can show (as presented in the soundness proof the
Invariant Rule in Section 3.2.2)

(33) [G ](e)(s, t(i))

From (5), (9a), (21), (29), (33), the def. of Invariant, and (PMVF1), we can show

(34) [G[$I1/I1, . . . ,$In/In] ](e0)(t(i), t(i))

From (34), (IDE), and (PPVF1), we can show

(35) [G[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ](e0)(t(i), t(i))

From (28), (35), (PPVF0), and (PVF4), we know
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(36) [G[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ](e0)(t(i), t(i+1))

From (3), (25), and the definition of ', we know

(37) [H ](e0)(t(i), t(i+1))

We define

(38) m0 = [T ](e0)(t(i), t(i+1))

(39) m1 = [T [I1’/I1, . . . , In’/In ](e0)(t(i), t(i+1))

From (22), (27), (28), (32), (36), (37), (38), and (39), we know

(40) m0 ∈ N
(41) m0 > m1

From (6), (38), and (MVT), we know

(42) m0 = [T ](e)(t(i), t(i+1))

From (20), (40), and (42), we know (a.1.b.1).

We define

(43) s0 := writes(t(i), I1,read(t(i+1), I1), . . . , In,read(t(i+1), In))

From (39), (43), and (PPVT1), we know

(44) m1 = [T ](e0)(s0, t(i+1))

From (1a), (43), and (WSE), we know

(45) s0 = t(i) EXCEPT I1, . . . , In

From (28), (45), and (TRE), we know

(46) s0 = t(i+1) EXCEPT I1, . . . , In

From (43) and (RWE), we know

(47)
read(s0, I1) = read(t(i+1), I1)∧ . . .∧
read(s0, In) = read(t(i+1), In)

From (46), (47), (RVE), and (NEQ), we know
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(48) s0 EQUALS t(i+1)

From (44), (48), and (EST), we know

(49) m1 = [T ](e0)(t(i+1), t(i+1))

From (6), (49), (MVT), and (PVT2), we know

(50) m1 = [T ](e)(t(i+1), t(i+2))

From (20), (41), (42), and (50), we know (a.1.b.2). ¤



Chapter 4

Reasoning on Programs and States

In this chapter, we describe three calculi which are in practice useful for reasoning
on programs and the states on which they operate: first, a precondition calculus
derives a condition which is necessary to hold before the execution of a command
to make another condition true afterwards; next, a postcondition calculus derives
from a condition known to hold before the execution of a command another con-
dition known to hold afterwards; finally, an assertion calculus annotates every
subcommand with a condition known to hold when the subcommand is executed.

In the presence of loops, the computed precondition may not be the weakest ones
(i.e., even if it is violated, the postcondition may be satisfied); likewise, the com-
puted postcondition/assertion may not be the strongest one. Nevertheless, if loop
invariants are available, the calculi take these into account and compute the best
conditions that can be deduced directly (without sophisticated program analysis)
from the information available. In this sense, they reflect the typical reasoning of
human programmers when developing code.

4.1 Computing Command Preconditions

Given a command C and a condition Q, we would like to find out under which
condition the execution of C yields a post-state that satisfies Q. More precisely,
we would like to derive a condition P such that, if P holds on the prestate of C and
if the execution of C yields a post-state, this post-state satisfies Q. For instance
for command

x = x+1
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and condition x>0 on the poststate we can derive the condition x+1>0 (i.e.
x>=0, if x holds an integer number) on the prestate.

We call P a precondition of C for postcondition Q and describe in this section a
calculus for deriving such preconditions. A precondition P derived by this calcu-
lus is not necessarily the weakest one i.e. it is possible that it is not satisfied by a
prestate from which the execution of C nevertheless yields a poststate that satisfies
Q. Actually, all rules but one compute weakest preconditions; the only exception
is the rule for the while command which depends on an invariant provided by
some external source from which a precondition, but not the weakest one, can be
computed (one might actually also in this case compute a weakest precondition,
but such a precondition would involve a fixed point construction which is of little
use in practical reasoning).

Figures 4.1, 4.2, and 4.3 give the rules of this calculus which derive judgements
of the form PRE(C,Q) = P with the informal interpretation “P a precondition of
C for postcondition Q”.

The first rule is generic, i.e. applicable to any kind of command: it shows that it
suffices, by the rule of the verification calculus, to derive the specification of a
command to compute a suitable precondition. In a sense, thus this rule is all we
need. However, in practice it might be sometimes easier to use rules which do
not refer to the verification calculus but are specialized to the individual kinds of
commands; in the following, we also give such rules.

The following theorem states the formal soundness claim for this calculus.

Theorem (Soundness of the Precondition Calculus) Assume the condition de-
noted by DifferentVariables. If PRE(C,Q) = P can be derived from the rules of
the precondition calculus of the command language, then it is true that

Q has no primed program variables⇒
P has no primed program variables ∧
∀e ∈ Environment,s,s′ ∈ State :

[P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′)

Proof Assume

(1a) DifferentVariables

Take C, Q, and P such that PRE(C,Q) = P can be derived and assume

(1b) Q has no primed program variables
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Precondition Calculus: Judgements

PRE(C,Q) = P⇔
Q has no primed program variables⇒

P has no primed program variables ∧
∀e ∈ Environment,s,s′ ∈ State :

[P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′)

Precondition Calculus: Generic Rule

C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in F and Q
PRE(C,Q) =

FORALL $J1, . . . ,$Jn:
F [$J1/I1’, . . . ,$Jn/In’] => Q[$J1/I1, . . . ,$Jn/In]

Figure 4.1: The Precondition Calculus of the Command Language (Part 1/3)

From (1b) and the rules, it is easy to show by induction on the derivation of
PRE(C,Q) = P that P has no primed program variables.

Now take arbitrary e ∈ Environment and s,s′ ∈ State. We prove

[P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′)

by induction on the derivation of PRE(C,Q) = P. The following subsections cover
all cases for the last step of such a derivation.

From (1b) and the rules, we can immediately deduce that in every derivation
PRE(C′,Q′) = P′ matching the premise of a rule with conclusion PRE(C,Q) = P,
the formula Q′ has no primed variables; we thus assume in the proofs that the in-
duction hypothesis immediately implies the core claim ∀e ∈ Environment,s,s′ ∈
State : [P′ ](e)(s,s)∧ [C′ ](s,s′)⇒ [Q′ ](e)(s′,s′). ¤

4.1.1 Generic Rule

C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in F and Q
PRE(C,Q) =

FORALL $J1, . . . ,$Jn:
F [$J1/I1’, . . . ,$Jn/In’] => Q[$J1/I1, . . . ,$Jn/In]
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Precondition Calculus: Rules for Non-Loops

E ' T
$J does not occur in Q
PRE(I=E,Q) = LET $J=T IN Q[$J/I]

$J does not occur in P
$K does not occur in Q
J 6= K
PRE(C,Q[$K/I]) = P
PRE(var I;C,Q) = FORALL $J : P[$J/I][I/$K]

E ' T
$J does not occur in P
$K does not occur in Q
J 6= K
PRE(C,Q[$K/I]) = P
PRE(var I=E;C,Q) = LET $J=T IN P[$J/I][I/$K]

PRE(C1,P) = O
PRE(C2,Q) = P
PRE(C1;C2,Q) = O

E ' F
PRE(C,Q) = P
PRE(if (E)C,Q) = IF F THEN P ELSE Q

E ' F
PRE(C1,Q) = P1
PRE(C2,Q) = P2
PRE(if (E)C1 else C2,Q) = IF F THEN P1 ELSE P2

Figure 4.2: The Precondition Calculus of the Command Language (Part 2/3)
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Precondition Calculus: Rules for Loops

E ' H
C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in Q and H
PRE(while(E)C,Q) =

FORALL $J1, . . . ,$Jn:
!H[$J1/I1, . . . ,$Jn/In] => Q[$J1/I1, . . . ,$Jn/In]

E ' H
C : [F ] I1,...,In

Invariant(G,H,F)I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in Q,H, and G
PRE(while(E)C,Q) =

FORALL $J1, . . . ,$Jn:
!H[$J1/I1, . . . ,$Jn/In] AND
(G[I1/I1’, . . . , In/In’] => G[$J1/I1’, . . . ,$Jn/In’]) =>
Q[$J1/I1, . . . ,$Jn/In]

Figure 4.3: The Precondition Calculus of the Command Language (Part 3/3)
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Soundness Proof We have to show

(a)

[FORALL $J1, . . . ,$Jn:
F [$J1/I1’, . . . ,$Jn/In’] => Q[$J1/I1, . . . ,$Jn/In] ](e)(s,s) ∧

[C ](s,s′)
⇒
[Q ](e)(s′,s′)

We assume

(2)
[FORALL $J1, . . . ,$Jn:

F [$J1/I1’, . . . ,$Jn/In’] => Q[$J1/I1, . . . ,$Jn/In] ](e)(s,s)
(3) [C ](s,s′)

and show

(b) [Q ](e)(s′,s′)

From the hypotheses, we know

(4) C : [F ] I1,...,In

(5) J1, . . . ,Jn is a renaming of I1, . . . , In

(6) $J1, . . . ,$Jn do not occur in F and Q

From (1a), (3), (4), and the soundness of the verification calculus, we know

(7) [ [F ] I1,...,In ](e)(s,s′)

From (7) and the definition of [ ], we know

(8) [F ](e)(s,s′)
(9) s = s′ EXCEPT I1, . . . , In

We define

(10) e0 := e[J1 7→ read(s′, I1), . . . ,Jn 7→ read(s′, In) ]

From (2), (10), and the definition of [ ], we know

(11)
[F [$J1/I1’, . . . ,$Jn/In’] ](e0)(s,s)⇒
[Q[$J1/I1, . . . ,$Jn/In] ](e0)(s,s)

From (5), (6), (8), (9), (10), and (PMVF2), we know
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(12) [F [$J1/I1’, . . . ,$Jn/In’] ](e0)(s,s)

From (11) and (12), we know

(13) [Q[$J1/I1, . . . ,$Jn/In] ](e0)(s,s)

From (5), (6), (9), (10), (13) and (PMVF1), we know

(14) [Q ](e)(s′,s)

From (1b), (14), and (PVF2), we know (b). ¤

4.1.2 Assignment

E ' T
$J does not occur in Q
PRE(I=E,Q) = LET $J=T IN Q[$J/I]

This rule states that an assignment to variable I yields a poststate in which Q
holds for I, if Q holds in the prestates for the value assigned to I (denoted by the
mathematical variable $J). For instance, for command

x = x*y+z

and postcondition x>0 AND y>0, a precondition is

LET $x=x*y+z IN $x>0 AND y>0

which can be further simplified to

x*y+z>0 AND y>0

Soundness Proof We have to show

(a) [LET $J=T IN Q[$J/I] ](e)(s,s)∧ [ I=E ](s,s′)⇒ [Q ](e)(s′,s′)

We assume

(2) [LET $J=T IN Q[$J/I] ](e)(s,s)
(3) [ I=E ](s,s′)
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and show

(b) [Q ](e)(s′,s′)

From the premise, we know

(4) E ' T

(5) $J does not occur in Q

From (2) and the definition of [ ], we know

(6) [Q[$J/I] ](e[J 7→ [T ](e)(s,s) ])(s,s)

From (3) and the definition of [ ], we know

(7) s′ = write(s, I, [E ](s))

From (RW1) and (7), we know

(8) read(s′, I) = [E ](s)

From (4), (8), and the definition of ', we know

(9) read(s′, I) = [T ](e)(s,s)

From (1a), (7), and (WS), we know

(9) s′ = s EXCEPT I

From (5), (6), (9), (10), and (PMVF1), we know

(11) [Q ](e)(s′,s)

From (1b), (11), and (PVF2), we know (b). ¤

4.1.3 Variable Declaration

$J does not occur in P
$K does not occur in Q
J 6= K
PRE(C,Q[$K/I]) = P
PRE(var I;C,Q) = FORALL $J : P[$J/I][I/$K]
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This rule states that to compute the precondition for a variable declaration block
var I;C with postcondition Q, we must first compute for C the precondition P of
Q[$K/I] where the fresh mathematical variable $K denotes the value of I after the
execution of the block (which is different from the value of I after the execution
of C, because after the execution of the block I is restored to the value it had
before the execution of the block). The precondition P is thus sufficient to ensure
postcondition Q after the execution of C, for an unknown value $K of I.

We then introduce another fresh mathematical variable $J which denotes the value
of I before the execution of C. Thus P[$J/I] is a precondition on the value $J of
I before the execution of C that is sufficient to ensure Q on an unknown value $K
of I after the execution of C. Correspondingly, P[$J/I][I/$K] is a precondition on
the value $J of I before the execution of C to ensure Q on the value of I after the
execution of the block. Since the value of I before the execution of C is arbitrary,
this condition must hold for all possible values of $J, thus the overall precondition
is FORALL $J : P[$J/I][I/$K].

As an example, take the block

var y; x=x+y*y

and postcondition x>0 AND y>0. We introduce variable $yk for the post-block
value of y and compute the precondition of the assignment statement for x>0
AND $yk>0 which is

x+y*y>0 AND $yk>0

We then introduce the variable $yj for the pre-assignment value of y and substi-
tute in this condition $yj for y yielding

x+$yj*$yj>0 AND $yk>0

In this condition, we substitute back y for $yk yielding

x+$yj*$yj>0 AND y>0

The overall precondition is thus

FORALL $yj: x+$yj*$yj>0 AND y>0

which can be further simplified to x>0 AND y>0.
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Soundness Proof We have to show

(a)
[FORALL $J : P[$J/I][I/$K] ](e)(s,s)∧ [var I;C ](s,s′)⇒

[Q ](e)(s′,s′)

We assume

(2) [FORALL $J : P[$J/I][I/$K] ](e)(s,s)
(3) [var I;C ](s,s′)

and show

(b) [Q ](e)(s′,s′)

From (2) and the definition of [ ], we know

(4) ∀v ∈ Value : [P[$J/I][I/$K] ](e[J 7→ v ])(s,s)

From (3) and the definition of [ ], we know for some s0,s1 ∈ State

(5) s0 = s EXCEPT I

(6) [C ](s0,s1)

(7) s′ = write(s1, I,read(s, I))

From (7) and (RW1), we know

(8) read(s′, I) = read(s, I)

From (1a), (7), and (WS), we know

(9) s′ = s1 EXCEPT I

From the premises, we know

(10) $J does not occur in P

(11) $K does not occur in Q

(12) J 6= K

(13) PRE(C,Q[$K/I]) = P

From (13) and the induction hypothesis, we know

(14)
∀e ∈ Environment :

[P ](e)(s0,s0)∧ [C ](s0,s1)⇒ [Q[$K/I] ](e)(s1,s1)
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and thus

(15)
[P ](e[K 7→ read(s′, I) ])(s0,s0)∧ [C ](s0,s1)⇒

[Q[$K/I] ](e[K 7→ read(s′, I) ])(s1,s1)

Assume that we can show

(c) [P ](e[K 7→ read(s′, I) ])(s0,s0)

From (6), (15), and (c), we know

(16) [Q[$K/I] ](e[K 7→ read(s′, I) ])(s1,s1)

From (9), (11), (16), and (PMVF1), we know

(17) [Q ](e)(s′,s1)

From (1b), (17), and (PVF2), we know (b).

It remains to show (c). We define

(18) P′ := P[$J/I]

From (4) and (18), we know

(19) [P′[I/$K] ](e[J 7→ read(s0, I) ])(s,s)

From (PMVF0), we know

(20) $K does not occur in P′[I/$K]

From (8), (19), (20), (RE), and (PMVF1), we know

(21) [P′[I/$K][$K/I ](e[J 7→ read(s0, I) ][K 7→ read(s′, I) ])(s,s)

From (18) and (MPVF0), we know

(22) I does not occur in P′

From (22) and (MPVF2), we know

(23) P′[I/$K][$K/I] = P′

From (18), (21), and (23), we know
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(24) [P[$J/I] ](e[J 7→ read(s0, I) ][K 7→ read(s′, I) ])(s,s)

From (12) and (24), we know

(25) [P[$J/I] ](e[K 7→ read(s′, I) ][J 7→ read(s0, I) ])(s,s)

From (5), (10), (25), and (PMVF1), we know

(26) [P ](e[K 7→ read(s′, I) ])(s0,s)

From (13) and the induction hypothesis, we know

(27) P has no primed program variables

From (26), (27), and (PVF2), we know (c). ¤

4.1.4 Variable Definition

E ' T
$J does not occur in P
$K does not occur in Q
J 6= K
PRE(C,Q[$K/I]) = P
PRE(var I=E;C,Q) = LET $J=T IN P[$J/I][I/$K]

This rule is very similar to the one for variable declarations (see Subsection 4.1.3).
The major exception is that the value of I before the execution of C is uniquely
determined by the program expression E, respectively by its mathematical coun-
terpart T , such that in the resulting pre-condition the variable $J is introduced by
LET $J=T (rather than by FORALL $J).

As an example, take the block

var y=x; x=x+y*y

and postcondition x>0 AND y>0. With the same sequence of steps as the ex-
ample of Subsection 4.1.3, we derive the condition

x+$yj*$yj>0 AND y>0

The overall precondition is thus

LET $yj=x IN x+$yj*$yj>0 AND y>0

which can be further simplified to x+x*x>0 AND y>0.
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Soundness Proof We have to show

(a)
[LET $J=T IN P[$J/I][I/$K] ](e)(s,s)∧ [var I=E;C ](s,s′)⇒

[Q ](e)(s′,s′)

We assume

(2) [LET $J=T IN P[$J/I][I/$K] ](e)(s,s)
(3) [var I=E;C ](s,s′)

and show

(b) [Q ](e)(s′,s′)

From (2) and the definition of [ ], we know

(4) [P[$J/I][I/$K] ](e[J 7→ [T ](e)(s,s) ])(s,s)

From (3) and the definition of [ ], we know for some s0,s1 ∈ State

(5) s0 = write(s, I, [E ]s)
(6) [C ](s0,s1)

(7) s′ = write(s1, I,read(s, I))

From (7) and (RW1), we know

(8) read(s′, I) = read(s, I)

From (1a), (7), and (WS), we know

(9) s′ = s1 EXCEPT I

From the premises, we know

(10) E ' T

(11) $J does not occur in P

(12) $K does not occur in Q

(13) J 6= K

(14) PRE(C,Q[$K/I]) = P

From (14) and the induction hypothesis, we know
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(15)
∀e ∈ Environment :

[P ](e)(s0,s0)∧ [C ](s0,s1)⇒ [Q[$K/I] ](e)(s1,s1)

and thus

(16)
[P ](e[K 7→ read(s′, I) ])(s0,s0)∧ [C ](s0,s1)⇒

[Q[$K/I] ](e[K 7→ read(s′, I) ])(s1,s1)

Assume that we can show

(c) [P ](e[K 7→ read(s′, I) ])(s0,s0)

From (6), (16), and (c), we know

(17) [Q[$K/I] ](e[K 7→ read(s′, I) ])(s1,s1)

From (9), (12), (17), and (PMVF1), we know

(18) [Q ](e)(s′,s1)

From (1b), (18), and (PVF2), we know (b).

It remains to show (c). We define

(19) P′ := P[$J/I]

From (4) and (19), we know

(20) [P′[I/$K] ](e[J 7→ [T ](e)(s,s) ])(s,s)

From (5), (10), (20), (RW1), and the definition of ', we know

(21) [P′[I/$K] ](e[J 7→ read(s0, I) ])(s,s)

From (PMVF0), we know

(22) $K does not occur in P′[I/$K]

From (8), (21), (22), (RE), and (PMVF1), we know

(23) [P′[I/$K][$K/I ](e[J 7→ read(s0, I) ][K 7→ read(s′, I) ])(s,s)

From (19) and (MPVF0), we know

(24) I does not occur in P′
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From (24) and (MPVF2), we know

(25) P′[I/$K][$K/I] = P′

From (19), (23), and (25), we know

(26) [P[$J/I] ](e[J 7→ read(s0, I) ][K 7→ read(s′, I) ])(s,s)

From (13) and (26), we know

(27) [P[$J/I] ](e[K 7→ read(s′, I) ][J 7→ read(s0, I) ])(s,s)

From (5), (11), (27), and (PMVF1), we know

(28) [P ](e[K 7→ read(s′, I) ])(s0,s)

From (14) and the induction hypothesis, we know

(29) P has no primed program variables

From (28), (29), and (PVF2), we know (b). ¤

4.1.5 Command Sequence

PRE(C1,P) = O
PRE(C2,Q) = P
PRE(C1;C2,Q) = O

This rule describes how we can “back-propagate” the computation of a precon-
dition O from a postcondition Q through a command sequence C1;C2. We first
compute the precondition P of C2 for Q and then compute the precondition O of
C1 for P.

As an example, take the program

x=x+y; y=y+x

with postcondition

x=a AND y=b

The precondition of the second assignment for this postcondition can be derived
as

x=a AND y+x=b

The precondition of the first assignment for this postcondition is

x+y=a AND y+(x+y)=b

which is the overall precondition of the sequence.
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Soundness Proof We have to show

(a) [O ](e)(s,s)∧ [C1;C2 ](s,s′)⇒ [Q ](e)(s′,s′)

We assume

(2) [O ](e)(s,s)
(3) [C1;C2 ](s,s′)

and show

(b) [Q ](e)(s′,s′)

From the premises, we know by the induction hypothesis

(4)
∀e ∈ Environment,s,s′ ∈ State :

[O ](e)(s,s)∧ [C1 ](s,s′)⇒ [P ](e)(s′,s′)

(5)
∀e ∈ Environment,s,s′ ∈ State :

[P ](e)(s,s)∧ [C2 ](s,s′)⇒ [Q ](e)(s′,s′)

From (3) and the definition of [ ], we know for some s0 ∈ State

(6) [C1 ](s,s0)

(7) [C2 ](s0,s′)

From (2), (4), and (6), we know

(8) [P ](e)(s0,s0)

From (5), (7), and (8), we know (b). ¤

4.1.6 One-Sided Conditional

E ' F
PRE(C,Q) = P
PRE(if (E)C,Q) = IF F THEN P ELSE Q

This rule states that the precondition of a one-sided conditional statement if (E)
C for post-condition Q can be derived by computing the precondition P of C for Q
and then constructing a conditional pre-condition where, depending on the value
of the mathematical counterpart F of the branch condition E, either P or Q holds
(because, if the branch condition yields false, the state is not changed).

As an example, take the program
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if (x<0) x=x*x

with postcondition x>0. From the branch command, we can derive the precondi-
tion x*x>0 which yields the overall precondition

IF x<0 THEN x*x>0 ELSE x>0

which can be further simplified to x/=0.

Soundness Proof We have to show

(a)
[IF F THEN P ELSE Q ](e)(s,s)∧ [if (E)C ](s,s′)⇒

[Q ](e)(s′,s′)

We assume

(2) [IF F THEN P ELSE Q ](e)(s,s)
(3) [if (E)C ](s,s′)

and show

(b) [Q ](e)(s′,s′)

From the premises, we know by the induction hypothesis

(4) E ' F

(5) [P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′)

We proceed by case distinction.

• Case [E ](s) = TRUE : from (3), the definition of [ ], and the case condition,
we know

(6) [C ](s,s′)

From (4), the definition of ', and the case condition, we know

(7) [F ](e)(s,s)

From (2), (7) and the definition of[ ], we know

(8) [P ](e)(s,s).

From (5), (6), and (8), we know (b).
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• Case [E ](s) 6= TRUE : from (3), the definition of [ ], and the case condition,
we know

(9) s′ = s

From (4), the definition of ', and the case condition, we know

(10) ¬[F ](e)(s,s)

From (2), (10), and the definition of [ ], we know

(11) [Q ](e)(s,s)

From (9) and (11), we know (b). ¤

4.1.7 Two-Sided Conditional

E ' F
PRE(C1,Q) = P1
PRE(C2,Q) = P2
PRE(if (E)C1 else C2,Q) = IF F THEN P1 ELSE P2

This rule states that the precondition of a conditional if (E) C1 else C2 for
post-condition Q can be derived by computing the precondition P1 of C1 for Q re-
spectively P2 of C2 for Q and then constructing a conditional pre-condition where,
depending on the value of the mathematical counterpart F of the branch condition
E, either P1 or P2 holds.

As an example, take the program

if (x<0) x=x*x else x=x+1

with postcondition x>0. From the branch commands, we can derive the precon-
ditions x*x>0 respectively x+1>0 which yields the overall precondition

IF x<0 THEN x*x>0 ELSE x+1>0

which can be further simplified to TRUE.
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Soundness Proof We have to show

(a)
[IF F THEN P1 ELSE P2 ](e)(s,s)∧ [if (E) C1 elseC2 ](s,s′)
⇒ [Q ](e)(s′,s′)

We assume

(2) [IF F THEN P1 ELSE P2 ](e)(s,s)
(3) [if (E)C1 elseC2 ](s,s′)

and show

(b) [Q ](e)(s′,s′)

From the premises, we know by the induction hypothesis

(4) E ' F

(5) [P1 ](e)(s,s)∧ [C1 ](s,s′)⇒ [Q ](e)(s′,s′)
(6) [P2 ](e)(s,s)∧ [C2 ](s,s′)⇒ [Q ](e)(s′,s′)

We proceed by case distinction.

• Case [E ](s) = TRUE : from (3), the definition of [ ], and the case condition,
we know

(7) [C1 ](s,s′)
From (4), the definition of ', and the case condition, we know

(8) [F ](e)(s,s)
From (2), (8) and the definition of[ ], we know

(9) [P1 ](e)(s,s).
From (5), (7), and (9), we know (b).

• Case [E ](s) 6= TRUE : from (3), the definition of [ ], and the case condition,
we know

(10) [C2 ](s,s′)
From (4), the definition of ', and the case condition, we know

(11) ¬[F ](e)(s,s)
From (2), (11) and the definition of [ ], we know

(12) [P2 ](e)(s,s).
From (6), (10), and (12), we know (b). ¤



4.1 Computing Command Preconditions 105

4.1.8 While Loop (Without Invariant)

E ' H
C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in Q and H
PRE(while(E)C,Q) =

FORALL $J1, . . . ,$Jn:
!H[$J1/I1, . . . ,$Jn/In] => Q[$J1/I1, . . . ,$Jn/In]

This rule states that to derive a particular postcondition of a loop, it suffices to
show as a precondition that the negation of the loop condition implies the post-
condition for all possible values of the variables changed by the loop body. In
certain situations, it may be thus possible to derive a useful loop precondition
without any further information about the loop (such as the invariant needed by
the rule in Section 4.1.9).

As an example, take the program

while (x>0) {s=s+x; x=x-1}

and postcondition s*s>=0 AND y >= 0. Then an appropriate precondition is

FORALL $s, $x: $s*$s > 0 AND y >= 0

we can be simplified to

y >= 0

Soundness Proof We have to show

(a)

[FORALL $J1, . . . ,$Jn:
!H[$J1/I1, . . . ,$Jn/In] => Q[$J1/I1, . . . ,$Jn/In] ](e)(s,s) ∧

[while(E)C ](s,s′)⇒
[Q ](e)(s′,s′)

We assume

(2)
[FORALL $J1, . . . ,$Jn:

!H[$J1/I1, . . . ,$Jn/In] => Q[$J1/I1, . . . ,$Jn/In] ](e)(s,s)
(3) [while(E)C ](s,s′)
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and show

(b) [Q ](e)(s′,s′)

From the premises, we know

(4) E ' H

(5) C : [F ] I1,...,In

(6) J1, . . . ,Jn is a renaming of I1, . . . , In

(7) $J1, . . . ,$Jn do not occur in Q and H

From (3) and the definition of [ ], we know for some k ∈ N, t ∈ State∞:

(8) finiteExecution(k, t,s, [E ], [C ])
(9) [E ](t(k)) 6= TRUE

(10) t(k) = s′

From (4), (9), (10), and the definition of ', we know

(11) ¬[H ](e)(s′,s′)

From (1a), (5), (8), and the soundness of the verification calculus, we can prove
(as shown in the proof of the soundness of the basic rule for loops on page 48)

(12) s = s′ EXCEPT I1, . . . , In

We define

(13) e0 := e[J1 7→ read(s′, I1), . . . ,Jn 7→ read(s′, In) ]

From (2), (13), and the definition of [ ], we know

(14)
¬[H[$J1/I1, . . . ,$Jn/In] ](e0)(s,s)⇒
[Q[$J1/I1, . . . ,$Jn/In] ](e0)(s,s)

From (4) and the definition of ', we know

(15) H has no free variables

(16) H has no primed program variables

From (6), (7), (11), (12), (13), and (PMVF1), we know
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(17) ¬[H[$J1/I1, . . . ,$Jn/In] ](e0)(s,s′)

From (16), (17), and (PVF2), we know

(18) ¬[H[$J1/I1, . . . ,$Jn/In] ](e0)(s,s)

From (14) and (18), we know

(19) [Q[$J1/I1, . . . ,$Jn/In] ](e0)(s,s)

From (6), (7), (12), (13), (19) and (PMVF1), we know

(20) [Q ](e)(s′,s)

From (1b), (20), and (PVF2), we know (b). ¤

4.1.9 While Loop (With Invariant)

E ' H
C : [F ] I1,...,In

Invariant(G,H,F)I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in Q,H, and G
PRE(while(E)C,Q) =

FORALL $J1, . . . ,$Jn:
!H[$J1/I1, . . . ,$Jn/In] AND
(G[I1/I1’, . . . , In/In’] => G[$J1/I1’, . . . ,$Jn/In’]) =>
Q[$J1/I1, . . . ,$Jn/In]

This rule shows how an invariant can be used to strengthen the precondition of a
loop for a given postcondition (in comparison to the precondition derived from the
rule presented in Section 4.1.8). The first three premises of the rule are identical
to those of the verification rule for while loops (see Section 3.2); they make sure
that G is an invariant of the loop whose body only modifies program variables
I1, . . . , In. Any application of the rule thus demands the proof of the correctness of
the invariant (which may already have been performed in a separate step).

The derived precondition differs from the one in the rule without invariant in the
following way: the fact that the invariant holds in the terminal state may be added
as a hypothesis to the implication (which simplifies the proof of the conclusion)
provided that the invariant holds in the initial state (which represents an additional
obligation on the prestate). We do not add the requirement that the invariant must
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hold in the prestate as a conjunct to the precondition, because this would yield a
slightly stronger precondition: in the formulation above, it still suffices to derive
the postcondition from the negation of the loop condition alone.

As an example, take the program

while (x>0) {s=s+x; x=x-1}

and postcondition s>0. From the rules of the verification calculus we can derive

s=s+x; x=x-1 : [s’=s+x AND x’=x-1 ]s,x

and thus show that only the program variables s and x are modified by the loop.
We can also show (in a separate proof) that the following is a loop invariant:

s’>=0 AND x’>=0 AND (s’>0 OR x’>0)

We may thus derive the following precondition for above postcondition

FORALL $s, $x:
!($x>0) AND
(s>=0 AND x>=0 (s>0 OR x>0) =>

$s>=0 AND $x>=0 AND ($s>0 OR $x>0))
=> $s>0

which can be simplified to

s>=0 AND x>=0 AND (s>0 OR x>0)

i.e. the requirement that the invariant holds in the prestate of the loop.

Soundness Proof We have to show

(a)

[FORALL $J1, . . . ,$Jn:
!H[$J1/I1, . . . ,$Jn/In] AND
(G[I1/I1’, . . . , In/In’] => G[$J1/I1’, . . . ,$Jn/In’]) =>
Q[$J1/I1, . . . ,$Jn/In] ](e)(s,s) ∧

[while(E)C ](s,s′)⇒
[Q ](e)(s′,s′)

We assume
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(2)

[FORALL $J1, . . . ,$Jn:
!H[$J1/I1, . . . ,$Jn/In] AND
(G[I1/I1’, . . . , In/In’] => G[$J1/I1’, . . . ,$Jn/In’]) =>
Q[$J1/I1, . . . ,$Jn/In] ](e)(s,s)

(3) [while(E)C ](s,s′)

and show

(b) [Q ](e)(s′,s′)

From the premises, we know

(4) E ' H

(5) C : [F ] I1,...,In

(6) Invariant(G,H,F)I1,...,In

(7) J1, . . . ,Jn is a renaming of I1, . . . , In

(8) $J1, . . . ,$Jn do not occur in Q,H, and G

We define

(9) e0 := e[J1 7→ read(s′, I1), . . . ,Jn 7→ read(s′, In) ]

From (2), (9), and the definition of [ ], we know

(10)

¬[H[$J1/I1, . . . ,$Jn/In] ](e0)(s,s) ∧
([G[I1/I1’, . . . , In/In’] ](e0)(s,s) ⇒

[G[$J1/I1’, . . . ,$Jn/In’] ](e0)(s,s)) ⇒
[Q[$J1/I1, . . . ,$Jn/In] ](e0)(s,s)

From (4), (5), (6), we can with the verification calculus derive

(11)
while (E)C : [!H[I1’/I1, . . . , In’/In] AND

(G[I1/I1’, . . . , In/In’] => G) ] I1,...,In

From (11) and the soundness of the verification calculus, we know

(12)
[while (E)C ](s,s′)⇒ [ [!H[I1’/I1, . . . , In’/In] AND

(G[I1/I1’, . . . , In/In’] => G) ] I1,...,In ](e)(s,s′)

From (3), (12), and the definition of [ ], we know

(13) ¬[H[I1’/I1, . . . , In’/In] ](e)(s,s′)
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(14) [G[I1/I1’, . . . , In/In’] ](e)(s,s′)⇒ [G ](e)(s,s′)
(15) s = s′ EXCEPT I1, . . . , In

From (15), (RWE), and and (RVE), we know

(16) s′ = writes(s, I1,read(s′, I1), . . . , In,read(s′, In))

From (13), (16), and (PPVF1), we know

(17) ¬[H ](e)(s′,s′)

From (4) and the definition of ', we know

(18) H has no free variables

(19) H has no primed program variables

From (7), (8), (9), (15), (17), and (PMVF1), we know

(20) ¬[H[$J1/I1, . . . ,$Jn/In] ](e0)(s,s′)

From (19), (20), and (PVF2), we know

(21) ¬[H[$J1/I1, . . . ,$Jn/In] ](e0)(s,s)

We are now going to show

(b.1.a)
[G[I1/I1’, . . . , In/In’] ](e0)(s,s) ⇒

[G[$J1/I1’, . . . ,$Jn/In’] ](e0)(s,s)

We assume

(22) [G[I1/I1’, . . . , In/In’] ](e0)(s,s)

and show

(b.1.b) [G[$J1/I1’, . . . ,$Jn/In’] ](e0)(s,s)

From (6) and the definition of invariant, we know

(23) G has no free variables

From (22), (23), and (MVF), we know

(24) [G[I1/I1’, . . . , In/In’] ](e)(s,s′)
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From (14) and (24), we know

(25) [G ](e)(s,s′)

From (7), (8), (9), (15), (25), and (PMVF2), we know (b.1.b).

From (10), (21), and (b.1.a), we know

(26) [Q[$J1/I1, . . . ,$Jn/In] ](e0)(s,s)

From (7), (8), (9), (15), (26), and (PMVF1), we know

(27) [Q ](e)(s′,s)

From (1b), (27), and (PVF2), we know (b). ¤

4.2 Computing Command Postconditions

Given a command C and a condition P on the program state in which C is executed,
we would like to determine a condition Q on the program state after the execution.
For instance, for command

x = x*x

and condition x/=0 on the prestate, we can derive the condition EXISTS $x:
$x/=0 AND x=$x*$x (which can be simplified to x>0) on the poststate.

We call Q a postcondition of C for precondition P and describe in this section a
calculus for deriving such postconditions. The calculus does not necessarily yield
the strongest postcondition, but this is only because of the rule(s) for while loops;
the rules for all other commands derive strongest postconditions.

Figures 4.4, 4.5, and 4.6 give the rules of the calculus which derive judgements of
the form POST(C,P) = Q with the informal interpretation “Q is a postcondition of
C for precondition P”. Like for the precondition calculus, we first give a generic
rule that depends on the verification calculus before stating specific rules for the
individual kinds of commands.

The following theorem states the formal soundness claim for this calculus.
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Postcondition Calculus: Judgements

POST(C,P) = Q⇔
P has no primed program variables⇒

Q has no primed program variables ∧
∀e ∈ Environment,s,s′ ∈ State :

[P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′)

Postcondition Calculus: Generic Rule

C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in F and P
POST(C,P) =

EXISTS $J1, . . . ,$Jn: P[$J1/I1, . . . ,$Jn/In] AND
F [$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’]

Figure 4.4: The Postcondition Calculus of the Command Language (Part 1/3)

Theorem (Soundness of the Postcondition Calculus) Assume the condition
denoted by DifferentVariables. If POST(C,P) = Q can be derived from the rules
of the postcondition calculus of the command language, then it is true that

P has no primed program variables⇒
Q has no primed program variables ∧
∀e ∈ Environment,s,s′ ∈ State :

[P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′)

Proof Assume

(1a) DifferentVariables

Take C, P, and Q such that POST(C,P) = Q can be derived and assume

(1b) P has no primed program variables

From (1b) and the rules, it is easy to show by induction on the derivation of
POST(C,P) = Q that Q has no primed program variables.

Now take arbitrary e ∈ Environment and s,s′ ∈ State. We prove

[P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′)
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Postcondition Calculus: Rules for Non-Loops

E ' T
$J does not occur in P
POST(I=E,P) = EXISTS $J : P[$J/I] AND I=T [$J/I]

$J does not occur in P
$K does not occur in Q
J 6= K
POST(C,P[$J/I]) = Q
POST(var I;C,P) = EXISTS $K:Q[$K/I][I/$J]

E ' T
$J does not occur in P and in T
$K does not occur in Q
J 6= K
POST(C,P[$J/I] AND I = T [$J/I]) = Q
POST(var I=E;C,P) = EXISTS $K:Q[$K/I][I/$J]

POST(C1,P) = Q
POST(C2,Q) = O
POST(C1;C2,P) = O

E ' F
POST(C,P AND F) = Q
POST(if (E)C,P) = Q OR (P AND !F)

E ' F
POST(C1,P AND F) = Q1
POST(C2,P AND !F) = Q2
POST(if (E)C1 else C2,P) = Q1 OR Q2

Figure 4.5: The Postcondition Calculus of the Command Language (Part 2/3)
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Postcondition Calculus: Rules for Loops

E ' H
C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn does not occur in P
POST(while(E)C,P) =

!H AND EXISTS $J1, . . . ,$Jn: P[$J1/I1, . . . ,$Jn/In]

E ' H
C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn does not occur in P and G
Invariant(G,H,F)I1,...,In

POST(while(E)C,P) =
!H AND
EXISTS $J1, . . . ,$Jn:

P[$J1/I1, . . . ,$Jn/In] AND
(G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] =>

G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’])

Figure 4.6: The Postcondition Calculus of the Command Language (Part 3/3)
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by induction on the derivation of POST(C,P) = Q. The following subsections
cover all cases for the last step of such a derivation.

From (1b) and the rules, we can immediately deduce that in every derivation
POST(C′,P′) = Q′ matching the premise of a rule with conclusion POST(C,P) =
Q, the formula P′ has no primed variables; we thus assume in the proofs that the
induction hypothesis immediately implies the core claim ∀e∈ Environment,s,s′ ∈
State : [P′ ](e)(s,s)∧ [C′ ](s,s′)⇒ [Q′ ](e)(s′,s′). ¤

4.2.1 Generic Rule

C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in F and P
POST(C,P) =

EXISTS $J1, . . . ,$Jn: P[$J1/I1, . . . ,$Jn/In] AND
F [$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’]

Soundness Proof We have to show

(a)
[P ](e)(s,s)∧ [C ](s,s′)⇒

[EXISTS $J1, . . . ,$Jn: P[$J1/I1, . . . ,$Jn/In] AND
F [$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’] ](e)(s′,s′)

We assume

(2) [P ](e)(s,s)
(3) [C ](s,s′)

and show

(b)
[EXISTS $J1, . . . ,$Jn: P[$J1/I1, . . . ,$Jn/In] AND

F [$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’] ](e)(s′,s′)

We define

(4) e0 := e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ]

From (4) and the definition of [ ], it suffices to show

(c.1) [P[$J1/I1, . . . ,$Jn/In] ](e0)(s′,s′)
(c.2) [F [$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’] ](e0)(s′,s′)
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From the hypotheses, we know

(5) C : [F ] I1,...,In

(6) J1, . . . ,Jn is a renaming of I1, . . . , In

(7) $J1, . . . ,$Jn do not occur in F and P

From (1a), (3), (5), the soundness of the verification calculus, and the definition
of [ ], we know

(8) [F ](e)(s,s′)
(9) s = s′ EXCEPT I1, . . . , In

From (2), (4), (6), (7), (9), and (PMVF1), we know

(10) [P[$J1/I1, . . . ,$Jn/In] ](e0)(s′,s)

From (1b), (10), and (PVF2), we know (c.1).

From (4), (6), (7), (8), (9), and (PMVF1), we know

(11) [F [$J1/I1, . . . ,$Jn/In] ](e0)(s′,s′)

From (IDE), we know

(12) s′ = writes(s′, I1,read(s′, I1), . . . , In,read(s′, In))

From (11), (12), and (PPVF2), we know (c.2). ¤

4.2.2 Assignment

E ' T
$J does not occur in P
POST(I=E,P) = EXISTS $J : P[$J/I] AND I=T [$J/I]

This rule states that, if we know in the prestate of the assignment of the expres-
sion E to the variable I that the condition P holds for I, then we know in the post-
state that there exists a value (the prestate value of I denoted by the mathematical
variable $J), for which P holds; furthermore, if we replace in the mathematical
counterpart T of E any occurrence of I by that value we yield a term whose value
equals the new value of I. For instance for command
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x = x*y+z

and precondition x>0 AND y=z AND z>0, we derive the postcondition

EXISTS $x: $x>0 AND y=z AND z>0 AND x=$x*y+z

which can be transformed to

y=z AND z>0 AND EXISTS $x: $x>0 AND AND x=$x*y+z

Soundness Proof We have to show

(a)
[P ](e)(s,s)∧ [ I=E ](s,s′)⇒

[EXISTS $J : P[$J/I] AND I=T [$J/I] ](e)(s′,s′)

We assume

(2) [P ](e)(s,s)
(3) [ I=E ](s,s′)

and show

(b) [EXISTS $J : P[$J/I] AND I=T [$J/I] ](e)(s′,s′)

From the definition of [ ], it suffices to show

(c)
∃v ∈ Value :

[P[$J/I] ](e[J 7→ v ])(s′,s′)∧
read(s′, I) = [T [$J/I] ](e[J 7→ v ])(s′,s′)

It thus suffices to show

(d.1) [P[$J/I] ](e[J 7→ read(s, I) ])(s′,s′)
(d.2) read(s′, I) = [T [$J/I] ](e[J 7→ read(s, I) ])(s′,s′)

From the premises, we know

(4) E ' T

(5) $J does not occur in P

From (3) and the definition of [ ], we know
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(6) s′ = write(s, I, [E ](s))

From (1a), (6), and (WS), we know

(7) s′ = s EXCEPT I

From (2), (5), (7), and (PMVF1), we know

(8) [P ](e)(s,s′)

From (1b), (8), and (PVF2), we know (d.1).

From (6) and (RW1), we know

(9) read(s′, I) = [E ](s)

From (5), (7), and (PMVT1), we know

(10) [T ](e)(s,s′) = [T [$J/I] ](e[J 7→ read(s, I) ])(s′,s′)

From (4), (9), (10), and the definition of ', we know (d.2). ¤

4.2.3 Variable Declaration

$J does not occur in P
$K does not occur in Q
J 6= K
POST(C,P[$J/I]) = Q
POST(var I;C,P) = EXISTS $K:Q[$K/I][I/$J]

This rule computes the postcondition for a variable declaration block var I;C
with precondition P. Since after the declaration of I this variable has an arbitrary
value, we first compute for command C the postcondition Q of the condition which
states that P holds for the value of I outside the block (denoted by the mathemat-
ical variable $J). Since the original value of I is restored after the block, in the
actual postcondition any reference to I is replaced by an existentially quantified
variable $K (denoting the value of I after the execution of C) and any reference to
$J is restored to I. For instance, to derive the postcondition of program

var x; (x=x*x; y=y+x)

with precondition
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x>0 AND y>0

we first compute from the assignment x=x*x and precondition

$z>0 AND y>0

the postcondition

EXISTS $x: $z>0 AND y>0 AND x=$x*$x

from which we derive for the assignment y=y+x the postcondition

EXISTS $x, $y:
$z>0 AND $y>0 AND x=$x*$x AND y=$y+x

We then introduce an existentially quantified variable $u, replace any reference
to x by $u and substitute $z back to x, which yields the final postcondition

EXISTS $u, $x, $y:
x>0 AND $y>0 AND $u=$x*$x AND y=$y+$u

This can be simplified to

x>0 AND EXISTS $x,$y: $y>0 AND y=$y+$x*$x

where $x denotes the initial value of the locally declared variable x and $y de-
notes the original value of y.

Soundness Proof We have to show

(a)
[P ](e)(s,s)∧ [var I;C ](s,s′)⇒

[EXISTS $K:Q[$K/I][I/$J] ](e)(s′,s′)

We assume

(2) [P ](e)(s,s)
(3) [var I;C ](s,s′)

and show

(b) [EXISTS $K:Q[$K/I][I/$J] ](e)(s′,s′)
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From (3) and the definition of [ ], we know for some s0,s1 ∈ State

(4) s0 = s EXCEPT I

(5) [C ](s0,s1)

(6) s′ = write(s1, I,read(s, I))

From the premises, we know

(7) $J does not occur in P

(8) $K does not occur in Q

(9) J 6= K

(10) POST(C,P[$J/I]) = Q

From (1b), (10), and the induction hypothesis, we know

(11) Q has no primed variables

(12)
∀e ∈ Environment :

[P[$J/I] ](e)(s0,s0)∧ [C ](s0,s1)⇒ [Q ](e)(s1,s1)

To show (b), it suffices by the definition of [ ] to show

(c) ∃v ∈ Value : [Q[$K/I][I/$J] ](e[K 7→ v ])(s′,s′)

To show (c), it suffices to show

(d) [Q[$K/I][I/$J] ](e[K 7→ read(s1, I) ])(s′,s′)

From (2), (4), (7), and (PMVF1), we know

(13) [P[$J/I] ](e[J 7→ read(s, I) ])(s0,s)

From (1b), (13), and (PVF2), we know

(14) [P[$J/I] ](e[J 7→ read(s, I) ])(s0,s0)

From (5), (12), (14), we know

(15) [Q ](e[J 7→ read(s, I) ])(s1,s1)

From (6) and (WS), we know

(16) s′ = s1 EXCEPT I
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From (8), (15), (16), and (PMVF1), we know

(17) [Q[$K/I] ](e[J 7→ read(s, I) ][K 7→ read(s1, I) ])(s′,s1)

We define

(18) Q′ := Q[$K/I][I/$J]

From (18), (MPVF0), and (MPVF2), we know

(19) Q′[$J/I] = Q[$K/I]

From (PMVF0), (RE), and (PMVF1), we know

(20)
[Q′ ](e[K 7→ read(s1, I) ])(s′,s′)⇔

[Q′[$J/I] ](e[K 7→ read(s1, I) ][J 7→ read(s′, I) ])(s′,s′)

From (19) and (20), we know

(21)
[Q[$K/I][I/$J] ](e[K 7→ read(s1, I) ])(s′,s′)⇔

[Q[$K/I] ](e[K 7→ read(s1, I) ][J 7→ read(s′, I) ])(s′,s′)

From (11), (17), and (PVF2), we know

(22) [Q[$K/I] ](e[J 7→ read(s, I) ][K 7→ read(s1, I) ])(s′,s′)

From (6) and (RW1), we know

(23) read(s′, I) = read(s, I)

From (9), (22), and (23), we know

(24) [Q[$K/I] ](e[K 7→ read(s1, I) ][J 7→ read(s′, I) ])(s′,s′)

From (21) and (24), we know (d). ¤

4.2.4 Variable Definition

E ' T
$J does not occur in P and in T
$K does not occur in Q
J 6= K
POST(C,P[$J/I] AND I = T [$J/I]) = Q
POST(var I=E;C,P) = EXISTS $K:Q[$K/I][I/$J]
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This rule is very similar to the one for variable declarations (see Subsection 4.2.3).
The major exception is that the value of I before the execution of C is uniquely
determined by the program expression E, respectively by its mathematical coun-
terpart T , such that we add an additional equality $J = T to the precondition of C.

As an example take the program

var x=x*x; y=y+x

where the local variable x is defined as the square of the value of a global vari-
able x (note the difference to the program in the last subsection: while there the
expression x*x is evaluated in the context of the local variable declaration, it is
here evaluated outside of this context). From the program’s precondition

x>0 AND y>0

we construct for the assignment y=y+x the precondition

$z>0 AND y>0 AND x=$z*$z

from which we can compute the assignment’s postcondition

EXISTS $y:
$z>0 AND $y>0 AND x=$z*$z AND y=$y+x

The overall precondition is then

EXISTS $u, $y:
x>0 AND $y>0 AND $u=x*x AND y=$y+$u

which can be simplified to

x>0 AND EXISTS $y: $y>0 AND y=$y+x*x

where $y denotes the original value of variable y. A comparison with the example
in Subsection 4.2.3 clearly shows the difference in the semantics of the programs.
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Soundness Proof We have to show

(a)
[P ](e)(s,s)∧ [var I=E;C ](s,s′)⇒

[EXISTS $K:Q[$K/I][I/$J] ](e)(s′,s′)

We assume

(2) [P ](e)(s,s)
(3) [var I=E;C ](s,s′)

and show

(b) [EXISTS $K:Q[$K/I][I/$J] ](e)(s′,s′)

From (3) and the definition of [ ], we know for some s0,s1 ∈ State

(4) s0 = write(s, I, [E ](s))
(5) [C ](s0,s1)

(6) s′ = write(s1, I,read(s, I))

From the premises, we know

(7) E ' T

(8) $J does not occur in P and in T

(9) $K does not occur in Q

(10) J 6= K

(11) POST(C,P[$J/I] AND I = T [$J/I]) = Q

From (1b), (11), and the induction hypothesis, we know

(12) Q has no primed variables

(13)
∀e ∈ Environment :

[P[$J/I] AND I = T [$J/I] ](e)(s0,s0)∧ [C ](s0,s1)
⇒ [Q ](e)(s1,s1)

To show (b), it suffices by the definition of [ ] to show

(c) ∃v ∈ Value : [Q[$K/I][I/$J] ](e[K 7→ v ])(s′,s′)

To show (c), it suffices to show
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(d) [Q[$K/I][I/$J] ](e[K 7→ read(s1, I) ])(s′,s′)

Let us assume

(e) [P[$J/I] AND I = T [$J/I] ](e[J 7→ read(s, I) ])(s0,s0)

From (5), (13), and (e), we know

(14) [Q ](e[J 7→ read(s, I) ])(s1,s1)

From (6) and (WS), we know

(15) s′ = s1 EXCEPT I

From (8), (14), (15), and (PMVF1), we know

(16) [Q[$K/I] ](e[J 7→ read(s, I) ][K 7→ read(s1, I) ])(s′,s1)

We define

(17) Q′ := Q[$K/I][I/$J]

From (17), (MPVF0), and (MPVF2), we know

(18) Q′[$J/I] = Q[$K/I]

From (PMVF0), (RE), and (PMVF1), we know

(19)
[Q′ ](e[K 7→ read(s1, I) ])(s′,s′)⇔

[Q′[$J/I] ](e[K 7→ read(s1, I) ][J 7→ read(s′, I) ])(s′,s′)

From (18) and (19), we know

(20)
[Q[$K/I][I/$J] ](e[K 7→ read(s1, I) ])(s′,s′)⇔

[Q[$K/I] ](e[K 7→ read(s1, I) ][J 7→ read(s′, I) ])(s′,s′)

From (12), (16), and (PVF2), we know

(21) [Q[$K/I] ](e[J 7→ read(s, I) ][K 7→ read(s1, I) ])(s′,s′)

From (6) and (RW1), we know

(22) read(s′, I) = read(s, I)

From (9), (21), and (22), we know



4.2 Computing Command Postconditions 125

(23) [Q[$K/I] ](e[K 7→ read(s1, I) ][J 7→ read(s′, I) ])(s′,s′)

From (20) and (23), we know (d).

It remains to show (e). By the definition of [ ], it suffices to show

(f.1) [P[$J/I] ](e[J 7→ read(s, I) ])(s0,s0)

(f.2) read(s0, I) = [T [$J/I] ](e[J 7→ read(s, I) ])(s0,s0)

From (4) and (WS), we know

(24) s0 = s EXCEPT I

From (2), (8), (24), and (PMVF1), we know

(25) [P[$J/I] ](e[J 7→ read(s, I) ])(s0,s)

From (1b), (25), and (PVF2), we know (f.1).

From (8), (24) and (PMVT1), we know

(25) [T ](e)(s,s0) = [T [$J/I] ](e[J 7→ read(s, I) ])(s0,s0)

From (7) and the definition of ', we know

(26) [E ](s) = [T ](e)(s,s0)

From (4) and (RW1), we know

(27) read(s0, I) = [E ](s)

From (25), (26) and (27), we know (f.2). ¤

4.2.5 Command Sequence

POST(C1,P) = Q
POST(C2,Q) = O
POST(C1;C2,P) = O

This rule shows how we can propagate the computation of postcondition among
sequences of commands. Given a precondition P and a sequence C1;C2, we first
compute the postcondition O of C1 w.r.t. P, and then the postcondition Q of C2
w.r.t. O. For instance, for the program



126 Chapter 4. Reasoning on Programs and States

x=x+1; y=y+x

with precondition x=a AND y=b we derive the first command’s postcondition

EXISTS $x: $x=a AND y=b AND x=$x+1

and then the second command’s postcondition

EXISTS $x, $y:
$x=a AND $y=b AND x=$x+1 AND y=$y+x

which can be simplified to

y=b+a+1

Soundness Proof We have to show

(a) [P ](e)(s,s)∧ [C1;C2 ](s,s′)⇒ [O ](e)(s′,s′)

We assume

(2) [P ](e)(s,s)
(3) [C1;C2 ](s,s′)

and show

(b) [O ](e)(s′,s′)

From the premises, we know by the induction hypothesis

(4) ∀s,s′ ∈ State : [P ](e)(s,s)∧ [C1 ](s,s′)⇒ [Q ](e)(s′,s′)
(5) ∀s,s′ ∈ State : [Q ](e)(s,s)∧ [C2 ](s,s′)⇒ [O ](e)(s′,s′)

From (3) and the definition of [ ], we know for some s0 ∈ State

(6) [C1 ](s,s0)

(7) [C2 ](s0,s′)

From (2), (4), and (6), we know

(8) [Q ](e)(s0,s0)

From (5), (7), and (8), we know (b). ¤
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4.2.6 One-Sided Conditional

E ' F
POST(C,P AND F) = Q
POST(if (E)C,P) = Q OR (P AND !F)

To compute the postcondition of a one-sided conditional with precondition P,
we compute the postcondition of the branch with respect to the conjunction of
P and the branch condition; the overall postcondition is the disjunction of this
postcondition (corresponding to the possibility that the branch was taken) and the
conjunction of P and the negation of the branch condition (corresponding to the
possibility that the branch was not taken). For example, for program

if (x>0) x=x-a;

with precondition a>0 gives postcondition

(EXISTS $x: a>0 AND $x>0 AND x=$x-a) OR
(a>0 AND !(x>0))

Soundness Proof We have to show

(a) [P ](e)(s,s)∧ [if (E)C ](s,s′)⇒ [Q OR (P AND !F) ](e)(s′,s′)

We assume

(2) [P ](e)(s,s)
(3) [if (E)C ](s,s′)

and show

(b) [Q OR (P AND !F) ](e)(s′,s′)

i.e. by the definition of [ ]

(c) [Q ](e)(s′,s′)∨ ([P ](e)(s′,s′)∧¬[F ](e)(s′,s′))

From the premises and the induction hypothesis, we know

(4) E ' F

(5) [P AND F ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′)
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From (3) and the definition of [ ], we know

(6) IF [E ](s) = TRUE THEN [C ](s,s′) ELSE s′ = s

We now distinguish two cases:

• Case [E ](s) = TRUE: From the case condition and (6), we know

(7) [C ](s,s′)

From (5), (7), and the definition of [ ], to show (c), it suffices to show

(d) [P AND F ](e)(s,s)

i.e. by the definition of [ ],

(e.1) [P ](e)(s,s)
(e.2) [F ](e)(s,s)

From (2) and the definition of [ ], we have (e.1). From the case condition,
(4), and the definition of ', we have (e.2).

• Case [E ](s) 6= TRUE: From the case condition and (6), we know

(8) s′ = s

From (8), to show (c), it suffices to show

(d.1) [P ](e)(s,s)
(d.2) ¬[F ](e)(s,s)

From (2) and the definition of [ ], we have (d.1). From the case condition,
(4), and the definition of ', we have (d.2). ¤

4.2.7 Two-Sided Conditional

E ' F
POST(C1,P AND F) = Q1
POST(C2,P AND !F) = Q2
POST(if (E) C1 elseC2,P) = Q1 OR Q2

To compute the postcondition of a two-sided conditional with precondition P, we
compute the postcondition of the first branch with respect to the conjunction of
P and the branch condition as well as the postcondition of the second branch
with respect to the conjunction of P and the negation of the branch condition; the
overall postcondition is the disjunction of the two postconditions corresponding
to the two possibilities of which branch is taken. For example, for program
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if (a>0) x=x-a else x=x+a;

with precondition x>0 AND 2|a gives postcondition

(EXISTS $x: $x>0 AND 2|a AND a>0 AND
x=$x-a) OR

(EXISTS $x: $x>0 AND 2|a AND !(a>0) AND
x=$x+a)

Soundness Proof We have to show

(a) [P ](e)(s,s)∧ [if (E)C1 else C2 ](s,s′)⇒ [Q1 OR Q2 ](e)(s′,s′)

We assume

(2) [P ](e)(s,s)
(3) [if (E)C1 else C2 ](s,s′)

and show

(b) [Q1 OR Q2 ](e)(s′,s′)

i.e. by the definition of [ ]

(c) [Q1 ](e)(s′,s′)∨ [Q2 ](e)(s′,s′)

From the premises and the induction hypothesis, we know

(4) E ' F

(5) [P AND F ](e)(s,s)∧ [C1 ](s,s′)⇒ [Q1 ](e)(s′,s′)
(6) [P AND !F ](e)(s,s)∧ [C2 ](s,s′)⇒ [Q2 ](e)(s′,s′)

From (3) and the definition of [ ], we know

(7) IF [E ](s) = TRUE THEN [C1 ](s,s′) ELSE [C2 ](s,s′)

We now distinguish two cases:

• Case [E ](s) = TRUE: From the case condition and (7), we know

(8) [C1 ](s,s′)
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From (5), (8), and the definition of [ ], to show (c), it suffices to show

(d) [P AND F ](e)(s,s)

i.e. by the definition of [ ],

(e.1) [P ](e)(s,s)
(e.2) [F ](e)(s,s)

From (2) and the definition of [ ], we have (e.1). From the case condition,
(4), and the definition of ', we have (e.2).

• Case [E ](s) 6= TRUE: From the case condition and (7), we know

(9) [C2 ](s,s′)

From (6), (9), and the definition of [ ], to show (c), it suffices to show

(d) [P AND !F ](e)(s,s)

i.e. by the definition of [ ],

(e.1) [P ](e)(s,s)
(e.2) ¬[F ](e)(s,s)

From (2) and the definition of [ ], we have (e.1). From the case condition,
(4), and the definition of ', we have (e.2). ¤

4.2.8 While Loop (Without Invariant)

E ' H
C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
POST(while(E)C,P) =

!H AND EXISTS $J1, . . . ,$Jn: P[$J1/I1, . . . ,$Jn/In]

This rule shows that, given a condition P on the prestate of a loop, we know
that after the loop the loop condition (the mathematical counterpart of the loop
expression) does not hold and that P holds for some values (the prestate values)
of the variables that are changed by the loop.

For instance, for program

while (x>0) x=x-y;
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with precondition y>x AND x>=0 we can derive the postcondition

!(x>0) AND EXISTS $x: y>$x AND $x>=0

which can be further simplified to

x<=0 AND y>0

Soundness Proof We have to show

(a)
[P ](e)(s,s)∧ [while(E)C ](s,s′)⇒

[!H AND EXISTS $J1, . . . ,$Jn: P[$J1/I1, . . . ,$Jn/In] ]
(e)(s′,s′)

We assume

(2) [P ](e)(s,s)
(3) [while(E)C ](s,s′)

and show

(b) [!H AND EXISTS $J1, . . . ,$Jn: P[$J1/I1, . . . ,$Jn/In] ](e)(s′,s′)

From the definition of [ ], we have to show

(c.1) ¬[H ](e)(s′,s′)

(c.2)
∃v1, . . . ,vn ∈ Value :

[P[$J1/I1, . . . ,$Jn/In] ](e[J1 7→ v1, . . . ,Jn 7→ vn ])(s′,s′)

From the premises, we know

(4) E ' H

(5) C : [F ] I1,...,In

(6) J1, . . . ,Jn is a renaming of I1, . . . , In

(7) $J1, . . . ,$Jn do not occur in P

From (3) and the definition of [ ], we know for some k ∈ N, t ∈ State∞:

(8) finiteExecution(k, t,s, [E ], [C ])
(9) [E ](t(k)) 6= TRUE
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(10) t(k) = s′

From (4), (9), (10), and the definition of ', we know (c.1).

From (1a), (5), the definitions of [ ] and [ ], and the soundness of the verifica-
tion calculus, we know

(11)
∀s,s′ ∈ State,e ∈ Environment :

[C ](s,s′)⇒ [F ](e)(s,s′)∧ s = s′ EXCEPT I1, . . . , In

From (8), (10), (11), the definition of finiteExecution, and (TRE), we know

(12) s = s′ EXCEPT I1, . . . , In

From (2), (6), (7), (12), and (PMVF1), we know

(13)
[P[$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ])(s′,s)

From (1b), (13), and (PVF2), we know (c.2). ¤

4.2.9 While Loop (With Invariant)

E ' H
C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P and G
Invariant(G,H,F)I1,...,In

POST(while(E)C,P) =
!H AND
EXISTS $J1, . . . ,$Jn:

P[$J1/I1, . . . ,$Jn/In] AND
(G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] =>

G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’])

The rule presented in Subsection 4.2.8 can be strengthened, if we are provided
with a loop invariant G. Provided that the precondition P implies G in the initial
state, the poststate also satisfies G.

For instance, for program

while (x<n) {s=s+x; x=x+1}
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with precondition s=0 and invariant s’=sum(x,x’-1) (where sum(i, j) de-
notes the sum of all integers numbers from i to j) we can derive the postcondition

!(x<n) AND
EXISTS $s,$x:

$s=0 AND
($s=sum($x,$x-1) => s=sum($x, x-1))

which can be simplified to

!(x<n) AND EXISTS $x: s=sum($x, x-1)

Soundness Proof We have to show

(a)

[P ](e)(s,s)∧ [while(E)C ](s,s′)⇒
[!H AND

EXISTS $J1, . . . ,$Jn:
P[$J1/I1, . . . ,$Jn/In] AND
(G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] =>

G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’]) ](e)(s′,s′)

We assume

(2) [P ](e)(s,s)
(3) [while(E)C ](s,s′)

and show

(b)

[!H AND
EXISTS $J1, . . . ,$Jn:

P[$J1/I1, . . . ,$Jn/In] AND
(G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] =>

G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’]) ](e)(s′,s′)

From the definition of [ ], we have to show

(c.1) ¬[H ](e)(s′,s′)

(c.2)

∃v1, . . . ,vn ∈ Value :
[P[$J1/I1, . . . ,$Jn/In] AND

(G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] =>
G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’]) ]

(e[J1 7→ v1, . . . ,Jn 7→ vn ])(s′,s′)



134 Chapter 4. Reasoning on Programs and States

From the premises, we know

(4) E ' H

(5) C : [F ] I1,...,In

(6) J1, . . . ,Jn is a renaming of I1, . . . , In

(7) $J1, . . . ,$Jn do not occur in P and G

(8) Invariant(G,H,F)I1,...,In

From (3) and the definition of [ ], we know for some k ∈ N, t ∈ State∞:

(9) finiteExecution(k, t,s, [E ], [C ])
(10) [E ](t(k)) 6= TRUE

(11) t(k) = s′

From (4), (10), (11), and the definition of ', we know (c.1).

To show (c.2), it suffices, from the definition of [ ], to show

(c.2.a.1)
[P[$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ])(s′,s′)

(c.2.a.2)

[G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] ]
(e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ])(s′,s′)⇒

[G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’] ]
(e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ])(s′,s′)

From (1a), (5), the definitions of [ ] and [ ], and the soundness of the verifica-
tion calculus, we know

(12)
∀s,s′ ∈ State,e ∈ Environment :

[C ](s,s′)⇒ [F ](e)(s,s′)∧ s = s′ EXCEPT I1, . . . , In

From (9), (11), (12), the definition of finiteExecution, and (TRE), we know

(13) s = s′ EXCEPT I1, . . . , In

From (2), (6), (7), (13), and (PMVF1), we know

(14)
[P[$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ])(s′,s)

From (1b), (14), and (PVF2), we know (c.2.a.1).

To show (c.2.a.2), we assume
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(15)
[G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ])(s′,s′)

and show

(c.2.a.2.a)
[G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’] ]

(e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ])(s′,s′)

From (6), (7), (13), (15), and (PMVF1), we know

(17) [G[I1/I1’, . . . , In/In’] ](e)(s,s)

From (4), (5), (8), we can from the verification calculus derive

(18)
while (E)C : [!H[I1’/I1, . . . , In’/In] AND

(G[I1/I1’, . . . , In/In’] => G) ] I1,...,In

From (18) and the soundness of the verification calculus, we thus know

(19)
[while (E)C ](s,s′)⇒ [ [!H[I1’/I1, . . . , In’/In] AND

(G[I1/I1’, . . . , In/In’] => G) ] I1,...,In ](e)(s,s′)

From (3), (19), and the definition of [ ], we know

(20) ¬[H[I1’/I1, . . . , In’/In] ](e)(s,s′)
(21) [G[I1/I1’, . . . , In/In’] ](e)(s,s′)⇒ [G ](e)(s,s′)
(22) s = s′ EXCEPT I1, . . . , In

From (PPVF0), we know

(23) I1’, . . . , In’ do not occur in G[I1/I1’, . . . , In/In’]

From (17), (22), (23) and (PVF4), we know

(24) [G[I1/I1’, . . . , In/In’] ](e)(s,s′)

From (21) and (24), we know

(25) [G ](e)(s,s′)

From (6), (7), (22), (25), and (PMVF1), we know

(26)
[G[$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ])(s′,s′)

From (26) and (IDE), we know

(27)
[G[$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ])
(s′,writes(s′, I1,read(s′, I1), . . . , In,read(s′, In)))

From (27) and (PPVF2), we know (c.2.a.2.a). ¤
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Command Language: Assertions

C ∈ Command
F ∈ Formula

C ::= . . . | assert F

[assert F ](s,s′)⇔ [F ](s)∧ s′ = s

Figure 4.7: The Command Language Extended by Assertions

4.3 Computing Assertions

The goal of this section is to make for given command C and precondition P
explicit which condition holds on the prestate of every subcommand of C. For
this purpose, we introduce in Figure 4.7 a new command assert F where F
is a formula called an assertion. If the prestate of this command satisfies the
assertion, then the poststate equals the prestate (i.e. the command has no effect);
otherwise, there is no poststate (i.e. the command “blocks”). Placing an assertion
into the “control flow” of a program thus prevents all state sequences passing
through states that violate the assertion.

Based on this idea, Figures 4.8 and 4.9 describe a calculus for deriving judgements
of the form TRANS(C,P) = C′. The informal interpretation of this judgement is
that C′ is a duplicate of C where each (sub)command is preceded by an assertion
in such a way that the semantics of C preserved. For example, from program

x = x+1;
if (x=0)

y=y+1
else

z=z+1

with precondition x=a the calculus constructs the program

assert x=a;
x = x+1;
assert x=a+1;
if (x=0)

assert x=a+1 AND x=0; y=y+1
else

assert x=a+1 AND x!=0; z=z+1



4.3 Computing Assertions 137

Assertion Calculus: Judgements

TRANS(C,P) = C′⇔
P has no primed program variables⇒
∀s,s′ ∈ State : [P ](s)∧ [C ](s,s′)⇔ [C′ ](s,s′)

Assertion Calculus: Rules for Non-Loops

TRANS(I=E,P) = assert P; I=E

$J does not occur in P
TRANS(C,EXISTS $J : P[$J/I]) = C′

POST(var I;C,P) = assert P; var I;C′

E ' T
$J does not occur in P and in T
TRANS(C,EXISTS $J : P[$J/I] AND I = T [$J/I]) = C′

TRANS(var I=E;C,P) = assert P; var I=E;C′

POST(C1,P) = Q
TRANS(C1,P) = C′1
TRANS(C2,Q) = C′2
TRANS(C1;C2,P) = assert P;C′1;C′2
E ' F
TRANS(C,P AND F) = C′

TRANS(if (E)C,P) = assert P; if (E) C′

E ' F
TRANS(C1,P AND F) = C′1
TRANS(C2,P AND !F) = C′2
TRANS(if (E)C1 else C2,P) =

assert P; if (E) C′1 elseC′2

Figure 4.8: The Assertion Calculus of the Command Language (Part 1/2)
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Assertion Calculus: Rules for Loops

E ' H
C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
TRANS(C,

H AND EXISTS $J1, . . . ,$Jn:P[$J1/I1, . . . ,$Jn/In]) = C′

TRANS(while(E)C,P) = assert P; while(E)C′

E ' H
C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P and G
Invariant(G,H,F)I1,...,In

TRANS(C,
H AND
EXISTS $J1, . . . ,$Jn:

P[$J1/I1, . . . ,$Jn/In] AND
(G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] =>

G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’])) = C′

TRANS(while(E)C,P) = assert P; while(E)C′

Figure 4.9: The Assertion Calculus of the Command Language (Part 2/2)
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The rules of the calculus are constructed in analogy to the rules for computing
postconditions by propagating the knowledge about a prestate from a command to
its subcommands (however, the rule for command sequences requires the explicit
computation of the postcondition of the first command). Because of the rules for
loops, the conditions described by the assertions are not necessarily the strongest
ones (however, for programs without loops they actually are).

The following theorem states the soundness claim of this calculus.

Theorem (Soundness of the Assertion Calculus) Assume the condition de-
noted by DifferentVariables. If TRANS(C,P) = C′ can be derived from the rules
of the assertion calculus of the command language, then it is true that

P has no primed program variables⇒
∀s,s′ ∈ State : [P ](s)∧ [C ](s,s′)⇔ [C′ ](s,s′)

Assume

(1a) DifferentVariables

Take C, P, and C′ such that TRANS(C,P) = C′ can be derived and assume

(1b) P has no primed program variables

Now take arbitrary s,s′ ∈ State. We prove

[P ](s)∧ [C ](s,s′)⇔ [C′ ](s,s′)

The direction “right to left” of this proof is simple because by the rules of the
calculus C′ differs from C only by the introduction of additional assertions whose
only effect (if any) is to prevent successor states s′.

The direction “left to right” of the proof is shown by induction on the derivation
of TRANS(C,P) = C′. The following subsections cover all cases for the last step
of such a derivation.

From (1b) and the rules, we can immediately deduce that in every derivation
TRANS(C′,P′) = C′ that matches the premise of a rule which has conclusion
TRANS(C,P) = C, the formula P′ has no primed variables; we thus assume in the
proofs that the induction hypothesis immediately implies the core claim ∀s,s′ ∈
State : [P′ ](s)∧ [C′ ](s,s′)⇒ [C′ ](s′,s′). ¤
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4.3.1 Assignment

TRANS(I=E,P) = assert P; I=E

Soundness Proof We have to prove

(a) [P ](s)∧ [ I=E ](s,s′)⇒ [assert P; I=E ](s,s′)

We assume

(2) [P ](s)
(3) [ I=E ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)
(b.2) [ I=E ](s,s′)

From (2), we know (b.1). From (3), we know (b.2). ¤

4.3.2 Variable Declaration

$J does not occur in P
TRANS(C,EXISTS $J : P[$J/I]) = C′

POST(var I;C,P) = assert P; var I;C′

Soundness Proof We have to prove

(a) [P ](s)∧ [var I;C ](s,s′)⇒ [assert P; var I;C′ ](s,s′)

We assume

(2) [P ](s)
(3) [var I;C ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)

(b.2)
∃s0,s1 ∈ State :

s0 = s EXCEPT I∧ [C′ ](s0,s1)∧ s′ = write(s1, I,read(s, I))
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From the premises and the induction hypothesis, we know

(4) $J does not occur in P

(5) ∀s,s′ ∈ State : [EXISTS $J : P[$J/I] ](s)∧ [C ](s,s′)⇒ [C′ ](s,s′)

From (2), we know (b.1).

From (3) and the definition of [ ], we know for some s0,s1 ∈ State

(6) s0 = s EXCEPT I

(7) [C ](s0,s1)

(8) s′ = write(s1, I,read(s, I))

Let us assume

(b.2.a) [C′ ](s0,s1)

From (6), (8), and (b.2.a), we know (b.2).

To show (b.2.a), by (5) and (7), it suffices to show

(b.2.b) [EXISTS $J : P[$J/I] ](s0)

From the definition of [ ], it suffices to show for arbitrary e ∈ Environment

(b.2.c) ∃v ∈ Value : [P[$J/I] ](e[J 7→ v ])(s0,s0)

From (2) and the definition of [ ], we know

(9) [P ](e)(s,s)

From (4), (6), and (PMVF1), we know

(10) [P[$J/I] ](e[J 7→ read(s, I) ])(s0,s)

From (1b), (10), and (PVF2), we know (b.2.c). ¤

4.3.3 Variable Definition

E ' T
$J does not occur in P and in T
TRANS(C,EXISTS $J : P[$J/I] AND I = T [$J/I]) = C′

TRANS(var I=E;C,P) = assert P; var I=E;C′
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Soundness Proof We have to prove

(a) [P ](s)∧ [var I=E;C ](s,s′)⇒ [assert P; var I=E;C′ ](s,s′)

We assume

(2) [P ](s)
(3) [var I=E;C ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)

(b.2)
∃s0,s1 ∈ State :

s0 = write(s, I, [E ](s))∧ [C′ ](s0,s1)∧ s′ = write(s1, I,read(I,s))

From the premises and the induction hypothesis, we know

(4) E ' T

(5) $J does not occur in P and in T

(6)
∀s,s′ ∈ State :

[EXISTS $J : P[$J/I] AND I = T [$J/I] ](s)∧ [C ](s,s′)⇒
[C′ ](s,s′)

From (2), we know (b.1).

From (3) and the definition of [ ], we know for some s0,s1 ∈ State

(7) s0 = write(s, I, [E ](s))
(8) [C ](s0,s1)

(9) s′ = write(s1, I,read(I,s))

Let us assume

(b.2.a) [C′ ](s0,s1)

From (7), (9), and (b.2.a), we know (b.2).

To show (b.2.a), by (6) and (8), it suffices to show

(b.2.b) [EXISTS $J : P[$J/I] AND I = T [$J/I] ](s0)

From the definition of [ ], it suffices to show for arbitrary e ∈ Environment
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(b.2.c)
∃v ∈ Value :

[P[$J/I] ](e[J 7→ v ])(s0,s0) ∧
read(s0, I) = [T [$J/I] ](e[J 7→ v ])(s0,s0)

From (2) and the definition of [ ], we know

(10) [P ](e)(s,s)

From (1a), (7), and (WS), we know

(11) s0 = s EXCEPT I

From (5), (11), and (PMVF1), we know

(12) [P[$J/I] ](e[J 7→ read(s, I) ])(s0,s)

From (1b), (12), and (PVF2), we know

(13) [P[$J/I] ](e[J 7→ read(s, I) ])(s0,s0)

From (6), (11), and (PMVT1), we know

(14) [T [$J/I] ](e[J 7→ read(s, I) ])(s0,s0) = [T ](e)(s,s0)

From (7) and (RW1), we know

(15) read(s0, I) = [E ](s)

From (4), (15), and the definition of ', we know

(16) T has no primed program variables

(17) read(s0, I) = [T ](e)(s,s)

From (16), (17), and (PVT2), we know

(18) read(s0, I) = [T ](e)(s,s0)

From (13), (14), and (18), we know (b.2.c). ¤

4.3.4 Command Sequence

POST(C1,P) = Q
TRANS(C1,P) = C′1
TRANS(C2,Q) = C′2
TRANS(C1;C2,P) = assert P;C′1;C′2
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Soundness Proof We have to prove

(a) [P ](s)∧ [C1;C2 ](s,s′)⇒ [assert P;C′1;C′2 ](s,s′)

We assume

(2) [P ](s)
(3) [C1;C2 ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)
(b.2) ∃s0 ∈ State : [C′1 ](s,s0)∧ [C′2 ](s,s0)

From the premises and the induction hypothesis, we know

(4) POST(C1,P) = Q

(5) ∀s,s′ ∈ State : [P ](s)∧ [C1 ](s,s′)⇒ [C′1 ](s,s′)
(6) ∀s,s′ ∈ State : [Q ](s)∧ [C2 ](s,s′)⇒ [C′2 ](s,s′)

From (2), we know (b.1).

From (3) and the definition of [ ], we know for some s0 ∈ State

(7) [C1 ](s,s0)

(8) [C2 ](s0,s′)

To show (b.2), it suffices to show

(b.2.a.1) [C′1 ](s,s0)

(b.2.a.2) [C′2 ](s0,s′)

From (2), (5), and (7), we know (b.2.a.1).

Let us assume

(e) [Q ](s0)

From (e), (6), and (8), we know (b.2.a.2).

It remains to show (e), i.e. for arbitrary e ∈ Environment

(f) [Q ](e)(s0,s0)

From (1b), (4), and the soundness of the postcondition calculus, we know

(9)
∀e ∈ Environment,s,s′ ∈ State :

[P ](e)(s,s)∧ [C1 ](s,s′)⇒ [Q ](e)(s′,s′)

From (2), (7), and (9), we know (f). ¤
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4.3.5 One-Sided Conditional

E ' F
TRANS(C,P AND F) = C′

TRANS(if (E)C,P) = assert P; if (E) C′

Soundness Proof We have to prove

(a) [P ](s)∧ [if (E)C ](s,s′)⇒ [assert P; if (E)C′ ](s,s′)

We assume

(2) [P ](s)
(3) [if (E)C ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)
(b.2) IF [E ](s) = TRUE THEN [C′ ](s,s′) ELSE s′ = s

From the premises and the induction hypothesis, we know

(4) E ' F

(5) [P AND F ](s)∧ [C ](s,s′)⇒ [C′ ](s,s′)

From (3) and the definition of [ ], we know

(6) IF [E ](s) = TRUE THEN [C ](s,s′) ELSE s′ = s

From (2) we know (b.1). To show (b.2), we perform a case distinction.

• Case [E ](s) = TRUE:

From the case condition, (4), and the definition of ', we know

(7) [F ](s)

From the case condition and (6), we know

(8) [C ](s,s′)

From (2), (5), (7), (8), and the definition of [ ], we know

(9) [C′ ](s,s′)
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From the case condition and (9), we know (b.2).

• Case [E ](s) 6= TRUE:

From the case condition and (6), we know

(10) s′ = s

From the case condition and (10), we know (b.2). ¤

4.3.6 Two-Sided Conditional

E ' F
TRANS(C1,P AND F) = C′1
TRANS(C2,P AND !F) = C′2
TRANS(if (E)C1 else C2,P) =

assert P; if (E)C′1 elseC′2

Soundness Proof We have to prove

(a)
[P ](s)∧ [if (E)C1 elseC2 ](s,s′)⇒

[assert P; if (E) C′1 elseC′2 ](s,s′)

We assume

(2) [P ](s)
(3) [if (E)C1 elseC2 ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)
(b.2) IF [E ](s) = TRUE THEN [C′1 ](s,s′) ELSE [C′2 ](s,s′)

From the premises and the induction hypothesis, we know

(4) E ' F

(5) [P AND F ](s)∧ [C1 ](s,s′)⇒ [C′1 ](s,s′)
(6) [P AND !F ](s)∧ [C2 ](s,s′)⇒ [C′2 ](s,s′)

From (3) and the definition of [ ], we know

(7) IF [E ](s) = TRUE THEN [C1 ](s,s′) ELSE [C2 ](s,s′)



4.3 Computing Assertions 147

From (2) we know (b.1). To show (b.2), we perform a case distinction.

• Case [E ](s) = TRUE:

From the case condition, (4), and the definition of ', we know

(8) [F ](s)

From the case condition and (7), we know

(9) [C1 ](s,s′)

From (2), (5), (8), (9), and the definition of [ ], we know

(10) [C′1 ](s,s′)

From the case condition and (10), we know (b.2).

• Case [E ](s) 6= TRUE:

From the case condition, (4), and the definition of ', we know

(11) ¬[F ](s)

From the case condition and (7), we know

(12) [C2 ](s,s′)

From (2), (6), (11), (12), and the definition of [ ], we know

(13) [C′2 ](s,s′)

From the case condition and (13), we know (b.2). ¤

4.3.7 While Loop (Without Invariant)

E ' H
C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
TRANS(C,

H AND EXISTS $J1, . . . ,$Jn:P[$J1/I1, . . . ,$Jn/In]) = C′

TRANS(while(E) C,P) = assert P; while(E)C′
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Soundness Proof We have to prove

(a)
[P ](s)∧ [while(E)C ](s,s′)⇒

[assert P; while(E)C′ ](s,s′)

We assume

(2) [P ](s)
(3) [while(E)C ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)

(b.2)
∃k ∈ N, t ∈ State∞ :

finiteExecution(k, t,s, [E ], [C′ ])∧
[E ](t(k)) 6= TRUE∧ t(k) = s′

From the premises and the induction hypothesis, we know

(4) E ' H

(5) C : [F ] I1,...,In

(6) J1, . . . ,Jn is a renaming of I1, . . . , In

(7) $J1, . . . ,$Jn do not occur in P

(8)

∀s,s′ ∈ State :
[H AND EXISTS $J1, . . . ,$Jn:P[$J1/I1, . . . ,$Jn/In] ](s) ∧
[C ](s,s′)⇒

[C′ ](s,s′)

From (2), we know (b.1).

From (3) and the definition of [ ], we know for some k ∈ N, t ∈ State∞

(9) finiteExecution(k, t,s, [E ], [C ])
(10) [E ](t(k)) 6= TRUE

(11) t(k) = s′

To show (b.2), from (10) and (11), it suffices to show

(b.2.a) finiteExecution(k, t,s, [E ], [C′ ])

i.e., by the definition of finiteExecution,
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(b.2.b.1) t(0) = s

(b.2.b.2) ∀i ∈ Nk : [E ](t(i)) = TRUE∧ [C′ ](t(i), t(i+1))

From (9) and the definition of finiteExecution, we know

(12) t(0) = s

(13) ∀i ∈ Nk : [E ](t(i)) = TRUE∧ [C ](t(i), t(i+1))

From (12), we know (b.2.b.1). To show (b.2.b.2), we show for arbitrary i ∈ Nk

(b.2.b.2.a.1) [E ](t(i)) = TRUE

(b.2.b.2.a.2) [C′ ](t(i), t(i+1))

From (13), we know (b.2.b.1.a.1) and

(14) [C ](t(i), t(i+1))

To show (b.2.b.1.a.2), from (8) and (14), it suffices to show

(b.2.b.1.a.1.a) [H AND EXISTS $J1, . . . ,$Jn:P[$J1/I1, . . . ,$Jn/In] ](t(i))

i.e. by the definition of [ ], for arbitrary e ∈ Environment,

(b.2.b.1.a.1.b.1) [H ](e)(t(i), t(i))

(b.2.b.1.a.1.b.2)
∃v1, . . . ,vn ∈ Value :

[P[$J1/I1, . . . ,$Jn/In] ](e[J1 7→ v1, . . . ,Jn 7→ vn ])(t(i), t(i))

From (4), (13), and the definition of ', we know (b.2.b.1.a.1.b.1).

From (5) and the soundness of the verification calculus, we know

(15) ∀s,s′ ∈ Store : [C ](s,s′)⇒ s = s′ EXCEPT I1, . . . , In

From (13) and (15), we know

(16) ∀i ∈ Nk : t(i) = t(i+1) EXCEPT I1, . . . , In

From (12), (16), and (TRE), we know

(17) s = t(i) EXCEPT I1, . . . , In

From (2), (6), (7), (17), and (PMVF1), we know

(18)
[P[$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ])(t(i),s)

From (1b), (18), and (PVF2), we know

(19)
[P[$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ])(t(i), t(i))

From (19), we know (b.2.b.1.a.1.b.2). ¤
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4.3.8 While Loop (With Invariant)

E ' H
C : [F ] I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P and G
Invariant(G,H,F)I1,...,In

TRANS(C,
H AND
EXISTS $J1, . . . ,$Jn:

P[$J1/I1, . . . ,$Jn/In] AND
(G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] =>

G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’])) = C′

TRANS(while(E)C,P) = assert P; while(E)C′

Soundness Proof We have to prove

(a)
[P ](s)∧ [while(E)C ](s,s′)⇒

[assert P; while(E)C′ ](s,s′)

We assume

(2) [P ](s)
(3) [while(E)C ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)

(b.2)
∃k ∈ N, t ∈ State∞ :

finiteExecution(k, t,s, [E ], [C′ ])∧
[E ](t(k)) 6= TRUE∧ t(k) = s′

From the premises and the induction hypothesis, we know

(4) E ' H

(5) C : [F ] I1,...,In

(6) J1, . . . ,Jn is a renaming of I1, . . . , In

(7) $J1, . . . ,$Jn do not occur in P and G

(8) Invariant(G,H,F)I1,...,In
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(9)

∀s,s′ ∈ State :
[H AND
EXISTS $J1, . . . ,$Jn:

P[$J1/I1, . . . ,$Jn/In] AND
(G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] =>

G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’]) ](s) ∧ [C ](s,s′)
⇒ [C′ ](s,s′)

From (2), we know (b.1).

From (3) and the definition of [ ], we know for some k ∈ N, t ∈ State∞

(10) finiteExecution(k, t,s, [E ], [C ])
(11) [E ](t(k)) 6= TRUE

(12) t(k) = s′

To show (b.2), from (11) and (12), it suffices to show

(b.2.a) finiteExecution(k, t,s, [E ], [C′ ])

i.e., by the definition of finiteExecution,

(b.2.b.1) t(0) = s

(b.2.b.2) ∀i ∈ Nk : [E ](t(i)) = TRUE∧ [C′ ](t(i), t(i+1))

From (10) and the definition of finiteExecution, we know

(13) t(0) = s

(14) ∀i ∈ Nk : [E ](t(i)) = TRUE∧ [C ](t(i), t(i+1))

From (13), we know (b.2.b.1). To show (b.2.b.2), we show for arbitrary i ∈ Nk

(b.2.b.2.a.1) [E ](t(i)) = TRUE

(b.2.b.2.a.2) [C′ ](t(i), t(i+1))

From (14), we know (b.2.b.2.a.1) and

(15) [C ](t(i), t(i+1))

To show (b.2.b.2.a.2), from (9) and (15), it suffices to show
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(b.2.b.2.a.2.a)

[H AND
EXISTS $J1, . . . ,$Jn:

P[$J1/I1, . . . ,$Jn/In] AND
(G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] =>

G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’]) ](t(i))

i.e. by the definition of [ ], for arbitrary e ∈ Environment,

(b.2.b.1.a.2.b.1) [H ](e)(t(i), t(i))

(b.2.b.1.a.2.b.2)

∃v1, . . . ,vn ∈ Value :
[P[$J1/I1, . . . ,$Jn/In] ](e[J1 7→ v1, . . . ,Jn 7→ vn ])(t(i), t(i)) ∧
([G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ v1, . . . ,Jn 7→ vn ])(t(i), t(i))⇒
[G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’] ]

(e[J1 7→ v1, . . . ,Jn 7→ vn ])(t(i), t(i)))

From (4), (14), and the definition of ', we know (b.2.b.1.a.2.b.1).

We define

(16) e0 := e[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ]

From (16), to show (b.2.b.1.a.2.b.2), it suffices to show

(b.2.b.1.a.2.b.2.a.1) [P[$J1/I1, . . . ,$Jn/In] ](e0)(t(i), t(i))

(b.2.b.1.a.2.b.2.a.2)
[G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] ](e0)(t(i), t(i))⇒
[G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’] ](e0)(t(i), t(i))

From (5) and the soundness of the verification calculus, we know

(17) ∀s,s′ ∈ Store : [C ](s,s′)⇒ s = s′ EXCEPT I1, . . . , In

From (14) and (17), we know

(18) ∀i ∈ Nk : t(i) = t(i+1) EXCEPT I1, . . . , In

From (13), (18), and (TRE), we know

(19) s = t(i) EXCEPT I1, . . . , In

From (2), (6), (7), (16), (19), and (PMVF1), we know

(20) [P[$J1/I1, . . . ,$Jn/In] ](e0)(t(i),s)
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From (1b), (20), and (PVF2), we know (b.2.b.1.a.2.b.2.a.1).

To show (b.2.b.1.a.2.b.2.a.2), we assume

(21) [G[I1/I1’, . . . , In/In’][$J1/I1, . . . ,$Jn/In] ](e0)(t(i), t(i))

and show

(b.2.b.1.a.2.b.2.a.2.a) [G[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’] ](e0)(t(i), t(i))

From (6), (7), (16), (19), (21), and (PMVF1), we know

(22) [G[I1/I1’, . . . , In/In’] ](e)(s, t(i))

From (22), (PPVF0), and (PVF4), we know

(23)
∀s′ ∈ State : s = s′ EXCEPT I1, . . . , In ⇒

[G[I1/I1’, . . . , In/In’] ](e)(s,s′)

From (23), we can show as demonstrated in the proof of the soundness of the
invariant rule (Section 3.2.2)

(24) ∀i ∈ Nk+1 : [G ](e)(s, t(i))

From (24), we know

(25) [G ](e)(s, t(i))

From (6), (7), (16), (19), (22), and (PMVF1), we know

(26) [G[$J1/I1, . . . ,$Jn/In] ](e0)(t(i), t(i))

From (26) and (IDE), we know

(27)
[G[$J1/I1, . . . ,$Jn/In] ](e0)

(t(i),writes(t(i), I1,read(t(i), I1), . . . , In,read(t(i), In)))

From (27) and (PPVF2), we know (b.2.b.1.a.2.b.2.a.2.a). ¤
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Interrupting the Control Flow

In this chapter, we will model various kinds of commands that interrupt a pro-
gram’s normal control flow by jumping to the end of a loop body (continue),
terminating the execution of a loop (break), returning from the execution of a
program (return), or raising an exception (throw) that redirects the control
flow to an error handler. These commands simplify the construction of programs
that have to deal with special situations; however they also complicate the reason-
ing, because the static structure of a program does not directly reflect its dynamic
behavior any more. Fortunately, those parts of a program that do not make use of
these commands can be treated by the simpler calculus elaborated in the previous
chapters such that the use of the more complex calculus presented in this chapter
can be confined to those parts where interruptions actually play a role.

5.1 Programs with Interruptions

To adequately deal with the situation that a command may interrupt the normal
program flow, we extend our notion of a program state as described in Figure 5.1.
The state does not only consist of the store any more but also includes control data
including a flag that indicates the current situation of the control flow: executing
normally (E), continuing with the next iteration of a loop (C), breaking out of
a loop (B), returning from the program (R) or throwing an exception (T). The
control data may also carry a key (the kind of exception raised) and a value (a
return/exception value). To abstract from the low-level representation of states
and control data, also various auxiliary functions and predicates are introduced.

Because the notion of a state has changed, Figure 5.2 also redefines the funda-
mental operations on these states. With these modifications, all properties stated
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Flag := {E,C,B,R,T}
Key := Value
Control := Flag×Key×Value
State := Store×Control

store : State→ Store,store(s,c) = s
control : State→ Control,control(s,c) = c

flag : Control→ Flag,flag( f ,k,v) = f
key : Control→ Key,key( f ,k,v) = k
value : Control→ Value,value( f ,k,v) = v

execute : State→ State
execute(s) =

LET c = control(s) IN (store(s),(E,key(c),value(c))
continue : State→ State
continue(s) =

LET c = control(s) IN (store(s),(C,key(c),value(c))
break : State→ State
break(s) =

LET c = control(s) IN (store(s),(B,key(c),value(c))
return : State×Value→ State
return(s,v) =

LET c = control(s) IN (store(s),(R,key(c),v))
throw : State×Key×Value→ State
throw(s,k,v) =

LET c = control(s) IN (store(s),(B,k,v))

executes : P(Control),executes(c)⇔ flag(c) = E
continues : P(Control),continues(c)⇔ flag(c) = C
breaks : P(Control),breaks(c)⇔ flag(c) = B
returns : P(Control),returns(c)⇔ flag(c) = R
throws : P(Control), throws(c)⇔ flag(c) = T

Figure 5.1: States with Control Flow Flags (Part 1 of 2)
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read : State× Identifier→ Value
read(s, I) = store(s)([ I ])

write : State× Identifier×Value→ State
write(s, I,v) = (store(s)[ [ I ] 7→ v ],control(s))

writes(s, I1,v1, . . . , In,vn)≡
(store(s)[ [ I1 ] 7→ v1 ] . . .[ [ In ] 7→ vn ],control(s))

Figure 5.2: States with Control Flow Flags (Part 2 of 2)

in Appendix B.1 for states as plain stores still hold in the new setting (we omit the
corresponding proofs). Also the properties stated in Appendix B.2 about phrases
(formulas and terms) evaluated on such stores still hold, but only for the formula
language introduced up to now, not for the extensions of the formula language
which are going to be introduced in the next subsection.

Furthermore, we have the following property.

Lemma (State Control Predicates) The control predicates cover all situations
and are mutually exclusive, i.e.:

∀c ∈ Control :
(executes(c)∨ continues(c)∨breaks(c) ∨

returns(c)∨ throws(c)) ∧
(executes(c)⇒
¬(continues(c)∨breaks(c)∨ returns(c)∨ throws(c))) ∧

(continues(c)⇒
¬(executes(c)∨breaks(c)∨ returns(c)∨ throws(c))) ∧

(breaks(c)⇒
¬(executes(c)∨ continues(c)∨ returns(c)∨ throws(c))) ∧

(returns(c)⇒
¬(executes(c)∨ continues(c)∨breaks(c)∨ throws(c))) ∧

(throws(c)⇒
¬(executes(c)∨ continues(c)∨breaks(c)∨ returns(c)))

We omit the corresponding proof. ¤
Based on these new definitions, Figure 5.3 presents an extended version of the
command language with the semantics appropriately updated (the handling of
loops is deferred until Section 5.4):
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Command Language with Interruptions
An extension of the language of Figure 3.1.

Abstract Syntax

C ::= . . .
| continue | break | return E | throw I E
| tryC1 catch(Ik Iv)C2.

Semantic Domains and Operations
See Figures 5.1 and 5.2

Valuation Functions

. . .
[var I; C ](s,s′)⇔
∃s0,s1 ∈ State :

s0 = s EXCEPT I∧ control(s0) = control(s) ∧
[C ](s0,s1)∧ s′ = write(s1, I,read(s, I))

[C1;C2 ](s,s′)⇔
∃s0 ∈ State :

[C1 ](s,s0) ∧
IF executes(control(s0)) THEN [C2 ](s0,s′) ELSE s′ = s0

[continue ](s,s′)⇔ s′ = continue(s)
[break ](s,s′)⇔ s′ = break(s)
[return E ](s,s′)⇔ s′ = return(s, [E ](s))
[throw I E ](s,s′)⇔ s′ = throw(s, I, [E ](s))
[try C1 catch(Ik Iv)C2 ](s,s′)⇔
∃s0,s1,s2 ∈ State :

[C1 ](s,s0) ∧
IF throws(control(s0))∧ key(control(s0)) = Ik THEN

s1 = write(execute(s0), Iv,value(control(s0))) ∧
[C2 ](s1,s2) ∧
s′ = write(s2, Iv,read(s0, Iv))

ELSE s′ = s0

Figure 5.3: Command Language with Interruptions
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C1;C2 The semantics of command sequences is updated such that C2 is only
executed, if the state after C1 is still “executing”; otherwise C2 is ignored.

continue This command flags the poststate as “continuing”.

break This command flags the poststate as “breaking”.

return E This command flags the poststate as “returning” and sets the return
value to the value of E.

throw I E This command flags the poststate as “throwing” and sets the excep-
tion key to I and the exception value to the value of E.

try C1 catch(Ik Iv) C2 This command first executes the “protected” com-
mand C1. If the poststate of C1 is not marked as “throwing exception with
key Ik”, this is also the ultimate poststate. Otherwise, the “exception han-
dler” C2 is executed with the parameter Ik set to the exception value.

We assume that a program starts in an “executing” prestate; by the commands
above, however, its poststate, need not be “executing” any more. With the sub-
sequently developed calculus it will be easy to detect which of “non-executing”
states may emerge; thus it may be ensured that “continuing” or “breaking” states
are captured by enclosing loops and that “throwing” states are caught by corre-
sponding exception handlers. “Returning” states will be handled by the program
method enclosing the command (see Chapter 6).

The new semantics of programs with interruptions is related to the old semantics
of programs without interruptions in the following sense.

Theorem (Programs without Interruptions) Let C be a program that only con-
tains constructs of the command language without interruptions. Then the follow-
ing holds (where [ ]o denotes the semantics of programs without interruptions):

∀s,s′ ∈ State : executes(control(s))⇒
([C ](s,s′)⇔
(control(s) = control(s′)∧ [C ]o(store(s),store(s′))))

We omit the corresponding proof. ¤
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Formula Language with Control Predicates
An extension of the language of Figure 2.4.

Abstract Syntax

S ∈ State

F ::= . . .
| ALLSTATE #I1, . . . ,#In: F
| EXSTATE #I1, . . . ,#In: F
| S1 == S2
| S.executes | S.continues | S.breaks
| S.returns | S.throws | S.throws I

T ::= . . . | S.value

S ::= now | next | #I

Figure 5.4: Formula Language with Control Predicates (Part 1 of 2)

5.2 Specifying Programs with Interruptions

To specify programs that interrupt the control flow, we extend the formula lan-
guage as shown in Figure 5.4:

• We introduce a syntactic domain “State” with constants now and next to
refer to the (control data of) the prestate and the poststate of a command,
respectively.

• We introduce a term S.value which denotes the return/exception value of
the state denoted by S.

• We introduce the formulas S.executes, S.continues, S.breaks,
S.returns, S.throws, S.throws I, that are true if the control flow of
the state denoted by S is executing, continuing with the next loop iteration,
breaking out of a loop, returning from the program, throwing an exception,
and throwing an exception with key I, respectively.

• We introduce state variables of the form #I ranging over states; correspond-
ingly we introduce quantified formulas ALLSTATE and EXSTATE that bind
state variables #I1, . . . ,#In.
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Formula Language with Control Predicates

Semantic Domains and Operations

ControlEnv := Identifier→ Control
Environment := ValueEnv×ControlEnv

(ev,ec)(I)≡ ev(I)
(ev,ec)(I)c ≡ ec(I)
(ev,ec)[ I1 7→ v1, . . . , In 7→ vn ]≡ (ev[ I1 7→ v1, . . . , In 7→ vn ],ec)
(ev,ec)[ I1 7→ c1, . . . , In 7→ cn ]c ≡ (ev,ec[ I1 7→ c1, . . . , In 7→ cn ])

Valuation Functions

[ ] : Formula→ Environment→ StateRelation
. . .
[ALLSTATE #I1, . . . ,#In: F ](e)(s,s′)⇔
∀c1, . . . ,cn ∈ Control : [F ](e[ I1 7→ c1, . . . , In 7→ cn ]c)(s,s′)

[EXSTATE #I1, . . . ,#In: F ](e)(s,s′)⇔
∃c1, . . . ,cn ∈ Control : [F ](e[ I1 7→ c1, . . . , In 7→ cn ]c)(s,s′)

[S1 == S2 ](e)(s,s′)⇔ [S1 ](e)(s,s′) = [S2 ](e)(s,s′)
[S.executes ](e)(s,s′)⇔ executes([S ](e)(s,s′))
[S.continues ](e)(s,s′)⇔ continues([S ](e)(s,s′))
[S.breaks ](e)(s,s′)⇔ breaks([S ](e)(s,s′))
[S.returns ](e)(s,s′)⇔ returns([S ](e)(s,s′))
[S.throws ](e)(s,s′)⇔ throws([S ](e)(s,s′))
[S.throws I ](e)(s,s′)⇔

LET c = [S ](e)(s,s′) IN throws(c)∧ key(c) = I

[ ] : Term→ Environment→ (State×State)→ Value
. . .
[S.value ](e)(s,s′) = value([S ](e)(s,s′))
[ ] : State→ Environment→ (State×State)→ Control
[now ](e)(s,s′) = control(s)
[next ](e)(s,s′) = control(s′)
[#I ](e)(s,s′) = e(I)c

Figure 5.5: Formula Language with Control Predicates (Part 2 of 2)
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• We introduce formulas S1 == S2 that are true if the (control data of) the
states S1 and S2 are identical.

With these extensions, it will be (as shown in the next subsection) possible to
adequately specify the behavior of any command by a formula. As an example,
the formula

int(x) AND int(y) =>
writesonly x AND int(x’) AND
IF y = 0

THEN next.throws DivisionByZero AND
next.value = x AND x’ = x

ELSE next.executes AND
EXISTS $r: x = x’*y+$r AND

0 <= $r AND $r < abs(y)

is an appropriate specification of a program

if (y == 0) throw DivisionByZero x;
x = x/y;

that sets integer variable x to the quotient of x and the value of another integer
variable y, but raises an exception “Division By Zero” which carries the exception
value x, if y is 0.

With these extensions, the semantics of the formula language is updated as shown
in Figure 5.5. We introduce the semantic domain ControlEnv of control envi-
ronments mapping identifiers to control data and update Environment to contain
tuples of value environments and control environments. Corresponding access op-
erations are defined such that e(I) provides (as before) the value of I in the value
environment denoted by e while e(I)c provides the control object of I in the corre-
sponding control environment; likewise the update operation e[ I 7→ v ] provides a
new value v for I in the value environment while e[ I 7→ c ]c provides a new control
object c for I in the control environment. Based on these definitions, the semantics
of the new formulas and new terms and of the state designators are defined.

The following lemma describes useful knowledge for reasoning about formulas
with control predicates.

Lemma (Control Predicates) For all e ∈ Environment,s,s′ ∈ State and for all
I, the following statements hold:
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[(#I.executes OR #I.continues OR
#I.breaks OR #I.returns OR #I.throws) AND

(#I.executes => !(#I.continues OR
#I.breaks OR #I.returns OR #I.throws)) AND

(#I.continues => !(#I.executes OR
#I.breaks OR #I.returns OR #I.throws)) AND

(#I.breaks => !(#I.executes OR
#I.continues OR #I.returns OR #I.throws)) AND

(#I.returns => !(#I.executes OR
#I.continues OR #I.breaks OR #I.throws)) AND

(#I.throws => !(#I.executes OR
#I.continues OR #I.breaks OR #I.returns)) ]

(e)(s,s′)

(i.e. the control predicates cover all possibilities and are mutually disjoint) and

∀Ik ∈ Identifier :
[#I.throws Ik => #I.throws ](e)(s,s′)

(i.e. if a specific exception is raised, then also the general exception predicate must
hold) and also

[#I.throws ](e)(s,s′)⇒
∃Ik ∈ Identifier : [#I.throws Ik ](e)(s,s′)

(i.e. if an exception is raised, it has some specific key).

We omit the corresponding proof. ¤
It should be noted, that with the extensions to the formula language introduced in
this subsection the properties on formulas and terms stated in Appendix B.2 do not
necessarily hold any more; some of them have to be rephrased to take into account
the control data of states respectively the potential of formulas to differentiate
between states even if their store contents are identical. Appendix B.3 thus lists
properties that are true for the extended formula language.

5.3 Verifying Programs with Interruptions

We are now going to update the calculus for deriving judgements C : F where the
interpretation of a judgement has been slightly changed as shown in Figure 5.6:
the prerequisite now also includes the proposition [now.executes ](e)(s,s′) which
boils down to executes(s), i.e. we assume that C starts in an executing state.
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Verification Calculus with Interruptions

Definitions

[F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

≡
(F) AND writesonly I1, . . . , In AND
(next.continues => (Fc)) AND
(next.breaks => (Fb)) AND
(next.returns => (Fr)) AND
(next.throws =>

(next.throws K1 OR . . . OR next.throws Kn))

' : P(Expression×Term)
E ' T ⇔

T has no free (mathematical or state) variables ∧
T has no primed program variables ∧
T has no occurrence of next ∧
∀s,s′ ∈ Store,e ∈ Environment : [E ](s) = [T ](e)(s,s′)

' : P(Expression×Formula)
E ' F ⇔

F has no free (mathematical or state) variables ∧
F has no primed program variables ∧
F has no occurrence of next ∧
∀s,s′ ∈ Store,e ∈ Environment :

[E ](s) = TRUE ⇔ [F ](e)(s,s′)

Judgements

C : F ⇔
∀s,s′ ∈ State,e ∈ Environment :

[now.executes ](e)(s,s′)∧ [C ](s,s′)⇒
[F ](e)(s,s′)

Figure 5.6: The Verification Calculus with Interruptions (Part 1 of 5)
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Actually the calculus only derives judgements of the form C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

where [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

extends [F ] I1,...,In by boolean constants Fc,Fb,Fr and
an identifier set K1, . . . ,Km with the following interpretation:

• Only if Fc is TRUE, the command may result in a continuing state.

• Only if Fb is TRUE, the command may result in a breaking state.

• Only if Fr is TRUE, the command may result in a returning state.

• An exception may be raised only, if its key is in {K1, . . . ,Km} (thus m = 0
implies that no exception may be raised).

This interpretation is indicated by the expansion of [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

to a for-
mula as shown in Figure 5.6.

Figure 5.6 also strengthens the relation ' to rule out free occurrences of state
variables and of the state constant next (which will become relevant in the veri-
fication rules for loops given in Section 5.4).

Figures 5.7, 5.8, 5.9, and 5.10, give rules for deriving these judgements for all
commands of the command language with interruptions (except for loops which
are treated in the next section).

From these rules only special kinds of judgements can be derived.

Lemma (Closed Specifications) If a judgement C : F can be derived by the rules
of the verification calculus of the command language with interruptions, then F
is closed, i.e. does not contain free occurrences of mathematical variables and not
free occurrences of state variables.

Proof Analogous to the proof of the corresponding lemma in the verification
calculus for commands without interruptions. ¤

Lemma (Constant Formulas) If C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

can be derived by the
rules of the verification calculus of the command language with interruptions, then
the values of Fc,Fb,Fr do not depend on environments and states:

∀e0,e1 ∈ Environment,s0,s1,s′0,s
′
1 :

([Fc ](e0)(s0,s′0)⇔ [Fc ](e1)(s1,s′1)) ∧
([Fb ](e0)(s0,s′0)⇔ [Fb ](e1)(s1,s′1)) ∧
([Fr ](e0)(s0,s′0)⇔ [Fr ](e1)(s1,s′1))
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Rules

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

p is a permutation of {1, . . . ,n}
C : [F ]Fc,Fb,Fr,{K1,...,Km}

Ip(1),...,Ip(n)

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

I 6= I1∧ . . .∧ I 6= In

C : [F AND I’= I ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In,I

C : [F ]FALSE,FALSE,FALSE, /0
I1,...,In

C : [F ] I1,...,In

C is a program without interruptions
C : [F ] I1,...,In

C : [F ]FALSE,FALSE,FALSE, /0
I1,...,In

Figure 5.7: The Verification Calculus with Interruptions (Part 2 of 5)

Proof From the rules of the calculus, it is easy to see that only disjunctions of
TRUE and FALSE can be derived. ¤

Theorem (Soundness of Verification Calculus) Under the assumption denoted
by DifferentVariables,the following is true: if a judgement C : F can be derived
from the rules of the verification calculus of the command language with interrup-
tions, then

∀s,s′ ∈ State,e ∈ Environment :
[now.executes ](e)(s,s′)∧ [C ](s,s′)⇒

[F ](e)(s,s′)

Proof We assume

(1) DifferentVariables

Take C and F such that C : F can be derived and take arbitrary s,s′ ∈ State,e ∈
Environment. We prove

[now.executes ](e)(s,s′)∧ [C ](s,s′)⇒ [F ](e)(s,s′)
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by induction on the derivation of C : F . The following subsections cover all cases
for the last step of such a derivation; each subsection essentially shows the sound-
ness of one derivation rule, i.e. that the interpretation of its conclusion is true
under the assumption that the interpretations of its premises are true. ¤

Actually, we will only show detailed proofs for those cases where interruptions
play a role; the other proofs are analogous to those of the calculus for programs
without interruptions.

5.3.1 Frame Permutation

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

p is a permutation of {1, . . . ,n}
C : [F ]Fc,Fb,Fr,{K1,...,Km}

Ip(1),...,Ip(n)

Soundness Proof Analogous to the proof in the verification calculus without
interruptions. ¤

5.3.2 Frame Extension

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

I 6= I1∧ . . .∧ I 6= In

C : [F AND I’= I ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In,I

Soundness Proof Analogous to the proof in the verification calculus without
interruptions. ¤

5.3.3 No Interruptions (Part 1)

C : [F ]FALSE,FALSE,FALSE, /0
I1,...,In

C : [F ] I1,...,In

This rule allows us to embed commands that prevent the “escape” of their inter-
ruptions into the original verification calculus for programs without interruptions.
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Verification Calculus with Interruptions: Rules

E ' T
I = E : [ I’= T AND next.executes ]FALSE,FALSE,FALSE, /0

I

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In,I

Ia 6= Ib
$Ia and $Ib do not occur in F
var I;C :

[EXISTS $Ia,$Ib : F [$Ia/I,$Ib/I’] ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

C : [F ]Fc,Fb,Fr,{K1,...,Km,}
I1,...,In,I

Ia 6= Ib
$Ia and $Ib do not occur in F
E ' T
var I=E;C :

[EXISTS $Ia,$Ib :
$Ia=T AND F [$Ia/I,$Ib/I’] ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

C1 : [F1 ]FALSE,FALSE,FALSE, /0
I1,...,In

C2 : [F2 ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

$I1, . . . ,$In,#Is do not occur in F1 and F2
C1;C2 :

[EXISTS $I1, . . . ,$In: EXSTATE #Is:
F1[#Is/next][$I1/I1’, . . . ,$In/In’] AND
F2[#Is/now][$I1/I1, . . . ,$In/In] ]

Fc,Fb,Fr,{K1,...,Km}
I1,...,In

Figure 5.8: The Verification Calculus with Interruptions (Part 3 of 5)
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Verification Calculus with Interruptions: Rules

C1 : [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}
I1,...,In

C2 : [F2 ]Fc1,Fb1,Fr1,{L1,...,Lo}
I1,...,In

$I1, . . . ,$In,#Is do not occur in F1 and F2
C1;C2 :

[EXISTS $I1, . . . ,$In: EXSTATE #Is:
F1[#Is/next][$I1/I1’, . . . ,$In/In’] AND
IF #Is.executes THEN

F2[#Is/now][$I1/I1, . . . ,$In/In]
ELSE

I1’=$I1 AND . . . AND In’=$In AND next==#Is

]Fc1 OR Fc2,Fb1 OR Fb2,Fr1 OR Fr2,{K1,...,Km,L1,...,Lo}
I1,...,In

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

E ' F0

if (E) C : [IF F0 THEN F ELSE readsonly ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

C1 : [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}
I1,...,In

C2 : [F2 ]Fc2,Fb2,Fr2,{L1,...,Lo}
I1,...,In

E ' F0
if (E) C1 elseC2 :

[IF F0 THEN F1

ELSE F2 ]Fc1 OR Fc2,Fb1 OR Fb2,Fr1 OR Fr2,{K1,...,Km,L1,...,Lo}
I1,...,In

Figure 5.9: The Verification Calculus with Interruptions (Part 4 of 5)
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Verification Calculus with Interruptions: Rules

continue : [next.continues ]TRUE,FALSE,FALSE, /0

break : [next.breaks ]FALSE,TRUE,FALSE, /0

T ' E
return E :

[next.returns
AND next.value=T ]FALSE,FALSE,TRUE, /0

T ' E
throw I E :

[next.throws I
AND next.value=T ]FALSE,FALSE,FALSE,{I}

C1 : [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}
I1,...,In

C2 : [F2 ]Fc2,Fb2,Fr2,{L1,...,Lo}
I1,...,In

$I1, . . . ,$In,#Is do not occur in F1 and F2
Ia 6= Ib
{Ia, Ib}∩{I1, . . . , In}= /0
Is 6= It
$Ia,$Ib,#It do not occur in F2
tryC1 catch(Ik Iv)C2 :

[EXISTS $I1, . . . ,$In: EXSTATE #Is:
F1[#Is/next][$I1/I1’, . . . ,$In/In’] AND
IF #Is.throws Ik THEN

EXISTS $Ia,$Ib: EXSTATE #It:
$Ia = #Is.value AND #It.executes AND
F2[#It/now][$Ia/Iv][$I1/I1, . . . ,$In/In][$Ib/Iv’]

ELSE
I1’=$I1 AND . . . AND In’=$In AND next==#Is

]Fc1 OR Fc2,Fb1 OR Fb2,Fr1 OR Fr2,({K1,...,Km}\{Ik})∪{L1,...,Lo}
I1,...,In

Figure 5.10: The Verification Calculus with Interruptions (Part 5 of 5)
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Soundness Proof We have to show

(a)
[now.executes ](e)(s,s′)∧ [C ](s,s′)⇒

[ [F ] I1,...,In ](e)(s,s′)

We assume

(2) [now.executes ](e)(s,s′)

(3) [C ](s,s′)

By the definitions of [ ] and [ ], it suffices to show

(a.1) [F ](e)(s,s′)

(a.2) s = s′ EXCEPT I1, . . . , In

From the premise and the soundness of the verification calculus, we know

(5)
[now.executes ](e)(s,s′)∧ [C ](s,s′)⇒

[ [F ]FALSE,FALSE,FALSE, /0
I1,...,In

](e)(s,s′)

From (2), (3) and (5), we know

(6) [ [F ]FALSE,FALSE,FALSE, /0
I1,...,In

](e)(s,s′)

From (6) and the definition of [ ], we know (a.1) and (a.2). ¤

5.3.4 No Interruptions (Part 2)

C is a program without interruptions
C : [F ] I1,...,In

C : [F ]FALSE,FALSE,FALSE, /0
I1,...,In

This rule allows to apply to a part of a program that does not use interruption com-
mands the verification calculus for programs without interruptions and embed the
judgement derived into the verification calculus for programs with interruptions.
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Soundness Proof We have to show

(a)
[now.executes ](e)(s,s′)∧ [C ](s,s′)⇒

[ [F ]FALSE,FALSE,FALSE, /0
I1,...,In

](e)(s,s′)

We assume

(2) [now.executes ](e)(s,s′)
(3) [C ](s,s′)

By the definitions of [ ] and [ ], it suffices to show

(a.1) [F ](e)(s,s′)
(a.2) s = s′ EXCEPT I1, . . . , In

(a.3) ¬continues(control(s′))
(a.4) ¬breaks(control(s′))
(a.5) ¬returns(control(s′))
(a.6) ¬throws(control(s′))

From the premise and the soundness of the verification calculus, we know

(4) C is a program without interruptions

(5)
[now.executes ](e)(s,s′)∧ [C ](s,s′)⇒

[ [F ] I1,...,In ](e)(s,s′)

From (2), (3) and (5), we know

(6) [ [F ] I1,...,In ](e)(s,s′)

From (6) and the definitions of [ ] and [ ], we know (a.1) and (a.2).

From (2) and the definition of [ ], we know

(7) executes(control(s))

From (3), (4), (7) and Theorem (Programs without Interruptions), we know

(8) executes(control(s′))

From (8) and Lemma “State Control Predicates”, we know (a.3), (a.4), (a.5),
and (a.6). ¤
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5.3.5 Assignment

E ' T
I = E : [ I’= T AND next.executes ]FALSE,FALSE,FALSE, /0

I

Soundness Proof We have to show

(a)
[now.executes ](e)(s,s′)∧ [ I = E ](s,s′)⇒

[ [ I’= T AND next.executes ]FALSE,FALSE,FALSE, /0
I ]

(e)(s,s′)

We assume

(2) [now.executes ](e)(s,s′)
(3) [ I = E ](s,s′)

i.e. by the definition of [ ]
(4) executes(control(s))

(5) s′ = write(s, I, [E ](s))
By the definitions of [ ] and [ ], it suffices to show

(a.1) read(s′, I) = [T ](e)(s,s′)
(a.2) executes(control(s′))
(a.3) s = s′ EXCEPT I

(a.4) ¬continues(control(s′))
(a.5) ¬breaks(control(s′))
(a.6) ¬returns(control(s′))
(a.7) ¬throws(control(s′))

We can show (a.1) and (a.3) as in the verification calculus without interruptions.
From (4), (5), and (CW), we know (a.2). From (a.2) and Lemma “State Control
Predicates”, we know (a.4), (a.5), (a.6), and (a.7). ¤

5.3.6 Variable Declaration

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In,I

Ia 6= Ib
$Ia and $Ib do not occur in F
var I;C :

[EXISTS $Ia,$Ib : F [$Ia/I,$Ib/I’] ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In
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Soundness Proof Analogous to the proof in the verification calculus without
interruptions. ¤

5.3.7 Variable Definition

C : [F ]Fc,Fb,Fr,{K1,...,Km,}
I1,...,In,I

Ia 6= Ib
$Ia and $Ib do not occur in F
E ' T
var I=E;C :

[EXISTS $Ia,$Ib :
$Ia=T AND F [$Ia/I,$Ib/I’] ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

Soundness Proof Analogous to the proof in the verification calculus without
interruptions. ¤

5.3.8 Command Sequence (Without Interruptions)

C1 : [F1 ]FALSE,FALSE,FALSE, /0
I1,...,In

C2 : [F2 ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

$I1, . . . ,$In,#Is do not occur in F1 and F2
C1;C2 :

[EXISTS $I1, . . . ,$In: EXSTATE #Is:
F1[#Is/next][$I1/I1’, . . . ,$In/In’] AND
F2[#Is/now][$I1/I1, . . . ,$In/In] ]

Fc,Fb,Fr,{K1,...,Km}
I1,...,In

This rule for a sequence of two commands handles the special situation where
the first command does not interrupt the control flow such that all interruptions
are those caused by the second command. In the resulting specification formula,
analogous to the existentially quantified mathematical variables $I1, . . . ,$In which
denote the values of the program variables in the intermediate state, the existen-
tially quantified state variable #Is denotes the intermediate state’s control data.
This variable correspondingly takes the role of next in the specification of the
first command and of now in the specification of the second one.

Soundness Proof We have to show
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(a)

[now.executes ](e)(s,s′)∧ [C1;C2 ](s,s′)⇒
[ [EXISTS $I1, . . . ,$In: EXSTATE #Is:

F1[#Is/next][$I1/I1’, . . . ,$In/In’] AND
F2[#Is/now][$I1/I1, . . . ,$In/In] ]

Fc,Fb,Fr,{K1,...,Km}
I1,...,In

](e)(s,s′)

We assume

(2) [now.executes ](e)(s,s′)
(3) [C1;C2 ](s,s′)

i.e. by the definition of [ ] for some s0 ∈ State

(4) executes(control(s))

(5) [C1 ](s,s0)

(6) IF executes(control(s0)) THEN [C2 ](s0,s′) ELSE s′ = s0

By the definitions of [ ] and [ ], it suffices to show

(a.1)

∃v1, . . . ,vn ∈ Value,c ∈ Control :
[F1[#Is/next][$I1/I1’, . . . ,$In/In’] ]

(e[ Is 7→ c ]c[ I1 7→ v1, . . . , In 7→ vn ])(s,s′) ∧
[F2[#Is/now][$I1/I1, . . . ,$In/In] ]

(e[ Is 7→ c ]c[ I1 7→ v1, . . . , In 7→ vn ])(s,s′)

(a.2) s = s′ EXCEPT I1, . . . , In

(a.3) continues(control(s′))⇒ [Fc ](e)(s,s′)
(a.4) breaks(control(s′))⇒ [Fb ](e)(s,s′)
(a.5) returns(control(s′))⇒ [Fr ](e)(s,s′)
(a.6) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

From the premises, we know

(7)
[now.executes ](e)(s,s0)∧ [C1 ](s,s0)⇒

[ [F1 ]FALSE,FALSE,FALSE, /0
I1,...,In

](e)(s,s0)

(8)
[now.executes ](e)(s0,s′)∧ [C2 ](s0,s′)⇒

[ [F2 ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

](e)(s0,s′)

(8a) $I1, . . . ,$In,#Is do not occur in F1 and F2

From (4), (5), (7), and the definition of [ ], we know
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(9) [F1 ](e)(s,s0)

(10) s = s0 EXCEPT I1, . . . , In

(11) ¬continues(control(s0))

(12) ¬breaks(control(s0))

(13) ¬returns(control(s0))

(14) ¬throws(control(s0))

From (11), (12), (13), (14), and Lemma “State Control Predicates”, we know

(15) executes(control(s0))

From (6), (8), (15), and the definition of [ ], we know

(16) [F2 ](e)(s0,s′)
(17) s0 = s′ EXCEPT I1, . . . , In

(18) continues(control(s′))⇒ [Fc ](e)(s0,s′)
(19) breaks(control(s′))⇒ [Fb ](e)(s0,s′)
(20) returns(control(s′))⇒ [Fr ](e)(s0,s′)
(21) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

From (10), (17), and (TRE), we have (a.2).

From the second assumption and Lemma “Constant Formulas”, we know

(22) [Fc ](e)(s,s′)⇔ [Fc ](e)(s0,s′)
(23) [Fb ](e)(s,s′)⇔ [Fb ](e)(s0,s′)
(24) [Fr ](e)(s,s′)⇔ [Fr ](e)(s0,s′)

From (18), (19), (20), (22), (23), and (24), we we know (a.3), (a.4), and (a.5).
From (21), we know (a.6).

To show (a.2), it suffices to show

(a.1.a.1)
[F1[#Is/next][$I1/I1’, . . . ,$In/In’] ]

(e[ Is 7→ control(s0) ]c[ I1 7→ read(s0, I1), . . . , In 7→ read(s0, In) ])
(s,s′)

(a.1.a.2)
[F2[#Is/now][$I1/I1, . . . ,$In/In] ]

(e[ Is 7→ control(s0) ]c[ I1 7→ read(s0, I1), . . . , In 7→ read(s0, In) ])
(s,s′)
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From (8a), (9), and (CNEF2), we know

(25) [F1[#Is/next] ](e[ Is 7→ control(s0) ]c)(s,s0)

From (8a), (17), (25), (CNEF0), and (PMVF2’), we know (a.1.a.1).

From (8a), (16), and (CNOF2), we know

(26) [F2[#Is/now] ](e[ Is 7→ control(s0) ]c)(s0,s′)

From (8a), (10), (26), (CNOF0), and (PMVF1’), we know (a.1.a.2). ¤

5.3.9 Command Sequence (With Interruptions)

C1 : [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}
I1,...,In

C2 : [F2 ]Fc1,Fb1,Fr1,{L1,...,Lo}
I1,...,In

$I1, . . . ,$In,#Is do not occur in F1 and F2
C1;C2 :

[EXISTS $I1, . . . ,$In: EXSTATE #Is:
F1[#Is/next][$I1/I1’, . . . ,$In/In’] AND
IF #Is.executes THEN

F2[#Is/now][$I1/I1, . . . ,$In/In]
ELSE

I1’=$I1 AND . . . AND In’=$In AND next==#Is

]Fc1 OR Fc2,Fb1 OR Fb2,Fr1 OR Fr2,{K1,...,Km,L1,...,Lo}
I1,...,In

This rule handles the general case of a sequence of commands where the first one
may interrupt the control flow such that the second one is not executed. Corre-
spondingly, the post-state either (if the first command does not trigger an interrupt)
is determined by the second command or (if the first command indeed triggers an
interrupt) equals the poststate of the first command. For instance, the command
sequence

if (x=0) throw DivByZero y else y = y/x;
z=z+y;

is specified by [F ]FALSE,FALSE,FALSE,{DivByZero}
y,z where F is the formula

EXISTS $y, $z: EXSTATE #s:
IF x=0 THEN
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$y=y AND $z=z AND
#s.throws DivByZero AND #s.value = y

ELSE
$y=y/x AND $z=z AND #s.executes

AND
IF #s.executes THEN

y’=$y AND z’=$z+$y AND next.executes
ELSE

y’=$y AND z’=$z AND next==#s

which can be simplified to

IF x=0 THEN
y’=y AND z’=z AND
next.throws DivByZero AND next.value=y

ELSE
y’=y/x AND z’=z+y/x AND
next.executes

which succinctly describes the overall effect of the program sniplet.

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s′)∧ [C1;C2 ](s,s′)⇒
[ [EXISTS $I1, . . . ,$In: EXSTATE #Is:

F1[#Is/next][$I1/I1’, . . . ,$In/In’] AND
IF #Is.executes THEN

F2[#Is/now][$I1/I1, . . . ,$In/In]
ELSE

I1’=$I1 AND . . . AND In’=$In AND next==#Is

]Fc1 OR Fc2,Fb1 OR Fb2,Fr1 OR Fr2,{K1,...,Km,L1,...,Lo}
I1,...,In

](e)(s,s′)

We assume

(2) [now.executes ](e)(s,s′)
(3) [C1;C2 ](s,s′)

i.e. by the definition of [ ] for some s0 ∈ State

(4) executes(control(s))
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(5) [C1 ](s,s0)

(6) IF executes(control(s0)) THEN [C2 ](s0,s′) ELSE s′ = s0

By the definitions of [ ] and [ ], it suffices to show

(a.1)

∃v1, . . . ,vn ∈ Value,c ∈ Control :
LET

e0 = e[ Is 7→ c ]c[ I1 7→ v1, . . . , In 7→ vn ]
IN

[F1[#Is/next][$I1/I1’, . . . ,$In/In’] ](e0)(s,s′) ∧
IF executes(e0(Is)) THEN

[F2[#Is/now][$I1/I1, . . . ,$In/In] ](e0)(s,s′) ∧
ELSE

read(s′, I1) = e0(I1)∧ . . .∧ read(s′, In) = e0(In) ∧
control(s′) = e0(Is)

(a.2) s = s′ EXCEPT I1, . . . , In

(a.3) continues(control(s′))⇒ [Fc1 OR Fc2 ](e)(s,s′)
(a.4) breaks(control(s′))⇒ [Fb1 OR Fb2 ](e)(s,s′)
(a.5) returns(control(s′))⇒ [Fr1 OR Fr2 ](e)(s,s′)
(a.6) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km,L1, . . . ,Lo}

We define

(7) e0 := e[ Is 7→ control(s0) ]c[ I1 7→ read(s0, I1), . . . , In 7→ read(s0, In) ]

To show (a.1), it suffices to show

(a.1.a.1) [F1[#Is/next][$I1/I1’, . . . ,$In/In’] ](e0)(s,s′)

(a.1.a.2)

IF executes(e0(Is)) THEN

[F2[#Is/now][$I1/I1, . . . ,$In/In] ](e0)(s,s′) ∧
ELSE

read(s′, I1) = e0(I1)∧ . . .∧ read(s′, In) = e0(In) ∧
control(s′) = e0(Is)

From the premises, we know

(8)
[now.executes ](e)(s,s0)∧ [C1 ](s,s0)⇒

[ [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}
I1,...,In

](e)(s,s0)

(9)
[now.executes ](e)(s0,s′)∧ [C2 ](s0,s′)⇒

[ [F2 ]Fc2,Fb2,Fr2,{L1,...,Lo}
I1,...,In

](e)(s0,s′)
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(9a) $I1, . . . ,$In,#Is do not occur in F1 and F2

From (2) and the definition of [ ], we know

(10) [now.executes ](e)(s,s0)

From (5), (8), and (10), we know

(11) [ [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}
I1,...,In

](e)(s,s0)

i.e. from the definitions of [ ] and [ ]

(12) [F1 ](e)(s,s0)

(13) s = s0 EXCEPT I1, . . . , In

(14) continues(control(s0))⇒ [Fc1 ](e)(s,s0)

(15) breaks(control(s0))⇒ [Fb1 ](e)(s,s0)

(16) returns(control(s0))⇒ [Fr1 ](e)(s,s0)

(17) throws(control(s0))⇒ key(control(s0)) ∈ {K1, . . . ,Km}

From (9a), (12), and (CNEF2), we know

(20) [F1[#Is/next] ](e[ Is 7→ control(s0) ]c)(s,s0)

We proceed by case distinction:

• Case executes(control(s0)): from the case condition and the definition of
[ ], we know

(21) [now.executes ](e)(s0,s′)

From the case condition, (6), (9), and (21), we know

(22) [ [F2 ]Fc2,Fb2,Fr2,{L1,...,Lo}
I1,...,In

](e)(s0,s′)

i.e. from the definitions of [ ] and [ ]

(23) [F2 ](e)(s0,s′)
(24) s0 = s′ EXCEPT I1, . . . , In
(25) continues(control(s′))⇒ [Fc2 ](e)(s0,s′)
(26) breaks(control(s′))⇒ [Fb2 ](e)(s0,s′)
(27) returns(control(s′))⇒ [Fr2 ](e)(s0,s′)
(28) throws(control(s′))⇒ key(control(s′)) ∈ {L1, . . . ,Lo}
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From (7), (9a), (20), (24), (CNEF0), and (PMVF2’), we know (a.1.a.1).

From the case condition and (7), we know

(29) executes(e0(Is))

From (29), to show (a.1.a.2), it suffices to show

(a.1.a.2.a) [F2[#Is/now][$I1/I1, . . . ,$In/In] ](e0)(s,s′)

From (9a), (23), and (CNOF2), we know

(30) [F2[#Is/now] ](e[ Is 7→ control(s0) ]c)(s0,s′)

From (7), (9a), (13), (30), (CNOF0), and (PMVF1’), we know (a.1.a.2.a).

From (13), (24), and (TRE), we know (a.2). From (25) and the definition
of [ ], we know (a.3). From (26) and the definition of [ ], we know (a.4).
From (27) and the definition of [ ], we know (a.5). From (28) and the
definition of [ ], we know (a.6).

• Case ¬executes(control(s0)): from the case condition and (6), we know

(31) s′ = s0

and thus from (REE)

(32) s0 = s′ EXCEPT I1, . . . , In

From (7), (9a), (20), (32), (CNEF0), and (PMVF2’), we know (a.1.a.1).

From the case condition and (7), we know

(33) ¬executes(e0(Is))

From (33), to show (a.1.a.2), it suffices to show

(a.1.a.2.a)
read(s′, I1) = e0(I1)∧ . . .∧ read(s′, In) = e0(In) ∧
control(s′) = e0(Is)

From (7) and (31), we have (a.1.a.2.a).

From (13), (32), and (TRE), we know (a.2). From (14), (31), and the defi-
nition of [ ], we know (a.3). From (15), (31), and the definition of [ ], we
know (a.3). From (16), (31), and the definition of [ ], we know (a.3). From
(17), (31), and the definition of [ ], we know (a.3). ¤
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5.3.10 One-Sided Conditional

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

E ' F0

if (E)C : [IF F0 THEN F ELSE readsonly ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

Soundness Proof We have to show

(a)
[now.executes ](e)(s,s′)∧ [if (E) C ](s,s′)⇒

[ [IF F0 THEN F ELSE readsonly ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

](e)(s,s′)

We assume

(2) [now.executes ](e)(s,s′)
(3) [if (E)C ](s,s′)

i.e. by the definition of [ ]

(4) IF [E ](s) = TRUE THEN [C ](s,s′) ELSE s′ = s

By the definitions of [ ] and [ ], it suffices to show

(a.1) IF [F0 ](e)(s,s′) THEN [F ](e)(s,s′) ELSE s = s′

(a.2) s = s′ EXCEPT I1, . . . , In

(a.3) continues(control(s′))⇒ [Fc ](e)(s,s′)
(a.4) breaks(control(s′))⇒ [Fb ](e)(s,s′)
(a.5) returns(control(s′))⇒ [Fr ](e)(s,s′)
(a.6) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

We proceed by case distinction:

• Case [E ](s) = TRUE: from the case condition, the second premise and the
definition of ', we know

(5) [F0 ](e)(s,s′)

From the case condition and (4), we know

(6) [C ](s,s′)

From the first premise, we know
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(7)
[now.executes ](e)(s,s′)∧ [C ](s,s′)⇒

[ [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

](e)(s,s′)

From (2), (6), and (7), we know

(8) [ [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

](e)(s,s′)

From (5), (8), and the definitions of [ ] and [ ], we know (a.1), (a.2),
(a.3), (a.4), (a.5), and (a.6).

• Case [E ](s) 6= TRUE: from the case condition, the second premise and the
definition of ', we know

(9) ¬[F0 ](e)(s,s′)

From the case condition and (4), we know

(10) s′ = s

From (9) and (10), we know (a.1). From (10) and (REE), we know (a.2).
From (2), (10), and the definition of [ ], we know

(11) executes(control(s′))

From (11) and Lemma “State Control Predicates”, we know (a.3), (a.4),
(a.5), and (a.6). ¤

5.3.11 Two-Sided Conditional

C1 : [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}
I1,...,In

C2 : [F2 ]Fc2,Fb2,Fr2,{L1,...,Lo}
I1,...,In

E ' F0
if (E) C1 elseC2 :

[IF F0 THEN F1

ELSE F2 ]Fc1 OR Fc2,Fb1 OR Fb2,Fr1 OR Fr2,{K1,...,Km,L1,...,Lo}
I1,...,In

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s′)∧ [if (E)C1 elseC2 ](s,s′)⇒
[ [IF F0 THEN F1

ELSE F2 ]Fc1 OR Fc2,Fb1 OR Fb2,Fr1 OR Fr2,{K1,...,Km,L1,...,Lo}
I1,...,In

](e)(s,s′)

We assume
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(2) [now.executes ](e)(s,s′)
(3) [if (E)C1 else C2 ](s,s′)

i.e. by the definition of [ ]

(4) IF [E ](s) = TRUE THEN [C1 ](s,s′) ELSE [C2 ](s,s′)

By the definitions of [ ] and [ ], it suffices to show

(a.1) IF [F0 ](e)(s,s′) THEN [F1 ](e)(s,s′) ELSE [F2 ](e)(s,s′)
(a.2) s = s′ EXCEPT I1, . . . , In

(a.3) continues(control(s′))⇒ [Fc1 OR Fc2 ](e)(s,s′)
(a.4) breaks(control(s′))⇒ [Fb1 OR Fb2 ](e)(s,s′)
(a.5) returns(control(s′))⇒ [Fr1 OR Fr2 ](e)(s,s′)
(a.6) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km,L1, . . . ,Lo}

We proceed by case distinction:

• Case [E ](s) = TRUE: from the case condition, the third premise and the
definition of ', we know

(5) [F0 ](e)(s,s′)

From the case condition and (4), we know

(6) [C1 ](s,s′)

From the first premise, we know

(7)
[now.executes ](e)(s,s′)∧ [C1 ](s,s′)⇒

[ [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}
I1,...,In

](e)(s,s′)

From (2), (6), and (7), we know

(8) [ [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}
I1,...,In

](e)(s,s′)

i.e. from the definitions of [ ] and [ ] ,

(9) [F1 ](e)(s,s′)
(10) s = s′ EXCEPT I1, . . . , In
(11) continues(control(s′))⇒ [Fc1 ](e)(s,s′)
(12) breaks(control(s′))⇒ [Fb1 ](e)(s,s′)
(13) returns(control(s′))⇒ [Fr1 ](e)(s,s′)
(14) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}
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From (5) and (9), we know (a.1). From (10), we know (a.2). From (11) and
the definition of [ ], we know (a.3). From (12) and the definition of [ ],
we know (a.4). From (13) and the definition of [ ], we know (a.5). From
(14) and the definition of [ ], we know (a.6).

• Case [E ](s) 6= TRUE: from the case condition, the third premise and the
definition of ', we know

(15) ¬[F0 ](e)(s,s′)

From the case condition and (4), we know

(16) [C2 ](s,s′)

From the second premise, we know

(17)
[now.executes ](e)(s,s′)∧ [C2 ](s,s′)⇒

[ [F2 ]Fc2,Fb2,Fr2,{L1,...,Lo}
I1,...,In

](e)(s,s′)

From (2), (16), and (17), we know

(18) [ [F2 ]Fc2,Fb2,Fr2,{L1,...,Lo}
I1,...,In

](e)(s,s′)

i.e. from the definitions of [ ] and [ ] ,

(19) [F2 ](e)(s,s′)
(20) s = s′ EXCEPT I1, . . . , In
(21) continues(control(s′))⇒ [Fc2 ](e)(s,s′)
(22) breaks(control(s′))⇒ [Fb2 ](e)(s,s′)
(23) returns(control(s′))⇒ [Fr2 ](e)(s,s′)
(24) throws(control(s′))⇒ key(control(s′)) ∈ {L1, . . . ,Lo}

From (15) and (19), we know (a.1). From (20), we know (a.2). From (21)
and the definition of [ ], we know (a.3). From (22) and the definition of
[ ], we know (a.4). From (23) and the definition of [ ], we know (a.5).
From (24) and the definition of [ ], we know (a.6). ¤

5.3.12 Continue Loop

continue : [next.continues ]TRUE,FALSE,FALSE, /0

Soundness Proof We have to show

(a)
[now.executes ](e)(s,s′)∧ [continue ](s,s′)⇒

[ [next.continues ]TRUE,FALSE,FALSE, /0 ](e)(s,s′)
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We assume

(2) [now.executes ](e)(s,s′)
(3) [continue ](s,s′)

By the definitions of [ ] and [ ], it suffices to show

(a.1) continues(control(s′))
(a.2) s = s′ EXCEPT

(a.3) continues(control(s′))⇒ TRUE

(a.4) breaks(control(s′))⇒ FALSE

(a.5) returns(control(s′))⇒ FALSE

(a.6) throws(control(s′))⇒ key(control(s′)) ∈ /0

From (3) and the definition of [ ], we know

(4) s′ = continue(s)

From (4) and (CD1), we know (a.1). From (4), (NEQ), and (CD2), we know (a.2).
From (a.1) and Lemma “State Control Predicates”, we know (a.3), (a.4), (a.5), and
(a.6). ¤

5.3.13 Break Loop

break : [next.breaks ]FALSE,TRUE,FALSE, /0

Soundness Proof We have to show

(a)
[now.executes ](e)(s,s′)∧ [break ](s,s′)⇒

[ [next.breaks ]FALSE,TRUE,FALSE, /0 ](e)(s,s′)

We assume

(2) [now.executes ](e)(s,s′)
(3) [break ](s,s′)

By the definitions of [ ] and [ ], it suffices to show

(a.1) breaks(control(s′))
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(a.2) s = s′ EXCEPT

(a.3) continues(control(s′))⇒ FALSE

(a.4) breaks(control(s′))⇒ TRUE

(a.5) returns(control(s′))⇒ FALSE

(a.6) throws(control(s′))⇒ key(control(s′)) ∈ /0

From (3) and the definition of [ ], we know

(4) s′ = break(s)

From (4) and (CD1), we know (a.1). From (4), (NEQ), and (CD2), we know (a.2).
From (a.1) and Lemma “State Control Predicates”, we know (a.3), (a.4), (a.5), and
(a.6). ¤

5.3.14 Return Result

T ' E
return E :

[next.returns
AND next.value=T ]FALSE,FALSE,TRUE, /0

Soundness Proof We have to show

(a)
[now.executes ](e)(s,s′)∧ [return E ](s,s′)⇒
[ [next.returns

AND next.value=T ]FALSE,FALSE,TRUE, /0 ](e)(s,s′)

We assume

(2) [now.executes ](e)(s,s′)
(3) [return E ](s,s′)

By the definitions of [ ] and [ ], it suffices to show

(a.1) returns(control(s′))
(a.2) value(control(s′)) = [T ](e)(s,s′)
(a.3) s = s′ EXCEPT

(a.4) continues(control(s′))⇒ FALSE

(a.5) breaks(control(s′))⇒ FALSE



5.3 Verifying Programs with Interruptions 187

(a.6) returns(control(s′))⇒ TRUE

(a.7) throws(control(s′))⇒ key(control(s′)) ∈ /0

From (3) and the definition of [ ], we know

(4) s′ = return(s, [E ](s))

From (4) and (CD1), we know (a.1) and also

(5) value(control(s′)) = [E ](s)

From (5), the premise, and the definition of ', we know (a.2). From (4), (NEQ),
and (CD2), we know (a.3). From (a.1) and Lemma “State Control Predicates”, we
know (a.4), (a.5), (a.6), and (a.7). ¤

5.3.15 Throw Exception

T ' E
throw I E :

[next.throws I
AND next.value=T ]FALSE,FALSE,FALSE,{I}

Soundness Proof We have to show

(a)
[now.executes ](e)(s,s′)∧ [throw I E ](s,s′)⇒
[ [next.throws I

AND next.value=T ]FALSE,FALSE,FALSE,{I} ](e)(s,s′)

We assume

(2) [now.executes ](e)(s,s′)
(3) [throw I E ](s,s′)

By the definitions of [ ] and [ ], it suffices to show

(a.1) throws(control(s′))
(a.2) key(control(s′)) = I

(a.3) value(control(s′)) = [T ](e)(s,s′)
(a.4) s = s′ EXCEPT

(a.5) continues(control(s′))⇒ FALSE
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(a.6) breaks(control(s′))⇒ FALSE

(a.7) returns(control(s′))⇒ FALSE

(a.8) throws(control(s′))⇒ key(control(s′)) ∈ {I}
From (3) and the definition of [ ], we know

(4) s′ = throw(s, I, [E ](s))

From (4) and (CD1), we know (a.1), (a.2), (a.8), and also

(5) value(control(s′)) = [E ](s)

From (5), the premise, and the definition of ', we know (a.3). From (4), (NEQ),
and (CD2), we know (a.4). From (a.1) and Lemma “State Control Predicates”, we
know (a.5), (a.6), and (a.7). ¤

5.3.16 Catch Exception

C1 : [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}
I1,...,In

C2 : [F2 ]Fc2,Fb2,Fr2,{L1,...,Lo}
I1,...,In

$I1, . . . ,$In,#Is do not occur in F1 and F2
Ia 6= Ib
{Ia, Ib}∩{I1, . . . , In}= /0
Is 6= IT
$Ia,$Ib,#It do not occur in F2
tryC1 catch(Ik Iv)C2 :

[EXISTS $I1, . . . ,$In: EXSTATE #Is:
F1[#Is/next][$I1/I1’, . . . ,$In/In’] AND
IF #Is.throws Ik THEN

EXISTS $Ia,$Ib: EXSTATE #It:
$Ia = #Is.value AND #It.executes AND
F2[#It/now][$Ia/Iv][$I1/I1, . . . ,$In/In][$Ib/Iv’]

ELSE
I1’=$I1 AND . . . AND In’=$In AND next==#Is

]Fc1 OR Fc2,Fb1 OR Fb2,Fr1 OR Fr2,({K1,...,Km}\{Ik})∪{L1,...,Lo}
I1,...,In

This rule is dual (in a generalized form) to the rule for command sequences: the
second command C2 is executed only if the first command C1 raises an exception
of the kind Ik specified in the catch clause: the execution of C2 then takes place
in a context where the local variable Iv is bound to the exception value.

For instance, the command
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try
if (x=0) throw DivByZero y else y=y/x

catch(DivByZero e)
z=z+e

is specified by [F ]FALSE,FALSE,FALSE, /0}
y,z where F is the formula

EXISTS $y, $z: EXSTATE $s:
IF x=0 THEN

$y=y AND $z=z AND
#s.throws DivByZero AND #s.value = y

ELSE
$y=y/x AND $z=z AND #s.executes

AND
IF #s.throws DivByZero THEN

EXISTS $a,$b: EXSTATE #t:
$a=#s.value AND #t.executes AND
y’=$y AND z’=$z+$a AND next.executes

ELSE
y’=$y AND z’=$z AND next==#s

which can be simplified to

IF x=0 THEN
y’=y AND z’=z+y AND next.executes

ELSE
y’=y/x AND z’=z AND next.executes

which succinctly describes the overall effect of the program snippet.

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s′)∧ [tryC1 catch(Ik Iv)C2 ](s,s′)⇒
[tryC1 catch(Ik Iv)C2 :

[EXISTS $I1, . . . ,$In: EXSTATE #Is:
F1[#Is/next][$I1/I1’, . . . ,$In/In’] AND
IF #Is.throws Ik THEN

EXISTS $Ia,$Ib: EXSTATE #It:
$Ia = #Is.value AND #It.executes AND
F2[#It/now][$Ia/Iv][$I1/I1, . . . ,$In/In][$Ib/Iv’]

ELSE
I1’=$I1 AND . . . AND In’=$In AND next==#Is

]Fc1 OR Fc2,Fb1 OR Fb2,Fr1 OR Fr2,({K1,...,Km}\{Ik})∪{L1,...,Lo}
I1,...,In

](e)(s,s′)
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We assume

(2) [now.executes ](e)(s,s′)
(3) [tryC1 catch(Ik Iv)C2 ](s,s′)

i.e. by the definition of [ ] for some s0,s1,s2 ∈ State

(4) executes(control(s))

(5) [C1 ](s,s0)

(6)

IF throws(control(s0))∧ key(control(s0)) = Ik THEN

s1 = write(execute(s0), Iv,value(control(s0))) ∧
[C2 ](s1,s2) ∧
s′ = write(s2, Iv,read(s0, Iv))

ELSE s′ = s0

By the definitions of [ ] and [ ], it suffices to show

(a.1)

∃v1, . . . ,vn ∈ Value,cs ∈ Control :
LET

e0 = e[ Is 7→ cs ]c,
e1 = e0[ I1 7→ v1, . . . , In 7→ vn ]

IN

[F1[#Is/next][$I1/I1’, . . . ,$In/In’] ](e1)(s,s′) ∧
IF throws(e1(Is))∧ key(e1(Is)) = Ik) THEN

[EXISTS $Ia,$Ib: EXSTATE #It:
$Ia = #Is.value AND #It.executes AND
F2[#It/now][$Ia/Iv][$I1/I1, . . . ,$In/In][$Ib/Iv’] ]

(e1)(s,s′)
ELSE

read(s′, I1) = e1(I1)∧ . . .∧ read(s′, In) = e1(In) ∧
control(s′) = e1(Is)

(a.2) s = s′ EXCEPT I1, . . . , In

(a.3) continues(control(s′))⇒ [Fc1 OR Fc2 ](e)(s,s′)
(a.4) breaks(control(s′))⇒ [Fb1 OR Fb2 ](e)(s,s′)
(a.5) returns(control(s′))⇒ [Fr1 OR Fr2 ](e)(s,s′)

(a.6)
throws(control(s′))⇒ key(control(s′)) ∈
{K1, . . . ,Km}\{Ik})∪{L1, . . . ,Lo}

We define
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(7) e0 := e[ Is 7→ control(s0) ]c
(8) e1 := e0[ I1 7→ read(s0, I1), . . . , In 7→ read(s0, In) ]

To show (a.1), it suffices to show

(a.1.a.1) [F1[#Is/next][$I1/I1’, . . . ,$In/In’] ](e1)(s,s′)

(a.1.a.2)

IF throws(e1(Is))∧ key(e1(Is)) = Ik) THEN

[EXISTS $Ia,$Ib: EXSTATE #It:
$Ia = #Is.value AND #It.executes AND
F2[#It/now][$Ia/Iv][$I1/I1, . . . ,$In/In][$Ib/Iv’] ](e1)(s,s′)

ELSE

read(s′, I1) = e1(I1)∧ . . .∧ read(s′, In) = e1(In) ∧
control(s′) = e1(Is)

From the first two premises, we know

(9)
[now.executes ](e)(s,s0)∧ [C1 ](s,s0)⇒

[ [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}
I1,...,In

](e)(s,s0)

(10)
[now.executes ](e1)(s1,s2)∧ [C2 ](s1,s2)⇒

[ [F2 ]Fc2,Fb2,Fr2,{L1,...,Lo}
I1,...,In

](e1)(s1,s2)

From (2) and the definition of [ ], we know

(11) [now.executes ](e)(s,s0)

From (5), (9), and (11), we know

(12) [ [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}
I1,...,In

](e)(s,s0)

i.e. from the definitions of [ ] and [ ]

(13) [F1 ](e)(s,s0)

(14) s = s0 EXCEPT I1, . . . , In

(15) continues(control(s0))⇒ [Fc1 ](e)(s,s0)

(16) breaks(control(s0))⇒ [Fb1 ](e)(s,s0)

(17) returns(control(s0))⇒ [Fr1 ](e)(s,s0)

(18) throws(control(s0))⇒ key(control(s0)) ∈ {K1, . . . ,Km}

From the third, sixth, and seventh premise, we know
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(19) $I1, . . . ,$In,#Is do not occur in F1 and F2

(19a) Is 6= IT

(20) $Ia,$Ib,#It do not occur in F2

From (7), (13), (19), and (CNEF2), we know

(21) [F1[#Is/next] ](e0)(s,s0)

We proceed by case distinction:

• Case throws(control(s0))∧ key(control(s0)) = Ik: from the case condition
and (6), we know

(22) s1 = write(execute(s0), Iv,value(control(s0)))
(23) [C2 ](s1,s2)
(24) s′ = write(s2, Iv,read(s0, Iv))

From (22), (CD1), and (CW), we know

(25) executes(control(s1))

From (22), (CD2), (AVE), and (WS), we know

(26) s1 = s0 EXCEPT Iv

From (22), (RW1), and (CR), we know

(27) read(s1, Iv) = value(control(s0))

From (24) and (RW1), we know

(28) read(s′, Iv) = read(s0, Iv)

From (24) and (WS), we know

(29) s′ = s2 EXCEPT Iv

From (25) and the definition of [ ], we know

(30) [now.executes ](e)(s1,s2)

From (10), (23), and (30), we know

(31) [ [F2 ]Fc2,Fb2,Fr2,{L1,...,Lo}
I1,...,In

](e1)(s1,s2)

i.e. from the definitions of [ ] and [ ]

(32) [F2 ](e1)(s1,s2)
(33) s1 = s2 EXCEPT I1, . . . , In
(34) continues(control(s2))⇒ [Fc2 ](e1)(s1,s2)
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(35) breaks(control(s2))⇒ [Fb2 ](e1)(s1,s2)
(36) returns(control(s2))⇒ [Fr2 ](e1)(s1,s2)
(37) throws(control(s2))⇒ key(control(s2)) ∈ {L1, . . . ,Lo}

From (26), (29), (33), (AVE), and (TRE), we know

(38) s′ = s0 EXCEPT I1, . . . , In, Iv

From (28), (38), and (RVE), we know

(39) s′ = s0 EXCEPT I1, . . . , In

From (7), (19), (21), (39), (CNEF0), and (PMVF2’), we know (a.1.a.1).

From the case condition, (7), and (8), we know

(40) throws(e1(Is))∧ key(e1(Is)) = Ik

From (40), to show (a.1.a.2), it suffices to show

(a.1.a.2.a)
[EXISTS $Ia,$Ib: EXSTATE #It:

$Ia = #Is.value AND #It.executes AND
F2[#It/now][$Ia/Iv][$I1/I1, . . . ,$In/In][$Ib/Iv’] ](e1)(s,s′)

We define

(41) e2 := e1[ It 7→ control(s1) ]c
(42) e3 := e2[ Ia 7→ read(s1, Iv) ]
(43) e4 := e3[ Ib 7→ read(s2, Iv) ]

To show (a.1.a.2.a), it suffices to show

(a.1.a.2.a.1) e4(Ia) = value(e4(Is))
(a.1.a.2.a.2) executes(e4(It))
(a.1.a.2.a.3) [F2[#It/now][$Ia/Iv][$I1/I1, . . . ,$In/In][$Ib/Iv’] ](e4)(s,s′)

From (7), (8), (19a), (27), (41), (42), and (43), we know (a.1.a.2.a.1).

From (25), (41), (42), and (43), we know (a.1.a.2.a.2).

From (19), (32), (41), and (CNOF2), we know

(44) [F2[#It/now] ](e2)(s1,s2)

From (20), (26), (42), (44), (CNOF0) and (PMVF1’), we know

(45) [F2[#It/now][$Ia/Iv] ](e3)(s0,s2)

From (8), (41), (42), and the fifth premise we know

(46) e3 = e3[ I1 7→ read(s0, I1), . . . , In 7→ read(s0, In) ]
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From (14), (19), (20), (45), (46), the fifth premise, (CNOF0), and finally
(PMVF1’), we know

(47) [F2[#It/now][$Ia/Iv][$I1/I1, . . . ,$In/In] ](e3)(s,s2)

From (19), (20), (29), (43), (47), the fourth premise, (CNEF0), and finally
(PMVF2’), we know (a.1.a.2.a.3).

From (14), (39), and (TRE), we know (a.2).

From (24) and (CW), we know

(48) control(s′) = control(s2)

From (34), (48), the second premise, Lemma “Constant Formulas”, and
the definition of [ ], we know (a.3). From (35), (48), the second premise,
Lemma “Constant Formulas”, and the definition of [ ], we know (a.4).
From (36), (48), the second premise, Lemma “Constant Formulas”, and the
definition of [ ], we know (a.5). From (37), (48) and the definition of [ ],
we know (a.6).

• Case ¬(throws(control(s0))∧ key(control(s0)) = Ik): from the case condi-
tion and (6), we know

(49) s′ = s0

and thus from (REE)

(50) s0 = s′ EXCEPT I1, . . . , In

From (8), (19), (21), (50), (CNEF0), and (PMVF2’), we know (a.1.a.1).

From the case condition, (7), and (8), we know

(33) ¬(throws(control(e1(Is)))∧ key(control(e1(Is))) = Ik)

From (33), to show (a.1.a.2), it suffices to show

(a.1.a.2.a)
read(s′, I1) = e1(I1)∧ . . .∧ read(s′, In) = e1(In) ∧
control(s′) = e1(Is)

From (7), (8) and (49), we have (a.1.a.2.a).

From (14), (50), and (TRE), we know (a.2). From (15), (49), and the defi-
nition of [ ], we know (a.3). From (16), (49), and the definition of [ ], we
know (a.4). From (17), (49), and the definition of [ ], we know (a.5). From
the case condition, (18), (49), and the definition of [ ], we know (a.6). ¤
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5.4 Loops and Interruptions

Taking into account control flow interruptions, the semantics of the command
while(E) C is redefined as shown in Figure 5.11 by making use of two state
sequences t(0) = s, t(1), . . . , t(k) and u(0) = s,u(1), . . . ,u(k):

• t(i) is the state before the (i + 1)-th execution of the loop body C, u(i + 1)
is the state after that execution.

• If u(i+1) is “continuing” or “breaking” then t(i+1) is a variant of u(i+1)
which is set to “executing”. Otherwise t(i+1) is identical to u(i+1).

• If u(i) is “breaking”, or “returning”, or “throwing”, then i is k, i.e. the loop
is terminated after that state; (only) in that case the loop condition E may
be true on t(k).

As a consequence of these rules, a loop can be terminated in a poststate that is
“executing” (if the execution of the loop body has yielded a state that is “break-
ing” or makes the loop condition E “false”) or “returning” or “throwing” (if the
execution of the loop body has yielded such a state); it cannot be terminated in a
“continuing” or a “breaking” state.

Furthermore, the notion of an invariant is generalized to take into account that
a specification formula may refer via now and next to the control data of the
prestate and of the poststate, respectively. The basic idea is that an invariant de-
scribes the relationship between the initial state u(0) = s and the state u(k) imme-
diately after the k-th execution of the loop body (please note that this is different
from the state t(k) immediately before the k +1-th iteration):

• A state variable #Is is introduced to capture the control data of state u(k)
whose program variables carry the values denoted by the mathematical vari-
ables $I1, . . . ,$In (substitutions of occurrences of the poststate variables
I1’, . . . , In’ in the formula by the mathematical variables are mirrored by
a substitution of next by #Is); to allow another loop iteration, #Is must be
continuing or executing.

• A state variable #It is introduced to capture the control data of state t(k)
where t(k) must be “executing” to allow another loop iteration (both u(k)
and t(k)) hold the same values in the program variables which are denoted
by I1’, . . . , In’: #Is and #It are related in that, if #Is is “executing” or “con-
tinuing”, then #It is “executing”, otherwise #It equals #Is.
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Verification Calculus with Interruptions and Loops
A variation of the language of Figure 5.3.

Semantic Operations

finiteExecution :
P(N×State∞×State∞×State×StateFunction×StateRelation)
finiteExecution(k, t,u,s,E,C)⇔

t(0) = s∧u(0) = s ∧
∀i ∈ Nk :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
E(t(i)) = TRUE∧C(t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

Valuation Function

[while (E) C ](s,s′)⇔
∃k ∈ N, t,u ∈ State∞ :

finiteExecution(k, t,u,s, [E ], [C ])∧
([E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k))))) ∧
t(k) = s′

Definitions

Invariant(G,H,F)I1,...,In ≡
G has no free (mathematical or state) variables ∧
$I1, . . . ,$In,#Is,#It do not occur in G,H, and F ∧
∀e ∈ ValueEnv,s,s′ ∈ Store :

[FORALL $I1, . . . ,$In: ALLSTATE #Is,#It:
(G[#Is/next][$I1/I1’, . . . ,$In/In’]

AND (#Is.executes OR #Is.continues)
AND #It.executes
AND H[#It/now][$I1/I1, . . . ,$In/In]
AND F [#It/now][$I1/I1, . . . ,$In/In])

=> G) ](e)(s,s′)

Figure 5.11: The Language with Interruptions and Loops (Part 1 of 3)
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Basic Rules

C : [F ]Fc,Fb,Fr;K1,...,Km
I1,...,In

while (E)C :
[!next.continues AND

!next.breaks ]FALSE,FALSE,Fr;K1,...,Km
I1,...,In

C : [F ]Fc,FALSE,Fr;K1,...,Km
I1,...,In

E ' H
while (E)C :

[!next.continues AND !next.breaks AND
(next.executes =>

!H[next/now][I1’/I1, . . . , In’/In])
]FALSE,FALSE,Fr;K1,...,Km
I1,...,In

Figure 5.12: The Language with Interruptions and Loops (Part 2 of 3)

Figures 5.12 and 5.13 show that the two verification rules for loops (with and
without invariant) now come in two flavors:

• The general form takes into account that the loop by may terminated by an
execution of the break statement in the loop body C (rather than by the
loop condition E becoming “false”); we thus cannot say anything about the
value of E in the poststate of the loop.

• A more special form can be applied if the loop body C does not involve
a break statement (as indicated by the specification of C); in this case,
if the loop yields an “executing” poststate (rather than a “returning” or a
“throwing” one), the loop condition E (respectively its mathematical coun-
terpart H) does not hold in that state.

The proofs of the soundness of these rules follow the basic structure of the sound-
ness proofs for programs without control flow interruptions; nevertheless, they
become substantially more complicated in detail.
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Invariant Rules

C : [F ]Fc,Fb,Fr;K1,...,Km
I1,...,In

Invariant(G,H,F)I1,...,In

#Is does not occur in G
while (E)C :

[!next.continues AND !next.breaks AND
(G[now/next][I1/I1’, . . . , In/In’] =>

EXISTS #Is : G[#Is/next] AND
IF #Is.continues OR #Is.breaks

THEN next.executes
ELSE next == #Is)

]FALSE,FALSE,Fr;K1,...,Km
I1,...,In

C : [F ]Fc,FALSE,Fr;K1,...,Km
I1,...,In

E ' H
Invariant(G,H,F)I1,...,In

#Is does not occur in G
while (E)C :

[!next.continues AND !next.breaks AND
(next.executes =>

!H[next/now][I1’/I1, . . . , In’/In]) AND
(G[now/next][I1/I1’, . . . , In/In’] =>

EXISTS #Is : G[#Is/next] AND
IF #Is.continues OR #Is.breaks

THEN next.executes
ELSE next == #Is)

]FALSE,FALSE,Fr;K1,...,Km
I1,...,In

Figure 5.13: The Language with Interruptions and Loops (Part 3 of 3)



5.4 Loops and Interruptions 199

5.4.1 Basic Rule (With Breaks)

C : [F ]Fc,Fb,Fr;K1,...,Km
I1,...,In

while (E)C :
[!next.continues

AND !next.breaks ]FALSE,FALSE,Fr;K1,...,Km
I1,...,In

Soundness Proof We have to show

(a)
[now.executes ](e)(s,s′)∧ [while (E)C ](s,s′)⇒
[ [!next.continues

AND !next.breaks ]FALSE,FALSE,Fr;K1,...,Km
I1,...,In

](e)(s,s′)

We assume

(2) [now.executes ](e)(s,s′)
(3) [while (E)C ](s,s′)

By the definitions of [ ] and [ ], it suffices to show

(a.1) ¬continues(control(s′))
(a.2) ¬breaks(control(s′))
(a.3) s = s′ EXCEPT I1, . . . , In

(a.4) continues(control(s′))⇒ FALSE

(a.5) breaks(control(s′))⇒ FALSE

(a.6) returns(control(s′))⇒ [Fr ](e)(s,s′)
(a.7) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

From (2), (3), and the definition of [ ], we know for some k ∈ N, t,u ∈ State∞

(4) executes(control(s))

(5) t(0) = s

(6) u(0) = s

(7)

∀i ∈ Nk :
¬breaks(control(u(i))))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)
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(8)
[E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k)))∨ continues(control(u(k))))

(9) t(k) = s′

From the premise and the definition of [ ], we know

(10)
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C ](s,s′)⇒
[ [F ]Fc,Fb,Fr;K1,...,Km

I1,...,In
](e)(s,s′)

From (7), (10), and the definition of [ ], we know

(11)

∀i ∈ Nk :
¬breaks(control(u(i))))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [F ](e)(t(i),u(i)+1) ∧
t(i) = u(i+1) EXCEPT I1, . . . , In ∧
(continues(control(u(i+1)))⇒ [Fc ](e)(t(i),u(i+1))) ∧
(breaks(control(u(i+1)))⇒ [Fb ](e)(t(i),u(i+1))) ∧
(returns(control(u(i+1)))⇒ [Fr ](e)(t(i),u(i+1))) ∧
(throws(control(u(i+1)))⇒

key(control(u(i+1))) ∈ {K1, . . . ,Km}) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (11) and Lemma “State Control Predicates”, we can conclude

(12)

k > 0⇒
t(k) = execute(u(k)) ∨
(executes(control(t(k))) ∨
(returns(control(t(k))∧ [Fr ](e)(t(k−1), t(k)))) ∨
(throws(control(t(k)))∧ key(control(t(k)))) ∈ {K1, . . . ,Km}))

From (4) and (5), we know

(13) executes(control(t(0)))

From (9), (12), (13), (CD1), Lemma “Constant Formulas”, and Lemma “State
Control Predicates”, we know (a.1), (a.2), (a.4), (a.5), (a.6), and (a.7).

To prove (a.3), we proceed by case distinction:

• Case k = 0: from the case condition, (5), (9), and (REE), we have (a.3).
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• Case k > 0: from (11), we can conclude

(14)
∀i ∈ Nk :

t(i) = u(i+1) EXCEPT I1, . . . , In ∧
(t(i+1) = u(i+1)∨ t(i+1) = execute(u(i+1)))

From (14), (CD2), (NEQ), and (AVE), we know

(15) ∀i ∈ Nk : t(i) = t(i+1) EXCEPT I1, . . . , In

From (5), (9), (15), and (TRE), we know (a.3). ¤

5.4.2 Basic Rule (Without Breaks)

C : [F ]Fc,FALSE,Fr;K1,...,Km
I1,...,In

E ' H
while (E)C :

[!next.continues AND !next.breaks AND
(next.executes =>

!H[next/now][I1’/I1, . . . , In’/In])
]FALSE,FALSE,Fr;K1,...,Km
I1,...,In

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s′)∧ [while (E)C ](s,s′)⇒
[ [!next.continues AND !next.breaks AND

(next.executes =>
!H[next/now][I1’/I1, . . . , In’/In])

]FALSE,FALSE,Fr;K1,...,Km
I1,...,In

](e)(s,s′)

We assume

(2) [now.executes ](e)(s,s′)
(3) [while (E)C ](s,s′)

By the definitions of [ ] and [ ], it suffices to show

(a.1) ¬continues(control(s′))
(a.2) ¬breaks(control(s′))

(a.3)
executes(control(s′))⇒
¬[H[next/now][I1’/I1, . . . , In’/In] ](e)(s,s′)
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(a.4) s = s′ EXCEPT I1, . . . , In

(a.5) continues(control(s′))⇒ FALSE

(a.6) breaks(control(s′))⇒ FALSE

(a.7) returns(control(s′))⇒ [Fr ](e)(s,s′)
(a.8) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

The proofs of all but (a.3) proceed as shown in the proof of the basic rule with
breaks. To show (a.3), we assume

(4) executes(control(s′))

and show

(a.3.a) ¬[H[next/now][I1’/I1, . . . , In’/In] ](e)(s,s′)

From (2), (3), and the definition of [ ], we know for some k ∈ N, t,u ∈ State∞

(5) executes(control(s))

(6) t(0) = s

(7) u(0) = s

(8)

∀i ∈ Nk :
¬breaks(control(u(i))))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

(9)
[E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k)))∨ continues(control(u(k))))

(10) t(k) = s′

From the premises and the definition of [ ], we also know

(11)
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C ](s,s′)⇒
[ [F ]Fc,FALSE,Fr;K1,...,Km

I1,...,In
](e)(s,s′)

(12) E ' H

From (8), (11), and the definition of [ ], we know
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(13)

∀i ∈ Nk :
¬breaks(control(u(i))))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [F ](e)(t(i),u(i+1)) ∧
t(i) = u(i+1) EXCEPT I1, . . . , In ∧
(continues(control(u(i+1)))⇒ [Fc ](e)(t(i),u(i+1))) ∧
¬breaks(control(u(i+1))) ∧
(returns(control(u(i+1)))⇒ [Fr ](e)(t(i),u(i+1))) ∧
(throws(control(u(i+1)))⇒

key(control(u(i+1))) ∈ {K1, . . . ,Km}) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

We now show as an intermediate goal

(a.3.b) [E ](t(k)) 6= TRUE

From (9), it suffices to assume

(14) ¬executes(control(u(k)))

(15) ¬continues(control(u(k))))

and show a contradiction.

From (5) and (7), we know

(16) executes(control(u(0)))

From (16) and Lemma “State Control Predicates”, we know

(17) ¬breaks(control(u(0)))

(18) ¬returns(control(u(0)))

(19) ¬throws(control(u(0)))

From (13) and (17), we can conclude

(20) ¬breaks(control(u(k)))

From (4) and (10), we know

(21) executes(control(t(k))

From (13), (18), (19), and (21), we know
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(22) ¬returns(control(u(k)))

(23) ¬throws(control(u(k)))

But (14), (15), (20), (22), and (23) contradicts Lemma “State Control Predicates”.

We now proceed with the proof of (a.3.a). From (12), (a.3.b), and the definition
of ', we know

(24) ¬[H ](e)(s′,s′)

From (24), (CD0), and (PNNF1), we know

(25) ¬[H[next/now] ](e)(s′,s′)

We define

(26) s′′ := writes(s′, I1,read(s′, I1), . . . ,s, In,read(s′, In))

From (26) and (WSE), we know

(27) s′′ = s′ EXCEPT I1, . . . , In

From DifferentVariables, (26), and (RWE), we know

(28) read(s′′, I1) = read(s′, I1)∧ . . .read(s′′, In) = read(s′, In)

From (27), (28), (RVE), and (NEQ), we know

(29) s′′ EQUALS s′

From (26) and (CWE), we know

(30) control(s′′) = control(s′)

From (25), (29), (30), (REE), and (ESF’), we know

(31) ¬[H[next/now] ](e)(s′′,s′)

From (26), (31), and (PPVF1’), we know

(32) ¬[H[next/now][I1’/I1, . . . , In’/In] ](e)(s′,s′)

From (32), (CNOF1), and (PVFNO), we know

(33) ¬[H[next/now][I1’/I1, . . . , In’/In] ](e)((store(s′),control(s)),s′)

From (CD3), (NEQ), and (AVE), we know

(34) s′ = (store(s′),control(s)) EXCEPT I1, . . . , In

From (a.4), (34), and (TRE), we know

(35) s = (store(s′),control(s)) EXCEPT I1, . . . , In

From (29), (35), (PPVG0’), and (PVF3’), we have (a.3.a). ¤
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5.4.3 Invariant Rule (With Breaks)

C : [F ]Fc,Fb,Fr;K1,...,Km
I1,...,In

Invariant(G,H,F)I1,...,In

#Is does not occur in G
while (E)C :

[!next.continues AND !next.breaks AND
(G[now/next][I1/I1’, . . . , In/In’] =>

EXISTS #Is : G[#Is/next] AND
IF #Is.continues OR #Is.breaks

THEN next.executes
ELSE next == #Is)

]FALSE,FALSE,Fr;K1,...,Km
I1,...,In

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s′)∧ [while (E)C ](s,s′)⇒
[ [!next.continues AND !next.breaks AND

(G[now/next][I1/I1’, . . . , In/In’] =>
EXISTS #Is : G[#Is/next] AND

IF #Is.continues OR #Is.breaks
THEN next.executes
ELSE next == #Is)

]FALSE,FALSE,Fr;K1,...,Km
I1,...,In

](e)(s,s′)

We assume

(2) [now.executes ](e)(s,s′)
(3) [while (E)C ](s,s′)

By the definitions of [ ] and [ ], it suffices to show

(a.1) ¬continues(control(s′))
(a.2) ¬breaks(control(s′))

(a.3)

[G[now/next][I1/I1’, . . . , In/In’] ](e)(s,s′)⇒
[EXISTS #Is : G[#Is/next] AND

IF #Is.continues OR #Is.breaks
THEN next.executes
ELSE next == #Is) ](e)(s,s′)

(a.4) s = s′ EXCEPT I1, . . . , In
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(a.5) continues(control(s′))⇒ FALSE

(a.6) breaks(control(s′))⇒ FALSE

(a.7) returns(control(s′))⇒ [Fr ](e)(s,s′)
(a.8) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

The proofs of all parts except for (a.3) proceed as shown in the soundness proof
of the basic rule with breaks.

To show (a.3), we assume

(4) [G[now/next][I1/I1’, . . . , In/In’] ](e)(s,s′)

and show

(a.3.a)

[EXISTS #Is : G[#Is/next] AND
IF #Is.continues OR #Is.breaks

THEN next.executes
ELSE next == #Is) ](e)(s,s′)

From (2), (3), and the definition of [ ], we know for some k ∈ N, t,u ∈ State∞

(5) executes(control(s))

(6) t(0) = s

(7) u(0) = s

(8)

∀i ∈ Nk :
¬breaks(control(u(i)))) ∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

(9)
[E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k)))∨ continues(control(u(k))))

(10) t(k) = s′

From the premises and the definition of [ ], we know

(11)
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C ](s,s′)⇒
[ [F ]Fc,Fb,Fr;K1,...,Km

I1,...,In
](e)(s,s′)

(12) Invariant(G,H,F)I1,...,In
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(13) #Is does not occur in G

From (8), (11), and the definition of [ ], we know

(14)

∀i ∈ Nk :
¬breaks(control(u(i))))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [F ](e)(t(i),u(i+1)) ∧
t(i) = u(i+1) EXCEPT I1, . . . , In ∧
(continues(control(u(i+1)))⇒ [Fc ](e)(t(i),u(i+1))) ∧
(breaks(control(u(i+1)))⇒ [Fb ](e)(t(i),u(i+1))) ∧
(returns(control(u(i+1)))⇒ [Fr ](e)(t(i),u(i+1))) ∧
(throws(control(u(i+1)))⇒

key(control(u(i+1))) ∈ {K1, . . . ,Km}) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (14), we can conclude

(15)

∀i ∈ Nk :
[F ](e)(t(i),u(i+1)) ∧
t(i) = u(i+1) EXCEPT I1, . . . , In ∧
(t(i+1) = u(i+1)∨ t(i+1) = execute(u(i+1)))

From (6), (7), (15), (CD2), (NEQ), and (AVE), we know

(16) ∀i ∈ Nk : u(i) = u(i+1) EXCEPT I1, . . . , In

From (12) and the definition of Invariant, we know

(17) G has no free (mathematical or state) variables

(17a) $I1, . . . ,$In,#Is,#It do not occur in G,H, and F

(18)

∀e ∈ ValueEnv,s,s′ ∈ Store :
[FORALL $I1, . . . ,$In: ALLSTATE #Is,#It:

(G[#Is/next][$I1/I1’, . . . ,$In/In’]
AND (#Is.executes OR #Is.continues)
AND #It.executes
AND H[#It/now][$I1/I1, . . . ,$In/In]
AND F [#It/now][$I1/I1, . . . ,$In/In])

=> G) ](e)(s,s′)

We define
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(19) e0 := e[ Is 7→ control(u(k)) ]c

To show (a.3.a), from (19) and the definition of [ ], it suffices to show

(a.3.b.1) [G[#Is/next] ](e0)(s,s′)

(a.3.b.2)
IF continues(control(u(k)))∨breaks(control(u(k)))

THEN executes(control(s′))
ELSE control(s′) = control(u′)

From (10), (14), and (CD1), we know (a.3.b.2).

Assume we can show

(a.3.c) ∀i ∈ Nk+1 : [G ](e)(s,u(i))

From (a.3.c), we know

(20) [G ](e)(s,u(k))

From (13), (19), (20), the definition of Invariant, and (CNEF2), we know

(21) [G[#Is/next] ](e0)(s,u(k))

From (10) and (15), we know

(22) s′ = u(k)∨ s′ = execute(u(k))

If s′ = u(k), from (21) we know (a.3.b.1). Otherwise, from (22) we may assume

(23) s′ = execute(u(k))

From (21), (CNEF0), and (PVFNE), we know

(24) [G ][#Is/next](e0)(s,(store(u(k)),control(s′)))

From (23) and (CD3), we know

(25) s′ EQUALS u(k)

From (CD3), we know

(26) u(k) EQUALS (store(u(k)),control(s′))

From (25), (26), and (TRE), we know

(27) s′ EQUALS (store(u(k)),control(s′))

From (24), (27) and (ESF’), we know (a.3.c).

The proof of (a.3.c) proceeds by induction on i with bound k.
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Induction Base We show

(a.3.c.1) [G ](e)(s,u(0))

By (7), it suffices to show

(a.3.c.1.a) [G ](e)(s,s)

We define

(28) s′′ := writes(s′, I1,read(s, I1), . . . , In,read(s, In))

From (4), (28), and (PPVF1’), we know

(29) [G[now/next] ](e)(s,s′′)

From (29) and (PNNF2), we know

(30) [G ](e)(s,(store(s′′),control(s)))

From (CD3), we know

(31) s′′ EQUALS (store(s′′),control(s))

From (28) and (WSE), we know

(32) s′′ = s′ EXCEPT I1, . . . , In

From (a.4), (32), and (TRE), we know

(33) s′′ = s EXCEPT I1, . . . , In

From (28) and (RWE), we know

(34) read(s′′, I1) = read(s, I1)∧ . . .∧ read(s′′, In) = read(s, In)

From (33), (34), (RVE), and (NEQ), we know

(35) s′′ EQUALS s

From (31), (35), (NEQ), and (TRE), we know

(36) s EQUALS (store(s′′),control(s))

From (REE) and (NEQ), we know

(37) s EQUALS s

From (30), (36), (37), and (ESF’), we know (a.3.c.1.a).
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Induction Step Take arbitrary i ∈ Nk. We assume

(38) [G ](e)(s,u(i))

and show

(a.3.c.2) [G ](e)(s,u(i+1))

From (18) and the definition of [ ], we know

(39)

∀v1, . . . ,vn ∈ Value,cs,ct ∈ Control :
LET

e0 := e[ Is 7→ cs, It 7→ ct ]c[ I1 7→ v1, . . . , In 7→ vn ]
IN

[G[#Is/next][$I1/I1’, . . . ,$In/In’] ](e0)(s,u(i+1)) ∧
(executes(cs)∨ continues(cs)) ∧
executes(ct) ∧
[H[#It/now][$I1/I1, . . . ,$In/In] ](e0)(s,u(i+1)) ∧
[F [#It/now][$I1/I1, . . . ,$In/In] ](e0)(s,u(i+1)) ⇒

[G ](e0)(s,u(i+1))

We define

(40)
e0 := e[ Is 7→ control(u(i)) ]c
e1 := e0[ It 7→ control(t(i)) ]c
e2 := e1[ I1 7→ read(u(i), I1), . . . , In 7→ read(u(i), In) ]

To prove (a.3.c.2), by (17) and (MVF’), it suffices to prove

(a.3.c.2.a) [G ](e2)(s,u(i+1))

To prove (a.3.c.2.a), by (39), it suffices to prove

(a.3.c.2.a.1) [G[#Is/next][$I1/I1’, . . . ,$In/In’] ](e2)(s,u(i+1))

(a.3.c.2.a.2) executes(control(u(i)))∨ continues(control(u(i)))

(a.3.c.2.a.3) executes(control(t(i)))

(a.3.c.2.a.4) [H[#It/now][$I1/I1, . . . ,$In/In] ](e2)(s,u(i+1))

(a.3.c.2.a.5) [F [#It/now][$I1/I1, . . . ,$In/In] ](e2)(s,u(i+1))

From (13), (38), (40), and (CNEF2), we know

(41) [G[#Is/next] ](e0)(s,u(i))
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From (13), (40), (41), we also know

(42) [G[#Is/next] ](e1)(s,u(i))

From (16), we know

(43) u(i) = u(i+1) EXCEPT I1, . . . , In

From (17a), (40), (42), (43), (CNEF0), and (PMVF2’), we know (a.3.c.2.a.1).

To show (a.3.c.2.a.2), we make a case distinction:

• Case i = 0: from (5) and (7), we know (a.3.c.2.a.2).

• Case i > 0: from the case condition and (14), we know

(44) ¬breaks(control(u(i))

(45)
IF continues(control(u(i)))∨breaks(control(u(i)))

THEN t(i) = execute(u(i))
ELSE t(i) = u(i)

From (44) and (45), we know

(46)
IF continues(control(u(i)))

THEN t(i) = execute(u(i))
ELSE t(i) = u(i)

From (a.3.c.2.a.3) (shown below) and (46), we know (a.3.c.2.a.2).

From (14), we know (a.3.c.2.a.3).

From (8), (12), and the definition of ', we know

(47) [H ](e)(t(i),u(i+1))

(48) H does not have free (mathematical or state) variables

From (17a), (40), (47), and (CNOF2), we know

(49) [H[#It/now] ](e1)(t(i),u(i+1))

From (7), (16), and (TRE), we know

(50) s = u(i) EXCEPT I1, . . . , In

From (6), (7), and (14), we know
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(51) t(i) = u(i)∨ t(i) = execute(u(i))

From (51), (NEQ), (REE), and (CD2), we know

(52) t(i) EQUALS u(i)

From (50), (52), (NEQ), (AVE), and (TRE), we know

(53) s = t(i) EXCEPT I1, . . . , In

From (17a), (40), (49), (53), (CNOF0), and (PMVF1’), we know (a.3.c.2.a.4).

From (14), we know

(54) [F ](e)(t(i),u(i+1))

(55) t(i) = u(i+1) EXCEPT I1, . . . , In

(56) t(i+1) = u(i+1)∨ t(i+1) = execute(u(i+1))

From (17a), (40), (54), and (CNOF2), we know

(57) [F [#It/now] ](e1)(t(i),u(i+1))

From (52), (NEQ), (AVE), and (RSE), we know

(58) read(t(i), I1) = read(u(i), I1)∧ . . .∧ read(t(i), In) = read(u(i), In)

From (17a), (40), (53), (58), (59), (CNOF0), and (PMVF1’), we finally know
(a.3.c.2.a.5). ¤

5.4.4 Invariant Rule (Without Breaks)

C : [F ]Fc,FALSE,Fr;K1,...,Km
I1,...,In

E ' H
Invariant(G,H,F)I1,...,In

#Is does not occur in G
while (E)C :

[!next.continues AND !next.breaks AND
(next.executes =>

!H[next/now][I1’/I1, . . . , In’/In]) AND
(G[now/next][I1/I1’, . . . , In/In’] =>

EXISTS #Is : G[#Is/next] AND
IF #Is.continues OR #Is.breaks

THEN next.executes
ELSE next == #Is)

]FALSE,FALSE,Fr;K1,...,Km
I1,...,In
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Soundness Proof Analogous to the proof of the basic rule without breaks com-
bined with the proof of the invariant rule with breaks. ¤

5.5 Termination and Interruptions

We proceed with the adaptation of the termination calculus of Section 3.3 to the
command language with interruptions. Figure 5.14 depicts the corresponding ter-
mination conditions; apart from the adding rules for the new commands, only the
rules for command sequences and loops have changed. Also the extended version
satisfies the condition stated below.

Theorem (Termination Condition) If the termination condition of a program
respectively command is true on an executing prestate s, then the program respec-
tively command relates s to some poststate s′:

∀P ∈ Program,s ∈ State :
[P ]T(s)∧ executes(control(s))⇒∃s′ ∈ State : [P ](s,s′)

∀C ∈ Command,s ∈ State :
[C ]T(s)∧ executes(control(s))⇒∃s′ ∈ State : [C ](s,s′)

Proof The first part of the theorem is immediately clear by the definition of
[ ]T : Program→ StateCondition and by the second part of the theorem. We are
now going to show this second part i.e.

(a)
∀C ∈ Command,s ∈ State :

[C ]T(s)∧ executes(control(s))⇒∃s′ ∈ State : [C ](s,s′)

Take arbitrary C0 ∈ Command,s ∈ State and assume

(1a) [C0 ]T(s)

(1b) executes(control(s))

We show

(b) ∃s′ ∈ State : [C0 ](s,s′)

We proceed by induction on the structure of C0 (we only deal with the rules for
command sequences, exception handling, and loops; the proofs of the others are
either trivial or proceed as in Section 3.3).
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Command Language with Interruptions: Termination

infiniteExecution :
P(State∞×State∞×State×StateFunction×StateRelation)

infiniteExecution(t,u,s,E,C)⇔
t(0) = s∧u(0) = s ∧
∀i ∈ N :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
E(t(i)) = TRUE∧C(t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

[ ]T : Command→ StateCondition

[ I = E ]T(s)⇔ TRUE

[var I;C ]T(s)⇔∀v ∈ Value : [C ]T(write(s, I,v))
[var I=E;C ]T(s)⇔ [C ]T(write(s, I, [E ](s)))
[C1;C2 ]T(s)⇔

[C1 ]T(s) ∧
∀s′ ∈ State : [C1 ](s,s′)∧ executes(control(s′))⇒ [C2 ]T(s

′)
[if (E)C ]T(s)⇔ [E ](s) = TRUE ⇒ [C ]T(s)
[if (E)C1 else C2 ]T(s)⇔

IF [E ](s) = TRUE THEN [C1 ]T(s) ELSE [C2 ]T(s)
[continue ]T(s)⇔ TRUE

[break ]T(s)⇔ TRUE

[return E ]T(s)⇔ TRUE

[throw I E ]T(s)⇔ TRUE

[tryC1 catch(Ik Iv) C2 ]T(s)⇔
[C1 ]T(s) ∧
∀s′ ∈ State :

[C1 ](s,s′)∧ throws(control(s′))∧ key(control(s′)) = Ik ⇒
[C2 ]T(write(execute(s′), Iv,value(control(s′))))

[while (E) C ]T(s)⇔
∀t,u ∈ State∞,k ∈ N :
¬infiniteExecution(t,u,s, [E ], [C ])∧
(finiteExecution(k, t,u,s, [E ], [C ])∧ [E ](t(k)) = TRUE ∧

(executes(control(u(k)))∨ continues(control(u(k)))))
⇒ [C ]T(t(k)))

Figure 5.14: The Termination Conditions of the Command Language



5.5 Termination and Interruptions 215

C1;C2 From (1a) and the definition of [ ]T, we know

(2) [C1 ]T(s)
(3) ∀s′ ∈ State : [C1 ](s,s′)∧ executes(control(s′))⇒ [C2 ]T(s

′)

From the definition of [ ], it suffices to show

(c)
∃s0,s′ ∈ State :

[C1 ](s,s0) ∧
IF executes(control(s0)) THEN [C2 ](s0,s′) ELSE s′ = s0

From (1b), (2), and the induction hypothesis, we know for some s0 ∈ State

(4) [C1 ](s,s0)

We proceed by case distinction.

• Case executes(control(s0)): from the case condition, (3), and (4), we
know

(5) [C2 ]T(s0)
From (5), the case condition, and the induction hypothesis, we know
for some s′ ∈ State

(6) [C2 ](s0,s′)
From the case condition, (4) and (6), we know (c).

• Case ¬executes(control(s0)): from the case condition and (4), we
know (c) (for s′ := s0).

try C1 catch(Ik Iv) C2 From (1a) and the definition of [ ]T, we know

(2) [C1 ]T(s)

(3)
∀s′ ∈ State :

[C1 ](s,s′)∧ throws(control(s′))∧ key(control(s′)) = Ik ⇒
[C2 ]T(write(execute(s′), Iv,value(control(s′))))

From the definition of [ ], it suffices to show

(c)

∃s0,s1,s2,s′ ∈ State :
[C1 ](s,s0) ∧
IF throws(control(s0))∧ key(control(s0)) = Ik THEN

s1 = write(execute(s0), Iv,value(control(s0))) ∧
[C2 ](s1,s2) ∧
s′ = write(s2, Iv,read(s0, Iv))

ELSE s′ = s0

From (1b), (2), and the induction hypothesis, we know for some s0 ∈ State

(4) [C1 ](s,s0)
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We proceed by case distinction.

• Case throws(control(s0))∧ key(control(s0)) = Ik: we define
(5) s1 := write(execute(s0), Iv,value(control(s0)))

From the case condition, (3), and (4), and (5), we know
(6) [C2 ]T(s1)

From (5), (CD1), and (CW), we know
(7) executes(control(s1))

From (6), (7), and the induction hypothesis, we also know for some
s2 ∈ State

(8) [C2 ](s1,s2)
From the case condition, (4), (5), and (8), we know (c) (for s′ :=
write(s2, Iv,read(s0, Iv))).

• Case ¬(throws(control(s0))∧ key(control(s0)) = Ik): from the case
condition and (4), we know (c) (for arbitrary s1,s2 and s′ = s0).

while (E) C From (1a) and the definition of [ ]T, we know

(2)

∀t,u ∈ State∞,k ∈ N :
¬infiniteExecution(t,u,s, [E ], [C ])∧
(finiteExecution(k, t,u,s, [E ], [C ])∧ [E ](t(k)) = TRUE ∧

(executes(control(u(k)))∨ continues(control(u(k)))))
⇒ [C ]T(t(k)))

From the definition of [ ], it suffices to show

(c)

∃k ∈ N, t,u ∈ State∞,s′ ∈ State :
finiteExecution(k, t,u,s, [E ], [C ])∧
([E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k))))) ∧
t(k) = s′

which can be simplified to

(d)

∃k ∈ N, t,u ∈ State∞ :
finiteExecution(k, t,u,s, [E ], [C ])∧
([E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k)))))

We define c : State⇒ State as follows:
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(3) c(s) :=
IF ∃s′ ∈ State : [C ](s,s′)

THEN SUCH s′ IN State : [C ](s,s′)
ELSE s

We define u, t ∈ State∞ inductively as follows:

(4) u(0) := s
(5) t(0) := s
(6) u(i+1) := c(t(i))

(7) t(i+1) :=

IF continues(control(u(i+1))) ∨
breaks(control(u(i+1))

THEN execute(u(i+1))
ELSE u(i+1)

We define

(8)

loop(i) :⇔
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (2), we know

(9) ¬infiniteExecution(t,u,s, [E ], [C ])

From (8), (9), and the definition of infiniteExecution, we know

(10) t(0) 6= s ∨u(0) 6= s∨∃i ∈ N : ¬loop(i)

From (4), (5), and (10), we know

(11) ∃i ∈ N : ¬loop(i)

We define

(12) k := MIN i ∈ N : ¬loop(i)

From (11) and (12), we know

(13) ¬loop(k)
(14) ∀i ∈ Nk : loop(i)

From (8), (14), and the definition of finiteExecution, we know

(15) finiteExecution(k, t,u,s, [E ], [C ])

It now suffices to show
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Termination Calculus: Judgements

C ↓ F ⇔
∀s ∈ State : executes(control(s))∧ [F ](s)⇒ [C ]T(s)

Figure 5.15: The Termination Calculus of the Command Language (Part 1 of 4)

(e)
[E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨ continues(control(u(k))))

because from this and (15), we know (d).

To show (e), we assume

(16) [E ](t(k)) = TRUE
(17) executes(control(u(k)))∨ continues(control(u(k)))

and show a contradiction.

From (17) and Lemma “State Control Predicates”, we know

(18) ¬breaks(control(u(k)))

From (1b), (5), (7), (17), and (CD1), we know

(19) executes(control(t(k)))

From (2), (15), (16), and (17), we know

(20) [C ]T(t(k))

From (20) and the induction assumption, we know

(21) ∃s′ ∈ State : [C ](t(k),s′)

From (3), (6), and (21), we know

(22) [C ](t(k),u(k +1))

But (7), (8), (16), (18), (19), and (22) contradict (13). ¤

Figures 5.15, 5.16, 5.17, and 5.18 adapt the calculus of Section 3.4 to reason
about the termination of programs that may trigger control flow interruptions. The
judgements of the calculus have the form C ↓ F where F is a formula that does not
contain free variables and does not depend on the poststate. The interpretation of
the judgement is given by the following soundness theorem.
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Termination Calculus: Rules

I = E ↓ F

$I does not occur in F
C ↓ EXISTS $I : F [$I/I]
var I;C ↓ F

E ' T
$I does not occur in T and F
C ↓ EXISTS $I : I=T [$I/I] AND F [$I/I]
var I=E;C ↓ F

C1 ↓ F
C2 ↓ now.executes
C1;C2 ↓ F

C1 ↓ F
C1 : [S ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

$I1, . . . ,$In,#Is do not occur in F and S
C2 ↓ now.executes AND

EXISTS $I1, . . . ,$In: EXSTATE #Is:
#Is.executes AND
F [#Is/now][$I1/I1, . . . ,$In/In] AND
S[#Is/now][$I1/I1, . . . ,$In/In]

[now/next][I1/I1’, . . . , In/In’]
C1;C2 ↓ F

E ' T
C ↓ F AND T
if (E)C ↓ F

E ' T
C1 ↓ F AND T
C2 ↓ F AND !T
if (E)C1 elseC2 ↓ F

Figure 5.16: The Termination Calculus of the Command Language (Part 2 of 4)
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Termination Calculus: Rules

continue ↓ F
break ↓ F
return ↓ F
throw I E ↓ F

C1 ↓ F
C1 : [S ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

C2 ↓ now.executes AND
EXISTS $I1, . . . ,$In,$Ia,$Ib: EXSTATE #Is,#It:

#Is.executes AND
#It.throws Ik AND Iv = #It.value AND
F [#Is/now][$I1/I1, . . . ,$In/In][$Ia/Iv] AND
S[#Is/now,#It/next][$I1/I1, . . . ,$In/In]

[$Ia/Iv,$Ib/Iv’][I1/I1’, . . . , In/In’]
Ia 6= Ib∧{Ia, Ib}∩{I1, . . . , In}= /0∧ Is 6= It
$I1, . . . ,$In,$Ia,$Ib,#Is,#It do not occur in F and S
tryC1 catch(Ik Iv)C2 ↓ F

Figure 5.17: The Termination Calculus of the Command Language (Part 3 of 4)
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Termination Calculus: Rules

∀s ∈ State : [F => !E ](s)
while (E)C ↓ F

E ' H
C : [S ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

Invariant(G,H,S)I1,...,In

T has no free variables and no primed program variables
and no occurrence of now or next

∀s ∈ State : [F => G[now/next][I1/I1’, . . . , In/In’] ](s)
C ↓ EXISTS $I1, . . . ,$In: EXSTATE #Is,#It:

F [#Is/now][$I1/I1, . . . ,$In/In] AND
G[#Is/now,#It/next]

[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H AND
(#It.executes OR #It.continues)

∀e ∈ Environment,s,s′ ∈ Store,v1, . . . ,vn ∈ Value,cs,ct ∈ Control :
LET e0 = e[ Is 7→ cs, It 7→ ct ]c[ I1 7→ v1, . . . , In 7→ vn ] IN

[F [#Is/now][$I1/I1, . . . ,$In/In] AND
G[#Is/now,#It/next]

[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H AND
(#It.executes OR #It.continues) AND
now.executes AND [S ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In
AND

(next.executes OR next.continues)
](e0)(s,s′)⇒
LET

m = [T ](e0)(s,s′),
m′ = [T [I1’/I1, . . . , In’/In] ](e0)(s,s′)

IN m ∈ N∧m > m′

while (E)C ↓ F

Figure 5.18: The Termination Calculus of the Command Language (Part 4 of 4)
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Theorem (Soundness of the Termination Calculus) Assume the condition de-
noted by DifferentVariables. If a judgement C ↓ F can be derived from the rules
of the termination calculus of the command language, then it is true that

F has no free (mathematical or state) variables ∧
F does not depend on the poststate ⇒
∀s ∈ State : executes(control(s))∧ [F ](s)⇒ [C ]T(s)

Corollary (Existence of Poststate) If C ↓ F can be derived, then for every
prestate s with [F ](s), there exists some poststate s′ with [C ](s,s′).

Proof (Soundness Theorem and Corollary) Assume

(1a) DifferentVariables

Take C and F such that C ↓ F can be derived and assume

(1b) F has no free (mathematical or state) variables

(1c)
∀s,s′,s′′ ∈ State,e ∈ Environment :

[F ](e)(s,s′)⇔ [F ](e)(s,s′′)

Take arbitrary s ∈ State. We prove

executes(control(s))∧ [F ](s)⇒ [C ]T(s)

by induction on the derivation of C ↓ F . The following subsections cover all cases
for the last step of such a derivation.

In these proofs, we assume that the induction hypothesis immediately implies
∀s ∈ State : executes(control(s))∧ [F ′ ](s) ⇒ [C′ ]T(s)) i.e. we assume that F ′
does not have any free variables and that it does not depend on the poststate.
In addition to the caveats already mentioned in Section 3.4, we have to make by
corresponding substitutions sure that references to next in specification formulas
do not cause harm.

The corollary follows from the soundness theorem and Theorem “Termination
Condition”. ¤
In the following, we contend ourselves with proofs for the three most important
rules; the others are either simple or similar to the proofs given in Section 3.4.
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5.5.1 Command Sequence

C1 ↓ F
C1 : [S ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

$I1, . . . ,$In,#Is do not occur in F and S
C2 ↓ now.executes AND

EXISTS $I1, . . . ,$In: EXSTATE #Is:
#Is.executes AND
F [#Is/now][$I1/I1, . . . ,$In/In] AND
S[#Is/now][$I1/I1, . . . ,$In/In]

[now/next][I1/I1’, . . . , In/In’]
C1;C2 ↓ F

Soundness Proof We have to show

(a) executes(control(s))∧ [F ](s)⇒ [C1;C2 ]T(s)

We assume

(2) executes(control(s))

(3) [F ](s)

By the definition of [ ]T, it suffices to show

(b.1) [C1 ]T(s)

(b.2) ∀s′ ∈ State : [C1 ](s,s′)∧ executes(control(s′))⇒ [C2 ]T(s
′)

From the premises, the induction hypothesis, and the definition of [ ], we know

(4) ∀s ∈ State : executes(control(s))∧ [F ](s)⇒ [C1 ]T(s)

(5)
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C1 ](s,s′)⇒ [ [S ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

](e)(s,s′)
(5a) $I1, . . . ,$In,#Is do not occur in F and S

(6)

∀s ∈ State :
executes(control(s)) ∧
[now.executes AND

EXISTS $I1, . . . ,$In: EXSTATE #Is:
#Is.executes AND
F [#Is/now][$I1/I1, . . . ,$In/In] AND
S[#Is/now][$I1/I1, . . . ,$In/In]

[now/next][I1/I1’, . . . , In/In’] ](s)
⇒ [C2 ]T(s)
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From (2), (3), and (4), we know (b.1).

To show (b.2), we take arbitrary s′ ∈ State and assume

(7) [C1 ](s,s′)
(8) executes(control(s′))

We have to show

(b.2.a) [C2 ]T(s
′)

To prove this, by (6) and the definition of [ ], it suffices to prove for arbitrary but
fixed e ∈ Environment

(b.2.a.1) executes(control(s′))
(b.2.a.2) executes(control(s′))

(b.2.a.3)

∃v1, . . . ,vn ∈ Value,c ∈ Control :
LET

e0 := e[ Is 7→ c ]c[ I1 7→ v1, . . . , In 7→ vn ]
IN

executes(c) ∧
[F [#Is/now][$I1/I1, . . . ,$In/In] ](e0)(s′,s′)∧
[S[#Is/now][$I1/I1, . . . ,$In/In]

[now/next][I1/I1’, . . . , In/In’] ](e0)(s′,s′)

From (8), we know (b.2.a.1) and (b.2.a.2).

We define

(9)
e0 := e[ Is 7→ control(s) ]
e1 := e0[ I1 7→ read(s, I1), . . . , In 7→ read(s, In) ]

To show (b.2.a.3), it suffices to show

(b.2.a.3.a.1) executes(control(s))

(b.2.a.3.a.2) [F [#Is/now][$I1/I1, . . . ,$In/In] ](e1)(s′,s′)

(b.2.a.3.a.3)
[S[#Is/now][$I1/I1, . . . ,$In/In]

[now/next][I1/I1’, . . . , In/In’] ](e1)(s′,s′)

From (2), we know (b.2.a.3.a.1).

From (2), (5), (7), and the definition of [ ] and [ ] , we know
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(10) [S ](e)(s,s′)
(11) s = s′ EXCEPT I1, . . . , In

From (3) and the definition of [ ], we know

(12) [F ](e)(s,s)
From (5a), (9), (12), and (CNOF2), we know

(13) [F [#Is/now] ](e0)(s,s).

From (5a), (9), (11), (13) (CNOF0), and (PMVF1’), we know

(14) [F [#Is/now][$I1/I1, . . . ,$In/In] ](e1)(s′,s)

From (1c) and (14), we know (b.2.a.3.a.2).

From (5a), (9), (10), and (CNOF2), we know

(15) [S[#Is/now] ](e0)(s,s′)

From (5a), (9), (11), (15), (CNOF0), and (PMVF1’), we know

(16) [S[#Is/now][$I1/I1, . . . ,$In/In] ](e1)(s′,s′)

From (16), (CD0), and (PNNF2),

(17) [S[#Is/now][$I1/I1, . . . ,$In/In][now/next] ](e1)(s′,s′)

From (IDE), we know

(18) s′ = writes(s′, I1,read(s′, I1), . . . , In,read(s′, In))

From (17), (18), and (PPVF2’), we know (b.2.a.3.a.3). ¤

5.5.2 Catch Exception

C1 ↓ F
C1 : [S ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

C2 ↓ now.executes AND
EXISTS $I1, . . . ,$In,$Ia,$Ib: EXSTATE #Is,#It:

#Is.executes AND
#It.throws Ik AND Iv = #It.value AND
F [#Is/now][$I1/I1, . . . ,$In/In][$Ia/Iv] AND
S[#Is/now,#It/next][$I1/I1, . . . ,$In/In]

[$Ia/Iv,$Ib/Iv’][I1/I1’, . . . , In/In’]
Ia 6= Ib∧{Ia, Ib}∩{I1, . . . , In}= /0∧ Is 6= It
$I1, . . . ,$In,$Ia,$Ib,#Is,#It do not occur in F and S
tryC1 catch(Ik Iv)C2 ↓ F
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Soundness Proof We have to show

(a) executes(control(s))∧ [F ](s)⇒ [tryC1 catch(Ik Iv)C2 ]T(s)

We assume

(2) executes(control(s))

(3) [F ](s)

By the definition of [ ]T, it suffices to show

(b.1) [C1 ]T(s)

(b.2)
∀s′ ∈ State :

[C1 ](s,s′)∧ throws(control(s′))∧ key(control(s′)) = Ik ⇒
[C2 ]T(write(execute(s′), Iv,value(control(s′))))

From the premises, the induction hypothesis, and the definition of [ ], we know

(4) ∀s ∈ State : executes(control(s))∧ [F ](s)⇒ [C1 ]T(s)

(5)
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C1 ](s,s′)⇒ [ [S ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

](e)(s,s′)

(6)

∀s ∈ State :
executes(control(s)) ∧
[now.executes AND

EXISTS $I1, . . . ,$In,$Ia,$Ib: EXSTATE #Is,#It:
#Is.executes AND
#It.throws Ik AND Iv = #It.value AND
F [#Is/now][$I1/I1, . . . ,$In/In][$Ia/Iv] AND
S[#Is/now,#It/next][$I1/I1, . . . ,$In/In]

[$Ia/Iv,$Ib/Iv’][I1/I1’, . . . , In/In’] ](s)
⇒ [C2 ]T(s)

(7) Ia 6= Ib∧{Ia, Ib}∩{I1, . . . , In}= /0∧ Is 6= It
(7a) $I1, . . . ,$In,$Ia,$Ib,#Is,#It do not occur in F and S

From (2), (3), and (4), we know (b.1).

To show (b.2), we take arbitrary s′ ∈ State and assume

(8) [C1 ](s,s′)
(9) throws(control(s′))
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(10) key(control(s′)) = Ik

We have to show

(b.2.a) [C2 ]T(write(execute(s′), Iv,value(control(s′))))

We define

(11) s′′ := write(execute(s′), Iv,value(control(s′)))

From (11), (CD2), (RWE), (TRE), and (WSE), we know

(12) s′′ = s′ EXCEPT Iv

(13) read(s′′, Iv) = value(control(s′))

To prove (b.2.a), by (6), (11), and the definition of [ ], it suffices to prove for
arbitrary but fixed e ∈ Environment

(b.2.a.1) executes(control(s′′))
(b.2.a.2) executes(control(s′′))

(b.2.a.3)

∃v1, . . . ,vn,a,b ∈ Value,cs,ct ∈ Control :
LET

e0 := e[ Is 7→ cs, It 7→ ct ]c[ I1 7→ v1, . . . , In 7→ vn ][ Ia 7→ a, Ib 7→ b ]
IN

executes(cs) ∧
throws(ct)∧ key(ct) = Ik∧ read(s′′, Iv) = value(ct) ∧
[F [#Is/now][$I1/I1, . . . ,$In/In][$Ia/Iv] ](e0)(s′′,s′′)∧
[S[#Is/now,#It/next][$I1/I1, . . . ,$In/In]

[$Ia/Iv,$Ib/Iv’][I1/I1’, . . . , In/In’] ](e0)(s′′,s′′)

From (11), (CD1), and (CW), we know (b.2.a.1) and (b.2.a.2).

We define

(14)
e0 := e[ Is 7→ control(s), It 7→ control(s′) ]
e1 := e0[ I1 7→ read(s, I1), . . . , In 7→ read(s, In) ]
e2 := e1[ Ia 7→ read(s, Iv), Ib 7→ read(s′, Iv) ]

To show (b.2.a.3), it suffices to show

(b.2.a.3.a.1) executes(control(s))

(b.2.a.3.a.2) throws(control(s′))
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(b.2.a.3.a.3) key(control(s′)) = Ik

(b.2.a.3.a.4) read(s′′, Iv) = value(control(s′))
(b.2.a.3.a.5) [F [#Is/now][$I1/I1, . . . ,$In/In][$Ia/Iv] ](e2)(s′′,s′′)

(b.2.a.3.a.6)
[S[#Is/now,#It/next][$I1/I1, . . . ,$In/In]

[$Ia/Iv,$Ib/Iv’][I1/I1’, . . . , In/In’] ](e2)(s′′,s′′)

From (2), we know (b.2.a.3.a.1).

From (9), we know (b.2.a.3.a.2).

From (10), we know (b.2.a.3.a.3).

From (13), we know (b.2.a.3.a.4).

From (2), (5), (8), and the definition of [ ] and [ ] , we know

(15) [S ](e)(s,s′)
(16) s = s′ EXCEPT I1, . . . , In

From (3) and the definition of [ ], we know

(17) [F ](e)(s,s)

From (7a), (14), (17), and (CNOF2), we know

(18) [F [#Is/now] ](e0)(s,s)

From (7a), (14), (15), (CNOF2), and (CNEF2), we know

(19) [S[#Is/now,#It/next] ](e0)(s,s′)

We proceed by case distinction:

• Case Iv ∈ {I1, . . . , In}: from the case condition, (12), and (AVE) we know

(20) s′′ = s′ EXCEPT I1, . . . , In

From (16), (20), and (TRE), we know

(21) s = s′′ EXCEPT I1, . . . , In

From (7a), (14), (18), (21) (CNOF0), and (PMVF1’), we know

(22) [F [#Is/now][$I1/I1, . . . ,$In/In] ](e1)(s′′,s)

From the case condition, (22), and (MPVF0’), we know
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(23) [F [#Is/now][$I1/I1, . . . ,$In/In][$Ia/Iv] ](e1)(s′′,s)

From (7), (7a), (14), (23), and (MPVF0’), we know

(24) [F [#Is/now][$I1/I1, . . . ,$In/In][$Ia/Iv] ](e2)(s′′,s)

From (1c) and (24), we know (b.2.a.3.a.5).

From (7a), (14), (19), (21), (CNOF0), and (PMVF1’), we know

(25) [S[#Is/now,#It/next][$I1/I1, . . . ,$In/In] ](e1)(s′′,s′)

From the case condition, (25), and (MPVF0’), we know

(26) [S[#Is/now,#It/next][$I1/I1, . . . ,$In/In][$Ia/Iv] ](e1)(s′′,s′)

From (7a), (14), (20), (26), (CNEF0), (PMVF2’), we know

(27)
[S[#Is/now,#It/next][$I1/I1, . . . ,$In/In][$Ia/Iv,$Ib/Iv’] ]

(e2)(s′′,s′′)

From (IDE), we know

(28) s′′ = writes(s′′, I1,read(s′′, I1), . . . , In,read(s′′, In))

From (27), (28), and (PPVF2’), we know (b.2.a.3.a.6).

• Case Iv 6∈ {I1, . . . , In}: from the case condition, (16), and (RSE), we know

(29) read(s, Iv) = read(s′, Iv)

From (7a), (14), (16), (18), (CNOF0), and (PMVF1’), we know

(30) [F [#Is/now][$I1/I1, . . . ,$In/In] ](e1)(s′,s)

From (7), (7a), (12), (14), (29), (30), (CNOF0), and (PMVF1’), we know

(31) [F [#Is/now][$I1/I1, . . . ,$In/In][$Ia/Iv] ](e2)(s′′,s)

From (1c) and (31), we know (b.2.a.3.a.5).

From (7a), (14), (16), (19), (CNOF0), and (PMVF1’), we know

(32) [S[#Is/now,#It/next][$I1/I1, . . . ,$In/In] ](e1)(s′,s′)

From (7), (7a), (12), (14), (32), (CNOF0), and (PMVF1’), we know

(33) [S[#Is/now,#It/next][$I1/I1, . . . ,$In/In][$Ia/Iv] ](e2)(s′′,s′)

From (14), we know

(34) e2 = e2[ Ib 7→ read(s′, Iv) ]

From (7), (7a), (12), (14), (33), (34), (CNEF0), and (PMVF2’), we know
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(35)
[S[#Is/now,#It/next][$I1/I1, . . . ,$In/In]

[$Ia/Iv,$Ib/Iv’] ](e2)(s′′,s′′)

From (IDE), we know

(36) s′′ = writes(s′′, I1,read(s′′, I1), . . . , In,read(s′′, In))

From (35), (36), and (PPVF2’), we know (b.2.a.3.a.6). ¤

5.5.3 While Loop (Without Invariant)

∀s ∈ State : [F => !E ](s)
while (E)C ↓ F

If no invariant is given, the only way to make sure that a loop terminates is to
make sure that it is never entered.

Soundness Proof We have to show

(a) executes(control(s))∧ [F ](s)⇒ [while (E)C ]T(s)

We assume

(2) executes(control(s))

(3) [F ](s)

By the definition of [ ]T, it suffices to show for arbitrary t,u ∈ State∞,k ∈ N

(a.1) ¬infiniteExecution(t,u,s, [E ], [C ])

(a.2)
finiteExecution(k, t,u,s, [E ], [C ])∧ [E ](t(k)) = TRUE ∧
(executes(control(u(k)))∨ continues(control(u(k))))
⇒ [C ]T(t(k)))

From the premise and the definition of [ ], we know

(4) ∀s ∈ State : [F ](s)⇒¬[E ](s)

From (3) and (4), we know

(5) ¬[E ](s)
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From (5) and the definition of infiniteExecution, we know (a.1).

To show (a.2), we assume

(6) finiteExecution(k, t,u,s, [E ], [C ])
(7) [E ](t(k)) = TRUE

(8) executes(control(u(k)))∨ continues(control(u(k)))

(9) ¬[C ]T(t(k))

and show a contradiction.

From (5), (6), and the definition of finiteExecution, we have a contradiction. ¤

5.5.4 While Loop (With Invariant)

E ' H
C : [S ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

Invariant(G,H,S)I1,...,In

T has no free variables and no primed program variables
and no occurrence of now or next

∀s ∈ State : [F => G[now/next][I1/I1’, . . . , In/In’] ](s)
C ↓ EXISTS $I1, . . . ,$In: EXSTATE #Is,#It:

F [#Is/now][$I1/I1, . . . ,$In/In] AND
G[#Is/now,#It/next]

[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H AND
(#It.executes OR #It.continues)

∀e ∈ Environment,s,s′ ∈ Store,v1, . . . ,vn ∈ Value,cs,ct ∈ Control :
LET e0 = e[ Is 7→ cs, It 7→ ct ]c[ I1 7→ v1, . . . , In 7→ vn ] IN

[F [#Is/now][$I1/I1, . . . ,$In/In] AND
G[#Is/now,#It/next]

[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H AND
(#It.executes OR #It.continues) AND
now.executes AND [S ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In
AND

(next.executes OR next.continues)
](e0)(s,s′)⇒
LET

m = [T ](e0)(s,s′),
m′ = [T [I1’/I1, . . . , In’/In] ](e0)(s,s′)

IN m ∈ N∧m > m′

while (E)C ↓ F
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Soundness Proof We have to show

(a) executes(control(s))∧ [F ](s)⇒ [while (E)C ]T(s)

We assume

(2) executes(control(s))

(3) [F ](s)

By the definition of [ ]T, it suffices to show for arbitrary t,u ∈ State∞,k ∈ N

(a.1) ¬infiniteExecution(t,u,s, [E ], [C ])

(a.2)
finiteExecution(k, t,u,s, [E ], [C ])∧ [E ](t(k)) = TRUE ∧
(executes(control(u(k)))∨ continues(control(u(k))))
⇒ [C ]T(t(k)))

From the premises, the soundness of the verification calculus, and the induction
hypothesis, we know

(4) E ' H

(5)
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C ](s,s′)⇒ [ [S ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

](e)(s,s′)

(6) Invariant(G,H,S)I1,...,In

(7)
T has no free variables and no primed program variables

and no occurrence of now or next

(8) ∀s ∈ State : [F => G[now/next][I1/I1’, . . . , In/In’] ](s)

(9)

∀s ∈ State :
[EXISTS $I1, . . . ,$In: EXSTATE #Is,#It:

F [#Is/now][$I1/I1, . . . ,$In/In] AND
G[#Is/now,#It/next]

[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H AND
(#It.executes OR #It.continues) ](s)

⇒ [C ]T(s)
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(10)

∀e ∈ Environment,s,s′ ∈ Store,v1, . . . ,vn ∈ Value,cs,ct ∈ Control :
LET e0 = e[ Is 7→ cs, It 7→ ct ]c[ I1 7→ v1, . . . , In 7→ vn ] IN

[F [#Is/now][$I1/I1, . . . ,$In/In] AND
G[#Is/now,#It/next]

[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H AND
(#It.executes OR #It.continues) AND
now.executes AND [S ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In
AND

(next.executes OR next.continues)
](e0)(s,s′)⇒
LET

m = [T ](e0)(s,s′),
m′ = [T [I1’/I1, . . . , In’/In] ](e0)(s,s′)

IN m ∈ N∧m > m′

From (6) and the definition of Invariant, we know

(10a) $I1, . . . ,$In,#Is,#It do not occur in G,H, and F

To show (a.2), we assume

(11) finiteExecution(k, t,u,s, [E ], [C ])
(12) [E ](t(k)) = TRUE

(13) executes(control(u(k)))∨ continues(control(u(k)))

and show

(a.2.a) [C ]T(t(k))

From (9), it suffices to show

(a.2.b)

[EXISTS $I1, . . . ,$In: EXSTATE #Is,#It:
F [#Is/now][$I1/I1, . . . ,$In/In] AND
G[#Is/now,#It/next]

[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] AND H AND
(#It.executes OR #It.continues) ](t(k))

From the definition of [ ], it suffices to show for arbitrary e ∈ Environment

(a.2.c)

∃v1, . . . ,vn ∈ Value,cs,ct ∈ Control :
LET e0 = e[ Is 7→ cs, It 7→ ct ]c[ I1 7→ v1, . . . , In 7→ vn ] IN

[F [#Is/now][$I1/I1, . . . ,$In/In] ](e0)(t(k), t(k))∧
[G[#Is/now,#It/next]

[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ](e0)(t(k), t(k))∧
[H ](e0)(t(k), t(k)) ∧
(executes(ct)∨ continues(ct))
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We define

(14)
e0 := e[ Is 7→ control(s), It 7→ control(u(k)) ]c
e1 := e0[ I1 7→ read(s, I1), . . . , In 7→ read(s, In) ]

and show

(a.2.c.1) [F [#Is/now][$I1/I1, . . . ,$In/In] ](e1)(t(k), t(k))

(a.2.c.2)
[G[#Is/now,#It/next]

[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ](e1)(t(k), t(k))

(a.2.c.3) [H ](e1)(t(k), t(k))

(a.2.c.4) executes(control(u(k)))∨ continues(control(u(k)))

From (11) and the definition of finiteExecution, we know

(15) t(0) = s

(16) u(0) = s

(17)

∀i ∈ Nk :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (5), (17), and the definition of [ ] , we know

(18)

∀i ∈ Nk :
[S ](e)(t(i),u(i+1)) ∧
t(i) = u(i+1) EXCEPT I1, . . . , In ∧
(t(i+1) = u(i+1) ∨ t(i+1) = execute(u(i+1)))

From (15), (18), (CD2), (NEQ), (AVE), and (TRE), we know

(19) s = t(k) EXCEPT I1, . . . , In

From (1c), (3), and the definition of [ ], we know

(20) [F ](e)(s, t(k))

From (10a), (14), (20), and (CNOF2), we know

(21) [F [#Is/now] ](e1)(s, t(k))
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From (10a), (14), (19), (21), (CNOF0), and (PMVF1’), we know (a.2.c.1).

From (3), (8), and the definition of [ ], we know

(22) [G[now/next][I1/I1’, . . . , In/In’] ](e)(s,s)

From (22), (CD0), and (PNNF2), we know

(23) [G[I1/I1’, . . . , In/In’] ](e)(s,s)

From (23), (PPVF1’), and (IDE), we know

(24) [G ](e)(s,s)

From (4), (5), (6), and (24), we can show (as demonstrated in the soundness proof
of the Invariant Rule in Section 5.4.3)

(25) [G ](e)(s,u(k))

From (10a), (14), (25), (CNOF2) and (CNEF2), we know

(27) [G[#Is/now,#It/next] ](e0)(s,u(k))

From (10a), (19), (27), (CNOF0), and (PMVF1’), we know

(28) [G[#Is/now,#It/next][$I1/I1, . . . ,$In/In] ](e1)(t(k),u(k))

From (15), (16), (18), and (CD2), we know

(29) t(k) EQUALS u(k)

From (29), (NEQ), (WSE), and (IDE), we know

(30) t(k) = writes(t(k), I1,read(u(k), I1), . . . , In,read(u(k), In))

From (28), (30), and (PPVF1’), we know

(31)
[G[#Is/now,#It/next]

[$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ](e1)(t(k),u(k))

From (29), (CD0) and (CD4), we know

(32) t(k) = (store(u(k)),control(t(k)))
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From (31), (32), (CNEF0) and (PVFNE), we know (a.2.c.2).

From (4), (12), and the definition of ', we know (a.2.c.3).

From (13), we have (a.2.c.4).

To show (a.1), we assume

(33) infiniteExecution(t,u,s, [E ], [C ])

and show a contradiction. We take an arbitrary e ∈ Environment and define

(34) m : Value∞,m(i) = [T ](e)(t(i),u(i+1))

Since 〈N,>〉 is a well-founded ordering, it suffices to show

(a.1.b) ∀i ∈ N : m(i) ∈ N∧m(i) > m(i+1)

Take arbitrary i ∈ N. We show

(a.1.b.1) m(i) ∈ N
(a.1.b.2) m(i) > m(i+1)

We define

(35)
e0 := e[ Is 7→ control(s), It 7→ control(u(i)) ]c
e1 := e[ I1 7→ read(s, I1), . . . , In 7→ read(s, In) ]

From (10), (35), and the definition of [ ], we know

(36)

([F [#Is/now][$I1/I1, . . . ,$In/In] ](e1)(t(i),u(i+1)) ∧
[G[#Is/now,#It/next][$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ]

(e1)(t(i),u(i+1)) ∧
[H ](e1)(t(i),u(i+1)) ∧
(executes(control(u(i)))∨ continues(control(u(i)))) ∧
executes(control(t(i))) ∧
[ [S ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In
](e1)(t(i),u(i+1)) ∧

(executes(control(u(i+1)))∨ continues(control(u(i+1)))) ⇒
LET

m = [T ](e1)(t(i),u(i+1)),
m′ = [T [next/now][I1’/I1, . . . , In’/In ](e1)(t(i),u(i+1))

IN m ∈ N∧m > m′

From (3) and the definition of [ ], we know
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(37) [F ](e)(s,s)

From (33), and the definition of infiniteExecution, we know

(38) t(0) = s

(39) u(0) = s

(40)

∀i ∈ N :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (5), (40), and the definition of [ ] , we know

(41) ∀i ∈ N : [ [S ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

](e1)(t(i),u(i+1))

(42) ∀i ∈ N : t(i) = u(i+1) EXCEPT I1, . . . , In

(43) ∀i ∈ N : t(i+1) = u(i+1)∨ t(i+1) = execute(u(i+1))

From (42), (43), (CD2), (AVE), and (TRE), we know

(44) s = t(i) EXCEPT I1, . . . , In

(45) s = t(i+1) EXCEPT I1, . . . , In

From (1c) and (37), we know

(46) [F ](e)(s,u(i+1))

From (10a), (35), (46), and (CNOF2), we know

(47) [F [#Is/now] ](e0)(s,u(i+1))

From (10a), (35), (44), (47), (CNOF0), and (PMVF1’), we know

(48) [F [#Is/now][$I1/I1, . . . ,$In/In] ](e1)(t(i),u(i+1))

From (4), (5), (6), and (24), we can show (as presented in the soundness proof the
Invariant Rule in Section 5.4.3)

(49) [G ](e)(s,u(i))

From (6), (10a), (35), (49), (CNOF2), and (CNEF2), we know
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(50) [G[#Is/now,#It/next] ](e0)(s,u(i))

From (6), (10a), (35), (44), (50), (CNOF0), and (PMVF1’), we know

(51) [G[#Is/now,#It/next][$I1/I1, . . . ,$In/In] ](e1)(t(i),u(i))

From (15), (16), (18), and (CD2), we know

(52) t(i) EQUALS u(i)

From (52), (NEQ), (WSE), and (IDE), we know

(53) u(i) = writes(t(i), I1,read(t(i), I1), . . . , In,read(t(i), In))

From (51), (53), and (PPVF2’), we know

(54)
[G[#Is/now,#It/next][$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ]

(e1)(t(i), t(i))

From (54), (CNEF0), and (PVFNE), we know

(55)
[G[#Is/now,now/next][$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ]

(e1)(t(i),(store(t(i)),control(u(i+1))))

From (CD3), (NEQ), and (AVE), we know

(56) t(i) = (store(t(i)),control(u(i+1))) EXCEPT I1, . . . , In

From (42), (56), and (TRE), we know

(57) u(i+1) = (store(t(i)),control(u(i+1)) EXCEPT I1, . . . , In

From (55), (57), (PPVF0’), and (PVF4’), we know

(58)
[G[#Is/now,#It/next][$I1/I1, . . . ,$In/In, I1/I1’, . . . , In/In’] ]

(e1)(t(i),u(i+1))

From (4), (40), and the definition of ', we know

(59) [H ](e1)(t(i),u(i+1))

From (2), (16), (40), we can show

(60) ∀i ∈ N : executes(control(u(i))) ∨ continues(control(u(i)))
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We define

(61) m0 = [T ](e1)(t(i),u(i+1))

(62) m1 = [T [next/now][I1’/I1, . . . , In’/In ](e1)(t(i),u(i+1))

From (36), (40), (41), (48), (58), (59), (60), (61), (62), we know

(63) m0 ∈ N
(64) m0 > m1

From (7), (61), and (MVT’), we know

(65) m0 = [T ](e)(t(i),u(i+1))

From (34), (63), and (65), we know (a.1.b.1).

We define

(66) s0 := writes(t(i), I1,read(u(i+1), I1), . . . , In,read(u(i+1), In))

From (62), (66), and (PPVT1’), we know

(67) m1 = [T [next/now] ](e1)(s0,u(i+1))

From (67) and (PNNT1), we know

(68) m1 = [T ](e1)((store(s0),control(u(i+1))),u(i+1))

From (1a), (66), and (WSE), we know

(69) s0 = t(i) EXCEPT I1, . . . , In

From (42), (69), and (TRE), we know

(70) s0 = u(i+1) EXCEPT I1, . . . , In

From (66) and (RWE), we know

(71)
read(s0, I1) = read(u(i+1), I1)∧ . . .∧
read(s0, In) = read(u(i+1), In)

From (70), (71), (RVE), and (NEQ), we know

(72) s0 EQUALS u(i+1)
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From (CD3), we know

(73) s0 EQUALS (store(s0),control(u(i+1)))

From (72), (73), (NEQ), and (TRE), we know

(74) u(i+1) EQUALS (store(s0),control(u(i+1)))

From (68), (74), and (EST’), we know

(75) m1 = [T ](e1)(u(i+1),u(i+1))

From (7), (75), and (PVTNE), we know

(76) m1 = [T ](e1)(u(i+1),(store(u(i+1)),control(u(i+2))))

From (7), (76), (MVT’), and (PVT2’), we know

(77) m1 = [T ](e)(u(i+1),u(i+2))

From (7), (77), and (PVTNO), we know

(78) m1 = [T ](e)((store(u(i+1)),control(t(i+1))),u(i+2))

From (43), (REE), (NEQ), and (CD2), we know

(79) t(i+1) EQUALS u(i+1)

From (78), (79), and (EST’), we know

(80) m1 = [T ](e)(t(i+1),u(i+2))

From (34), (64), (65), and (80), we know (a.1.b.2). ¤

5.6 Computing Command Preconditions

The computation of preconditions in the presence of (possible) control flow inter-
ruptions proceeds analogously to the computation presented in Section 4.1. Pre-
and postconditions are not allowed refer to next (in addition to the primed pro-
gram variables). The rules are presented in Figures 5.19 to 5.24. The “generic”
rule is a simple extension of the previously presented version; as for the special-
ized rules, especially the rules for loops have become more complicated.
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Precondition Calculus with Interruptions: Judgements

PRE(C,Q) = P⇔
Q has no primed program variables and no occurr. of next⇒

P has no primed prog. variables and no occurr. of next ∧
∀e ∈ Environment,s,s′ ∈ State :

[now.executes ](e)(s,s)⇒
([P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′))

Precondition Calculus with Interruptions: Generic Rule

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in F and Q
#Is does not occur in F and Q
PRE(C,Q) =

FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
F [#Is/next][$J1/I1’, . . . ,$Jn/In’] =>
Q[#Is/now][$J1/I1, . . . ,$Jn/In]

Figure 5.19: The Precondition Calculus of the Command Language (Part 1/6)
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Precondition Calculus with Interruptions: Non-Loops

E ' T
$J does not occur in Q
PRE(I=E,Q) = LET $J=T IN Q[$J/I]

$J does not occur in P
$K does not occur in Q
J 6= K
PRE(C,Q[$K/I]) = P
PRE(var I;C,Q) = FORALL $J : P[$J/I][I/$K]

E ' T
$J does not occur in P
$K does not occur in Q
J 6= K
PRE(C,Q[$K/I]) = P
PRE(var I=E;C,Q) = LET $J=T IN P[$J/I][I/$K]

PRE(C1,IF now.executes THEN P ELSE Q) = O
PRE(C2,Q) = P
PRE(C1;C2,Q) = O

E ' F
PRE(C,Q) = P
PRE(if (E) C,Q) = IF F THEN P ELSE Q

E ' F
PRE(C1,Q) = P1
PRE(C2,Q) = P2
PRE(if (E) C1 elseC2,Q) = IF F THEN P1 ELSE P2

Figure 5.20: The Precondition Calculus of the Command Language (Part 2/6)
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Precondition Calculus with Interruptions: Non-Loops

#I does not occur in Q
PRE(continue,Q) =

ALLSTATE#I : #I.continues => Q[#I/now]

#I does not occur in Q
PRE(break,Q) =

ALLSTATE#I : #I.breaks => Q[#I/now]

#I does not occur in Q
PRE(return E,Q) =

ALLSTATE#I : #I.returns AND #I.value = E =>
Q[#I/now]

#Is does not occur in Q
PRE(throw Ik E,Q) =

ALLSTATE#Is : #Is.throws Ik AND #Is.value = E =>
Q[#Is/now]

#I does not occur in P
$J does not occur in P
$K does not occur in Q
J 6= K
PRE(C1,

IF now.throws Ik THEN
ALLSTATE #I : #I.executes =>

LET $J = now.value IN
P[#I/now][$J/Iv][Iv/$K]

ELSE
Q) = O

PRE(C2,Q[$K/Iv]) = P
PRE(tryC1 catch(Ik Iv)C2,Q) = O

Figure 5.21: The Precondition Calculus of the Command Language (Part 3/6)
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Precondition Calculus with Interruptions: Loops

E ' H
C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn does not occur in Q
#Is does not occur in Q
PRE(while(E)C,Q) =

FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) =>
Q[#Is/now][$J1/I1, . . . ,$Jn/In]

E ' H
C : [F ]Fc,FALSE,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in Q
#Is does not occur in Q
PRE(while(E)C,Q) =

FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) AND
(#Is.executes => !H[#Is/now][$J1/I1, . . . ,$Jn/In])
=> Q[#Is/now][$J1/I1, . . . ,$Jn/In]

Figure 5.22: The Precondition Calculus of the Command Language (Part 4/6)
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Precondition Calculus with Interruptions: Loops

E ' H
C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

Invariant(G,H,F)I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in Q
Is 6= It
#Is does not occur in Q
PRE(while(E)C,Q) =

FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) AND
(G[now/next][I1/I1’, . . . , In/In’] =>

EXISTS #It : G[#It/next][$J1/I1’, . . . ,$Jn/In’] AND
IF #It.continues OR #It.breaks

THEN #Is.executes
ELSE #Is == #It) =>

Q[#Is/now][$J1/I1, . . . ,$Jn/In]

Figure 5.23: The Precondition Calculus of the Command Language (Part 5/6)
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Precondition Calculus with Interruptions: Loops

E ' H
C : [F ]Fc,FALSE,Fr,{K1,...,Km}

I1,...,In

Invariant(G,H,F)I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn does not occur in Q
Is 6= It
#Is does not occur in Q
PRE(while(E)C,Q) =

FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) AND
(G[now/next][I1/I1’, . . . , In/In’] =>

EXISTS #It : G[#It/next][$J1/I1’, . . . ,$Jn/In’] AND
IF #It.continues OR #It.breaks

THEN #Is.executes
ELSE #Is == #It) AND

(#Is.executes => !H[#Is/now][$J1/I1, . . . ,$Jn/In])
=> Q[#Is/now][$J1/I1, . . . ,$Jn/In]

Figure 5.24: The Precondition Calculus of the Command Language (Part 6/6)
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Theorem (Soundness of the Precondition Calculus with Interruptions) As-
sume the condition denoted by DifferentVariables. If PRE(C,Q) = P can be de-
rived from the rules of the precondition calculus of the command language, then
it is true that

Q has no primed program variables and no occurr. of next ⇒
P has no primed program variables and no occurr. of next ∧
∀e ∈ Environment,s,s′ ∈ State :

[now.executes ](e)(s,s)⇒
([P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′))

Proof Assume

(1a) DifferentVariables

Take C, Q, and P such that PRE(C,Q) = P can be derived and assume

(1b) Q has no primed program variables and no occurrence of next

From (1b) and the rules, it is easy to show by induction on the derivation of
PRE(C,Q) = P that P has no primed program variables and also no occurrence
of next.

Now take arbitrary e ∈ Environment and s,s′ ∈ State. We prove

[now.executes ](e)(s,s)⇒
([P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′))

by induction on the derivation of PRE(C,Q) = P. The following subsections cover
all cases for the last step of such a derivation.

From (1b) and the rules, we can immediately deduce that in every derivation
PRE(C′,Q′) = P′ matching the premise of a rule with conclusion PRE(C,Q) = P,
the formula Q′ has no primed variables; we thus assume in the proofs that the in-
duction hypothesis immediately implies the core claim ∀e ∈ Environment,s,s′ ∈
State : [P′ ](e)(s,s)∧ [C′ ](s,s′)⇒ [Q′ ](e)(s′,s′). ¤

Actually, we only show proofs for those cases where interruptions play a role; the
other proofs are analogous to those for programs without interruptions.
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5.6.1 Generic Rule

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in F and Q
#Is does not occur in F and Q
PRE(C,Q) =

FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
F [#Is/next][$J1/I1’, . . . ,$Jn/In’] =>
Q[#Is/now][$J1/I1, . . . ,$Jn/In]

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s) ∧
[FORALL $J1, . . . ,$Jn: ALLSTATE #Is:

F [#Is/next][$J1/I1’, . . . ,$Jn/In’] =>
Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e)(s,s) ∧

[C ](s,s′)
⇒
[Q ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)

(3)
[FORALL $J1, . . . ,$Jn: ALLSTATE #Is:

F [#Is/next][$J1/I1’, . . . ,$Jn/In’] =>
Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e)(s,s)

(4) [C ](s,s′)

and show

(b) [Q ](e)(s′,s′)

From the hypotheses, we know

(5) C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

(6) J1, . . . ,Jn is a renaming of I1, . . . , In

(7) $J1, . . . ,$Jn do not occur in F and Q

(8) #Is does not occur in F and Q
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From (1a), (c), (4), (5), and the soundness of the verification calculus, we know

(9) [ [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

](e)(s,s′)

From (9) and the definition of [ ], we know

(10) [F ](e)(s,s′)
(11) s = s′ EXCEPT I1, . . . , In

We define

(12)
e0 := e[ Is 7→ control(s′) ]c
e1 := e0[J1 7→ read(s′, I1), . . . ,Jn 7→ read(s′, In) ]

From (3), (12), and the definition of [ ], we know

(13)
[F [#Is/next][$J1/I1’, . . . ,$Jn/In’] ](e1)(s,s)⇒
[Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s,s)

From (8), (10), (12), and (CNEF2), we know

(14) [F [#Is/next] ](e0)(s,s′)

From (6), (7), (11), (12), (14), (CNEF0), and (PMVF2’), we know

(15) [F [#Is/next][$J1/I1’, . . . ,$Jn/In’] ](e1)(s,s)

From (13) and (15), we know

(16) [Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s,s)

From (6), (7), (11), (12), (16), (CNOF0), and (PMVF1’), we know

(17) [Q[#Is/now] ](e0)(s′,s)

From (12), (17), and (CNOF2), we know

(18) [Q ](e)(s′,s)

From (1b), (18), (PVFNE), and (PVF2’), we know (b). ¤
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5.6.2 Command Sequence

PRE(C1,IF now.executes THEN P ELSE Q) = O
PRE(C2,Q) = P
PRE(C1;C2,Q) = O

Soundness Proof We have to show

(a)
[now.executes ](e)(s,s)⇒

([O ](e)(s,s)∧ [C1;C2 ](s,s′)⇒ [Q ](e)(s′,s′))

We assume

(2) [now.executes ](e)(s,s)
(3) [O ](e)(s,s)
(4) [C1;C2 ](s,s′)

and show

(b) [Q ](e)(s′,s′)

From the premises, we know by the induction hypothesis

(5)

∀e ∈ Environment,s,s′ ∈ State :
[now.executes ](e)(s,s) ⇒

([O ](e)(s,s)∧ [C1 ](s,s′)⇒
[IF now.executes THEN P ELSE Q ](e)(s′,s′))

(6)
∀e ∈ Environment,s,s′ ∈ State :

[now.executes ](e)(s,s) ⇒
([P ](e)(s,s)∧ [C2 ](s,s′)⇒ [Q ](e)(s′,s′))

From (4) and the definition of [ ], we know for some s0 ∈ State

(7) [C1 ](s,s0)

(8) IF executes(control(s0)) THEN [C2 ](s0,s′) ELSE s′ = s0

From (2), (3), (5), and (7), we know

(9) [IF now.executes THEN P ELSE Q ](e)(s0,s0)

From (9), we know by the definition of [ ]
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(10) IF executes(control(s0)) THEN [P ](e)(s0,s0) ELSE [Q ](e)(s0,s0)

We proceed by case distinction.

• Case executes(control(s0)): from this condition, (8), and (10), we know

(11) [C2 ](s0,s′)
(12) [P ](e)(s0,s0)

From the case condition and the definition of [ ], we know

(13) [now.executes ](e)(s0,s0)

From (6), (11), (12), and (13), we know (b).

• Case ¬executes(control(s0)): from this condition, (8), and (10), we know

(14) s′ = s0
(15) [Q ](e)(s0,s0)

From (14) and (15), we know (b). ¤

5.6.3 Continue Loop

#I does not occur in Q
PRE(continue,Q) =

ALLSTATE#I : #I.continues => Q[#I/now]

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s) ⇒
([ALLSTATE#I : #I.continues => Q[#I/now] ](e)(s,s) ∧
[continue ](s,s′)⇒

[Q ](e)(s′,s′))

We assume

(2) [now.executes ](e)(s,s)
(3) [ALLSTATE#I : #I.continues => Q[#I/now] ](e)(s,s)
(4) [continue ](s,s′)

and show

(b) [Q ](e)(s′,s′)
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From the assumption, we know

(5) #I does not occur in Q

From (3), (4), and the definition of [ ], we know

(6) ∀c ∈ Control : continues(c)⇒ [Q[#I/now] ](e[ I 7→ c ]c)(s,s)

(7) s′ = continue(s)

From (7) and (CD1), we know

(8) continues(control(s′))

From (6) and (8), we know

(9) [Q[#I/now] ](e[ I 7→ control(s′) ]c)(s,s)

From (1b), (9), (PVF2’), and (PVFNE), we know

(10) [Q[#I/now] ](e[ I 7→ control(s′) ]c)(s,s′)

From (10), (CNOF0), and (PVFNO), we know

(11) [Q[#I/now] ](e[ I 7→ control(s′) ]c)((store(s),control(s′)),s′)

From (7) and (CD2), we know

(12) s′ EQUALS s

From (12), (CD3), (NEQ), (AVE), and (TRE), we know

(13) s′ EQUALS (store(s),control(s′))

From (11), (13), and (ESF’), we know

(14) [Q[#I/now] ](e[ I 7→ control(s′) ]c)(s′,s′)

From (5), (14), and (CNOF2), we know (b). ¤

5.6.4 Break Loop

#I does not occur in Q
PRE(break,Q) =

ALLSTATE#I : #I.breaks => Q[#I/now]
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Soundness Proof Analogous to the one given in Section 5.6.3.

5.6.5 Return Result

#I does not occur in Q
PRE(return E,Q) =

ALLSTATE#I : #I.returns AND #I.value = E =>
Q[#I/now]

Soundness Proof Analogous to the one given in Section 5.6.3.

5.6.6 Throw Exception

#I does not occur in Q
PRE(throw Ik E,Q) =

ALLSTATE #Is : #Is.throws Ik AND #Is.value = E =>
Q[#Is/now]

Soundness Proof Analogous to the one given in Section 5.6.3.

5.6.7 Catch Exception

#I does not occur in P
$J does not occur in P
$K does not occur in Q
J 6= K
PRE(C1,

IF now.throws Ik THEN
ALLSTATE #I : #I.executes =>

LET $J = now.value IN
P[#I/now][$J/Iv][Iv/$K]

ELSE
Q) = O

PRE(C2,Q[$K/Iv]) = P
PRE(tryC1 catch(Ik Iv)C2,Q) = O
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Soundness Proof We have to show

(a)
[now.executes ](e)(s,s)⇒

([O ](e)(s,s)∧ [try C1 catch(Ik Iv) C2 ](s,s′)⇒ [Q ](e)(s′,s′))

We assume

(2) [now.executes ](e)(s,s)
(3) [O ](e)(s,s)
(4) [tryC1 catch(Ik Iv)C2 ](s,s′)

and show

(b) [Q ](e)(s′,s′)

From the premises, we know by the induction hypothesis

(5) #I does not occur in P

(6) $J does not occur in P

(7) $K does not occur in Q

(8) J 6= K

(9)

∀e ∈ Environment,s,s′ ∈ State :
[now.executes ](e)(s,s) ⇒

([O ](e)(s,s)∧ [C1 ](s,s′)⇒
[IF now.throws Ik THEN

ALLSTATE #I : #I.executes =>
LET $J = now.value IN
P[#I/now][$J/Iv][Iv/$K]

ELSE
Q ](e)(s′,s′))

(10)
∀e ∈ Environment,s,s′ ∈ State :

[now.executes ](e)(s,s) ⇒
([P ](e)(s,s)∧ [C2 ](s,s′)⇒ [Q[$K/Iv] ](e)(s′,s′))

From (4) and the definition of [ ], we know for some s0,s1,s2 ∈ State

(11) [C1 ](s,s0)

(12)

IF throws(control(s0))∧ key(control(s0)) = Ik THEN

s1 = write(execute(s0), Iv,value(control(s0))) ∧
[C2 ](s1,s2) ∧
s′ = write(s2, Iv,read(s0, Iv))

ELSE s′ = s0
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From (2), (3), (9), and (11), we know

(13)

[IF now.throws Ik THEN
ALLSTATE #I : #I.executes =>

LET $J = now.value IN
P[#I/now][$J/Iv][Iv/$K]

ELSE
Q ](e)(s0,s0)

From (13) and the definition of [ ], we know

(14)

IF throws(control(s0))∧ key(control(s0)) = Ik THEN

∀c ∈ Control : executes(c)⇒
[P[#I/now][$J/Iv][Iv/$K] ]

(e[ I 7→ c ]c[J 7→ value(control(s0)) ])(s0,s0)
ELSE

[Q ](e)(s0,s0)

We proceed by case distinction.

If ¬(throws(control(s0))∧ key(control(s0)) = Ik), we know from (12) and (14)

(15) s′ = s0

(16) [Q ](e)(s0,s0)

From (15) and (16), we know (b).

As for the other case, we assume

(17) throws(control(s0))

(18) key(control(s0)) = Ik

From (12), (17), and (18), we know

(19) s1 = write(execute(s0), Iv,value(control(s0)))

(20) [C2 ](s1,s2)

(21) s′ = write(s2, Iv,read(s0, Iv))

From (19) and (RW1), we know

(22) read(s1, Iv) = value(control(s0))

From (19), (CD1), and (CWE), we know
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(23) executes(control(s1))

From (10), we know

(24)
[now.executes ](e[K 7→ read(s′, Iv) ])(s1,s1) ⇒

([P ](e[K 7→ read(s′, Iv) ])(s1,s1)∧ [C2 ](s1,s2)⇒
[Q[$K/Iv] ](e[K 7→ read(s′, Iv) ])(s2,s2))

Assume that we can show

(c) [P ](e[K 7→ read(s′, Iv) ](s1,s1)

From (20), (23), (24), (c) and the definition of [ ], we know

(25) [Q[$K/Iv] ](e[K 7→ read(s′, Iv) ])(s2,s2)

From (21) and (WS), we know

(26) s2 = s′ EXCEPT Iv

From (21) and (CW), we know

(27) control(s2) = control(s′)

From (7), (25), (26), (27), and (PMVF1”), we know

(28) [Q ](e)(s′,s2)

From (1b), (27), (28), and (PVF2’), we know (b).

It remains to show (c). We define

(29) P′ := P[#I/now][$J/Iv]

From (14), (17), (18), (23), and (29), we know

(30) [P′[Iv/$K] ](e[ I 7→ control(s1) ]c[J 7→ value(control(s0)) ])(s0,s0)

From (22) and (30), we know

(31) [P′[Iv/$K] ](e[ I 7→ control(s1) ]c[J 7→ read(s1, Iv) ])(s0,s0)

From (PMVF0’), we know

(32) $K does not occur in P′[Iv/$K]
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From (29) and (CNOF0), we know

(33) now does not occur in P′[Iv/$K]

From (19), (CD2), (NEQ), and (WS), we know

(34) s0 = s1 EXCEPT Iv

From (31), (32), (33), (RE), and (PMVF1’), we know

(35)
[P′[Iv/$K][$K/Iv] ]

(e[ I 7→ control(s1) ]c[J 7→ read(s1, Iv) ][K 7→ read(s0, Iv) ])
(s0,s0)

From (29) and (MPF0’), we know

(36) Iv does not occur in P′

From (36) and (MPVF2’), we know

(37) P′[Iv/$K][$K/Iv] = P′

From (29), (35), and (37), we know

(38)
[P[#I/now][$J/Iv] ]

(e[ I 7→ control(s1) ]c[J 7→ read(s1, Iv) ][K 7→ read(s0, Iv) ])
(s0,s0)

From (8) and (38), we know

(39)
[P[#I/now][$J/Iv] ]

(e[ I 7→ control(s1) ]c[K 7→ read(s0, Iv) ][J 7→ read(s1, Iv) ])
(s0,s0)

From (6), (34), (39), (CNOF0), (PMVF1’), we know

(40) [P[#I/now] ](e[ I 7→ control(s1) ]c[K 7→ read(s0, Iv) ])(s1,s0)

From (5), (40), and (CNOF2), we know

(41) [P ](e[K 7→ read(s0, Iv) ])(s1,s0)

From (21) and (RW1), we know

(42) read(s′, Iv) = read(s0, Iv)

From (41) and (42), we know

(43) [P ](e[K 7→ read(s′, Iv) ])(s1,s0)

From the last premise and the induction hypothesis, we know

(44) P has no primed variables and no occurrence of next

From (43), (44), (PVF2’), and (PVFNE), we have (c). ¤
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5.6.8 While Loop (Without Invariant)

E ' H
C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in Q
#Is does not occur in Q
PRE(while(E)C,Q) =

FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) =>
Q[#Is/now][$J1/I1, . . . ,$Jn/In]

If the loop is not provided with an invariant and the loop may be terminated by
a break, we do not know which values the variables potentially changed by the
loop have in the state in which the loop terminates. However, we know that the
terminating state is not breaking or continuing and that it may only be returning
or throwing if the loop body allows this. To ensure a certain postcondition, the
precondition must thus state that the postcondition holds in every possible termi-
nation state for all possible values of the potentially changed variables.

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s) ⇒
[FORALL $J1, . . . ,$Jn: ALLSTATE #Is:

!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) =>
Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e)(s,s) ∧

[while(E) C ](s,s′)⇒
[Q ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)
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(3)

[FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) =>
Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e)(s,s)

(4) [while(E)C ](s,s′)

and show

(b) [Q ](e)(s′,s′)

From the premises, we know

(5) E ' H

(6) C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

(7) J1, . . . ,Jn is a renaming of I1, . . . , In

(8) $J1, . . . ,$Jn do not occur in Q

(9) #Is does not occur in Q

From (4) and the definition of [ ], we know for some k ∈ N, t,u ∈ State∞:

(10) finiteExecution(k, t,u,s, [E ], [C ])

(11)
[E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨ continues(control(u(k))))

(12) t(k) = s′

We define

(13)
e0 := e[ Is 7→ control(s′) ]c
e1 := e0[J1 7→ read(s′, I1), . . . ,Jn 7→ read(s′, In) ]

From (3), (13), and the definition of [ ], we know

(14)

¬continues(control(s′))∧¬breaks(control(s′)) ∧
(returns(control(s′))⇒ [Fc ](e1)(s,s)) ∧
(throws(control(s′)) ⇒

(key(control(s′)) = K1∨ . . .∨ key(control(s′)) = Km))⇒
[Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s,s)
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From (10), (12), the definition of finiteExecution, and Lemma “State Control Pred-
icates”, we can show

(15) executes(control(s′))∨ returns(control(s′))∨ throws(control(s′))

From (15) and Lemma “State Control Predicates”, we know

(16) ¬continues(control(s′))∧¬breaks(control(s′))

From (1a), (2), (6), and the soundness of the verification calculus, we can show

(17)

∀s,s′ ∈ State : [C ](s,s′)⇒
(returns(control(s′))⇒ [Fc ](e1)(s′,s′))) ∧
(throws(control(s′)) ⇒

(key(control(s′)) = K1∨ . . .∨ key(control(s′)) = Km))

From (10), (12), (17) and the definition of finiteExecution, we can show

(18) returns(control(s′))⇒ [Fc ](e1)(s,s)

(19)
throws(control(s′)) ⇒

(key(control(s′)) = K1∨ . . .∨ key(control(s′)) = Km)

From (14), (16), (18), and (19), we know

(20) [Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s,s)

From (1a), (2), (4), (5), (6) , and the soundness of the verification calculus, we can
prove (as demonstrated in the proof of the soundness of the basic rule for loops
with breaks on page 199)

(21) s = s′ EXCEPT I1, . . . , In

From (7), (8), (13), (20), (21), (CNOF0), and (PMVF1’), we know

(22) [Q[#Is/now] ](e0)(s′,s)

From (9), (13), (22), and (CNOF2), we know

(23) [Q ](e)(s′,s)

From (1b), (23), (PVF2’), and (PVFNE), we know (b). ¤
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5.6.9 While Loop (Without Invariant, No Break)

E ' H
C : [F ]Fc,FALSE,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in Q
#Is does not occur in Q
PRE(while(E)C,Q) =

FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) AND
(#Is.executes => !H[#Is/now][$J1/I1, . . . ,$Jn/In])
=> Q[#Is/now][$J1/I1, . . . ,$Jn/In]

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s) ⇒
[FORALL $J1, . . . ,$Jn: ALLSTATE #Is:

!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) AND
(#Is.executes => !H[#Is/now][$J1/I1, . . . ,$Jn/In]) =>
Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e)(s,s) ∧

[while(E)C ](s,s′)⇒
[Q ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)

(3)

[FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) AND
(#Is.executes => !H[#Is/now][$J1/I1, . . . ,$Jn/In]) =>
Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e)(s,s)

(4) [while(E)C ](s,s′)
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and show

(b) [Q ](e)(s′,s′)

From the premises, we know

(5) E ' H

(6) C : [F ]Fc,FALSE,Fr,{K1,...,Km}
I1,...,In

(7) J1, . . . ,Jn is a renaming of I1, . . . , In

(8) $J1, . . . ,$Jn do not occur in Q

(9) #Is does not occur in Q

From (4) and the definition of [ ], we know for some k ∈ N, t,u ∈ State∞:

(10) finiteExecution(k, t,u,s, [E ], [C ])

(11)
[E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨ continues(control(u(k))))

(12) t(k) = s′

We define

(13)
e0 := e[ Is 7→ control(s′) ]c
e1 := e0[J1 7→ read(s′, I1), . . . ,Jn 7→ read(s′, In) ]

From (3), (13), and the definition of [ ], we know

(14)

¬continues(control(s′))∧¬breaks(control(s′)) ∧
(returns(control(s′))⇒ [Fc ](e1)(s,s))) ∧
(throws(control(s′)) ⇒

(key(control(s′)) = K1∨ . . .∨ key(control(s′)) = Km)) ∧
(executes(control(s′))⇒
¬[H[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s,s)) ⇒

[Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s,s)

From (10), (12), the definition of finiteExecution, and Lemma “State Control Pred-
icates”, we can show

(15) executes(control(s′))∨ returns(control(s′))∨ throws(control(s′))

From (15) and Lemma “State Control Predicates”, we know
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(16) ¬continues(control(s′))∧¬breaks(control(s′))

From (1a), (2), (6), and the soundness of the verification calculus, we can show

(17)

∀s,s′ ∈ State : [C ](s,s′)⇒
¬breaks(control(s′)) ∧
(returns(control(s′))⇒ [Fc ](e1)(s′,s′))) ∧
(throws(control(s′)) ⇒

(key(control(s′)) = K1∨ . . .∨ key(control(s′)) = Km))

From (10), (12), (17) and the definition of finiteExecution, we can show

(18) returns(control(s′))⇒ [Fc ](e1)(s,s)

(19)
throws(control(s′)) ⇒

(key(control(s′)) = K1∨ . . .∨ key(control(s′)) = Km)

Assume we can show

(c)
executes(control(s′))⇒
¬[H[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s,s)

From (14), (16), (18), (19), and (c), we know

(20) [Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s,s)

From (1a), (2), (4), (5), (6) , and the soundness of the verification calculus, we can
prove (as demonstrated in the proof of the soundness of the basic rule for loops
with breaks on page 199)

(21) s = s′ EXCEPT I1, . . . , In

From (7), (8), (13), (20), (21), (CNOF0), and (PMVF1’), we know

(22) [Q[#Is/now] ](e0)(s′,s)

From (9), (13), (22), and (CNOF2), we know

(23) [Q ](e)(s′,s)

From (1b), (23), (PVF2’), and (PVFNE), we know (b).

It remains to show (c). We assume

(24) executes(control(s′))
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and show

(d) ¬[H[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s,s)

From (12) and (24), we know

(25) executes(control(t(k)))

From (2), (10), (17), and the definitions of [ ], and finiteExecution, we know

(26) ¬breaks(control(u(k)))

From (10), (25), (26), and the definition of finiteExecution, we know

(27) executes(control(u(k)))∨ continues(control(u(k)))

From (11), (12), and (27), we know

(28) [E ](s′) 6= TRUE

From (5), (28), and the definition of ', we know

(29) ¬[H ](e)(s′,s′)

From (5) and the definition of ', we know

(30) H has no free variables

(31) H has no primed program variables

(32) H has no occurrence of next

From (13), (29), (30), and (CNOF2), we know

(33) ¬[H[#Is/now] ](e0)(s′,s′)

From (7), (13), (21), (30), (33), (CNOF0), and (PMVF1’), we know

(34) ¬[H[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s,s′)

From (31), (32), (34), (PVF2’), and (PVFNE), we know (d). ¤
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5.6.10 While Loop (With Invariant)

E ' H
C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

Invariant(G,H,F)I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not free in Q
Is 6= It
#Is does not occur in Q
PRE(while(E)C,Q) =

FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) AND
(G[now/next][I1/I1’, . . . , In/In’] =>

EXISTS #It : G[#It/next][$J1/I1’, . . . ,$Jn/In’] AND
IF #It.continues OR #It.breaks

THEN #Is.executes
ELSE #Is == #It) =>

Q[#Is/now][$J1/I1, . . . ,$Jn/In]

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s) ⇒
[FORALL $J1, . . . ,$Jn: ALLSTATE #Is:

!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) AND
(G[now/next][I1/I1’, . . . , In/In’] =>

EXISTS #It : G[#It/next][$J1/I1’, . . . ,$Jn/In’] AND
IF #It.continues OR #It.breaks

THEN #Is.executes
ELSE #Is == #It) =>

Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e)(s,s) ∧
[while(E)C ](s,s′)⇒

[Q ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)
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(3)

[FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) AND
(G[now/next][I1/I1’, . . . , In/In’] =>

EXISTS #It : G[#It/next][$J1/I1’, . . . ,$Jn/In’] AND
IF #It.continues OR #It.breaks

THEN #Is.executes
ELSE #Is == #It) =>

Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e)(s,s)
(4) [while(E)C ](s,s′)

and show

(b) [Q ](e)(s′,s′)

From the premises, we know

(5) E ' H

(6) C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

(7) Invariant(G,H,F)I1,...,In

(8) J1, . . . ,Jn is a renaming of I1, . . . , In

(9) $J1, . . . ,$Jn do not occur in Q

(9a) Is 6= It
(10) #Is does not occur in Q

From (4) and the definition of [ ], we know for some k ∈ N, t,u ∈ State∞:

(11) finiteExecution(k, t,u,s, [E ], [C ])

(12)
[E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨ continues(control(u(k))))

(13) t(k) = s′

We define

(14)
e0 := e[ Is 7→ control(s′) ]c
e1 := e0[J1 7→ read(s′, I1), . . . ,Jn 7→ read(s′, In) ]

From (3), (14), and the definition of [ ], we know
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(15)

¬continues(control(s′))∧¬breaks(control(s′)) ∧
(returns(control(s′))⇒ [Fc ](e1)(s,s)) ∧
(throws(control(s′)) ⇒

(key(control(s′)) = K1∨ . . .∨ key(control(s′)) = Km)) ∧
([G[now/next][I1/I1’, . . . , In/In’] ](e1)(s,s)⇒

[EXISTS #It : G[#It/next][$J1/I1’, . . . ,$Jn/In’] AND
IF #It.continues OR #It.breaks

THEN #Is.executes
ELSE #Is == #It ](e1)(s,s)) ⇒

[Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s,s)

As demonstrated in Section 5.6.8 in the soundness proof for the loop without
invariant, we can show

(16) ¬continues(control(s′))∧¬breaks(control(s′))
(17) returns(control(s′))⇒ [Fc ](e1)(s,s)

(18)
throws(control(s′)) ⇒

(key(control(s′)) = K1∨ . . .∨ key(control(s′)) = Km)

We now show

(b.1)

[G[now/next][I1/I1’, . . . , In/In’] ](e1)(s,s)⇒
[EXISTS #It : G[#It/next][$J1/I1’, . . . ,$Jn/In’] AND

IF #It.continues OR #It.breaks
THEN #Is.executes
ELSE #Is == #It ](e1)(s,s)

We assume

(19) [G[now/next][I1/I1’, . . . , In/In’] ](e1)(s,s)

and show

(b.1.a)

[EXISTS #It : G[#It/next][$J1/I1’, . . . ,$Jn/In’] AND
IF #It.continues OR #It.breaks

THEN #Is.executes
ELSE #Is == #It ](e1)(s,s)

We define

(20) e2 := e1[ It 7→ control(u(k)) ]c

From (9a), (20) and the definition of [ ], to show (b.1.a), it suffices to show
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(b.1.b.1) [G[#It/next][$J1/I1’, . . . ,$Jn/In’] ](e2)(s,s)

(b.1.b.2)
IF continues(control(u(k)))∨breaks(control(u(k)))

THEN executes(control(s′))
ELSE control(s′) = control(u(k))

From (19), (CD0), and (PNNF2), we know

(21) [G[I1/I1’, . . . , In/In’] ](e1)(s,s)

From (21), (IDE), and (PPVF2’), we know

(22) [G ](e1)(s,s)

From (4), (5), (6), and (22), we can show (as demonstrated in the soundness proof
of the Invariant Rule in Section 5.4.3)

(23) [G ](e1)(s,u(k))

From (7) and the definition of Invariant, we know

(24) $I1, . . . ,$In,#Is,#It do not occur in G,H, and F

From (20), (23), (24), and (CNEF2), we know

(25) [G[#It/next] ](e2)(s,u(k))

From (2), (11), and the definitions of [ ] and finiteExecution, we know

(26) executes(control(t(0)))

(27) t(0) = u(0)

(28)

∀i ∈ Nk :
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (27) and (28), we can conclude

(29) t(k) = u(k)∨ t(k) = execute(u(k))

From (29), (NEQ), (REE), and (CD2), we know

(30) t(k) EQUALS u(k)
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From (13), (30), (NEQ), and (AVE), we know

(31) read(s′, I1) = read(u(k), I1)∧ . . .∧ read(s′, In) = read(u(k), In)

From (11) and the definition of finiteExecution, we can show

(32) s = u(k) EXCEPT I1, . . . , In

From (8), (14), (20), (24), (25), (31), (32), (CNEF0), and finally (PMVF2’), we
know (b.1.b.1).

From Lemma “State Control Predicates”, (13), (26), (27), and (28), we can con-
clude (b.1.b.2).

From (15), (16), (17), (18), and (b.1), we know

(33) [Q[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s,s)

From (13), (30), (32), (NEQ), (AVE), and (TRE), we know

(34) s = s′ EXCEPT I1, . . . , In

From (8), (9), (14), (33), (34), (CNOF0), and (PMVF1’), we know

(35) [Q[#Is/now] ](e0)(s′,s)

From (10), (14), (35), and (CNOF2), we know

(36) [Q ](e)(s′,s)

From (1b), (36), (PVF2’), and (PVFNE), we know (b). ¤
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5.6.11 While Loop (With Invariant, No Break)

E ' H
C : [F ]Fc,FALSE,Fr,{K1,...,Km}

I1,...,In

Invariant(G,H,F)I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in Q
Is 6= It
#Is does not occur in Q
PRE(while(E)C,Q) =

FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
!#Is.continues AND !#Is.breaks AND
(#Is.returns => Fr) AND
(#Is.throws =>

(#Is.throws K1 OR . . . OR #Is.throws Km)) AND
(G[now/next][I1/I1’, . . . , In/In’] =>

EXISTS #It : G[#It/next][$J1/I1’, . . . ,$Jn/In’] AND
IF #It.continues OR #It.breaks

THEN #Is.executes
ELSE #Is == #It) AND

(#Is.executes => !H[#Is/now][$J1/I1, . . . ,$Jn/In])
=> Q[#Is/now][$J1/I1, . . . ,$Jn/In]

Soundness Proof Analogous to the proof of the rule without invariant or breaks
combined with the proof of the rule with invariant. ¤

5.7 Computing Command Postconditions

As for preconditions, the computation of postconditions in the presence of (possi-
ble) control flow interruptions proceeds analogously to the computation presented
in Section 4.2. Pre- and postconditions are not allowed refer to next (in addi-
tion to the primed program variables). The rules are presented in Figures 5.25 to
5.29. The “generic” rule is a simple extension of the previously presented ver-
sion; as for the specialized rules, especially the rules for loops have become more
complicated.

Theorem (Soundness of the Postcondition Calculus with Interruptions) As-
sume the condition denoted by DifferentVariables. If POST(C,P) = Q can be de-
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Postcondition Calculus with Interruptions: Judgements

POST(C,P) = Q⇔
P has no primed program variables and no occurr. of next⇒

Q has no primed prog. variables and no occurr. of next ∧
∀e ∈ Environment,s,s′ ∈ State :

[now.executes ](e)(s,s) ⇒
([P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′))

Postcondition Calculus with Interruptions: Generic Rule

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in F and P
#Is does not occur in F and P
POST(C,P) =

EXISTS $J1, . . . ,$Jn: EXSTATE #Is:
P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
F [#Is/now,now/next]

[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’]

Figure 5.25: The Postcondition Calculus of the Command Language (Part 1/5)
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Postcondition Calculus with Interruptions: Non-Loops

E ' T
$J does not occur in P
POST(I=E,P) = EXISTS $J : P[$J/I] AND I=T [$J/I]

$J does not occur in P
$K does not occur in Q
J 6= K
POST(C,P[$J/I]) = Q
POST(var I;C,P) = EXISTS $K:Q[$K/I][I/$J]

E ' T
$J does not occur in P and in T
$K does not occur in Q
J 6= K
POST(C,P[$J/I] AND I = T [$J/I]) = Q
POST(var I=E;C,P) = EXISTS $K:Q[$K/I][I/$J]

POST(C1,P) = Q
POST(C2,Q) = O
POST(C1;C2,P) = O OR (Q AND !now.executes)

C1 : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

POST(C1,P) = Q
POST(C2,Q) = O
POST(C1;C2,P) = O OR (Q AND

((now.continues AND Fc) OR
(now.breaks AND Fb) OR
(now.returns AND Fr) OR
(now.throws K1 OR . . . OR now.throws Km)))

E ' F
POST(C,P AND F) = Q
POST(if (E) C,P) = Q OR (P AND !F)

E ' F
POST(C1,P AND F) = Q1
POST(C2,P AND !F) = Q2
POST(if (E) C1 elseC2,P) = Q1 OR Q2

Figure 5.26: The Postcondition Calculus of the Command Language (Part 2/5)
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Postcondition Calculus with Interruptions: Non-Loops

#I does not occur in P
POST(continue,P) =

now.continues AND EXSTATE #I: P[#I/now]

#I does not occur in P
POST(break,P) =

now.breaks AND EXSTATE #I:P[#I/now]

E ' T
#I does not occur in P
POST(return E,P) =

now.returns AND now.value = T AND
EXSTATE #I:P[#I/now]

E ' T
#Is does not occur in P
POST(throw Ik E,Q) =

now.throws Ik AND now.value = T AND
EXSTATE #Is: P[#Is/now]

#I does not occur in Q
$J does not occur in Q
$K does not occur in O
J 6= K
POST(C1,P) = Q
POST(C2,

EXSTATE #I :
#I.throws Ik AND #I.value = Iv AND
Q[#I/now][$J/Iv]) = O

POST(tryC1 catch(Ik Iv)C2,P) =
(Q AND !now.throws Ik) OR
EXISTS $K: O[$K/Iv][Iv/$J]

Figure 5.27: The Postcondition Calculus of the Command Language (Part 3/5)
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Postcondition Calculus with Interruptions: Loops

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is does not occur in P
POST(while(E)C,P) =

EXISTS $J1, . . . ,$Jn: EXSTATE #Is:
P[#Is/now][$J1/I1, . . . ,$Jn/In]

E ' H
C : [F ]Fc,FALSE,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is does not occur in P
POST(while(E)C,P) =

(now.executes =>!H) AND
EXISTS $J1, . . . ,$Jn: EXSTATE #Is:

P[#Is/now][$J1/I1, . . . ,$Jn/In]

Figure 5.28: The Postcondition Calculus of the Command Language (Part 4/5)
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Postcondition Calculus with Interruptions: Loops

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is,#It do not occur in P
Invariant(G,H,F)I1,...,In

POST(while(E)C,P) =
EXISTS $J1, . . . ,$Jn: EXSTATE #Is,#It:

P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
(G[now/next][I1/I1’, . . . , In/In’]

[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’] AND
IF #It.continues OR #It.breaks

THEN next.executes
ELSE next == #It)

E ' H
C : [F ]Fc,FALSE,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is,#It do not occur in P
Invariant(G,H,F)I1,...,In

POST(while(E)C,P) =
(now.executes =>!H) AND
EXISTS $J1, . . . ,$Jn: EXSTATE #Is,#It:

P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
(G[now/next][I1/I1’, . . . , In/In’]

[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’] AND
IF #It.continues OR #It.breaks

THEN next.executes
ELSE next == #It)

Figure 5.29: The Postcondition Calculus of the Command Language (Part 5/5)
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rived from the rules of the precondition calculus of the command language, then
it is true that

P has no primed program variables and no occurr. of next ⇒
Q has no primed program variables and no occurr. of next ∧
∀e ∈ Environment,s,s′ ∈ State :

[now.executes ](e)(s,s)⇒
([P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′))

Proof Assume

(1a) DifferentVariables

Take C, P, and Q such that POST(C,P) = Q can be derived and assume

(1b) P has no primed program variables and no occurrence of next

From (1b) and the rules, it is easy to show by induction on the derivation of
POST(C,P) = Q that Q has no primed program variables and also no occurrence
of next.

Now take arbitrary e ∈ Environment and s,s′ ∈ State. We prove

[now.executes ](e)(s,s)⇒
([P ](e)(s,s)∧ [C ](s,s′)⇒ [Q ](e)(s′,s′))

by induction on the derivation of POST(C,P) = Q. The following subsections
cover all cases for the last step of such a derivation.

From (1b) and the rules, we can immediately deduce that in every derivation
POST(C′,P′) = Q′ matching the premise of a rule with conclusion POST(C,P) =
Q, the formula P′ has no primed variables; we thus assume in the proofs that the
induction hypothesis immediately implies the core claim ∀e∈ Environment,s,s′ ∈
State : [P′ ](e)(s,s)∧ [C′ ](s,s′)⇒ [Q′ ](e)(s′,s′). ¤

Actually, we only show proofs for those cases where interruptions play a role; the
other proofs are analogous to those for programs without interruptions.
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5.7.1 Generic Rule

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in F and P
#Is does not occur in F and P
POST(C,P) =

EXISTS $J1, . . . ,$Jn: EXSTATE #Is:
P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
F [#Is/now,now/next]

[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’]

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s) ⇒
[P ](e)(s,s)∧ [C ](s,s′)⇒

[EXISTS $J1, . . . ,$Jn: EXSTATE #Is:
P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
F [#Is/now,now/next]

[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’] ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)
(3) [P ](e)(s,s)
(4) [C ](s,s′)

and show

(b)

[EXISTS $J1, . . . ,$Jn: EXSTATE #Is:
P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
F [#Is/now,now/next]

[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’] ](e)(s′,s′)

We define

(5)
e0 := e[ Is 7→ control(s) ]c
e1 := e0[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ]

From (5) and the definition of [ ], it suffices to show

(c.1) [P[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s′,s′)
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(c.2)
[F [#Is/now,now/next]

[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’] ](e1)(s′,s′)

From the hypotheses, we know

(6) C : [F ] I1,...,In

(7) J1, . . . ,Jn is a renaming of I1, . . . , In

(8) $J1, . . . ,$Jn do not occur in F and P

(9) #Is does not occur in F and P

From (1a), (2), (4), (6), the soundness of the verification calculus with interrup-
tions, and the definition of [ ], we know

(10) [F ](e)(s,s′)
(11) s = s′ EXCEPT I1, . . . , In

From (3), (5), (9), and (CNOF2), we know

(12) [P[#Is/now] ](e0)(s,s)

From (5), (7), (8), (11), (12), (CNOF0), and (PMVF1’), we know

(13) [P[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s′,s)

From (1b), (11), (13), (PVF2’), and (PVNE), we know (c.1).

From (5), (9), (10), and (CNOF2), we know

(14) [F [#Is/now] ](e0)(s,s′)

From (14) and (PNNF2), we know

(15) [F [#Is/now,now/next] ](e0)(s,(store(s′),control(s)))

From (7), (8), (11), (15), (CNOF0), and (PMVF1’), we know

(16)
[F [#Is/now,now/next]

[$J1/I1, . . . ,$Jn/In] ](e1)(s′,(store(s′),control(s)))

From (16), (CD0), (CNEF1), and (PVFNE), we know

(17) [F [#Is/now,now/next][$J1/I1, . . . ,$Jn/In] ](e1)(s′,s′)

From (17), (IDE), and (PPVF2’), we know (c.2). ¤
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5.7.2 Command Sequence (Basic Version)

POST(C1,P) = Q
POST(C2,Q) = O
POST(C1;C2,P) = O OR (Q AND !now.executes)

The postcondition of the corresponding rule for programs without interruptions is
extended by the disjunct Q AND !now.executes; this reflects the possibility
that the execution of C1 has resulted in a non-executing state such that C2 is not
executed any more and the postcondition Q of C1 is consequently still valid.

Soundness Proof We have to show

(a)
[now.executes ](e)(s,s) ⇒

[P ](e)(s,s)∧ [C1;C2 ](s,s′)⇒
[O OR (Q AND !now.executes) ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)
(3) [P ](e)(s,s)
(4) [C1;C2 ](s,s′)

By the definition of [ ], it suffices to show

(b) [O ](e)(s′,s′)∨ ([Q ](e)(s′,s′)∧¬executes(control(s′)))

From the premises, we know by the induction hypothesis

(5)
∀s,s′ ∈ State : [now.executes ](e)(s,s) ⇒

[P ](e)(s,s)∧ [C1 ](s,s′)⇒ [Q ](e)(s′,s′)

(6)
∀s,s′ ∈ State : [now.executes ](e)(s,s) ⇒

[Q ](e)(s,s)∧ [C2 ](s,s′)⇒ [O ](e)(s′,s′)

From (4) and the definition of [ ], we know for some s0 ∈ State

(7) [C1 ](s,s0)

(8) IF executes(control(s0)) THEN [C2 ](s0,s′) ELSE s′ = s0

From (2), (3), (5), and (7), we know

(9) [Q ](e)(s0,s0)
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We proceed by case distinction.

• Case executes(control(s0)): from the definition of [ ] and the case condi-
tion, we know

(10) [now.executes ](e)(s0,s0)

From (8) and the case condition, we know

(11) [C2 ](s0,s′)

From (6), (9), (10), and (11), we know

(12) [O ](e)(s′,s′)

From (12), we know (b).

• Case ¬executes(control(s0)): from (8) and the case condition, we know

(13) s′ = s0

From (9), (13), and the case condition, we know (b). ¤

5.7.3 Command Sequence (Extended Version)

C1 : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

POST(C1,P) = Q
POST(C2,Q) = O
POST(C1;C2,P) = O OR (Q AND

((now.continues AND Fc) OR
(now.breaks AND Fb) OR
(now.returns AND Fr) OR
(now.throws K1 OR . . . OR now.throws Km)))

Compared to the basic rule, the extended rule takes into account the information
which control flow interruptions may be triggered by the execution of C1: the
original formula !now.executes in the second disjunct is replaced by a more
accurate description about the control flow interruptions that prevent the execution
of C2 such that the postcondition Q of P1 is still valid.
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Soundness Proof We have to show

(a)

[now.executes ](e)(s,s) ⇒
[P ](e)(s,s)∧ [C1;C2 ](s,s′)⇒

[O OR (Q AND
((now.continues AND Fc) OR
(now.breaks AND Fb) OR
(now.returns AND Fr) OR
(now.throws K1 OR . . . OR now.throws Km)))

](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)
(3) [P ](e)(s,s)
(4) [C1;C2 ](s,s′)

By the definition of [ ], it suffices to show

(b)

[O ](e)(s′,s′) ∨
([Q ](e)(s′,s′) ∧

(continues(control(s′))∧ [Fc ](e)(s′,s′)) ∨
(breaks(control(s′))∧ [Fb ](e)(s′,s′)) ∨
(returns(control(s′))∧ [Fr ](e)(s′,s′)) ∨
(throws(control(s′))∧

(key(control(s′)) = K1∨ . . .∨ key(control(s′)) = Km)))

From the last two premises, we know by the induction hypothesis

(5)
∀s,s′ ∈ State : [now.executes ](e)(s,s) ⇒

[P ](e)(s,s)∧ [C1 ](s,s′)⇒ [Q ](e)(s′,s′)

(6)
∀s,s′ ∈ State : [now.executes ](e)(s,s) ⇒

[Q ](e)(s,s)∧ [C2 ](s,s′)⇒ [O ](e)(s′,s′)

From (4) and the definition of [ ], we know for some s0 ∈ State

(7) [C1 ](s,s0)

(8) IF executes(control(s0)) THEN [C2 ](s0,s′) ELSE s′ = s0

From (2), (3), (5), and (7), we know

(9) [Q ](e)(s0,s0)
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We proceed by case distinction.

• Case executes(control(s0)): from the definition of [ ] and the case condi-
tion, we know

(10) [now.executes ](e)(s0,s0)

From (8) and the case condition, we know

(11) [C2 ](s0,s′)

From (6), (9), (10), and (11), we know

(12) [O ](e)(s′,s′)

From (12), we know (b).

• Case ¬executes(control(s0)): from (8) and the case condition, we know

(13) s′ = s0

From (9), (13), and the case condition, we know

(14) [Q ](e)(s′,s′)

From (1a), (2), (7), the first premise and the soundness of the verification
calculus with interruptions, we know

(15) [ [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

](e)(s,s0)

From (15) and the definitions of [ ] and [ ] , we know

(16) [F ](e)(s,s0)
(17) s = s0 EXCEPT I1, . . . , In
(18) continues(control(s0))⇒ [Fc ](e)(s,s0)
(19) breaks(control(s0))⇒ [Fb ](e)(s,s0)
(20) returns(control(s0))⇒ [Fr ](e)(s,s0)

(21)
throws(control(s0))⇒

(key(control(s0)) = K1∨ . . .∨ key(control(s0)) = Km)

From (13), (14), (18), (19), (20), (21), and Lemma “Constant Formulas”,
we know (b). ¤

5.7.4 Continue Loop

#I does not occur in P
POST(continue,P) =

now.continues AND EXSTATE #I: P[#I/now]
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Soundness Proof We have to show

(a)
[now.executes ](e)(s,s) ⇒

[P ](e)(s,s)∧ [continue ](s,s′)⇒
[now.continues AND EXSTATE #I: P[#I/now] ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)
(3) [P ](e)(s,s)
(4) [continue ](s,s′)

By the definition of [ ], it suffices to show

(b.1) continues(control(s′))
(b.2) ∃c ∈ Control : [P[#I/now] ](e[ I 7→ c ]c)(s′,s′)

From (4) and the definition of [ ], we know

(5) s′ = continue(s)

From (5) and (CD1), we know (b.1).

We define

(6) e0 := e[ I 7→ control(s) ]c

By (6), to show (b.2), it suffices to show

(b.2.a) [P[#I/now] ](e0)(s′,s′)

From the premise, (3), (6), and (CNOF2), we know

(7) [P[#I/now] ](e0)(s,s)

From (1b), (7), (PVF2’), and (PVFNE), we know

(8) [P[#I/now] ](e0)(s,s′)

From (8), (CNOF0), and (PVFNO), we know

(9) [P[#I/now] ](e0)((store(s),control(s′)),s′)

From (5) and (CD2), we know

(10) s′ EQUALS s

From (10), (NEQ), (TRE), and (CD3), we know

(11) s′ EQUALS (store(s),control(s′))

From (9), (11), (REE), (NEQ), and (ESF), we know (b.2.a). ¤
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5.7.5 Break Loop

#I does not occur in P
POST(break,P) =

now.breaks AND EXSTATE #I:P[#I/now]

Soundness Proof We have to show

(a)
[now.executes ](e)(s,s) ⇒

[P ](e)(s,s)∧ [break ](s,s′)⇒
[now.breaks AND EXSTATE #I: P[#I/now] ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)
(3) [P ](e)(s,s)
(4) [break ](s,s′)

By the definition of [ ], it suffices to show

(b.1) breaks(control(s′))
(b.2) ∃c ∈ Control : [P[#I/now] ](e[ I 7→ c ]c)(s′,s′)

From (4) and the definition of [ ], we know

(5) s′ = break(s)

From (5) and (CD1), we know (b.1).

We define

(6) e0 := e[ I 7→ control(s) ]c

By (6), to show (b.2), it suffices to show

(b.2.a) [P[#I/now] ](e0)(s′,s′)

From the premise, (3), (6), and (CNOF2), we know

(7) [P[#I/now] ](e0)(s,s)

From (1b), (7), (PVF2’), and (PVFNE), we know
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(8) [P[#I/now] ](e0)(s,s′)

From (8), (CNOF0), and (PVFNO), we know

(9) [P[#I/now] ](e0)((store(s),control(s′)),s′)

From (5) and (CD2), we know

(10) s′ EQUALS s

From (10), (NEQ), (TRE), and (CD3), we know

(11) s′ EQUALS (store(s),control(s′))

From (9), (11), (REE), (NEQ), and (ESF), we know (b.2.a). ¤

5.7.6 Return Result

E ' T
#I does not occur in P
POST(return E,P) =

now.returns AND now.value = T AND
EXSTATE #I:P[#I/now]

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s) ⇒
[P ](e)(s,s)∧ [return E ](s,s′)⇒

[now.returns AND now.value = T AND
EXSTATE #I:P[#I/now] ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)
(3) [P ](e)(s,s)
(4) [return E ](s,s′)

By the definition of [ ], it suffices to show

(b.1) returns(control(s′))
(b.2) value(control(s′)) = [T ](e)(s′,s′)
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(b.3) ∃c ∈ Control : [P[#I/now] ](e[ I 7→ c ]c)(s′,s′)

From (4) and the definition of [ ], we know

(5) s′ = return(s, [E ](s))

From (5) and (CD1), we know (b.1).

From (5) and (CD1), we also know

(6) value(control(s′)) = [E ](s)

From the first premise and the definition of ', we know

(7) [E ](s) = [T ](e)(s,s′)

From (6) and (7), we know (b.2).

We define

(8) e0 := e[ I 7→ control(s) ]c

By (8), to show (b.3), it suffices to show

(b.3.a) [P[#I/now] ](e0)(s′,s′)

From the second premise, (3), (8), and (CNOF2), we know

(9) [P[#I/now] ](e0)(s,s)

From (1b), (9), (PVF2’), and (PVFNE), we know

(10) [P[#I/now] ](e0)(s,s′)

From (10), (CNOF0), and (PVFNO), we know

(11) [P[#I/now] ](e0)((store(s),control(s′)),s′)

From (5) and (CD2), we know

(12) s′ EQUALS s

From (12), (NEQ), (TRE), and (CD3), we know

(13) s′ EQUALS (store(s),control(s′))

From (11), (13), (REE), (NEQ), and (ESF), we know (b.3.a). ¤
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5.7.7 Throw Exception

E ' T
#Is does not occur in P
POST(throw Ik E,Q) =

now.throws Ik AND now.value = T AND
EXSTATE #Is: P[#Is/now]

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s) ⇒
[P ](e)(s,s)∧ [throw Ik E ](s,s′)⇒

[now.throws Ik AND now.value = T AND
EXSTATE #I:P[#I/now] ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)
(3) [P ](e)(s,s)
(4) [throw Ik E ](s,s′)

By the definition of [ ], it suffices to show

(b.1) throws(control(s′))
(b.2) key(control(s′)) = Ik

(b.3) value(control(s′)) = [T ](e)(s′,s′)
(b.4) ∃c ∈ Control : [P[#I/now] ](e[ I 7→ c ]c)(s′,s′)

From (4) and the definition of [ ], we know

(5) s′ = throw(s, Ik, [E ](s))

From (5) and (CD1), we know (b.1) and (b.2).

From (5) and (CD1), we also know

(6) value(control(s′)) = [E ](s)

From the first premise and the definition of ', we know

(7) [E ](s) = [T ](e)(s,s′)
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From (6) and (7), we know (b.3).

We define

(8) e0 := e[ I 7→ control(s) ]c

By (8), to show (b.4), it suffices to show

(b.4.a) [P[#I/now] ](e0)(s′,s′)

From the second premise, (3), (8), and (CNOF2), we know

(9) [P[#I/now] ](e0)(s,s)

From (1b), (9), (PVF2’), and (PVFNE), we know

(10) [P[#I/now] ](e0)(s,s′)

From (10), (CNOF0), and (PVFNO), we know

(11) [P[#I/now] ](e0)((store(s),control(s′)),s′)

From (5) and (CD2), we know

(12) s′ EQUALS s

From (12), (NEQ), (TRE), and (CD3), we know

(13) s′ EQUALS (store(s),control(s′))

From (11), (13), (REE), (NEQ), and (ESF), we know (b.4.a). ¤

5.7.8 Catch Exception

#I does not occur in Q
$J does not occur in Q
$K does not occur in O
J 6= K
POST(C1,P) = Q
POST(C2,

EXSTATE #I :
#I.throws Ik AND #I.value = Iv AND
Q[#I/now][$J/Iv]) = O

POST(tryC1 catch(Ik Iv)C2,P) =
(Q AND !now.throws Ik) OR
EXISTS $K: O[$K/Iv][Iv/$J]



5.7 Computing Command Postconditions 289

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s) ⇒
[P ](e)(s,s)∧ [tryC1 catch(Ik Iv)C2 ](s,s′)⇒

[(Q AND !now.throws Ik) OR
EXISTS $K: O[$K/Iv][Iv/$J] ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)
(3) [P ](e)(s,s)
(4) [tryC1 catch(Ik Iv)C2 ](s,s′)

By the definition of [ ], it suffices to show

(b)
([Q ](e)(s′,s′)∧¬(throws(control(s′))∧ key(control(s′)) = Ik)) ∨
∃v ∈ Value : [O[$K/Iv][Iv/$J] ](e[K 7→ v ])(s′,s′)

From the premises, we know

(5) #I does not occur in Q

(6) $J does not occur in Q

(7) $K does not occur in O

(8) J 6= K

(9) POST(C1,P) = Q

(10)

POST(C2,
EXSTATE #I :

#I.throws Ik AND #I.value = Iv AND
Q[#I/now][$J/Iv]) = O

From (9), (10), and the induction hypothesis, we know

(11)
∀e ∈ Environment,s,s′ ∈ State :

[now.executes ](e)(s,s) ⇒
[P ](e)(s,s)∧ [C1 ](s,s′)⇒ [Q ](e)(s′,s′)

(12)

∀e ∈ Environment,s,s′ ∈ State :
[now.executes ](e)(s,s) ⇒

[EXSTATE #I :
#I.throws Ik AND #I.value = Iv AND
Q[#I/now][$J/Iv] ](e)(s,s)∧ [C2 ](s,s′)⇒ [O ](e)(s′,s′)
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From (4) and the definition of [ ], we know for some s0,s1,s2 ∈ State

(13) [C1 ](s,s0)

(14)

IF throws(control(s0))∧ key(control(s0)) = Ik THEN

s1 = write(execute(s0), Iv,value(control(s0))) ∧
[C2 ](s1,s2) ∧
s′ = write(s2, Iv,read(s0, Iv))

ELSE s′ = s0

From (2), (3), (11), and (13), we know

(15) [Q ](e)(s0,s0)

First, we handle the case

(16) ¬(throws(control(s0))∧ key(control(s0)) = Ik)

From (14) and (16), we know

(17) s′ = s0

From (15), (16), and (17), we know (b).

The remainder of the proof may thus proceed under the assumption

(18) throws(control(s0))

(19) key(control(s0)) = Ik

From (14), (18), and (19), we know

(20) s1 = write(execute(s0), Iv,value(control(s0)))

(21) [C2 ](s1,s2)

(22) s′ = write(s2, Iv,read(s0, Iv))

To show (b), it suffices to show

(c) [O[$K/Iv][Iv/$J] ](e[K 7→ read(s2, Iv) ])(s′,s′)

From (20), (CD1), and (CWE), we know

(23) executes(control(s1))

We define



5.7 Computing Command Postconditions 291

(24) e0 := e[J 7→ read(s0, Iv) ]

Let us assume the following lemma (which will be shown below):

(d)
[EXSTATE #I :

#I.throws Ik AND #I.value = Iv AND
Q[#I/now][$J/Iv] ](e0)(s1,s1)

From (12), (21), (23), (24), the definition of [ ], and (d), we know

(25) [O ](e[J 7→ read(s0, Iv) ])(s2,s2)

From (22) and (CW), we know

(26) control(s′) = control(s2)

From (22) and (WS), we know

(27) s′ = s2 EXCEPT Iv

From (7), (25), (26), (27), and (PMVF1”), we know

(28) [O[$K/Iv] ](e[J 7→ read(s0, Iv),K 7→ read(s2, Iv) ])(s′,s2)

We define

(29) O′ := O[$K/Iv]

From (29) and (MPVF0’), we know

(30) Iv does not occur in O′

From (30) and (PMVF2’), we know

(31) O′[Iv/$J][$J/Iv] = O′

From (28), (29), and (31), we know

(32) [O′[Iv/$J][$J/Iv] ](e[J 7→ read(s0, Iv),K 7→ read(s2, Iv) ])(s′,s2)

From (22) and (RW1), we know

(33) read(s′, Iv) = read(s0, Iv)

From (8), (29), (32), (33), (PMVF0’), (REE), and (PMVF1”), we know
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(34) [O[$K/Iv][Iv/$J] ](e[K 7→ read(s2, Iv) ])(s′,s2)

From (10), we know

(35) O has no primed program variables

From (26), (34), (35), and (PVF2’), we know (c).

It remains to show (d). We define

(36) e1 := e0[ I 7→ control(s0) ]c

By (36), and the definition of [ ], it suffices to show

(e.1) throws(control(s0))

(e.2) key(control(s0)) = Ik

(e.3) value(control(s0)) = read(s1, Iv)

(e.4) [Q[#I/now][$J/Iv] ](e1)(s1,s1)

From (18), we know (e.1).

From (19), we know (e.2).

From (20), (WS), (CD2), (NEQ), and (RSE), we know (e.3).

From (6), (15), (24), and (MVF0’), we know

(37) [Q ](e0)(s0,s0)

From (5), (36), (37), and (CNOF2), we know

(38) [Q[#I/now] ](e1)(s0,s0)

From (20), (WS), (CD2), (NEQ), (AVE), and (TRE), we know

(39) s1 = s0 EXCEPT Iv

From (6), (24), (36), (38), (39), (CNOF0), and (PMVF1’), we know

(40) [Q[#I/now][$J/Iv] ](e1)(s1,s0)

From (9), we know

(41) Q has no primed variables and no occurrence of next

From (40), (41), (PVF2’), and (PVFNE), we know (e.4). ¤
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5.7.9 While Loop (Without Invariant)

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is does not occur in P
POST(while(E)C,P) =

EXISTS $J1, . . . ,$Jn: EXSTATE #Is:
P[#Is/now][$J1/I1, . . . ,$Jn/In]

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s) ⇒
[P ](e)(s,s)∧ [while(E)C ](s,s′)⇒

[EXISTS $J1, . . . ,$Jn: EXSTATE #Is:
P[#Is/now][$J1/I1, . . . ,$Jn/In] ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)
(3) [P ](e)(s,s)
(4) [while(E)C ](s,s′)

By the definition of [ ], it suffices to show

(b)
∃v1, . . . ,vn ∈ Value,c ∈ State :

[P[#Is/now][$J1/I1, . . . ,$Jn/In] ]
(e[ Is 7→ c ]c[J1 7→ v1, . . . ,Jn 7→ vn ])(s′,s′)

From the premises, we know

(5) C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

(6) J1, . . . ,Jn is a renaming of I1, . . . , In

(7) $J1, . . . ,$Jn do not occur in P

(8) #Is does not occur in P

From (2), (4), (5), and the soundness of the verification calculus, we can show (as
demonstrated in Section 5.4.1)

(9) s = s′ EXCEPT I1, . . . , In



294 Chapter 5. Interrupting the Control Flow

We define

(10)
e0 := e[ Is 7→ control(s) ]c
e1 := e0[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ]

By (10), to show (b), it suffices to show

(c) [P[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s′,s′)

From (3), (8), (10), and (CNOF2), we know

(11) [P[#Is/now] ](e0)(s,s)

From (6), (7), (9), (10), (11), (CNOF0), and (PMVF1’), we know

(12) [P[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(s′,s)

From (1b), (9), (10), (12), (PVF4’) and (PVFNE), we know (c). ¤

5.7.10 While Loop (Without Invariant, No Break)

E ' H
C : [F ]Fc,FALSE,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is does not occur in P
POST(while(E)C,P) =

(now.executes =>!H) AND
EXISTS $J1, . . . ,$Jn: EXSTATE #Is:

P[#Is/now][$J1/I1, . . . ,$Jn/In]

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s) ⇒
[P ](e)(s,s)∧ [while(E)C ](s,s′)⇒

[(now.executes =>!H) AND
EXISTS $J1, . . . ,$Jn: EXSTATE #Is:

P[#Is/now][$J1/I1, . . . ,$Jn/In] ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)
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(3) [P ](e)(s,s)
(4) [while(E)C ](s,s′)

By the definition of [ ], it suffices to show

(b.1) executes(control(s′))⇒¬[H ](e)(s′,s′)

(b.2)
∃v1, . . . ,vn ∈ Value,c ∈ State :

[P[#Is/now][$J1/I1, . . . ,$Jn/In] ]
(e[ Is 7→ c ]c[J1 7→ v1, . . . ,Jn 7→ vn ])(s′,s′)

As demonstrated in Section 5.7.9, we can show (b.2).

To show (b.1), we assume

(5) executes(control(s′))

and show

(b.1.a) ¬[H ](e)(s′,s′)

From the premises, we know

(6) E ' H

(7) C : [F ]Fc,FALSE,Fr,{K1,...,Km}
I1,...,In

(8) J1, . . . ,Jn is a renaming of I1, . . . , In

(9) $J1, . . . ,$Jn do not occur in P

(10) #Is does not occur in P

From (6) and the definition of ', to show (b.1.a), it suffices to show

(b.1.b) [E ](s′) 6= TRUE

From (7), the soundness of the verification calculus and the definitions of [ ]
and [ ], we know

(11)
∀s,s′ ∈ State : [now.executes ](e)(s,s′)∧ [C ](s,s′)⇒
¬breaks(control(s′))

From (4) and the definition of [ ], we know for some k ∈ N, t,u ∈ State∞

(12) finiteExecution(k, t,u,s, [E ], [C ])
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(13)
([E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k)))))

(14) t(k) = s′

From (13), to show (b.1.b), it suffices to show

(b.1.c) executes(control(u(k)))∨ continues(control(u(k)))

From (12) and the definition of finiteExecution, we know

(15) t(0) = s

(16) u(0) = s

(17)

∀i ∈ Nk :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (2), (15), (16), and the definition of [ ], we know

(18) executes(control(t(0)))

(19) executes(control(u(0)))

If k = 0, by (19), we know (b.1.c).

We may thus assume

(20) k > 0

From (17) and (20), we know

(21) executes(control(t(k−1)))

(22) [C ](t(k−1),u(k))

(23)
IF continues(control(u(k)))∨breaks(control(u(k)))

THEN t(k) = execute(u(k))
ELSE t(k) = u(k)

From (11), (21), (22), and the definition of [ ], we know

(24) ¬breaks(control(u(k)))

From (5), (14), (23) and (24), we know (b.1.c). ¤
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5.7.11 While Loop (With Invariant)

C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is,#It do not occur in P
Invariant(G,H,F)I1,...,In

POST(while(E)C,P) =
EXISTS $J1, . . . ,$Jn: EXSTATE #Is,#It:

P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
(G[now/next][I1/I1’, . . . , In/In’]

[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’] AND
IF #It.continues OR #It.breaks

THEN next.executes
ELSE next == #It)

Soundness Proof We have to show

(a)

[now.executes ](e)(s,s)⇒
[P ](e)(s,s)∧ [while(E)C ](s,s′)⇒

[EXISTS $J1, . . . ,$Jn: EXSTATE #Is,#It:
P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
(G[now/next][I1/I1’, . . . , In/In’]

[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’] AND
IF #It.continues OR #It.breaks

THEN next.executes
ELSE next == #It) ](e)(s′,s′)

We assume

(2) [now.executes ](e)(s,s)

(3) [P ](e)(s,s)

(4) [while(E)C ](s,s′)

and show
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(b)

[EXISTS $J1, . . . ,$Jn: EXSTATE #Is,#It:
P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
(G[now/next][I1/I1’, . . . , In/In’]

[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’] AND
IF #It.continues OR #It.breaks

THEN next.executes
ELSE next == #It) ](e)(s′,s′)

From the definition of [ ], we have to show

(c)

∃v1, . . . ,vn ∈ Value,cs,ct ∈ State :
[P[#Is/now][$J1/I1, . . . ,$Jn/In] AND

(G[now/next][I1/I1’, . . . , In/In’]
[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’] AND
IF #It.continues OR #It.breaks

THEN next.executes
ELSE next == #It) ]

(e[ Is 7→ cs, It 7→ ct ]c[J1 7→ v1, . . . ,Jn 7→ vn ])(s′,s′)

From the premises, we know

(5) C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

(6) J1, . . . ,Jn is a renaming of I1, . . . , In

(7) $J1, . . . ,$Jn do not occur in P

(8) #Is,#It do not occur in P

(9) Invariant(G,H,F)I1,...,In

From (4) and the definition of [ ], we know for some k ∈ N, t,u ∈ State∞

(10) finiteExecution(k, t,u,s, [E ], [C ])

(11)
([E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k)))))

(12) t(k) = s′

We define
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(13)
e0 := e[ Is 7→ control(s) ]c
e1 := e0[ It 7→ control(u(k)) ]c
e2 := e1[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ]

By (13) and the definition of [ ], to show (c), it suffices to show

(d.1) [P[#Is/now][$J1/I1, . . . ,$Jn/In] ](e2)(s′,s′)

(d.2)

[G[now/next][I1/I1’, . . . , In/In’] ](e2)(s,s′)⇒
[G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’] ](e2)(s′,s′) ∧
IF continues(control(u(k)))∨breaks(control(u(k)))

THEN executes(control(s′))
ELSE control(s′) = control(u(k))

From (3), (8), (13), and (CNOF2), we know

(14) [P[#Is/now] ](e0)(s,s)

From (8), (13), (14), and (MVF1’), we know

(15) [P[#Is/now] ](e1)(s,s)

From (2), (4), (5), and the soundness of the verification calculus, we can show (as
demonstrated in Section 5.4.1)

(16) s = s′ EXCEPT I1, . . . , In

From (6), (7), (13), (15), (16), (CNOF0), and (PMVF1’), we know

(17) [P[#Is/now][$J1/I1, . . . ,$Jn/In] ](e2)(s′,s)

From (1b), (13), (16), (17), (PVF4’) and (PVFNE), we know (d.1).

To show (d.2), we assume

(18) [G[now/next][I1/I1’, . . . , In/In’] ](e2)(s,s′)

and show

(d.2.a.1)
[G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’] ](e2)(s′,s′)

(d.2.a.2)
IF continues(control(u(k)))∨breaks(control(u(k)))

THEN executes(control(s′))
ELSE control(s′) = control(u(k))
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From (10) and the definition of finiteExecution, we know

(19) t(0) = s

(20) u(0) = s

(21)

∀i ∈ Nk :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

We show (d.2.a.2) by case distinction:

• Case k = 0: from this, (2), (19), and the definition of [ ], we know

(22) executes(control(u(k)))

From the case condition, (12), (19), and (20), we know

(23) s′ = u(k)

From (22), (23), and Lemma “State Control Predicates”, we know (d.2.a.2).

• Case k > 0: from this and (21), we know

(24)
IF continues(control(u(k)))∨breaks(control(u(k)))

THEN t(k) = execute(u(k))
ELSE t(k) = u(k)

From (12), (24), and (CD1), we know (d.2.a.2).

It remains to show (d.2.a.1).

We define

(25) s0 := writes(s′, I1,read(s, I1), . . . , In,read(s, In))

From (18), (25), and (PPVF2’), we know

(26) [G[now/next] ](e2)(s,s0)

From (26) and (PNNF2), we know

(27) [G ](e2)(s,(store(s0),control(s)))

From (25) and (RWE), we know
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(28) read(s0, I1) = read(s, I1)∧ . . .∧ read(s0, In) = read(s, In)

From (25) and (WSE), we know

(29) s0 = s′ EXCEPT I1, . . . , In

From (16), (29), and (TRE), we know

(30) s0 = s EXCEPT I1, . . . , In

From (28), (30), (RVE), and (NEQ), we know

(31) s0 EQUALS s

From (27), (31), (CD4) and (CD0), we know

(32) [G ](e2)(s,s)

From (9) and the definition of Invariant, we know

(33) G has no free (mathematical or state) variables

(34) $I1, . . . ,$In,#Is,#It do not occur in G,H, and F

From (32), (33), and (MVF’), we know

(35) [G ](e)(s,s)

From (5), (9), and (35), we can derive (as demonstrated in the proof of the sound-
ness of the invariant rule in Section 5.4.3)

(36) [G ](e)(s,u(k))

From (13), (34), (36) and (CNOF2), we know

(37) [G[#Is/now] ](e0)(s,u(k))

From (6), (13), (16), (34), (37), (CNOF0), and (PMVF1’), we know

(38) [G[#Is/now][$J1/I1, . . . ,$Jn/In] ](e2)(s′,u(k))

From (13), (34), (38), and (CNEF2), we know

(39) [G[#Is/now][$J1/I1, . . . ,$Jn/In][#It/next] ](e2)(s′,u(k))
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We know from (12), (19), (20), and (21)

(40) s′ = u(k)∨ s′ = execute(u(k))

From (40) and (CD2), we know

(41) s′ EQUALS u(k)

From (39), (42), (CD4), (PVFNE), and (CD0), we know

(43) [G[#Is/now][$J1/I1, . . . ,$Jn/In][#It/next] ](e2)(s′,s′)

From (43), (IDE), and (PPVF1’), we know (d.2.a.1). ¤

5.7.12 While Loop (With Invariant, No Break)

E ' H
C : [F ]Fc,FALSE,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is,#It do not occur in P
Invariant(G,H,F)I1,...,In

POST(while(E)C,P) =
(now.executes =>!H) AND
EXISTS $J1, . . . ,$Jn: EXSTATE #Is,#It:

P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
(G[now/next][I1/I1’, . . . , In/In’]

[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’] AND
IF #It.continues OR #It.breaks

THEN next.executes
ELSE next == #It)

Soundness Proof Analogous to the proof of the rule without invariant or breaks
combined with the proof of the rule with invariants.
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Assertion Calculus: Judgements

TRANS(C,P) = C′⇔
P has no primed program variables and no occurr. of next⇒
∀s,s′ ∈ State : [now.executes ](s)⇒

([P ](s)∧ [C ](s,s′)⇔ [C′ ](s,s′))

Assertion Calculus: Definitions

P+ ≡ P AND now.executes

Assertion Calculus: Rules for Non-Loops

TRANS(I=E,P) = assert P+; I=E

$J does not occur in P
TRANS(C,EXISTS $J : P[$J/I]) = C′

TRANS(var I;C,P) = assert P+; var I;C′

E ' T
$J does not occur in P and in T
TRANS(C,EXISTS $J : P[$J/I] AND I = T [$J/I]) = C′

TRANS(var I=E;C,P) = assert P+; var I=E;C′

POST(C1,P) = Q
TRANS(C1,P) = C′1
TRANS(C2,Q) = C′2
TRANS(C1;C2,P) = assert P+;C′1;C′2
E ' F
TRANS(C,P AND F) = C′

TRANS(if (E)C,P) = assert P+; if (E)C′

E ' F
TRANS(C1,P AND F) = C′1
TRANS(C2,P AND !F) = C′2
TRANS(if (E)C1 else C2,P) =

assert P+; if (E)C′1 elseC′2

Figure 5.30: The Assertion Calculus with Interruptions (Part 1/3)



304 Chapter 5. Interrupting the Control Flow

Assertion Calculus: Rules for Non-Loops

TRANS(continue,P) = assert P+; continue

TRANS(break,P) = assert P+; break

TRANS(return E,P) = assert P+; return E

TRANS(throw Ik E,P) = assert P+; throw Ik E

$J does not occur in Q
#Is does not occur in Q
POST(C1,P) = Q
TRANS(C1,P) = C′1
TRANS(C2,

EXISTS $J: EXSTATE #Is:
Q[#Is/now][$J/Iv] AND
#Is.throws Ik AND #Is.value = Iv) = C′2

TRANS(try C1 catch(Ik Iv) C2,P) =
assert P+; try C′1 catch(Ik Iv)C′2

Figure 5.31: The Assertion Calculus with Interruptions (Part 2/3)
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Assertion Calculus: Rules for Loops

E ' H
C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is does not occur in P
TRANS(C,

H AND
EXISTS $J1, . . . ,$Jn: EXSTATE #Is:

P[#Is/now][$J1/I1, . . . ,$Jn/In]) = C′

TRANS(while(E) C,P) = assert P+; while(E)C′

E ' H
C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is,#It do not occur in P
Invariant(G,H,F)I1,...,In

TRANS(C,
H AND
EXISTS $J1, . . . ,$Jn: EXSTATE #Is,#It:

P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
(G[now/next][I1/I1’, . . . , In/In’]

[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’] AND
(!(#It.continues OR #It.breaks) =>

now == #It))) = C′

TRANS(while(E) C,P) = assert P+; while(E)C′

Figure 5.32: The Assertion Calculus with Interruptions (Part 3/3)
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5.8 Computing Assertions

This section generalizes the assertion calculus presented in Section 4.3 to take
into account the possibility of control flow interruptions. Again the judgement
TRANS(C,P) = P′ constructs a version C′ of command C (which is assumed to
execute in a state satisfying precondition P) that is annotated with assert com-
mands such that the meaning of C is preserved. The interpretation of judgements
presented in Figure 5.30 is generalized to take into account that the prestates of
commands are always executing. Correspondingly, all assertion conditions have
now form (P AND now.executes) which is abbreviated to P+.

The rules of the calculus are presented in Figures 5.30, 5.31, and 5.32. The fol-
lowing theorem states the corresponding soundness claim.

Theorem (Soundness of the Assertion Calculus) Assume the condition de-
noted by DifferentVariables. If TRANS(C,P) = C′ can be derived from the rules
of the assertion calculus of the command language, then it is true that

P has no primed program variables and no occurrence of next⇒
∀s,s′ ∈ State : [now.executes ](s)⇒

([P ](s)∧ [C ](s,s′)⇔ [C′ ](s,s′))

Assume

(1a) DifferentVariables

Take C, P, and C′ such that TRANS(C,P) = C′ can be derived and assume

(1b) P has no primed program variables and no occurrence of next

Now take arbitrary s,s′ ∈ State. We prove

[now.executes ](s)⇒
([P ](s)∧ [C ](s,s′)⇔ [C′ ](s,s′))

Again, we only show the “left to right” direction by induction on the derivation of
TRANS(C,P) = C′. The following subsections cover all cases for the last step of
such a derivation.

From (1b) and the rules, we can immediately deduce that in every derivation
TRANS(C′,P′) = C′ that matches the premise of a rule which has conclusion
TRANS(C,P) = C, the formula P′ has no primed variables; we thus assume in the
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proofs that the induction hypothesis immediately implies the core claim ∀s,s′ ∈
State : [now.executes ](s)⇒ ([P′ ](s)∧ [C′ ](s,s′)⇒ [C′ ](s′,s′)). ¤
Actually, we will only show detailed proofs for some of the cases including all
those where interruptions play a role; the other proofs are analogous to those of
the calculus for programs without interruptions.

5.8.1 Assignment

TRANS(I=E,P) = assert P+; I=E

Soundness Proof We have to prove

(a)
[now.executes ](s)⇒

[P ](s)∧ [ I=E ](s,s′)⇒ [assert P+; I=E ](s,s′)

We assume

(2) [now.executes ](s)
(3) [P ](s)
(4) [ I=E ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)
(b.2) executes(control(s))

(b.3) [ I=E ](s,s′)

From (3), we know (b.1). From (2) and the definition of [ ], we know (b.2).
From (4), we know (b.3). ¤

5.8.2 Command Sequence

POST(C1,P) = Q
TRANS(C1,P) = C′1
TRANS(C2,Q) = C′2
TRANS(C1;C2,P) = assert P+;C′1;C′2
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Soundness Proof We have to prove

(a)
[now.executes ](s)⇒

[P ](s)∧ [C1;C2 ](s,s′)⇒ [assert P+;C′1;C′2 ](s,s′)

We assume

(2) [now.executes ](s)
(3) [P ](s)
(4) [C1;C2 ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)
(b.2) executes(control(s)

(b.3)
∃s0 ∈ State :

[C′1 ](s,s0) ∧
IF executes(control(s0)) THEN [C′2 ](s0,s′) ELSE s′ = s0

From the premises and the induction hypothesis, we know

(5) POST(C1,P) = Q

(6)
∀s,s′ ∈ State : [now.executes ](s)⇒

[P ](s)∧ [C1 ](s,s′)⇒ [C′1 ](s,s′)

(7)
∀s,s′ ∈ State : [now.executes ](s)⇒

[Q ](s)∧ [C2 ](s,s′)⇒ [C′2 ](s,s′)

From (3), we know (b.1). From (2) and the definition of [ ], we know (b.2).

From (4) and the definition of [ ], we know for some s0 ∈ State

(8) [C1 ](s,s0)

(9) IF executes(control(s0)) THEN [C2 ](s0,s′) ELSE s′ = s0

To show (b.3), it suffices to show

(b.3.a.1) [C′1 ](s,s0)

(b.3.a.2) IF executes(control(s0)) THEN [C′2 ](s0,s′) ELSE s′ = s0

From (2), (3), (6), and (8), we know (b.3.a.1).

If ¬executes(control(s0)), by (9), we know (b.3.a.2).

We thus may proceed with the proof of (b.3.a.2) under the assumption
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(10) executes(control(s0))

From (9) and (10), we know

(11) [C2 ](s0,s′)

From (10) and the definition of [ ], we know

(12) [now.executes ](s0)

Let us assume

(e) [Q ](s0)

From (e), (7), (10), (11), and (12), we know (b.3.a.2).

It remains to show (e), i.e. for arbitrary e ∈ Environment

(f) [Q ](e)(s0,s0)

From (1b), (5), and the soundness of the postcondition calculus, we know

(13)
∀e ∈ Environment,s,s′ ∈ State : [now.executes ](s)⇒

[P ](e)(s,s)∧ [C1 ](s,s′)⇒ [Q ](e)(s′,s′)

From (2), (3), (8), and (13), we know (f). ¤

5.8.3 Catch Exception

$J does not occur in Q
#Is does not occur in Q
POST(C1,P) = Q
TRANS(C1,P) = C′1
TRANS(C2,

EXISTS $J: EXSTATE #Is:
Q[#Is/now][$J/Iv] AND
#Is.throws Ik AND #Is.value = Iv) = C′2

TRANS(try C1 catch(Ik Iv)C2,P) =
assert P+; try C′1 catch(Ik Iv)C′2
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Soundness Proof We have to prove

(a)
[now.executes ](s)⇒

[P ](s)∧ [try C1 catch(Ik Iv)C2 ](s,s′)⇒
[assert P+; try C′1 catch(Ik Iv)C′2 ](s,s′)

We assume

(2) [now.executes ](s)
(3) [P ](s)
(4) [tryC1 catch(Ik Iv)C2 ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)
(b.2) executes(control(s)

(b.3)

∃s0,s1,s2 ∈ State :
[C′1 ](s,s0) ∧
IF throws(control(s0))∧ key(control(s0)) = Ik THEN

s1 = write(execute(s0), Iv,value(control(s0))) ∧
[C′2 ](s1,s2) ∧
s′ = write(s2, Iv,read(s0, Iv))

ELSE s′ = s0

From the premises and the induction hypothesis, we know

(5) $J does not occur Q

(6) #Is does not occur in Q

(7) POST(C1,P) = Q

(8)
∀s,s′ ∈ State : [now.executes ](s)⇒

[P ](s)∧ [C1 ](s,s′)⇒ [C′1 ](s,s′)

(9)

∀s,s′ ∈ State : [now.executes ](s)⇒
[EXISTS $J: EXSTATE #Is:

Q[#Is/now][$J/Iv] AND
#Is.throws Ik AND #Is.value = Iv ](s)∧ [C2 ](s,s′)⇒

[C′2 ](s,s′)

From (3), we know (b.1). From (2) and the definition of [ ], we know (b.2).

From (4) and the definition of [ ], we know for some s0,s1,s2 ∈ State
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(10) [C1 ](s,s0)

(11)

IF throws(control(s0))∧ key(control(s0)) = Ik THEN

s1 = write(execute(s0), Iv,value(control(s0))) ∧
[C2 ](s1,s2) ∧
s′ = write(s2, Iv,read(s0, Iv))

ELSE s′ = s0

To show (b.3), it suffices to show

(b.3.a.1) [C′1 ](s,s0)

(b.3.a.2)

IF throws(control(s0))∧ key(control(s0)) = Ik THEN

s1 = write(execute(s0), Iv,value(control(s0))) ∧
[C′2 ](s1,s2) ∧
s′ = write(s2, Iv,read(s0, Iv))

ELSE s′ = s0

From (2), (3), (8), and (10), we know (b.3.a.1).

If ¬(throws(control(s0))∧ key(control(s0)) = Ik), by (11), we know (b.3.a.2).

We thus may proceed with the proof of (b.3.a.2) under the assumptions

(12) throws(control(s0))

(13) key(control(s0)) = Ik

From (11), (12), and (13), we know

(14) s1 = write(execute(s0), Iv,value(control(s0)))

(15) [C2 ](s1,s2)

(16) s′ = write(s2, Iv,read(s0, Iv))

By (12), (13), (14), and (16), to show (b.3.a.2), it suffices to show

(b.3.a.2.a) [C′2 ](s1,s2)

From (14), (CD1), and (CW), we know

(17) executes(control(s1))

From (17) and the definition of [ ], we know

(18) [now.executes ](s1)
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From (9), (15), and (18), to show (b.3.a.2.a), it suffices to show

(b.3.a.2.b)
[EXISTS $J: EXSTATE #Is:

Q[#Is/now][$J/Iv] AND
#Is.throws Ik AND #Is.value = Iv ](s1)

i.e. for arbitrary e ∈ Environment

(b.3.a.2.c)
∃v ∈ Value,c ∈ Control :

[Q[#Is/now][$J/Iv] ](e[ Is 7→ c ]c[J 7→ v ])(s1,s1) ∧
throws(c)∧ key(c) = Ik∧ value(c) = read(s1, Iv)

We define

(19)
e0 := e[ Is 7→ control(s0) ]c
e1 := e0[J 7→ read(s0, Iv) ]

By (19), to show (b.3.a.2.c), it suffices to show

(b.3.a.2.d.1) [Q[#Is/now][$J/Iv] ](e1)(s1,s1)

(b.3.a.2.d.2) throws(control(s0))

(b.3.a.2.d.3) key(control(s0)) = Ik

(b.3.a.2.d.4) value(control(s0)) = read(s1, Iv)

From (12), we know (b.3.a.2.d.2).

From (13), we know (b.3.a.2.d.3).

From (14) and (RW1), we know (b.3.a.2.d.4).

From (1a), (1b), (7), and the soundness of the postcondition calculus, we know

(20) Q has no primed program variables and no occurrence of next

(21)
∀e ∈ Environment,s,s′ ∈ State : [now.executes ](s)⇒

[P ](e)(s,s)∧ [C1 ](s,s′)⇒ [Q ](e)(s′,s′)
From (2), (3), (10), and (21), we know

(22) [Q ](e)(s0,s0)

From (6), (19), (22), and (CNOF2), we know

(23) [Q[#Is/now] ](e0)(s0,s0)

From (14), (WS), (CD2), (NEQ), (AVE), and (TRE), we know

(24) s1 = s0 EXCEPT Iv

From (5), (19), (23), (24), (CNOF0), and (PMVF1’), we know

(25) [Q[#Is/now][$J/Iv] ](e1)(s1,s0)

From (20), (25), (PVF2’), and (PVFNE), we know (b.3.a.2.d.1). ¤
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5.8.4 While Loop (Without Invariant)

E ' H
C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is does not occur in P
TRANS(C,

H AND
EXISTS $J1, . . . ,$Jn: EXSTATE #Is:

P[#Is/now][$J1/I1, . . . ,$Jn/In]) = C′

TRANS(while(E) C,P) = assert P+; while(E)C′

Soundness Proof We have to prove

(a)
[now.executes ](s)⇒

[P ](s)∧ [while(E)C ](s,s′)⇒
[assert P+; while(E)C′ ](s,s′)

We assume

(2) [now.executes ](s)
(3) [P ](s)
(4) [while(E)C ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)
(b.2) executes(control(s))

(b.3)

∃k ∈ N, t,u ∈ State∞ :
finiteExecution(k, t,u,s, [E ], [C′ ])∧
([E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k))))) ∧
t(k) = s′

From the premises and the induction hypothesis, we know

(5) E ' H

(6) C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In
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(7) J1, . . . ,Jn is a renaming of I1, . . . , In

(8) $J1, . . . ,$Jn do not occur in P

(9) #Is does not occur in P

(10)

∀s,s′ ∈ State :
[now.executes ](s) ∧
[H AND

EXISTS $J1, . . . ,$Jn: EXSTATE #Is:
P[#Is/now][$J1/I1, . . . ,$Jn/In] ](s) ∧

[C ](s,s′)⇒
[C′ ](s,s′)

From (3), we know (b.1).

From (4) and the definition of [ ], we know (b.2).

From (4) and the definition of [ ], we know for some k ∈ N, t,u ∈ State∞

(11) finiteExecution(k, t,u,s, [E ], [C ])

(12)
[E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k)))∨ continues(control(u(k))))

(13) t(k) = s′

To show (b.3), from (12) and (13), it suffices to show

(b.3.a) finiteExecution(k, t,u,s, [E ], [C′ ])

i.e., by the definition of finiteExecution,

(b.3.b.1) t(0) = s

(b.3.b.2) u(0) = s

(b.3.b.3)

∀i ∈ Nk :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C′ ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (11) and the definition of finiteExecution, we know

(14) t(0) = s

(15) u(0) = s
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(16)

∀i ∈ Nk :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (14), we know (b.3.b.1).

From (15), we know (b.3.b.2).

To show (b.3.b.3), we show for arbitrary i ∈ Nk

(b.3.b.3.a.1) ¬breaks(control(u(i))

(b.3.b.3.a.2) executes(control(t(i)))

(b.3.b.3.a.3) [E ](t(i)) = TRUE

(b.3.b.3.a.4) [C′ ](t(i),u(i+1))

(b.3.b.3.a.5)
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (16), we know (b.3.b.a.1), (b.3.b.a.2), (b.3.b.a.3), (b.3.b.a.5) and

(17) [C ](t(i),u(i+1))

To show (b.3.b.3.a.4), from (10), (17), (b.3.b.3.a.2) and the definition of [ ], it
suffices to show

(b.3.b.3.a.4.a)
[H AND

EXISTS $J1, . . . ,$Jn: EXSTATE #Is:
P[#Is/now][$J1/I1, . . . ,$Jn/In] ](t(i))

i.e. by the definition of [ ], for arbitrary e ∈ Environment,

(b.3.b.3.a.4.b.1) [H ](e)(t(i), t(i))

(b.3.b.3.a.4.b.2)
∃v1, . . . ,vn ∈ Value,c ∈ Control :

[P[#Is/now][$J1/I1, . . . ,$Jn/In] ]
(e[ Is 7→ c ]c[J1 7→ v1, . . . ,Jn 7→ vn ])(t(i), t(i))

From (5), (16), and the definition of ', we know (b.3.b.3.a.4.b.1).

From (6), the soundness of the verification calculus with interruptions, and the
definition of ', we know
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(18)
∀s,s′ ∈ Store :

executes(control(s))∧ [C ](s,s′)⇒ s = s′ EXCEPT I1, . . . , In

From (16) and (18), we know

(19) ∀i ∈ Nk : t(i) = u(i+1) EXCEPT I1, . . . , In

From (16), (CD2), and (REE), we know

(20) ∀i ∈ Nk : t(i+1) EQUALS u(i+1)

From (14), (19), (20), (NEQ), (AVE), and (TRE), we know

(21) s = t(i) EXCEPT I1, . . . , In

We define

(22)
e0 := e[ Is 7→ control(s) ]c
e1 := e0[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ]

From (22), to show (b.3.b.3.a.4.b.2), it suffices to show

(b.3.b.3.a.4.b.2.a) [P[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(t(i), t(i))

From (3) and the definition of [ ], we know

(23) [P ](e)(s,s)

From (9), (22), (23), and (CNOF2), we know

(24) [P[#Is/now] ](e0)(s,s)

From (7), (8), (21), (22), (24), (CNOF0), and (PMVF1’), we know

(25) [P[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(t(i),s)

From (1b), (25), (PVF2’), and (PVFNE), we know (b.3.b.3.a.4.b.2.a). ¤
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5.8.5 While Loop (With Invariant)

E ' H
C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is,#It do not occur in P
Invariant(G,H,F)I1,...,In

TRANS(C,
H AND
EXISTS $J1, . . . ,$Jn: EXSTATE #Is,#It:

P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
(G[now/next][I1/I1’, . . . , In/In’]

[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’] AND
(!(#It.continues OR #It.breaks) =>

now == #It))) = C′

TRANS(while(E) C,P) = assert P+; while(E)C′

Soundness Proof We have to prove

(a)
[now.executes ](s)⇒

[P ](s)∧ [while(E)C ](s,s′)⇒
[assert P+; while(E)C′ ](s,s′)

We assume

(2) [now.executes ](s)
(3) [P ](s)
(4) [while(E)C ](s,s′)

By the definition of [ ], it suffices to show

(b.1) [P ](s)
(b.2) executes(control(s))

(b.3)

∃k ∈ N, t,u ∈ State∞ :
finiteExecution(k, t,u,s, [E ], [C′ ])∧
([E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k))))) ∧
t(k) = s′
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From the premises and the induction hypothesis, we know

(5) E ' H

(6) C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

(7) J1, . . . ,Jn is a renaming of I1, . . . , In

(8) $J1, . . . ,$Jn does not occur in P

(9) #Is,#It do not occur in P

(10) Invariant(G,H,F)I1,...,In

(11)

∀s,s′ ∈ State :
[now.executes ](s) ∧
[H AND

EXISTS $J1, . . . ,$Jn: EXSTATE #Is,#It:
P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
(G[now/next][I1/I1’, . . . , In/In’]

[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[now/next][I1/I1’, . . . , In/In’] AND
(!(#It.continues OR #It.breaks) =>

now == #It)) ](s) ∧
[C ](s,s′)⇒

[C′ ](s,s′)

From (3), we know (b.1).

From (4) and the definition of [ ], we know (b.2).

From (4) and the definition of [ ], we know for some k ∈ N, t,u ∈ State∞

(12) finiteExecution(k, t,u,s, [E ], [C ])

(13)
[E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k)))∨ continues(control(u(k))))

(14) t(k) = s′

To show (b.3), from (13) and (14), it suffices to show

(b.3.a) finiteExecution(k, t,u,s, [E ], [C′ ])

i.e., by the definition of finiteExecution,

(b.3.b.1) t(0) = s
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(b.3.b.2) u(0) = s

(b.3.b.3)

∀i ∈ Nk :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C′ ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (12) and the definition of finiteExecution, we know

(15) t(0) = s

(16) u(0) = s

(17)

∀i ∈ Nk :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (15), we know (b.3.b.1).

From (16), we know (b.3.b.2).

To show (b.3.b.3), we show for arbitrary i ∈ Nk

(b.3.b.3.a.1) ¬breaks(control(u(i))

(b.3.b.3.a.2) executes(control(t(i)))

(b.3.b.3.a.3) [E ](t(i)) = TRUE

(b.3.b.3.a.4) [C′ ](t(i),u(i+1))

(b.3.b.3.a.5)
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (17), we know (b.3.b.a.1), (b.3.b.a.2), (b.3.b.a.3), (b.3.b.a.5) and

(18) [C ](t(i),u(i+1))

To show (b.3.b.3.a.4), from (11), (18), (b.3.b.3.a.2) and the definition of [ ], it
suffices to show
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(b.3.b.3.a.4.a)

[H AND
EXISTS $J1, . . . ,$Jn: EXSTATE #Is:

P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
(G[now/next][I1/I1’, . . . , In/In’]

[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[now/next][I1/I1’, . . . , In/In’] AND
(!(#It.continues OR #It.breaks) =>

now == #It)) ](t(i))

i.e. by the definition of [ ], for arbitrary e ∈ Environment,

(b.3.b.3.a.4.b.1) [H ](e)(t(i), t(i))

(b.3.b.3.a.4.b.2)

∃v1, . . . ,vn ∈ Value,cs,ct ∈ Control :
[P[#Is/now][$J1/I1, . . . ,$Jn/In] AND

(G[now/next][I1/I1’, . . . , In/In’]
[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[now/next][I1/I1’, . . . , In/In’] AND
(!(#It.continues OR #It.breaks) =>

now == #It)) ]
(e[ Is 7→ cs, It 7→ ct ]c[J1 7→ v1, . . . ,Jn 7→ vn ])(t(i), t(i))

From (5), (17), and the definition of ', we know (b.3.b.3.a.4.b.1).

From (6), the soundness of the verification calculus with interruptions, and the
definition of ', we know

(19)
∀s,s′ ∈ Store :

executes(control(s))∧ [C ](s,s′)⇒ s = s′ EXCEPT I1, . . . , In

From (17) and (19), we know

(20) ∀i ∈ Nk : t(i) = u(i+1) EXCEPT I1, . . . , In

From (17), (CD2), and (REE), we know

(21) ∀i ∈ Nk : t(i+1) EQUALS u(i+1)

From (15), (20), (21), (NEQ), (AVE), and (TRE), we know

(22) s = t(i) EXCEPT I1, . . . , In

We define
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(23)
e0 := e[ Is 7→ control(s), It 7→ control(u(i)) ]c
e1 := e0[J1 7→ read(s, I1), . . . ,Jn 7→ read(s, In) ]

From (23), to show (b.3.b.3.a.4.b.2), it suffices to show

(b.3.b.3.a.4.b.2.a.1) [P[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(t(i), t(i))

(b.3.b.3.a.4.b.2.a.2)

[G[now/next][I1/I1’, . . . , In/In’]
[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(t(i), t(i))⇒
[G[#Is/now][$J1/I1, . . . ,$Jn/In]

[now/next][I1/I1’, . . . , In/In’]) ](e1)(t(i), t(i)) ∧
(¬(continues(control(u(i)))∨breaks(control(u(i))))⇒

control(t(i)) = control(u(i)))

From (3) and the definition of [ ], we know

(24) [P ](e)(s,s)

From (9), (23), (24), (MVF1’), and (CNOF2), we know

(25) [P[#Is/now] ](e0)(s,s)

From (7), (8), (22), (23), (25), (CNOF0), and (PMVF1’), we know

(26) [P[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(t(i),s)

From (1b), (26), (PVF2’), and (PVFNE), we know (b.3.b.3.a.4.b.2.a.1).

To show (b.3.b.3.a.4.b.2.a.2), we assume

(27)
[G[now/next][I1/I1’, . . . , In/In’]

[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(t(i), t(i))

and show

(b.3.b.3.a.4.b.2.a.2.a)
[G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’]) ](e1)(t(i), t(i))

(b.3.b.3.a.4.b.2.a.2.b)
¬(continues(control(u(i)))∨breaks(control(u(i))))⇒

control(t(i)) = control(u(i))

From (15), (16), and (17), we know (b.3.b.3.a.4.b.2.a.2.b).

It remains to show (b.3.b.3.a.4.b.2.a.2.a). From (10) and the definition of Invari-
ant, we know
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(28) $I1, . . . ,$In,#Is,#It do not occur in G,H, and F

From (7), (22), (23), (27), (28), (CNEF1), and (PMVF1’), we know

(29) [G[now/next][I1/I1’, . . . , In/In’][#Is/now] ](e0)(s, t(i))

From (23), (28), (29), (MVF1’), and (CNOF2), we know

(30) [G[now/next][I1/I1’, . . . , In/In’] ](e)(s, t(i))

We define

(31) s0 := writes(t(i), I1,read(s, I1), . . . , In,read(s, In))

From (30), (31), and (PPVF1’), we know

(32) [G[now/next] ](e)(s,s0)

From (32) and (PNNF2), we know

(33) [G ](e)(s,(store(s0),control(s)))

From (31) and (WSE), we know

(34) s0 = t(i) EXCEPT I1, . . . , In

From (22), (34), and (TRE), we know

(35) s0 = s EXCEPT I1, . . . , In

From (31) and (RWE), we know

(36) read(s0, I1) = read(s, I1)∧ . . .∧ read(s0, In) = read(s, In)

From (35), (36), (RVE), and (NEQ), we know

(37) s0 EQUALS s

From (33), (37), (CD0), and (CD4), we know

(38) [G ](e)(s,s)

From (6), (10), and (38), we can derive (as demonstrated in the proof of the sound-
ness of the invariant rule in Section 5.4.3)
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(39) [G ](e)(s,u(i))

From (23), (28), (39), and (CNOF2), we know

(40) [G[#Is/now] ](e0)(s,u(i))

From (7), (22), (23), (28), (40), (CNOF0), and (PMVF1’), we know

(41) [G[#Is/now][$J1/I1, . . . ,$Jn/In] ](e1)(t(i),u(i))

From (23), (28), (41) and (CNEF2), we know

(42) [G[#Is/now][$J1/I1, . . . ,$Jn/In][#It/next] ](e1)(t(i),u(i))

From (15), (16), (17), (REE), and (CD2), we know

(43) t(i) EQUALS u(i)

From (43), (CD0), and (CD4), we know

(44) u(i) = (store(t(i)),control(u(i)))

From (42), (44), (CNEF0), and (PVFNE), we know

(45) [G[#Is/now][$J1/I1, . . . ,$Jn/In][#It/next] ](e1)(t(i), t(i))

From (45), (IDE), and (PPVF2’), we know (b.3.b.3.a.4.b.2.a.2.a). ¤

5.9 Expressions and Interruptions

While the mathematical expression 1/0 just denotes an unknown value, the evalu-
ation of a program expression 1/0 typically lets the program abort with a runtime
error. To adequately model this behavior, we first redefine the semantics of expres-
sions and commands to take undefined expressions into account. We then show
that the new semantics is (in a certain sense) consistent with the original one.

Subsequently we present two approaches to preserve the validity of the original
rules of reasoning without having to consider undefined program expressions: the
first one is to verify that the execution of a program does not lead to the evaluation
of undefined expressions such that the original semantics of the program coincides
with the new semantics. The second one does not a priori rule out states with un-
defined expressions but modifies a program by introducing “checking commands”
such that the interpretation of the modified program is in both versions of the se-
mantics (almost) the same.
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Expressions and Interruptions: Definitions

⊥ := SUCH v : v 6∈ Value
Value⊥ := Value∪{⊥}
StateFunction⊥ := State→ Value⊥
StatePredicate := P(State)

finiteExecution⊥ :
P(N×State∞×State∞×State×StateFunction⊥×StateRelation)
finiteExecution⊥(k, t,u,s,E,C)⇔

t(0) = s∧u(0) = s ∧
∀i ∈ Nk :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
E(t(i)) 6=⊥∧E(t(i)) = TRUE∧C(t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

EXP := SUCH k : k ∈ Key

expthrow : State→ State
expthrow(s) = throw(s,EXP,read(s,VAL))

expthrows : P(Control)
expthrows(c)⇔ throws(c)∧ key(c) = EXP

Figure 5.33: Expressions and Interruptions: Definitions

Expressions and Interruptions: Valuation Functions

[ ]D : Expression→ StatePredicate
[E ]D(s)⇔ . . .

[ ]⊥ : Expression→ StateFunction⊥
[E ]⊥(s) = IF [E ]D(s) THEN [E ](s) ELSE ⊥

Figure 5.34: Expressions and Interruptions: Valuation Functions (1/3)
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Expressions and Interruptions: Valuation Functions (Contd)

[ ]⊥ : Command→ StateRelation
. . .

[ I=E ]⊥(s,s′)⇔
LET v = [E ]⊥(s) IN

IF v =⊥
THEN s′ = expthrow(s)
ELSE s′ = write(s, I,v)

[var I=E;C ]⊥(s,s′)⇔
LET v = [E ]⊥(s) IN

IF v =⊥ THEN

s′ = expthrow(s)
ELSE

∃s0,s1 ∈ State :
s0 = write(s, I,v)∧ [C ]⊥(s0,s1)∧
s′ = write(s1, I,read(s, I))

[if (E)C ]⊥(s,s′)⇔
LET v = [E ]⊥(s) IN

IF v =⊥ THEN

s′ = expthrow(s)
ELSE IF v = TRUE THEN

[C ]⊥(s,s′)
ELSE

s′ = s
[if (E)C1 else C2 ]⊥(s,s′)⇔

LET v = [E ]⊥(s) IN

IF v =⊥ THEN

s′ = expthrow(s)
ELSE IF v = TRUE THEN

[C1 ]⊥(s,s′)
ELSE

[C2 ]⊥(s,s′)

Figure 5.35: Expressions and Interruptions: Valuation Functions (2/3)



326 Chapter 5. Interrupting the Control Flow

Expressions and Interruptions: Valuation Functions (Contd)

[return E ]⊥(s,s′)⇔
LET v = [E ]⊥(s) IN

IF v =⊥
THEN s′ = expthrow(s)
ELSE s′ = return(s,v)

[throw I E ]⊥(s,s′)⇔
LET v = [E ]⊥(s) IN

IF v =⊥
THEN s′ = expthrow(s)
ELSE s′ = throw(s, I,v)

[while (E) C ]⊥(s,s′)⇔
∃k ∈ N, t,u ∈ State∞ :

finiteExecution⊥(k, t,u,s, [E ]⊥, [C ]⊥)∧
([E ]⊥(t(k)) =⊥ ∨

[E ]⊥(t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k))))) ∧
IF (executes(control(u(k)))∨ continues(control(u(k)))) ∧

[E ]⊥(t(k)) =⊥
THEN expthrow(t(k)) = s′
ELSE t(k) = s′

Figure 5.36: Expressions and Interruptions: Valuation Functions (3/3)
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5.9.1 Programs with Undefined Expressions

We redefine the semantics of expressions by a new valuation function [ ]⊥ :
Expression→ Value⊥ where Value⊥ includes an additional element ⊥ interpreted
as “undefined”. The “well-definedness” status of an expression E in a state s is
denoted by the formula [E ]D(s); if this yields “true”, then [E ]⊥ is an element of
Value, i.e. different from ⊥. The behavior of [ ]D is constrained by the following
assumption.

Axiom (Well-Defined Expressions) The “well-definedness” status of an ex-
pression E only depends on the store:

∀E ∈ Expression,s,s′ ∈ State :
s EQUALS s′⇒ ([E ]D(s)⇔ [E ]D(s′)

The semantics of commands is correspondingly redefined by a valuation func-
tion [ ]⊥ which generates a poststate with an “expression evaluation exception”
whenever it encounters an expression with an undefined value.

Figures 5.33 to 5.36 list the corresponding auxiliary definitions and the definitions
of the valuation functions for expressions and for all commands involving expres-
sions (the rules for the other commands are identical to the original rules except
that every application of the valuation function [ ] on commands is replaced by
an application of [ ]⊥).

5.9.2 Relationship to the Original Semantics

The new expression semantics is consistent with the original one in that, if the
value of an expression is defined, it is the same in both versions.

Lemma (Partial Expressions)

∀E ∈ Expression :
∀s ∈ State :

[E ]⊥(s) 6=⊥⇒ [E ]⊥(s) = [E ](s)

Proof Take arbitrary E ∈ Expression and s ∈ State and assume

(1) [E ]⊥(s) 6=⊥
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We have to show

(a) [E ]⊥(s) = [E ](s)

From (1) and the definitions of [ ]D, we know (a). ¤

Likewise, the new command semantics is consistent with the original one in the
sense that, if the execution of a command may yield a poststate that does not
indicate an “expression evaluation exception”, this poststate is also possible in
the original semantics under the provision that the command does not have any
subcommand that catches such exceptions.

Lemma (Commands with Partial Expressions)

∀C ∈ Command :
C has no subcommand try C1 catch(EXP I)C2 ⇒
∀s,s′ ∈ State : executes(control(s))∧ [C ]⊥(s,s′) ⇒

[C ](s,s′)∨ expthrows(control(s′))

Proof Take arbitrary C0 ∈ Command and s,s′ ∈ State and assume

(1a) C0 has no subcommand tryC1 catch(EXP I)C2

(1b) executes(control(s))

(1c) [C0 ]⊥(s,s′)
(1d) ¬expthrows(control(s′))

We have to show

(a) [C0 ](s,s′)

We proceed by induction on the structure of command C0.In the following, we
only show those cases where expressions and/or interruptions actually play a role.

• Case C0 = I=E: we have to show

(b) [ I=E ](s,s′)

We define

(2) v := [E ]⊥(s)

From (1c), (2), and the definition of [ ]⊥, we know
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(3)
IF v =⊥

THEN s′ = expthrow(s)
ELSE s′ = write(s, I,v)

From (1d), (3), and the definitions of expthrow and expthrows, we know

(4) v 6=⊥
(5) s′ = write(s, I,v)

From (2), (4), and Lemma “Partial Expressions”, we know

(6) v = [E ](s)

From (5), (6), and the definition of [ ], we know (b).

• Case C0 = var I=E;C: we have to show

(b) [var I=E;C ](s,s′)

We define

(2) v := [E ]⊥(s)

From (1c), (2), and the definition of [ ]⊥, we know

(3)

IF v =⊥ THEN

s′ = expthrow(s)
ELSE

∃s0,s1 ∈ State :
s0 = write(s, I,v)∧ [C ]⊥(s0,s1)∧
s′ = write(s1, I,read(s, I))

From (1d), (3), and the definitions of expthrow and expthrows, we know for
some s0,s1 ∈ State

(4) v 6=⊥
(5) s0 = write(s, I,v)
(6) [C ]⊥(s0,s1)
(7) s′ = write(s1, I,read(s, I))

From (2), (4), and Lemma “Partial Expressions”, we know

(8) v = [E ](s)

From (1b), (5), and (CW), we know

(9) executes(control(s0))

From (1d), (7), and (CW), we know

(10) ¬expthrows(control(s1))
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From (1a), (6), (9), (10), and the induction hypothesis, we know

(11) [C ](s0,s1)

From (5), (7), (11), and the definition of [ ], we know (b).

• Case C0 = C1;C2: we have to show

(b) [C1;C2 ](s,s′)

i.e., by the definition of [ ],

(c)
∃s0 ∈ State :

[C1 ](s,s0) ∧
IF executes(control(s0)) THEN [C2 ](s0,s′) ELSE s′ = s0

From (1c) and the definition of [ ]⊥, we know for some s0 ∈ State

(2) [C1 ]⊥(s,s0)
(3) IF executes(control(s0)) THEN [C2 ]⊥(s0,s′) ELSE s′ = s0

We proceed by case distinction:

– Case executes(control(s0)): from this condition and (3), we know
(4) [C2 ]⊥(s0,s′)

From (1a), (1d), (4), the case condition, and the induction hypothesis,
we know

(5) [C2 ](s0,s′)
From the case condition and the definitions of executes and expthrows,
we know

(6) ¬expthrows(control(s0))
From (1a), (1b), (2), (6), and the induction hypothesis, we know

(7) [C1 ](s,s0)
From (5), (7), and the case condition, we know (c).

– Case ¬executes(control(s0)): from the case condition and the defini-
tion of (4), we know

(8) s′ = s0

From (1d) and (8), we know
(9) ¬expthrows(control(s0))

From (1a), (1b), (2), (9), and the induction hypothesis, we know
(10) [C1 ](s,s0)

From (8), (10), and the case condition, we know (c).

• Case C0 = if (E)C: we have to show
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(b) [if (E)C ](s,s′)

i.e., by the definition of [ ],

(c) IF [E ](s) = TRUE THEN [C ](s,s′) ELSE s′ = s

We define

(2) v = [E ]⊥(s)

From (1c) and the definition of [ ]⊥, we know

(3)

IF v =⊥ THEN

s′ = expthrow(s)
ELSE IF v = TRUE THEN

[C ]⊥(s,s′)
ELSE

s′ = s

From (1d), (3), and the definitions of expthrow and expthrows, we know

(4) v 6=⊥

(5)
IF v = TRUE

THEN [C ]⊥(s,s′)
ELSE s′ = s

From (2), (4), and Lemma “Partial Expressions”, we know

(6) v = [E ](s)

We proceed by case distinction:

– Case v = TRUE: from the case condition and (5), we know
(7) [C ]⊥(s,s′)

From (1a), (1b), (1d), (7), and the induction hypothesis, we know
(8) [C ](s,s′)

From (6), (8), and the case condition, we know (c).

– Case v 6= TRUE: from the case condition and (5), we know
(9) s′ = s

From (6), (9), and the case condition, we know (c).

• Case C0 = if (E)C1 else C2: we have to show

(b) [if (E)C1 else C2 ](s,s′)

i.e., by the definition of [ ],

(c) IF [E ](s) = TRUE THEN [C1 ](s,s′) ELSE [C2 ](s,s′)
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We define

(2) v = [E ]⊥(s)

From (1c) and the definition of [ ]⊥, we know

(3)

IF v =⊥ THEN

s′ = expthrow(s)
ELSE IF v = TRUE THEN

[C1 ]⊥(s,s′)
ELSE

[C2 ]⊥(s,s′)

From (1d), (3), and the definitions of expthrow and expthrows, we know

(4) v 6=⊥

(5)
IF v = TRUE

THEN [C1 ]⊥(s,s′)
ELSE [C2 ]⊥(s,s′)

From (2), (4), and Lemma “Partial Expressions”, we know

(6) v = [E ](s)

We proceed by case distinction:

– Case v = TRUE: from the case condition and (5), we know
(7) [C1 ]⊥(s,s′)

From (1a), (1b), (1d), (7), and the induction hypothesis, we know
(8) [C1 ](s,s′)

From (6), (8), and the case condition, we know (c).

– Case v 6= TRUE: from the case condition and (5), we know
(9) [C2 ]⊥(s,s′)

From (1a), (1b), (1d), (9), and the induction hypothesis, we know
(10) [C2 ](s,s′)

From (6), (10), and the case condition, we know (c).

• Case C0 = return E: we have to show

(b) [return E ](s,s′)

We define

(2) v := [E ]⊥(s)

From (1c), (2), and the definition of [ ]⊥, we know
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(3)
IF v =⊥

THEN s′ = expthrow(s)
ELSE s′ = return(s,v)

From (1d), (3), and the definitions of expthrow and expthrows, we know

(4) v 6=⊥
(5) s′ = return(s,v)

From (2), (4), and Lemma “Partial Expressions”, we know

(6) v = [E ](s)

From (5), (6), and the definition of [ ], we know (b).

• Case C0 = throw I E: we have to show

(b) [throw I E ](s,s′)

We define

(2) v := [E ]⊥(s)

From (1c), (2), and the definition of [ ]⊥, we know

(3)
IF v =⊥

THEN s′ = expthrow(s)
ELSE s′ = throw(s, I,v)

From (1d), (3), and the definitions of expthrow and expthrows, we know

(4) v 6=⊥
(5) s′ = throw(s, I,v)

From (2), (4), and Lemma “Partial Expressions”, we know

(6) v = [E ](s)

From (5), (6), and the definition of [ ], we know (b).

• Case C0 = try C1 catch(Ik Iv)C2: we have to show

(b) [try C1 catch(Ik Iv)C2 ](s,s′)

i.e., by the definition of [ ],
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(c)

∃s0,s1,s2 ∈ State :
[C1 ](s,s0) ∧
IF throws(control(s0))∧ key(control(s0)) = Ik THEN

s1 = write(execute(s0), Iv,value(control(s0))) ∧
[C2 ](s1,s2) ∧
s′ = write(s2, Iv,read(s0, Iv))

ELSE s′ = s0

From (1c) and the definition of [ ]⊥, we know for some s0,s1,s2 ∈ State

(2) [C1 ]⊥(s,s0)

(3)

IF throws(control(s0))∧ key(control(s0)) = Ik THEN

s1 = write(execute(s0), Iv,value(control(s0))) ∧
[C2 ]⊥(s1,s2) ∧
s′ = write(s2, Iv,read(s0, Iv))

ELSE s′ = s0

We proceed by case distinction:

– Case throws(control(s0))∧ key(control(s0)) = Ik: from the case con-
dition and (3), we know

(4) s1 = write(execute(s0), Iv,value(control(s0)))
(5) [C2 ]⊥(s1,s2)
(6) s′ = write(s2, Iv,read(s0, Iv))

From (4), (CD1), and (CW), we know
(7) executes(control(s1))

From (1d), (6), (CW), and the definition of expthrows, we know
(8) ¬expthrows(control(s2))

From (1a), (5), (7), (8), and the induction hypothesis, we know
(9) [C2 ](s1,s2)

From (1a), we know
(10) Ik 6= EXP

From (10), the case condition, and the definition of expthrows, we
know

(11) ¬expthrows(control(s0))
From (1a), (1b), (2), (11), and the induction hypothesis, we know

(12) [C1 ](s,s0)
From (4), (6), (9), (12), and the case condition, we know (c).

– Case ¬(throws(control(s0))∧ key(control(s0)) = Ik): from the case
condition and (3), we know

(13) s′ = s0
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From (1d) and (13), we know
(14) ¬expthrows(control(s0))

From (1a), (1b), (2), (14), and the induction hypothesis, we know
(15) [C1 ](s,s0)

From (13), (15), and the case condition, we know (c).

• Case C0 = while (E)C: we have to show

(b) [while (E)C ](s,s′)

i.e., by the definition of [ ],

(c)

∃k ∈ N, t,u ∈ State∞ :
finiteExecution(k, t,u,s, [E ], [C ])∧
([E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k))))) ∧
t(k) = s′

From (1c) and the definition of [ ]⊥, we know for some k ∈N, t,u∈ State∞

(2) finiteExecution⊥(k, t,u,s, [E ]⊥, [C ]⊥)

(3)
[E ]⊥(t(k)) =⊥ ∨
[E ]⊥(t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨ continues(control(u(k))))

(4)

IF (executes(control(u(k)))∨ continues(control(u(k)))) ∧
[E ]⊥(t(k)) =⊥
THEN expthrow(t(k)) = s′
ELSE t(k) = s′

From (4), (1d), and the definitions of expthrows and expthrow, we know

(5)
¬((executes(control(u(k)))∨ continues(control(u(k)))) ∧

[E ]⊥(t(k)) =⊥)
(6) t(k) = s′

To show (c), it suffices to show

(d.1) finiteExecution(k, t,u,s, [E ], [C ])

(d.2)
[E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨ continues(control(u(k))))

(d.3) t(k) = s′

From (2) and the definition of finiteExecution⊥, we know

(7) t(0) = s
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(8) u(0) = s

(9)

∀i ∈ Nk :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
[E ]⊥(t(i)) 6=⊥ ∧
[E ]⊥(t(i)) = TRUE∧ [C ]⊥(t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (9), we know

(10) ∀i ∈ Nk : [E ]⊥(t(i)) 6=⊥
(11) ∀i ∈ Nk : [E ]⊥(t(i)) = TRUE
(12) ∀i ∈ Nk : executes(control(t(i)))
(13) ∀i ∈ Nk : [C ]⊥(t(i),u(i+1))

From (10), and Lemma “Partial Expressions”, we know

(14) ∀i ∈ Nk : [E ]⊥(t(i)) = [E ](t(i))

From (11) and (14), we know

(15) ∀i ∈ Nk : [E ](t(i)) = TRUE

From (1d) and (6), we know

(16) ¬expthrows(control(t(k)))

From (9), (16), and the definition of expthrows, we can show

(17) ∀i ∈ Nk : ¬expthrows(control(u(i+1)))

From (1a), (12), (13), (17) and the induction hypothesis, we know

(18) ∀i ∈ Nk : [C ](t(i),u(i+1))

From (7), (8), (9), (15), (18), and the definition of finiteExecution, we
know (d.1).

To show (d.2), we proceed by case distinction:

– Case [E ]⊥(t(k)) =⊥: from the case condition and (5), we know
(19) ¬(executes(control(u(k)))∨ continues(control(u(k))))

From (19), we know (d.2).

– Case [E ]⊥(t(k)) 6=⊥: from the case condition and (3), know (d.2).

From (6), we know (d.3). ¤
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Well-Defined Expressions: Definitions

D' : P(Expression×Formula)

E
D' FD ⇔
FD does not depend on the poststate ∧
∀s ∈ State : [E ]D(s)⇔ [FD ](s)

Well-Defined Expressions: Judgements

CXP ⇔
∀s,s′ ∈ State : executes(control(s))∧ [P ](s)⇒

([C ](s,s′)⇔ [C ]⊥(s,s′))

Figure 5.37: Definitions for Well-Defined Expressions

5.9.3 Avoiding Undefined Expressions

As shown in the previous section, the program semantics that takes into account
undefined program expressions is related but not identical to the original program
semantics: in the new semantics programs may yield additional “expression eval-
uation exception” states. Consequently one can expect that the rules of reasoning
for the new semantics are related to the rules of the original semantics but become
substantially more complicated.

One may however argue that programs that yield such exceptional states are er-
roneous anyway. Rather than defining new rules to deal with these states, we
might thus concentrate our efforts on avoiding these states. If we can ensure that
these states do not occur in a program run, we can resort to the simpler program
semantics and the corresponding simpler rules of reasoning.

In pursue of this goal, Figure 5.37 introduces a new kind of judgement CXP that
informally states that the execution of command C in a state in which formula P
holds does not lead to the evaluation of any undefined expressions. Formally, the
judgement guarantees that on such states the original semantics of C coincides
with the semantics of C where exceptions are raised when undefined expressions
are encountered.

Figures 5.38 to 5.41 give the rules for deriving such judgements. In essence, they
are generalizations of the rules for computing assertions presented in Section 5.8
that forward from a command the knowledge about the state in which the com-
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mand is executed to its subcommands; rather than constructing annotations, this
information is now used to determine whether an expression that has to be eval-
uated in a state is indeed well-defined in that state. The rules make use of the
relation

D' introduced in Figure 5.37 that relates an expression E to a formula P
which is true if and only if the expression is well-defined.

The rules ultimately yield proof obligations of the form

∀s ∈ State : [(now.executes AND P) => FD ](s)

where P is a condition guaranteed on the current state and FD defines the well-
definedness condition of an expression to be evaluated.

Most rules are fairly obvious (comparing them with the rules presented in Sec-
tion 5.8 and the definition of [ ]⊥), the major exception are the two rules for
loops (with and without an invariant): the loop expression not only has to be well-
defined in the initial state but also after every loop iteration. For this purpose,
from the condition R known to hold at the beginning of the execution of the loop
body, the postcondition Q holding after the execution of the body is derived.

The soundness claim for the presented calculus is stated below.

Lemma (Soundness of Well-Defined Expressions) If a judgement CXP can
be derived, then the following is true:

∀s,s′ ∈ State : executes(control(s))∧ [P ](s)⇒
([C ](s,s′)⇔ [C ]⊥(s,s′))

Proof Remains open but is related to the proof of Theorem “Soundness of the
Assertion Calculus”. ¤

5.9.4 Checking for Undefined Expressions

In the previous subsection, we have described how to avoid the necessity to deal
with undefined program expressions by verifying that they cannot occur. How-
ever, in real programs the exception raised by the evaluation of an undefined ex-
pression need not necessarily lead to immediate program abortion but it may be
caught by a handler and processed such that the program may continue in a normal
way. Therefore we now investigate another possibility of dealing with undefined
program expressions: rather than verifying statically that these expressions can-
not occur, we “protect” the evaluation of every expression by a preceding runtime
check that raises an exception if the expression is undefined.
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Well-Defined Expressions: Rules

E
D' FD

∀s ∈ State : [(now.executes AND P) => FD ](s)
I=E XP

$J does not occur in P
CXEXISTS $J : P[$J/I]
var I;CXP

E
D' FD

∀s ∈ State : [(now.executes AND P) => FD ](s)
$J does not occur in P and T
CXEXISTS $J : P[$J/I] AND I = T [$J/I]
var I=E;CXP

POST(C1,P) = Q
C1 XP
C2 XQ
C1;C2 XP

E
D' FD

∀s ∈ State : [(now.executes AND P) => FD ](s)
E ' F
CXP AND F
if (E)CXP

E
D' FD

∀s ∈ State : [(now.executes AND P) => FD ](s)
E ' F
C1 XP AND F
C1 XP AND !F
if (E)C1 elseC2 XP

Figure 5.38: Rules for Well-Defined Expressions (1/4)
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Well-Defined Expressions: Rules (Contd)

continueXP

breakXP

E ' FD
∀s ∈ State : [(now.executes AND P) => FD ](s)
return E XP

E ' FD
∀s ∈ State : [(now.executes AND P) => FD ](s)
throw Ik E XP

$J does not occur in Q
#Is does not occur in Q
POST(C1,P) = Q
C1 XP
C2 X

EXISTS $J: EXSTATE #Is:
Q[#Is/now][$J/Iv] AND
#Is.throws Ik AND #Is.value = Iv

tryC1 catch(Ik Iv)C2 XP

Figure 5.39: Rules for Well-Defined Expressions (2/4)
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Well-Defined Expressions: Rules (Contd)

E
D' FD

∀s ∈ State : [(now.executes AND P) => FD ](s)
E ' H
C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is does not occur in P
R =

H AND
EXISTS $J1, . . . ,$Jn: EXSTATE #Is:

P[#Is/now][$J1/I1, . . . ,$Jn/In]
CXR
POST(C,R) = Q
∀s ∈ State :

[((now.executes OR now.continues)
AND Q) => FD ](s)

while(E)CXP

Figure 5.40: Rules for Well-Defined Expressions (3/4)
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Well-Defined Expressions: Rules (Contd)

E
D' FD

∀s ∈ State : [(now.executes AND P) => FD ](s)
E ' H
C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is,#It do not occur in P
Invariant(G,H,F)I1,...,In

R =
H AND
EXISTS $J1, . . . ,$Jn: EXSTATE #Is,#It:

P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
(G[now/next][I1/I1’, . . . , In/In’]

[#Is/now][$J1/I1, . . . ,$Jn/In] =>
G[#Is/now][$J1/I1, . . . ,$Jn/In]

[#It/next][I1/I1’, . . . , In/In’] AND
(!(#It.continues OR #It.breaks) =>

now == #It))
CXR
POST(C,R) = Q
∀s ∈ State :

[((now.executes OR now.continues)
AND Q) => FD ](s)

while(E)CXP

Figure 5.41: Rules for Well-Defined Expressions (4/4)
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Checked Program Calculus: Judgements

CHECK(C) = C′ ⇔
∀s,s′ ∈ State : executes(control(s))⇒

[C ]⊥(s,s′)⇔ [C′ ](s,s′)

Checked Program Calculus: Definitions
D' : P(Expression×Expression)

E
D' ED :⇔∀s ∈ State : [E ]D(s)⇔ [ED ](s) = TRUE

CHECK ED ≡ if (!ED) throw EXP VAL

Figure 5.42: Checked Program Calculus (1/4)

In more detail, our strategy is as follows: the definition of the expression value
[E ]⊥ is based on a predicate [E ]D which determines those states in which it is
safe to determine the expression value [E ] without risking program abortion. As-
sume we can give an expression ED which evaluates to TRUE in exactly these
states. Then all expression evaluations may be guarded by a pseudo-command
CHECK ED which raises an “expression valuation exception”, if the evaluation
of ED does not yield TRUE. Thus it may become possible to preserve the origi-
nal program semantics but apply it to the modified program that “simulates” the
program semantics with undefined expressions; consequently the original rules of
reasoning remain still valid (but are applied to the modified program).

Based on this idea, Figures 5.42 and 5.43 introduce a calculus of judgements
CHECK(C) = C′ for the derivation of a “checked program” C′ from a program
C; the semantics of C in the model with expression interruptions is the same as
the semantics of C′ in the original model. The listed rules cover only the crucial
commands (with the rules for loops being delegated to the following subsection);
for all other commands, C′ is the same as C (with all subcommands replaced by
their checked counterparts).

The pseudo-command CHECK ED can be translated into the regular command
if (!ED) throw EXP VAL which may trigger an exception with key EXP.

The following lemma states the crucial relationship between checked programs
and their unchecked counterparts.

Lemma (Checked Commands) If a judgement CHECK(C) = C′ can be derived
from the rules of the checked program calculus, then we have
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Checked Program Calculus: Rules

E
D' ED

CHECK(I = E) = CHECK ED; I = E

E
D' ED

CHECK(C) = C′

CHECK(var I=E;C) = CHECK ED; var I=E;C′

E
D' ED

CHECK(C) = C′

CHECK(if (E) C) = CHECK ED; if (E)C′

E
D' ED

CHECK(C1) = C′1
CHECK(C2) = C′2
CHECK(if (E) C1 elseC2) =

CHECK ED; if (E)C′1 else C′2

E
D' ED

CHECK(return E) = CHECK ED; return E

E
D' ED

CHECK(throw I E) = CHECK ED; throw I E

. . .
CHECK(while (E)C) = . . .

Figure 5.43: Checked Program Calculus (2/4)



5.9 Expressions and Interruptions 345

C has no subcommand tryC1 catch(EXP I)C2 ⇒
∀s,s′ ∈ State : executes(control(s))⇒

[C ]⊥(s,s′)⇔ [C′ ](s,s′)

The constraint ‘‘C has no subcommand tryC1 catch(EXP I)C2” is needed for
dealing with checked loops as described in the next section (actually, it is stronger
than necessary, as will be explained later).

Proof Take arbitrary commands C0 and C′0 such that CHECK(C0) = C′0 can be
derived. Take arbitrary s,s′ ∈ State and assume

(1a) C0 has no subcommand tryC1 catch(EXP I)C2

(1b) executes(control(s))

We show

(a) [C0 ]⊥(s,s′)⇔ [C′ ](s,s′)

We proceed by induction on the structure of C0. In the following, we only cover
the cases where the form of C′0 differs from C0; for the other cases, the result
follows directly from the induction hypothesis.

• Case C0 = I = E: we have to show

(b) [ I = E ]⊥(s,s′)⇔ [CHECK ED; I = E ](s,s′)

From the rule hypothesis, we know

(2) E
D' ED

From the definitions of [ ]⊥, check, and [ ]⊥, we know

(3)

[ I =E ]⊥(s,s′)⇔
LET v = [E ]⊥(s) IN

IF v =⊥
THEN s′ = expthrow(s)
ELSE s′ = write(s, I,v)

(4)

[CHECK ED; I = E ](s,s′)⇔
IF [ED ](s) 6= TRUE

THEN s′ = throw(s,EXP,read(s,VAL))
ELSE s′ = write(s, I, [E ](s))

From (2) and the definitions of
D' and [ ]⊥, we know
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(5) [ED ](s) 6= TRUE ⇔ [E ]⊥(s) =⊥
From (3), (4), (5), the definition of expthrow, and Lemma “Partial Expres-
sions”, we know (b).

• Case C0 = var I=E;C: we have to show

(b) [var I=E;C ]⊥(s,s′)⇔ [CHECK ED; var I=E;C′ ](s,s′)

From the rule hypotheses, we know

(2) E
D' ED

(3) CHECK(C) = C′

From the definitions of [ ]⊥, check, and [ ]⊥, we know

(4)

[var I=E;C ]⊥(s,s′)⇔
LET v = [E ]⊥(s) IN

IF v =⊥ THEN

s′ = expthrow(s)
ELSE

∃s0,s1 ∈ State :
s0 = write(s, I,v)∧ [C ]⊥(s0,s1)∧
s′ = write(s1, I,read(s, I))

(5)

[CHECK ED; var I =E;C′ ](s,s′)⇔
IF [ED ](s) 6= TRUE THEN

s′ = throw(s,EXP,read(s,VAL))
ELSE

∃s0,s1 ∈ State :
s0 = write(s, I, [E ](s))∧ [C′ ](s0,s1) ∧
s′ = write(s1, I,read(s, I))

From (2) and the definitions of
D' and [ ]⊥, we know

(6) [ED ](s) 6= TRUE ⇔ [E ]⊥(s) =⊥
We proceed by case distinction:

– Case [E ]⊥(s) = ⊥: From the case condition, (4), (5), (6), and the
definition of expthrow, we know (b).

– Case [E ]⊥(s) 6= ⊥: From the case condition, (1b), (3), (4), (5), (6),
and the induction hypothesis, we know (b).

• Case C0 = if (E)C: we have to show

(b) [if (E)C ]⊥(s,s′)⇔ [CHECK ED; if (E)C′ ](s,s′)
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From the rule hypotheses, we know

(2) E
D' ED

(3) CHECK(C) = C′

From the definitions of [ ]⊥, check, and [ ]⊥, we know

(4)

[if (E)C ]⊥(s,s′)⇔
LET v = [E ]⊥(s) IN

IF v =⊥ THEN

s′ = expthrow(s)
ELSE IF v = TRUE THEN

[C ]⊥(s,s′)
ELSE

s′ = s

(5)

[CHECK ED; if (E)C′ ](s,s′)⇔
IF [ED ](s) 6= TRUE THEN

s′ = throw(s,EXP,read(s,VAL))
ELSE IF [E ](s) = TRUE THEN

[C′ ](s,s′)
ELSE

s′ = s

From (2) and the definitions of
D' and [ ]⊥, we know

(6) [ED ](s) 6= TRUE ⇔ [E ]⊥(s) =⊥
We proceed by case distinction:

– Case [E ]⊥(s) = ⊥: From the case condition, (4), (5), (6), and the
definition of expthrow, we know (b).

– Case [E ]⊥(s) 6= ⊥∧ [E ]⊥(s) = TRUE: From this condition, Lemma
“Partial Expressions”, (1b), (3), (4), (5), (6), and the induction hypoth-
esis, we know (b).

– Case [E ]⊥(s) 6= ⊥∧ [E ]⊥(s) 6= TRUE: From this condition, Lemma
“Partial Expressions”, (4), (5), and (6), we know (b).

• Case C0 = if (E)C1 else C2: we have to show

(b)
[if (E)C1 else C2 ]⊥(s,s′)⇔
[CHECK ED; if (E)C′1 else C′2 ](s,s′)

From the rule hypotheses, we know

(2) E
D' ED
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(3) CHECK(C1) = C′1
(4) CHECK(C2) = C′2

From the definitions of [ ]⊥, check, and [ ]⊥, we know

(5)

[if (E)C1 else C2 ]⊥(s,s′)⇔
LET v = [E ]⊥(s) IN

IF v =⊥ THEN

s′ = expthrow(s)
ELSE IF v = TRUE THEN

[C1 ]⊥(s,s′)
ELSE

[C2 ]⊥(s,s′)

(6)

[CHECK ED; if (E)C′1 else C′2 ](s,s′)⇔
IF [ED ](s) 6= TRUE THEN

s′ = throw(s,EXP,read(s,VAL))
ELSE IF [E ](s) = TRUE THEN

[C′1 ](s,s′)
ELSE

[C′2 ](s,s′)

From (2) and the definitions of
D' and [ ]⊥, we know

(7) [ED ](s) 6= TRUE ⇔ [E ]⊥(s) =⊥
We proceed by case distinction:

– Case [E ]⊥(s) = ⊥: From the case condition, (5), (6), (7), and the
definition of expthrow, we know (b).

– Case [E ]⊥(s) 6= ⊥∧ [E ]⊥(s) = TRUE: From this condition, Lemma
“Partial Expressions”, (1b), (3), (5), (6), (7), and the induction hypoth-
esis, we know (b).

– Case [E ]⊥(s) 6= ⊥∧ [E ]⊥(s) 6= TRUE: From this condition, Lemma
“Partial Expressions”, (1b), (4), (5), (6), (7), and the induction hypoth-
esis, we know (b).

• Case C0 = return E: we have to show

(b) [return E ]⊥(s,s′)⇔ [CHECK ED; return E ](s,s′)

From the rule hypothesis, we know

(2) E
D' ED

From the definitions of [ ]⊥, check, and [ ]⊥, we know
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(3)

[return E ]⊥(s,s′)⇔
LET v = [E ]⊥(s) IN

IF v =⊥
THEN s′ = expthrow(s)
ELSE s′ = return(s,v)

(4)

[CHECK ED; return E ](s,s′)⇔
IF [ED ](s) 6= TRUE

THEN s′ = throw(s,EXP,read(s,VAL))
ELSE s′ = return(s, [E ](s))

From (2) and the definitions of
D' and [ ]⊥, we know

(5) [ED ](s) 6= TRUE ⇔ [E ]⊥(s) =⊥
From (3), (4), (5), the definition of expthrow, and Lemma “Partial Expres-
sions”, we know (b).

• Case C0 = throw I E: we have to show

(b) [throw I E ]⊥(s,s′)⇔ [CHECK ED; throw I E ](s,s′)

From the rule hypothesis, we know

(2) E
D' ED

From the definitions of [ ]⊥, check, and [ ]⊥, we know

(3)

[throw I E ]⊥(s,s′)⇔
LET v = [E ]⊥(s) IN

IF v =⊥
THEN s′ = expthrow(s)
ELSE s′ = throw(s, I,v)

(4)

[CHECK ED; throw I E ](s,s′)⇔
IF [ED ](s) 6= TRUE

THEN s′ = throw(s,EXP,read(s,VAL))
ELSE s′ = throw(s, I, [E ](s))

From (2) and the definitions of
D' and [ ]⊥, we know

(5) [ED ](s) 6= TRUE ⇔ [E ]⊥(s) =⊥
From (3), (4), (5), the definition of expthrow, and Lemma “Partial Expres-
sions”, we know (b). ¤
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Checked Program Calculus: Rules

E
D' ED

CHECK(C) = C′

[C′ ]FALSE,Fb,Fr,{K1,...,Km}
I1,...,In

CHECK(while (E)C) =
CHECK ED; while (E) (C′; CHECK ED)

Figure 5.44: Checked Program Calculus (3/4)

5.9.5 Checking for Undefined Expressions in Loops

The checking of loops becomes a bit tricky due to the possibility of loop continua-
tions triggered by the continue command. To simplify the further presentation,
we first rule out this possibility and later deal with the general case.

Loops without continue

If the loop body cannot be left in a continuing state, it suffices to check the loop
expression before the loop and after every iteration of the loop body. The rule in
Figure 5.44 covers this situation.

To show the correctness of this rule, we have to show

(b)
[while (E)C ]⊥(s,s′)⇔
[CHECK ED; while (E) (C′; CHECK ED) ](s,s′)

From the rule hypotheses, we know

(2) E
D' ED

(3) CHECK(C) = C′

(4) [C′ ]FALSE,Fb,Fr,{K1,...,Km}
I1,...,In

From the definitions of [ ]⊥, check, and [ ]⊥, we know
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(5)

[while (E)C ]⊥(s,s′)⇔
∃k ∈ N, t,u ∈ State∞ :

finiteExecution⊥(k, t,u,s, [E ]⊥, [C ]⊥)∧
([E ]⊥(t(k)) =⊥ ∨

[E ]⊥(t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k))))) ∧
IF (executes(control(u(k)))∨ continues(control(u(k)))) ∧

[E ]⊥(t(k)) =⊥
THEN expthrow(t(k)) = s′
ELSE t(k) = s′

(6)

[CHECK ED; while (E) (C′; CHECK ED) ](s,s′)⇔
IF [ED ](s) 6= TRUE THEN

s′ = throw(s,EXP,read(s,VAL))
ELSE

∃k ∈ N, t,u ∈ State∞ :
finiteExecution(k, t,u,s, [E ], [C′; CHECK ED ])∧
([E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k))))) ∧
t(k) = s′

We proceed by showing both directions of (b).

Proof of ⇒ We assume

(7) [while (E)C ]⊥(s,s′)

and show

(c) [CHECK ED; while (E) (C′; CHECK ED) ](s,s′)

From (5) and (7), we know for some k ∈ N, t,u ∈ State∞

(8) finiteExecution⊥(k, t,u,s, [E ]⊥, [C ]⊥)

(9)
[E ]⊥(t(k)) =⊥ ∨
[E ]⊥(t(k)) 6= TRUE ∨
¬(executes(control(u(k)))∨ continues(control(u(k))))

(10)

IF (executes(control(u(k)))∨ continues(control(u(k)))) ∧
[E ]⊥(t(k)) =⊥

THEN expthrow(t(k)) = s′
ELSE t(k) = s′
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From (6), to show (c), it suffices to show

(d)

IF [ED ](s) 6= TRUE THEN

s′ = throw(s,EXP,read(s,VAL))
ELSE

∃k ∈ N, t,u ∈ State∞ :
finiteExecution(k, t,u,s, [E ], [C′; CHECK ED ])∧
([E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k))))) ∧
t(k) = s′

We proceed by case distinction.

As for the first case, we assume [ED ](s) 6= TRUE: from the case condition, to
show (d), we may show

(e) s′ = throw(s,EXP,read(s,VAL))

From (2), the case condition, and the definition of [ ]⊥, we know

(11) [E ]⊥(s) =⊥
From (8), (11), and the definition of finiteExecution⊥, we know

(12) k = 0

(13) s = t(k)

(14) s = u(k)

From (1b), (10), (12), (13), and (14), we know

(15) expthrow(t(k)) = s′

From (15) and the definition of expthrow, we know (e).

As for the second case, we assume [ED ](s) = TRUE and define t0 : State∞ and
u0 : State∞ as

(16)

t0(i) :=
IF (executes(control(u(i)))∨ continues(control(u(i)))) ∧

[E ]⊥(t(i)) =⊥
THEN expthrow(t(i))
ELSE t(i)

u0(i) :=
IF (executes(control(u(i)))∨ continues(control(u(i)))) ∧

[E ]⊥(t(i)) =⊥
THEN expthrow(u(i))
ELSE u(i)
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From the case condition, to show (d), it suffices to show

(e.1) finiteExecution(k, t0,u0,s, [E ], [C′; CHECK ED ])

(e.2)
[E ](t0(k)) 6= TRUE ∨
¬(executes(control(u0(k)))∨ continues(control(u0(k))))

(e.3) t0(k) = s′

From (2), the case condition, and the definition of [ ]⊥, we know

(17) [E ]⊥(s) 6=⊥
(18) [E ]⊥(s) = [E ](s)

We proceed by case distinction.

In the case of k = 0, from (7), the definition of finiteExecution⊥, we know

(19) s = t(k)

(20) s = u(k)

From (16), (17), (18), (19), (20), the case condition, and the definition of finiteEx-
ecution, we know (e.1).

From (9), (16), (17), (18), (19), and (20), we know (e.2).

From (10), (16), (17), and (19), we know (e.3).

In the case of k > 0, from (8) and the definition of finiteExecution⊥, we know

(21) t(0) = s

(22) u(0) = s

(23)

∀i ∈ Nk :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
[E ]⊥(t(i)) 6=⊥∧ [E ]⊥(t(i)) = TRUE ∧
[C ]⊥(t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (1a), (3), (4), (23), the soundness of the verification calculus with interrup-
tions, and the induction hypothesis, we know

(24) ¬continues(control(u(k)))
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From (9) and (24), we know

(25)
[E ]⊥(t(k)) =⊥∨ [E ]⊥(t(k)) 6= TRUE ∨
¬executes(control(u(k)))

We first show (e.2) and (e.3). From (25), we have the following cases:

• Case ¬executes(control(u(k))):

From (16), (24) and the case condition, we know (e.2).

From (10), (16), (24), and the case condition, we know (e.3).

• Case executes(control(u(k))∧ [E ]⊥(t(k)) =⊥:

From (10) and the case condition, we know

(26) expthrow(t(k)) = s′

From (16) and the case condition, we know

(27)
t0(k) = expthrow(t(k))
u0(k) = expthrow(u(k))

From (27), the definition of expthrow, (CD1), and Lemma “Control State
Predicates”, we know

(28) ¬executes(control(u0(k)))
(29) ¬continues(control(u0(k)))

From (28) and (29), we know (e.2).

From (26) and (27), we know (e.3).

• Case executes(control(u(k))∧ [E ]⊥(t(k)) 6=⊥∧ [E ]⊥(t(k)) 6= TRUE:

From (16), the case condition, and the definition of [ ]⊥, we know (e.2).

From (10), (16), and the case condition, we know (e.3).

It remains to show (e.1). From (23), we know

(30) ∀i ∈ Nk : [E ]⊥(t(i)) 6=⊥
(31) ∀i ∈ Nk : [E ]⊥(t(i)) = TRUE

(32) ∀i ∈ Nk : executes(control(t(i)))

(33) ∀i ∈ Nk : [C ]⊥(t(i),u(i+1))

From (30), and Lemma “Partial Expressions”, we know



5.9 Expressions and Interruptions 355

(34) ∀i ∈ Nk : [E ]⊥(t(i)) = [E ](t(i))

From (31) and (34), we know

(35) ∀i ∈ Nk : [E ](t(i)) = TRUE

From (4), (32), (33), and the induction hypothesis, we know

(36) ∀i ∈ Nk : [C′ ](t(i),u(i+1))

From the definitions of CHECK, expthrow and [ ], we know

(37)

∀s,s′ ∈ State :
[C′; CHECK ED ])(s,s′)⇔
∃s0 ∈ State :

[C′ ](s,s0) ∧
IF executes(control(s0))∧¬[ED ](s0)

THEN s′ = expthrow(s0)
ELSE s′ = s0

To show (e.1), from (37) and the definition of finiteExecution, it suffices to show

(e.1.a) t0(0) = s

(e.1.b) u0(0) = s

(e.1.c)

∀i ∈ Nk :
¬breaks(control(u0(i)))∧ executes(control(t0(i))) ∧
[E ](t0(i)) = TRUE ∧
∃s0 ∈ State :

[C′ ](t0(i),s0) ∧
IF executes(control(s0))∧ [ED ](s0) 6= TRUE

THEN u0(i+1) = expthrow(s0)
ELSE u0(i+1) = s0 ∧

IF continues(control(u0(i+1)))∨breaks(control(u0(i+1)))
THEN t0(i+1) = execute(u0(i+1))
ELSE t0(i+1) = u0(i+1)

From (16), (17), (21), and (22), we know (e.1.a) and (e.1.b).

To show (e.1.c), we take arbitrary i ∈ Nk and show

(e.1.c.1) ¬breaks(control(u0(i)))

(e.1.c.2) executes(control(t0(i)))
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(e.1.c.3) [E ](t0(i)) = TRUE

(e.1.c.4)

∃s0 ∈ State :
[C′ ](t0(i),s0) ∧
IF executes(control(s0))∧ [ED ](s0) 6= TRUE

THEN u0(i+1) = expthrow(s0)
ELSE u0(i+1) = s0

(e.1.c.5)
IF continues(control(u0(i+1)))∨breaks(control(u0(i+1)))

THEN t0(i+1) = execute(u0(i+1))
ELSE t0(i+1) = u0(i+1)

From (16) and (30), we know

(38) t0(i) = t(i)

(39) u0(i) = u(i)

From (23) and (38), we know (e.1.c.1).

From (23) and (39), we know (e.1.c.2).

From (35) and (38), we know (e.1.c.3).

To show (e.1.c.4), it suffices to show

(e.1.c.4.a.1) [C′ ](t0(i),u(i+1))

(e.1.c.4.a.2)
IF executes(control(u(i+1)))∧ [ED ](u(i+1)) 6= TRUE

THEN u0(i+1) = expthrow(u(i+1))
ELSE u0(i+1) = u(i+1)

From (36) and (38), we know (e.1.c.4.a.1).

To show (e.1.c.4.a.2), we consider three cases:

• Case executes(control(u(i+1)))∧ [ED ](u(i+1)) 6= TRUE: we show

(e.1.c.4.a.2.a) u0(i+1) = expthrow(u(i+1))

From the case condition and the definition of [ ]⊥, we know

(40) [E ]⊥(u(i+1)) =⊥
From (23), the case, and Lemma “State Control Predicates”, we know

(41) t(i+1) = u(i+1)

From (16), (40), (41), and the case condition, we know (e.1.c.4.a.2.a).
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• Case executes(control(u(i+1)))∧ [ED ](u(i+1)) = TRUE: we show

(e.1.c.4.a.2.a) u0(i+1) = u(i+1)

From the case condition and the definition of [ ]⊥, we know

(42) [E ]⊥(u(i+1)) 6=⊥
From (23), the case, and Lemma “State Control Predicates”, we know

(43) t(i+1) = u(i+1)

From (16), (42), (43), and the case condition, we know (e.1.c.4.a.2.a).

• Case ¬executes(control(u(i+1))): it suffices to show

(e.1.c.4.a.2.a) u0(i+1) = u(i+1)

From (1a), (3), (4), (32), (36), the soundness of the verification calculus
with interruptions, and the induction hypothesis, we know

(44) ¬continues(control(u(i+1)))

From (16), (44), and the case condition, we know (e.1.c.4.a.2.a).

To show (e.1.c.5), by Lemma “State Control Predicates”, it suffices to consider
the following cases:

• Case continues(control(u0(i + 1)))∨breaks(control(u0(i + 1))): it suffices
to show

(e.1.c.5.a) t0(i+1) = execute(u0(i+1))

From (1a), (3), (4), (32), (e.1.c.2), (e.1.c.4.a.1), the soundness of the veri-
fication calculus with interruptions, and the induction hypothesis, we know

(45) ¬continues(control(u0(i+1)))

From (45) and the case condition, we know

(46) breaks(control(u0(i+1)))

From (46) and Lemma “Control Predicates” we know

(47) ¬executes(control(u0(i+1)))

From (16), (45), and (47), we know

(48) u0(i+1) = u(i+1)
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From (23), (46), and (48), we know

(49) t(i+1) = execute(u0(i+1))

From (16), (45), (47), (48), and (49), we know (e.1.c.5.a).

• Case returns(control(u0(i+1)))∨ executes(control(u0(i+1))): by Lemma
“State Control Predicates”, it suffices to show

(e.1.c.5.a) t0(i+1) = u0(i+1)

From (16), the case condition, Lemma “State Control Predicates”, and the
definition of expthrow, we know

(50) t0(i+1) = t(i+1)
(51) u0(i+1) = u(i+1)

From (23), (50), (51), the case condition, and Lemma “State Control Predi-
cates”, we know (e.1.c.5.a).

• Case throws(u0(i+1)): it suffices to show

(e.1.c.5.a) t0(i+1) = u0(i+1)

We assume

(52) t0(i+1) 6= u0(i+1)

and show a contradiction. From (16) and (52), we know

(53) t(i+1) 6= u(i+1)

From (23) and (53), we know

(54) continues(control(u(i+1)))∨breaks(u(i+1))

From (1a), (3), (4), (32), (36), the soundness of the verification calculus
with interruptions, and the induction hypothesis, we know

(55) ¬continues(control(u(i+1)))

From (54) and (55), we know

(56) breaks(u(i+1))

But (16), (56), and Lemma “State Control Predicates” together contradict
the case condition.
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Proof of ⇐ We assume

(7) [CHECK ED; while (E) (C′; CHECK ED) ](s,s′)

and show

(c) [while (E)C ]⊥(s,s′)

From (6) and (7), we know

(8)

IF [ED ](s) 6= TRUE THEN

s′ = throw(s,EXP,read(s,VAL))
ELSE

∃k ∈ N, t,u ∈ State∞ :
finiteExecution(k, t,u,s, [E ], [C′; CHECK ED ])∧
([E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k))))) ∧
t(k) = s′

From (5), to show (c), it suffices to show

(d)

∃k ∈ N, t,u ∈ State∞ :
finiteExecution⊥(k, t,u,s, [E ]⊥, [C ]⊥)∧
([E ]⊥(t(k)) =⊥ ∨

[E ]⊥(t(k)) 6= TRUE ∨
¬(executes(control(u(k))) ∨

continues(control(u(k))))) ∧
IF (executes(control(u(k)))∨ continues(control(u(k)))) ∧

[E ]⊥(t(k)) =⊥
THEN expthrow(t(k)) = s′
ELSE t(k) = s′

We proceed by case distinction.

As for the first case, we assume [ED ](s) 6= TRUE.

From the case condition and (8), we know

(9) s′ = throw(s,EXP,read(s,VAL))

We define t : State∞ and u : State∞ as

(10)
t(i) := IF i = 0 THEN s ELSE s′
u(i) := IF i = 0 THEN s ELSE s′
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To show (d), it suffices to show

(d.1) finiteExecution⊥(0, t,u,s, [E ]⊥, [C ]⊥)

(d.2)
[E ]⊥(t(0)) =⊥ ∨
[E ]⊥(t(0)) 6= TRUE ∨
¬(executes(control(u(0)))∨ continues(control(u(0))))

(d.3)

IF (executes(control(u(0)))∨ continues(control(u(0)))) ∧
[E ]⊥(t(0)) =⊥

THEN expthrow(t(0)) = s′
ELSE t(0) = s′

From (10) and the definition of finiteExecution, we know (d.1).

From (2), the case condition, and the definition of [ ]⊥, we know

(11) [E ]⊥(s) =⊥

From (10) and (11), we know

(12) [E ]⊥(t(0)) =⊥

From (12), we know (d.2).

From (1b), (9), (10), (12), and the definition of expthrow, we know (d.3).

As for the second case, we assume [ED ](s) = TRUE.

From (2), the case condition and the definition of [ ]⊥, we know

(13) [E ]⊥(s) 6=⊥
(14) [E ]⊥(s) = [E ](s)

From the case condition and (8), we know for some k ∈ N, t,u ∈ State∞ :

(15) finiteExecution(k, t,u,s, [E ], [C′; CHECK ED ])

(16)
[E ](t(k)) 6= TRUE ∨
¬(executes(control(u(k)))∨ continues(control(u(k))))

(17) t(k) = s′

From (15) and the definition of finiteExecution, we know

(18) t(0) = s

(19) u(0) = s
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(20)

∀i ∈ Nk :
¬breaks(control(u(i)))∧ executes(control(t(i))) ∧
[E ](t(i)) = TRUE∧ [C′; CHECK ED ](t(i),u(i+1)) ∧
IF continues(control(u(i+1)))∨breaks(control(u(i+1)))

THEN t(i+1) = execute(u(i+1))
ELSE t(i+1) = u(i+1)

From (20) and the definition of [ ], we know

(21)

∀i ∈ Nk : ∃s0 ∈ State :
[C′ ](t(i),s0) ∧
IF executes(control(s0))∧ [ED ](s0) 6= TRUE

THEN u(i+1) = expthrow(s0)
ELSE u(i+1) = s0

We define u0 : State∞ as

(22)

u0(i) :=
IF i = 0 THEN

s
ELSE SUCH s0 ∈ State :

[C′ ](t(i−1),s0) ∧
IF executes(control(s0))∧ [ED ](s0) 6= TRUE

THEN u(i) = expthrow(s0)
ELSE u(i) = s0

From (21) and (22), we know

(23)

∀i ∈ Nk :
[C′ ](t(i),u0(i+1)) ∧
IF executes(control(u0(i+1)))∧ [ED ](u0(i+1)) 6= TRUE

THEN u(i+1) = expthrow(u0(i+1))
ELSE u(i+1) = u0(i+1)

We also define t0 : State∞ as

(24)

t0(i) :=
IF i = 0 THEN

s
ELSE

IF continues(control(u0(i)))∨breaks(control(u0(i)))
THEN execute(u0(i))
ELSE u0(i)
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From (24), we know

(25)

∀i ∈ Nk :
IF continues(control(u0(i+1)))∨breaks(control(u0(i+1)))

THEN t0(i+1) = execute(u0(i+1))
ELSE t0(i+1) = u0(i+1)

From (18), (19), (20), (21), (22), (23), (24), and (25), we know

(26) u(0) = u0(0)

(27) t(0) = t0(0)

(28) ∀i ∈ Nk : u(i) = u0(i)

(29) ∀i ∈ Nk : t(i) = t0(i)

(30)

k > 0 ⇒
IF executes(control(u0(k)))∧ [ED ](u0(k)) 6= TRUE

THEN u(k) = expthrow(u0(k))
ELSE u(k) = u0(k)

(31)

k > 0⇒
IF continues(control(u0(k)))∨breaks(control(u0(k)))

THEN t0(k) = execute(u0(k))
ELSE t0(k) = u0(k)

(32)

k > 0⇒
IF continues(control(u(k)))∨breaks(control(u(k)))

THEN t(k) = execute(u(k))
ELSE t(k) = u(k)

To show (d), it now suffices to show

(d.1) finiteExecution⊥(k, t0,u0,s, [E ]⊥, [C ]⊥)

(d.2)
[E ]⊥(t0(k)) =⊥ ∨
[E ]⊥(t0(k)) 6= TRUE ∨
¬(executes(control(u0(k)))∨ continues(control(u0(k))))

(d.3)

IF (executes(control(u0(k)))∨ continues(control(u0(k)))) ∧
[E ]⊥(t0(k)) =⊥

THEN expthrow(t0(k)) = s′
ELSE t0(k) = s′

We proceed by case distinction.

In the first case, we assume
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(33) k = 0

From (18), (19), (26), (27), and the definition of finiteExecution⊥, we have (d.1).

From (13), (16), (18), (19), (26), (27), and (33), we have (d.2).

From (13), (18), (27), and (33), we have (d.3).

In the second case, we assume

(34) k > 0

To show (d.2), it suffices to assume

(35) [E ]⊥(t0(k)) 6=⊥
(36) [E ]⊥(t0(k)) = TRUE

(37) executes(control(u0(k)))∨ continues(control(u0(k)))

and show a contradiction.

From (4), (23), (34), (37), and the soundness of the verif. calculus, we know

(38) executes(control(u0(k)))

From (31), (34), and (38), we know

(39) t0(k) = u0(k)

From (2), (35) and the definition of [ ]⊥, we know

(40) [ED ](t0(k)) = TRUE

From (30), (34), (38), (39), and (40), we know

(41) u(k) = u0(k)

From (32), (34), (38), and (41), we know

(42) t(k) = u(k)

From (16), (36), (39), (41), (42), we know

(43) ¬(executes(control(u(k))∨ continues(control(u(k)))))

From (37), (41), and (43), we have a contradiction.

To show (d.3), we proceed by case distinction.
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• In the first case, we assume

(44) executes(control(u0(k)))∨ continues(control(u0(k)))
(45) [E ]⊥(t0(k)) =⊥

and show

(d.3.a) expthrow(t0(k)) = s′

From (4), (23), (34), (44), and the soundn. of the verif. calculus, we know

(46) executes(control(u0(k)))

From (2), (45), and the definition of [ ]⊥, we know

(47) [ED ](t0(k)) 6= TRUE

From (31), (34), and (46), we know

(48) t0(k) = u0(k)

From (30), (46), (47), and (48), we know

(49) u(k) = expthrow(u0(k))

From (32), (34), (49), and the definition of expthrow, we know

(50) t(k) = u(k)

From (17), (48), (49), and (50), we know (d.3.a).

• In the second case, we assume

(51) executes(control(u0(k)))∨ continues(control(u0(k)))
(52) [E ]⊥(t0(k)) 6=⊥

and show

(d.3.a) t0(k) = s′

From (4), (23), (34), (51), and the soundn. of the verif. calculus, we know

(53) executes(control(u0(k)))

From (2), (52), and the definition of [ ]⊥, we know

(54) [ED ](t0(k)) = TRUE

From (31), (34), and (53), we know

(55) t0(k) = u0(k)

From (30), (54), and (44), we know
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(56) u(k) = u0(k)

From (32), (34), (53), (56), and Lemma “State Control Predicates”, we
know

(57) t(k) = u(k)

From (17), (55), (56), and (57), we know (d.3.a).

• In the third case, we assume

(59) ¬executes(control(u0(k)))
(60) ¬continues(control(u0(k)))

and show

(d.3.a) t0(k) = s′

From (30), (34), and (59), we know

(61) u(k) = u0(k)

First, we consider the case

(62) breaks(control(u0(k)))

From (31), (34), and (62), we know

(63) t0(k) = execute(u0(k))

From (32), (34), (61), and (62), we know

(64) t(k) = execute(u(k))

From (61), (63), and (64), we know

(65) t(k) = t0(k)

From (17) and (65), we know (d.3.a).

Now, we consider the case

(66) ¬breaks(control(u0(k)))

From (31), (34), (60), and (65), we know

(67) t0(k) = u0(k)

From (32), (34), (60), (61), and (66), we know

(68) t(k) = u(k)

From (61), (67), and (68), we know
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(69) t(k) = t0(k)

From (17) and (69), we know (d.3.a).

It remains to show (d.1). By the definition of finiteExecution⊥, we have to show

(d.1.a.1) t0(0) = s

(d.1.a.2) u0(0) = s

(d.2.a.3)

∀i ∈ Nk :
¬breaks(control(u0(i)))∧ executes(control(t0(i))) ∧
[E ]⊥(t0(i)) 6=⊥∧ [E ]⊥(t0(i)) = TRUE∧ [C ]⊥(t0(i),u0(i+1)) ∧
IF continues(control(u0(i+1)))∨breaks(control(u0(i+1)))

THEN t0(i+1) = execute(u0(i+1))
ELSE t0(i+1) = u0(i+1)

From (18), (19), (26), and (27), we know (d.1.a.1) and (d.1.a.2).

To show (d.2.a.3), we take arbitrary i ∈ Nk and show

(d.2.a.3.a.1) ¬breaks(control(u0(i)))

(d.2.a.3.a.2) executes(control(t0(i)))

(d.2.a.3.a.3) [E ]⊥(t0(i)) 6=⊥
(d.2.a.3.a.4) [E ]⊥(t0(i)) = TRUE

(d.2.a.3.a.5) [C ]⊥(t0(i),u0(i+1))

(d.2.a.3.a.6)
IF continues(control(u0(i+1)))∨breaks(control(u0(i+1)))

THEN t0(i+1) = execute(u0(i+1))
ELSE t0(i+1) = u0(i+1)

From (20), (26), and (27), we know (d.2.a.3.a.1) and (d.2.a.3.a.2).

From (20), we know

(70) [E ]⊥(t(i)) = TRUE

From (29) and (70), we know (d.2.a.3.a.3) and (d.2.a.3.a.4).

From (3), (23), (29), (d.2.a.3.a.2), and the ind. hypothesis., we know (d.2.a.3.a.5).

From (25), we know (d.2.a.3.a.6). ¤
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Loops with continue

If the loop body contains instances of the command continue, the body may be
left in a “continuing” state which bypasses the check after the body but directly
proceeds with the evaluation of the loop expression. The only way to ensure that
the loop expression is also well-defined in such “continuing” states is to precede
every invocation of continue itself by a checking command which yields

// transformation of continue
{ check E_D; continue }

where ED denotes the definedness condition of the enclosing loop.

However there are two caveats:

• First, we must make sure that the evaluation of ED in the current state gives
the same result as the evaluation in the state where the loop expression is
evaluated. This is not necessarily the case, if the continue occurs inside
the local declaration of a variable that has the same name as a variable on
which the value of ED depends. Thus we have to make sure that a local
variable definition does not capture a variable referenced in ED.

• Second, we must make sure that the exception raised by the check com-
mand is not caught inside the loop body; the easiest way to guarantee this
is to prohibit subcommands of the form try C1 catch(EXP I)C2 in the
loop body. This is the core reason for the condition (1a) in the proof of
Lemma “Checked Commands”.

For performing the transformation, the calculus is modified as sketched in Fig-
ure 5.45: the judgement CHECK(C) = C′ is generalized to a form CHECKE ′(C) =
C′ which translates command C to its checked counterpart C′ under the assumption
that C occurs (directly) in the body of a loop with expression E ′. The rules given
in Figure 5.43 have to be correspondingly modified to “forward” the additional
argument E from the conclusion to the premises (not shown). The rules for local
variable declarations and definitions receive extra premises to avoid the problem
of captured variables (in practice, programs can be automatically transformed to
satisfy this premise by renaming local variables correspondingly).

Furthermore, two new rules are added: the first one describes the transformation
of the command continue to include a check for the well-definedness of E; the
second one generalizes the rule for while loops shown in Figure 5.44 by dropping
the constraint that the loop body C must not give rise to a continuing state but
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Checked Program Calculus: Judgements

CHECKE ′(C) = C′ ⇔
∀s,s′ ∈ State : executes(control(s))⇒

([C ]⊥(s,s′)∧¬[C′ ](s,s′) ⇒
continues(control(s′))∧ [E ′ ]⊥(s′) =⊥ ∧
[C′ ](s,expthrow(s′)) ∧

([C′ ](s,s′)∧¬[C ]⊥(s,s′) ⇒
∃s′′ ∈ State : [C ]⊥(s,s′′)∧ s′ = expthrow(s′′) ∧

continues(control(s′′))∧ [E ′ ]⊥(s′′) =⊥) ∧
([C′ ](s,s′) ⇒
¬(continues(control(s′))∧ [E ′ ]⊥(s′) =⊥))

Checked Program Calculus: Rules

∀s1,s2 ∈ State : s1 = s2 EXCEPT I ⇒ [E ′ ]⊥(s1) = [E ′ ]⊥(s2)
CHECKE ′(C) = C′

CHECKE ′(var I; C) = var I;C′

∀s1,s2 ∈ State : s1 = s2 EXCEPT I ⇒ [E ′ ]⊥(s1) = [E ′ ]⊥(s2)

E
D' ED

CHECKE ′(C) = C′

CHECKE ′(var I=E;C) = check ED; var I=E;C′

E ′
D' ED

CHECKE ′(continue) = check ED; continue

E
D' ED

CHECKE(C) = C′

CHECKE ′(while (E)C) =
CHECK ED; while (E) (C′; CHECK ED)

Figure 5.45: Checked Program Calculus (4/4)
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generalizing the checking transformation of loop body C to take into account the
loop expression E.

The soundness claim depicted in Figure 5.45 is now not any more one of an uncon-
ditional equivalence of the original program and its checked version: the original
program may result in a state which cannot be reached by the execution of the
transformed program, provided that this is a continuing state in which the loop
expression is undefined and that the transformed program generates an “expres-
sion evaluation exception” on that state; correspondingly, the transformed pro-
gram may result in a state which cannot be reached by the execution of the original
program provided that this state is derived from a continuing state with undefined
loop expression reachable from the original program by raising an“expression
evaluation exception”; in any case, the transformed program cannot yield a “con-
tinuing state” where the loop expression is undefined.

Lemma (Checked Commands Extended) If a judgement CHECKE ′(C) = C′
can be derived from the rules of the checked program calculus, then we have

DifferentVariables ∧
C has no subcommand tryC1 catch(EXP I)C2 ⇒
∀s,s′ ∈ State : executes(control(s))⇒

([C ]⊥(s,s′)∧¬[C′ ](s,s′) ⇒
continues(control(s′))∧ [E ′ ]⊥(s′) =⊥ ∧
[C′ ](s,expthrow(s′))) ∧

([C′ ](s,s′)∧¬[C ]⊥(s,s′) ⇒
∃s′′ ∈ State : [C ]⊥(s,s′′)∧ s′ = expthrow(s′′) ∧

continues(control(s′′))∧ [E ′ ]⊥(s′′) =⊥) ∧
([C′ ](s,s′) ⇒
¬(continues(control(s′))∧ [E ′ ]⊥(s′) =⊥))

Proof Take arbitrary commands C0 and C′0 and expression E ′ such that judge-
ment CHECKE ′(C0) = C′0 can be derived. Take s,s′ ∈ State and assume

(1a) C0 has no subcommand tryC1 catch(EXP I)C2

(1b) executes(control(s))

(1c) DifferentVariables

We show

(a.1)
[C0 ]⊥(s,s′)∧¬[C′0 ](s,s′) ⇒

continues(control(s′))∧ [E ′ ]⊥(s′) =⊥ ∧
[C′0 ](s,expthrow(s′))
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(a.2)
[C′0 ](s,s′)∧¬[C0 ]⊥(s,s′) ⇒
∃s′′ ∈ State : [C0 ]⊥(s,s′′)∧ s′ = expthrow(s′′) ∧

continues(control(s′′))∧ [E ′ ]⊥(s′′) =⊥

(a.3)
[C′0 ](s,s′) ⇒
¬(continues(control(s′))∧ [E ′ ]⊥(s′) =⊥)

We proceed by induction on the structure of C0. but do not repeat the proofs for
the commands previously presented in this section. Instead, we focus on the rules
introduced in this section.

• Case C0 = var I;C: from the premises of the rule, we know

(2) ∀s1,s2 ∈ State : s1 = s2 EXCEPT I ⇒ [E ′ ]⊥(s1) = [E ′ ]⊥(s2)
(3) CHECKE ′(C) = C′

To show (a.1), we assume

(4) [var I;C ]⊥(s,s′)
(5) ¬[var I;C′ ](s,s′)

and show

(a.1.a.1) continues(control(s′))
(a.1.a.2) [E ′ ]⊥(s′) =⊥
(a.1.a.3) [var I;C′ ](s,expthrow(s′))

From (4) and the definition of [ ]⊥, we know for some s0,s1 ∈ State

(6) s0 = s EXCEPT I
(7) [C ]⊥(s0,s1)
(8) s′ = write(s1, I,read(s, I))

From (5) and the definition of [ ], we know

(9)
¬(s0 = s EXCEPT I) ∨
¬[C′ ](s0,s1) ∨
¬(s′ = write(s1, I,read(s, I)))

From (6), (8), and (9), we know

(10) ¬[C′ ](s0,s1)

From (1a), (1b), (1c) (3), (7), (10), and the induction hypothesis, we know

(11) continues(control(s1))
(12) [E ′ ]⊥(s1) =⊥
(13) [C′ ](s0,expthrow(s1))
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From (8), (11), and (CW), we know (a.1.a.1).

From (1c), (2), (8), (12), and (WS), we know (a.1.a.2).

To show (a.1.a.3), from (6), (13), and the definition of [ ], it remains to
show suffices to show

(a.1.a.3.a) expthrow(s′) = write(expthrow(s1), I,read(s, I))

From (8), (CW), and the definition of expthrow, we know (a.1.a.3.a.).

To show (a.2), we assume

(4) [var I;C′ ](s,s′)
(5) ¬[var I;C ]⊥(s,s′)

and show

(a.1.a)
∃s′′ ∈ State : [var I;C ]⊥(s,s′′)∧ s′ = expthrow(s′′) ∧

continues(control(s′′))∧ [E ′ ]⊥(s′′) =⊥
From (4) and the definition of [ ], we know for some s0,s1 ∈ State

(6) s0 = s EXCEPT I
(7) [C′ ](s0,s1)
(8) s′ = write(s1, I,read(s, I))

From (5) and the definition of [ ]⊥, we know

(9)
¬(s0 = s EXCEPT I) ∨
¬[C ]⊥(s0,s1) ∨
¬(s′ = write(s1, I,read(s, I)))

From (6), (8), and (9), we know

(10) ¬[C ]⊥(s0,s1)

From (1a), (1b), (1c) (3), (7), (10), and the induction hypothesis, we know
for some s′′ ∈ State

(11) [C ]⊥(s0,s′′)
(12) s1 = expthrow(s′′)
(13) continues(control(s′′))
(14) [E ′ ]⊥(s′′) =⊥

We define

(15) s′′′ := write(s′′, I,read(s, I))

To show (a.1.a), it suffices to show

(a.1.b.1) [var I;C ]⊥(s,s′′′)
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(a.1.b.2) s′ = expthrow(s′′′)
(a.1.b.3) continues(control(s′′′))
(a.1.b.4) [E ′ ]⊥(s′′′) =⊥

From (6), (11), (15), and the definition of [ ]⊥, we know (a.1.b.1).

To show (a.1.b.2), from (8), (12), and (15), it suffices to show

(a.1.b.2.a)
write(expthrow(s′′), I,read(s, I)) =
expthrow(write(s′′, I,read(s, I)))

From (CW), (CD1), and the definition of expthrow, we know (a.1.b.2.a).

From (13), (15), and (CW), we know (a.1.b.3).

From (1c), (2), (14), (15), and (WS), we know (a.1.b.4).

To show (a.3), we assume

(4) [var I;C′ ](s,s′)
(5) continues(control(s′))

and show

(a.3.a) [E ′ ]⊥(s′) 6=⊥
From (4) and the definition of [ ], we know for some s0,s1 ∈ State

(6) s0 = s EXCEPT I
(7) [C′ ](s0,s1)
(8) s′ = write(s1, I,read(s, I))

From (1a), (1b), (1c) (3), (7), and the induction hypothesis, we know

(11) ¬continues(control(s1))∨ [E ′ ]⊥(s1) 6=⊥
From (5), (8), (11), and (CW), we know

(12) [E ′ ]⊥(s1) 6=⊥
From (1c), (2), (8), (12), and (WS), we know (a.3.a).

• Case C0 = var I=E;C: analogous to the previous case.

• Case C0 = continue: from the premise of the rule, we know

(2) E ′
D' ED

To show (a.1), we assume

(3) [continue ]⊥(s,s′)
(4) ¬[check ED;continue ](s,s′)
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and show

(a.1.a.1) continues(control(s′))
(a.1.a.2) [E ′ ]⊥(s′) =⊥
(a.1.a.3) [check ED;continue ](s,expthrow(s′))

From (3) and the definition of [ ]⊥, we know

(5) s′ = continue(s)

From (5) and (CD1), we know (a.1.a.1).

From (4) and the definition of [ ], we know

(6)
IF [ED ](s) 6= TRUE

THEN s′ 6= throw(s,EXP,read(s,VAL))
ELSE s′ 6= continue(s)

From (5) and (6), we know

(7) [ED ](s) 6= TRUE
(8) s′ 6= throw(s,EXP,read(s,VAL))

From (2), (7), and the definition of [ ]⊥, we know (a.1.a.2).

To show (a.1.a.3), by the definition of [ ], it suffices to show

(a.1.a.3.a)
IF [ED ](s) 6= TRUE

THEN expthrow(s′) = throw(s,EXP,read(s,VAL))
ELSE expthrow(s′) = continue(s)

From (7), to show (a.1.a.3.a), it suffices to show

(a.1.a.3.b) expthrow(s′) = throw(s,EXP,read(s,VAL))

From (5) and the definition of expthrow, it suffices to show

(a.1.a.3.c)
throw(continue(s),EXP,read(s,VAL)) =
throw(s,EXP,read(s,VAL))

From the definitions of throw and continue, we know (a.1.a.3.c).

To show (a.2), we assume

(9) [check ED;continue ](s,s′)
(10) ¬[continue ]⊥(s,s′)

and show

(a.2.a.1) [continue ]⊥(s,continue(s))
(a.2.a.2) s′ = expthrow(continue(s))
(a.2.a.3) continues(control(continue(s)))
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(a.2.a.4) [E ′ ]⊥(continue(s)) =⊥
From the definition of [ ]⊥, we have (a.2.a.1).

From (9) and the definition of [ ], we know

(11)
IF [ED ](s) 6= TRUE

THEN s′ = throw(s,EXP,read(s,VAL))
ELSE s′ = continue(s)

From (10) and the definition of [ ]⊥, we know

(12) s′ 6= continue(s)

From (11) and (12), we know

(13) [ED ](s) 6= TRUE
(14) s′ = throw(s,EXP,read(s,VAL))

From (14) and the definitions of throw, continue, and expthrow, we know
(a.2.a.2).

From (CD1), we have (a.2.a.3).

From (2), (13), and the definition of [ ]⊥, we know

(15) [E ′ ]⊥(s) =⊥
From (15), (CD2), and then Lemma “Well-defined Expressions”, we know
(a.2.a.4).

To show (a.3), we assume

(16) [check ED;continue ](s,s′)
(17) continues(control(s′))

and show

(a.3.a) [E ]⊥(s′) 6=⊥
From (16) and the definition of [ ], we know

(18)
IF [ED ](s) 6= TRUE

THEN s′ = throw(s,EXP,read(s,VAL))
ELSE s′ = continue(s)

From (17), (18), (CD1), and Lemma “State Control Predicates”, we know

(19) [ED ](s) = TRUE

From (2), (19), and the definition of [ ]⊥, we know

(20) [E ]⊥(s) 6=⊥
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From (14), (20), (CD2), and then Axiom “Well-Defined Expressions”, we
know (a.3.a).

• Case C0 = while (E)C: from the premises of the rule, we know

(2) E
D' ED

(3) CHECKE(C) = C′

To show (a.1), we assume

(4) [while (E)C ]⊥(s,s′)

and show

(a.1.a) [CHECK ED; while (E) (C′; CHECK ED) ](s,s′)

The proof follows essentially the lines of the proof of ⇒ for loops without
continue shown in the previous subsection. The only differences are in
the subproofs of (e.2), (e.3), (e.1.c.4), and (e.1.c.5) which in the previous
proof depended on the induction hypothesis and/or the assumption that C
does not result in a continuing state. We repeat the proofs of these parts:

We have to prove

(e.2)
[E ](t0(k)) 6= TRUE ∨
¬(executes(control(u0(k)))∨ continues(control(u0(k))))

(e.3) t0(k) = s′

From (9), we have the following cases:

– In the first case, we assume
(24) ¬executes(control(u(k)))
(25) ¬continues(control(u(k)))

From (16), (24), and (25), we know (e.2).
From (10), (16), (24), and (25), we know (e.3).

– In the second case, we assume
(24) executes(control(u(k)))∨ continues(control(u(k)))
(25) [E ]⊥(t(k)) =⊥

From (10), (24), and (25), we know
(26) expthrow(t(k)) = s′

From (16), (24), and (25), we know

(27)
t0(k) = expthrow(t(k))
u0(k) = expthrow(u(k))

From (27), the definition of expthrow, (CD1), and Lemma “Control
State Predicates”, we know
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(28) ¬executes(control(u0(k)))
(29) ¬continues(control(u0(k)))

From (28) and (29), we know (e.2).
From (26) and (27), we know (e.3).

– In the third case, we assume
(24) executes(control(u(k)))∨ continues(control(u(k)))
(25) [E ]⊥(t(k)) 6=⊥
(26) [E ]⊥(t(k)) 6= TRUE

From (16), (25), and the definition of [ ]⊥, we know (e.2).
From (10), (16), and the case condition, we know (e.3).

We have to prove

(e.1.c.4)

∃s0 ∈ State :
[C′ ](t0(i),s0) ∧
IF executes(control(s0))∧ [ED ](s0) 6= TRUE

THEN u0(i+1) = expthrow(s0)
ELSE u0(i+1) = s0

We define

(34)

s0 :=
IF [C′ ](t0(i),u(i+1))

THEN u(i+1)
ELSE expthrow(u(i+1))

From (3), (32), (33), and the induction hypothesis, we know

(35)
[C′ ](t0(i),u(i+1)) ∨
(continues(control(u(i+1))) ∧
[E ]⊥(u(i+1)) =⊥∧ [C′ ](t0(i),expthrow(u0(i+1))))

To show (e.1.c.4), it suffices to prove

(e.1.c.4.a.1) [C′ ](t0(i),s0)

(e.1.c.4.a.2)
IF executes(control(s0))∧ [ED ](s0) 6= TRUE

THEN u0(i+1) = expthrow(s0)
ELSE u0(i+1) = s0

In case of [C′ ](t0(i),u(i+1)), by (16), (30), and (34), we know (e.1.c.4.a.1).
Thus, by (35) we may proceed in the remainder of the proof of (e.1.c.4.a.1)
with the assumptions

(36) ¬[C′ ](t0(i),u(i+1))
(37) continues(control(u(i+1)))
(38) [E ]⊥(u(i+1)) =⊥
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(39) [C′ ](t0(i),expthrow(u0(i+1)))

From (16), (30), (34), (36), and (39), we know (e.1.c.4.a.1).

We first show (e.1.c.4.a.2) with the assumption

(40) [C′ ](t0(i),u(i+1))

from which (34) implies

(41) s0 = u(i+1)

We then consider three cases:

– Case executes(control(u(i+1)))∧ [ED ](u(i+1)) 6= TRUE: from (41),
it suffices to show

(e.1.c.4.a.2.a) u0(i+1) = expthrow(u(i+1))
From the case condition and the definition of [ ]⊥, we know

(42) [E ]⊥(u(i+1)) =⊥
From (23), the case condition, and Lemma “State Control Predicates”,
we know

(43) t(i+1) = u(i+1)
From (16), (41), (42), (43), and finally the case condition, we know
(e.1.c.4.a.2.a).

– Case executes(control(u(i+1)))∧ [ED ](u(i+1)) = TRUE: from (41),
it suffices to show show

(e.1.c.4.a.2.a) u0(i+1) = u(i+1)
From the case condition and the definition of [ ]⊥, we know

(44) [E ]⊥(u(i+1)) 6=⊥
From (23), the case condition, and Lemma “State Control Predicates”,
we know

(45) t(i+1) = u(i+1)
From (16), (43), (44), (45), and finally the case condition, we know
(e.1.c.4.a.2.a).

– Case ¬executes(control(u(i+1))): from (41), it suffices to show
(e.1.c.4.a.2.a) u0(i+1) = u(i+1)

From (16) and (30), we know
(46) t0(i) = t(i)

From (32), (40), (46), and the induction hypothesis, we know
(47) continues(control(u(i+1)))⇒ [E ]⊥(u(i+1)) 6=⊥

From the case condition, (16), and (47), we know (e.1.c.4.a.2.a).
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Now we show (e.1.c.4.a.2) with the assumption

(48) ¬[C′ ](t0(i),u(i+1))

from which (34) implies

(49) s0 = expthrow(u(i+1))

From (49), the definition of expthrow, (CD1), and Lemma “Control State
Predicates”, we know

(50) ¬executes(control(s0))

From (49) and (50), to show (e.1.c.4.a.2), it suffices to show

(e.1.c.4.a.2.a) u0(i+1) = expthrow(u(i+1))

From (16), it suffices to show

(e.1.c.4.a.2.b.1) executes(control(u(i+1)))∨ continues(control(u(i+1)))
(e.1.c.4.a.2.b.2) [E ]⊥(u(i+1)) =⊥

From (16) and (30), we know

(51) t0(i) = t(i)

From (33), (48), (51), and the ind. hypothesis, we know (e.1.c.4.a.2.b.1) and
(e.1.c.4.a.2.b.2).

We prove

(e.1.c.5)
IF continues(control(u0(i+1)))∨breaks(control(u0(i+1)))

THEN t0(i+1) = execute(u0(i+1))
ELSE t0(i+1) = u0(i+1)

From (16) and (30), we know

(45) t0(i) = t(i)

We first show (e.1.c.5) under the assumption

(46) [C′ ](t(i),u(i+1))

From (3), (32) and (46), we know by the induction hypothesis

(47) ¬(continues(control(u(i+1)))∧ [E ]⊥(u(i+1)) =⊥)

By Lemma “State Control Predicates”, it suffices to consider these cases:

– Case continues(control(u0(i + 1)))∨ breaks(control(u0(i + 1))): we
show

(e.1.c.5.a) t0(i+1) = execute(u0(i+1))
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From (16), (47), and the case condition, we know
(48) t0(i+1) = t(i+1)
(49) u0(i+1) = u(i+1)

From (23), (49), and the case condition, we know
(50) t(i+1) = execute(u0(i+1))

From (48), (50), and the case condition, we know (e.1.c.5.a).

– Case returns(control(u0(i+1)))∨executes(control(u0(i+1))): by the
Lemma “State Control Predicates”, it suffices to show

(e.1.c.5.a) t0(i+1) = u0(i+1)
From (16), the case condition, Lemma “State Control Predicates”, and
the definition of expthrow, we know

(51) t0(i+1) = t(i+1)
(52) u0(i+1) = u(i+1)

From (23), (51), (52), the case condition, and Lemma “State Control
Predicates”, we know (e.1.c.5.a).

– Case throws(u0(i+1)): it suffices to show
(e.1.c.5.a) t0(i+1) = u0(i+1)

We assume
(53) t0(i+1) 6= u0(i+1)

and show a contradiction. From (16) and (53), we know
(54) t(i+1) 6= u(i+1)

From (23) and (54), we know
(55) continues(control(u(i+1)))∨breaks(u(i+1))

From (16), (47), (55), and Lemma “State Control Predicates”, we
know

(56) u0(i+1) = u(i+1)
But (55), (56), and Lemma “State Control Predicates” together con-
tradict the case condition.

We now show (e.1.c.5) under the assumption

(57) ¬[C′ ](t(i),u(i+1))

From (3), (32), (33), and (46), we know by the induction hypothesis

(58) continues(control(u(i+1)))
(59) [E ]⊥(u(i+1)) =⊥
(60) [C′ ](s,expthrow(s′))

From (23) and (58), we know
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(61) t(i+1) = execute(u(i+1))

From (59), (61), the definition of [ ]⊥, and Axiom “Well-defined Expres-
sions”, we know

(62) [E ]⊥(t(i+1)) =⊥
From (16), (58), and (62), we know

(63) t0(i+1) = expthrow(t(i+1))
(64) u0(i+1) = expthrow(u(i+1))

From (64), and Lemma “State Control Predicates”, it suffices to prove

(e.1.c.5.a) t0(i+1) = u0(i+1)

From (61), (63), and (64), it suffices to prove

(e.1.c.5.b) expthrow(execute(u(i+1))) = expthrow(u(i+1))

From the definition of expthrow and execute, we know (e.1.c.5.b).

To show (a.2), we assume

(4) [CHECK ED; while (E) (C′; CHECK ED) ](s,s′)

(5)
∀s′′ ∈ State : [while (E)C ]⊥(s,s′′)∧ s′ = expthrow(s′′) ⇒
¬(continues(control(s′′))∧ [E ]⊥(s′′) =⊥)

and show

(a.1.a) [while (E)C ]⊥(s,s′)

The proof follows the lines of the proof of⇐ for loops without continue
shown in the previous subsection. The only differences are in the subproofs
of (d.2), (d.3), and (d.1) in the case k > 0 which in the previous proof de-
pended on the induction hypothesis and/or the assumption that C does not
result in a continuing state. We repeat the proofs of these parts:

We assume

(34) k > 0

From (20), (23) and (34), we know

(35) executes(control(t(k−1)))
(36) [C′ ](t(k−1),u0(k))

From (3), (35), (36), and the induction hypothesis, we know

(37) [C ]⊥(t(k−1),u0(k))∨ expthrows(control(u0(k)))
(38) ¬continues(control(u0(k))∨ [E ]⊥(u0(k))) 6=⊥
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We show

(d.2)
[E ]⊥(t0(k)) =⊥ ∨
[E ]⊥(t0(k)) 6= TRUE ∨
¬(executes(control(u0(k)))∨ continues(control(u0(k)))

We assume

(39) [E ]⊥(t0(k)) 6=⊥
(40) [E ]⊥(t0(k)) = TRUE
(41) executes(control(u0(k)))∨ continues(control(u0(k))

and show a contradiction.

From (2), (39), and the definition of [ ]⊥ we know

(42) [ED ](t0(k)) = TRUE

From (41), we may proceed with two cases.

In case

(43) executes(control(u0(k)))

we have from (31)

(44) t0(k) = u0(k)

From (30) and (44), we have

(45) u(k) = u0(k)

From (32), (43), and (45), we have

(46) t(k) = u(k)

But (41), (42), (44), (45), and (46) contradict (16).

In case

(47) continues(control(u0(k)))

we have with (30), (31), (32), and (34)

(48) u(k) = u0(k)
(49) t0(k) = execute(u0(k))
(50) t(k) = execute(u(k))

From (48), (49), and (50), we know

(51) t(k) = t0(k)

But (41), (42), (48), and (51) contradict (16).

We show
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(d.3)

IF (executes(control(u0(k)))∨ continues(control(u0(k)))) ∧
[E ]⊥(t0(k)) =⊥

THEN expthrow(t0(k)) = s′
ELSE t0(k) = s′

by case distinction:

– In the first case, we assume
(44) executes(control(u0(k)))∨ continues(control(u0(k)))
(45) [E ]⊥(t0(k)) =⊥

and show
(d.3.a) expthrow(t0(k)) = s′

We first show
(d.3.a.1) ¬continues(control(u0(k)))

by assuming
(46) continues(control(u0(k)))

and deriving a contradiction.
From (1a), (20), (23), (34), and the induction hypothesis, we know

(47) ¬(continues(control(u0(k)))∧ [E ]⊥(u0(k)) =⊥)
From (46) and (47), we know

(48) [E ]⊥(u0(k)) 6=⊥
From (30), (34), and (30), we know

(49) u(k) = u0(k)
From (31), (34), and (46), we know

(50) t0(k) = execute(u(k))
From (48), (49), (50), (CD2), and Axiom “Well-defined Expressions”,
we have a contradiction with (45).
From (44) and (d.3.a.1), we know

(51) executes(control(u0(k)))
From (2), (45), and the definition of [ ]⊥, we know

(52) [ED ](t0(k)) 6= TRUE

From (31), (34), and (52), we know
(53) t0(k) = u0(k)

From (30), (52), (52), and (53), we know
(54) u(k) = expthrow(u0(k))

From (32), (34), (54), and the definition of expthrow, we know
(55) t(k) = u(k)

From (17), (53), (54), and (55), we know (d.3.a).
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– In the second case, we assume
(56) executes(control(u0(k)))∨ continues(control(u0(k)))
(57) [E ]⊥(t0(k)) 6=⊥

and show
(d.3.a) t0(k) = s′

According to (56), we may proceed with two cases:

∗ In the first case, we assume
(58) executes(control(u0(k)))

From (2), (57), and the definition of [ ]⊥, we know
(59) [ED ](t0(k)) = TRUE

From (31), (34), and (58), we know
(60) t0(k) = u0(k)

From (30), (44), and (59), we know
(61) u(k) = u0(k)

From (32), (34), (58), (61), and Lemma “State Control Predi-
cates”, we know

(62) t(k) = u(k)
From (17), (60), (61), and (62), we know (d.3.a).

∗ In the second case, we assume
(63) continues(control(u0(k)))

From (2), (57), and the definition of [ ]⊥, we know
(64) [ED ](t0(k)) = TRUE

From (31), (34), (64), (CD2), and Axiom “Well-defined Expres-
sions”, we know

(65) [ED ](u0(k)) = TRUE
From (30), (34), and (65), we know

(66) u(k) = u0(k)
From (31), (34), and (63), we know

(67) t0(k) = execute(u0(k))
From (32), (34), (63), and (66), we know

(68) t(k) = execute(u(k))
From (66), (67), and (68), we know

(69) t(k) = t0(k)
From (17) and (69), we know (d.3.a).

– In the third case, we assume
(70) ¬executes(control(u0(k)))
(72) ¬continues(control(u0(k)))

and show
(d.3.a) t0(k) = s′

From (30), (34), and (60), we know
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(72) u(k) = u0(k)
First, we consider the case

(73) breaks(control(u0(k)))
From (31), (34), and (73), we know

(74) t0(k) = execute(u0(k))
From (32), (34), (72), and (73), we know

(75) t(k) = execute(u(k))
From (72), (74), and (75), we know

(76) t(k) = t0(k)
From (17) and (76), we know (d.3.a).
Now, we consider the case

(77) ¬breaks(control(u0(k)))
From (31), (34), (71), and (76), we know

(78) t0(k) = u0(k)
From (32), (34), (71), (72), and (77), we know

(79) t(k) = u(k)
From (72), (78), and (79), we know

(80) t(k) = t0(k)
From (17) and (80), we know (d.3.a).

It remains to show

(d.1) finiteExecution⊥(k, t0,u0,s, [E ]⊥, [C ]⊥)

By the definition of finiteExecution⊥, we have to show

(d.1.a.1) t0(0) = s
(d.1.a.2) u0(0) = s

(d.2.a.3)

∀i ∈ Nk :
¬breaks(control(u0(i)))∧ executes(control(t0(i))) ∧
[E ]⊥(t0(i)) 6=⊥∧ [E ]⊥(t0(i)) = TRUE ∧
[C ]⊥(t0(i),u0(i+1)) ∧
IF continues(control(u0(i+1)))∨breaks(control(u0(i+1)))

THEN t0(i+1) = execute(u0(i+1))
ELSE t0(i+1) = u0(i+1)

From (18), (19), (26), and (27), we know (d.1.a.1) and (d.1.a.2).

To show (d.2.a.3), we take arbitrary i ∈ Nk and show

(d.2.a.3.a.1) ¬breaks(control(u0(i)))
(d.2.a.3.a.2) executes(control(t0(i)))
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(d.2.a.3.a.3) [E ]⊥(t0(i)) 6=⊥
(d.2.a.3.a.4) [E ]⊥(t0(i)) = TRUE
(d.2.a.3.a.5) [C ]⊥(t0(i),u0(i+1))

(d.2.a.3.a.6)
IF continues(control(u0(i+1)))∨breaks(control(u0(i+1)))

THEN t0(i+1) = execute(u0(i+1))
ELSE t0(i+1) = u0(i+1)

From (20), (26), and (27), we know (d.2.a.3.a.1) and (d.2.a.3.a.2).

From (20), we know

(70) [E ]⊥(t(i)) = TRUE

From (29) and (70), we know (d.2.a.3.a.3) and (d.2.a.3.a.4).

To show (d.2.a.3.a.5), we assume

(71) ¬[C ]⊥(t0(i),u0(i+1))
(72) ∀ j ∈ Ni : [C ]⊥(t0( j),u0( j +1))

and show a contradiction. From (3), (23), (29), (d.2.a.3.a.2), (71), and the
induction hypothesis, we know

(73) ¬(continues(control(u0(i+1)))∧ [E ]⊥(u0(i+1)) =⊥)

and for some s′′ ∈ State

(74) [C ]⊥(t0(i),s′′)
(75) u0(i+1) = expthrow(s′′)
(76) continues(control(s′′))
(77) [E ]⊥(s′′) =⊥

From (23), (78), and the definition of expthrow, we know

(78) u(i+1) = u0(i+1)

From (20), (24), (78), and the definition of expthrow, we know

(79) t(i+1) = u0(i+1)

From (20), (75), (79), and the definition of expthrow, we know

(80) i+1 = k

From (17), (75), (79), and (80), we know

(81) s′ = expthrow(s′′)

From (18), (19), (20), (21), (23), (25), (26), (27), (28), (29), (72), (74), (76)
and (77), one can show (we omit the details)

(82) [while (E)C ]⊥(s,s′′)
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But (76), (77), (81), and (82), contradict (5).

From (25), we know (d.2.a.3.a.6).

It remains to show (a.3). We assume

(4) [CHECK ED; while (E) (C′; CHECK ED) ](s,s′)

and show

(a.3.a) ¬(continues(control(s′))∧ [E ′ ]⊥(s′) =⊥)

From (1b), (4) and the definition of [ ], we can easily derive (we omit the
details)

(5) ¬continues(control(s′))

which implies (a.3.a). ¤

Loops with continue (More General Alternative)

Rather than prohibiting the catching of exceptions of type EXP, we may also de-
termine some exception kind K that is not caught by the loop body and, if the loop
condition is not well defined at some continue, throw this exception. The loop
body has now to be surrounded by a handler that catches this exception; execution
then proceeds as usual with checking the loop expression.

while (E) {
// exception K is not caught in the loop body
try {
...
// transformation of continue
{ if (!E_D) throw K VAL; continue }
...

}
catch(K I) { }
check E_D;

}

We do not formally elaborate this solution further.

5.9.6 Reasoning about Checked Programs

From the soundness claim stated in Figure 5.45 and Lemma “Checked Commands
Extended”, we see that (due to the continue statement), checked programs in
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the original expression semantics are not unconditionally equivalent to the original
programs in the extended semantics with undefined expressions. In particular, the
original program in the extended semantics may give rise to states that are not
states of the transformed program in the new semantics. However, there is a close
relationship stated by the following lemma.

Lemma (Introducing Checks 1) If a judgement CHECKE(C) = C′ can be de-
rived from the rules of the checked program calculus, then we have the following
relationship between C, C′, and E:

DifferentVariables ∧
C has no subcommand tryC1 catch(EXP I)C2 ⇒
∀s,s′ ∈ State : executes(control(s))∧ [C ]⊥(s,s′)⇒

IF continues(control(s′))∧ [E ]⊥(s′) =⊥
THEN [C′ ](s,expthrow(s′))
ELSE [C′ ](s,s′)

Proof Take commands C,C′ and expression E such that

(1) CHECKE(C) = C′

can be derived from the rules of the checked program calculus and assume

(2) DifferentVariables

(3) C has no subcommand tryC1 catch(EXP I)C2

Take arbitrary s,s′ ∈ State and assume

(4) executes(control(s))

(5) [C ]⊥(s,s′)

We have to show

(a.1) continues(control(s′))∧ [E ]⊥(s′) =⊥⇒ [C′ ](s,expthrow(s′))
(a.2) ¬(continues(control(s′))∧ [E ]⊥(s′) =⊥)⇒ [C′ ](s,s′)

From (1), (2), (3), (4), (5), and finally Lemma “Checked Commands Extended”,
we know

(6)
[C′ ](s,s′) ∨
(continues(control(s′))∧ [E ]⊥(s′) =⊥∧ [C′ ](s,expthrow(s′)))
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(7) [C′ ](s,s′)⇒¬(continues(control(s′))∧ [E ]⊥(s′) =⊥)

To show (a.1), we assume

(8) continues(control(s′))
(9) [E ]⊥(s′) =⊥

(10) ¬[C′ ](s,expthrow(s′))

and show a contradiction.

From (6) and (10), we know

(11) [C′ ](s,s′)
But (8), (9), and (11) contradict (7).

To show (a.2), we assume

(12) ¬[C′ ](s,s′)
and show

(a.2.a.1) continues(control(s′))
(a.2.a.2) [E ]⊥(s′) =⊥
From (6) and (12), we have (a.2.a.1) and (a.2.a.2). ¤
The lemma above may be used to weaken a specification of the transformed pro-
gram in the original semantics (derived by the original verification calculus) in
order to construct a specification of the original program in the extended seman-
tics. The construction of this specification is the core of the following lemma.

Lemma (Introducing Checks 2) If the judgements CHECKE(C) =C′ and C′ : F
can be derived, then we have the following relationship between C, C′, E and F :

DifferentVariables ∧
C has no subcommand tryC1 catch(EXP I)C2 ∧
E

D' FD ∧
#Is does not occur in F ⇒
∀e ∈ Environment,s,s′ ∈ State, I1, . . . , In ∈ Identifier :

executes(control(s))∧ [C ]⊥(s,s′) ∧
s = s′ EXCEPT I1, . . . , In ⇒

[IF next.continues AND
NOT FD[next/now][I1’/I1, . . . , In’/In]

THEN EXSTATE #Is:
F [#Is/next] AND #Is.throws EXP

ELSE F ](e)(s,s′)
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Proof Take C,C′,E,F such that

(1) CHECKE(C) = C′

(2) C′ : F

can be derived. We assume

(3) DifferentVariables

(4) C has no subcommand tryC1 catch(EXP I)C2

(5) E
D' FD

(6) #Is does not occur in F

Take arbitrary e ∈ Environment,s,s′ ∈ State, I1 . . . , In ∈ Identifier with

(7) executes(control(s))

(8) [C ]⊥(s,s′)
(9) s = s′ EXCEPT I1, . . . , In

It suffices to show

(a)

[IF next.continues AND
NOT FD[next/now][I1’/I1, . . . , In’/In]

THEN EXSTATE #Is:
F [#Is/next] AND #Is.throws EXP

ELSE F ](e)(s,s′)

To show (a), from the definition of [ ], it suffices to show

(a.1)

continues(control)(s′) ∧
¬[FD[next/now][I1’/I1, . . . , In’/In] ](e)(s,s′)⇒
∃c ∈ Control :

[F [#Is/next] ](e[ Is 7→ c ]c)(s,s′) ∧
throws(c)∧ key(c) = EXP

(a.2)
(¬continues(control)(s′) ∨
[FD[next/now][I1’/I1, . . . , In’/In] ](e)(s,s′)) ⇒

[F ](e)(s,s′)

We define

(10) e0 := e[ Is 7→ control(expthrow(s′)) ]c
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To show (a.1), we assume

(11) continues(control)(s′)
(12) ¬[FD[next/now][I1’/I1, . . . , In’/In] ](e)(s,s′)

and show

(a.1.1) [F [#Is/next] ](e0)(s,s′)
(a.1.2) throws(control(expthrow(s′)))
(a.1.3) key(control(expthrow(s′))) = EXP

From the definition of expthrow and (CD1), we know (a.1.2) and (a.1.3).

From (9), (RWE), (WSE), (RVE), and (NEQ), we know

(13) s′ EQUALS writes(s, I1,read(s′, I1), . . . , In,read(s′, In))

From (12), (13), (ESF’), (CD0), (CD4), (PNNF1), and (PPVF1’), we know

(14) [FD ](e)(s′,s′)

From (5), (14), and the definition
D', we know

(15) [E ]⊥(s′) =⊥

From (1), (3), (4), (7), (8), (11), (15), and Lemma “Introducing Checks 1”, we
know

(16) [C′ ](s,expthrow(s′))

From (2), (3), (4), (7), (16), and Lemma “Soundness of the Verification Calculus”,
we know

(17) [F ](e)(s,expthrow(s′))

From (6), (10), (17), and (CNEF2), we know

(18) [F [#Is/next] ](e0)(s,expthrow(s′))

From (18), the definition of expthrow, (CD2), (CD3), (CNEF0), and (PVFNE),
we know (a.1.1).

To show (a.2), we assume
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(19)
¬continues(control(s′) ∨
[FD[next/now][I1’/I1, . . . , In’/In] ](e)(s,s′)

and show

(a.2.a) [F ](e)(s,s′)

Assume we can show

(a.2.b) [C′ ](s,s′)

From (2), (3), (7), and (a.2.b), we have (a.2.a).

It remains to show (a.2.b). According to (19), we may proceed with two cases.

In the first case, we assume

(20) ¬continues(control(s′)

From (3), (4), (7), (8), (20), and Lemma “Introducing Checks 1”, we know (a.2.b).

In the second case, we assume

(21) [FD[next/now][I1’/I1, . . . , In’/In] ](e)(s,s′)

From (9), (RWE), (WSE), (RVE), and (NEQ), we know

(22) s′ EQUALS writes(s, I1,read(s′, I1), . . . , In,read(s′, In))

From (21), (22), (ESF’), (CD0), (CD4), (PNNF1), and (PPVF1’), we know

(23) [FD ](e)(s′,s′)

From (5), (23), and the definition
D', we know

(24) [E ]⊥(s′) 6=⊥

From (3), (4), (7), (8), (24), and finally Lemma “Introducing Checks 1”, we know
(a.2.b). ¤
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5.9.7 Handling Undefined Expressions

We will now summarize our conclusions about handling undefined expressions.

We have constructed an alternative command semantics [C ]⊥; under certain re-
strictions (expression evaluation exceptions are not caught), every poststate of the
alternative semantics is also a poststate of the original semantics [C ] or otherwise
a poststate that throws an “evaluation exception expression” (Lemma “Commands
with Partial Expressions”). A specification F where C : F is valid in the original
semantics is thus in general not valid in the alternative semantics. While we can
derive a specification

F OR next.throws EXP

that is also valid in the alternative semantics, this new specification is apparently
much weaker than the original one. For overcoming this problem, we have pre-
sented two solutions.

The first solution is to introduce a calculus for “avoiding undefined expressions”.
By this calculus, we can rule out that states with undefined expressions may occur
in the execution of a program such that the C : F is also valid in the alternative
semantics. While this solution is simple (and thus probably preferred in most
cases), it also prohibits certain “real world” programs that actually make use of
the “exception semantics” of undefined expressions (by catching and handling
such exceptions).

As an alternative, we have therefore described a program translation where

• every expression evaluation is preceded by a “checking command” that ver-
ifies the definedness of the expression and raises an “evaluation exception”,
if the expression is not well-defined in the current state, and

• every occurrence of continue is preceded by a checking command that
verifies the definedness of the expression of the enclosing loop.

By translating command C to a “checked” version C′, the hope was that any spec-
ification F where C′ : F is valid in the original semantics makes also C : F valid
in the alternative semantics. Unfortunately, this is not fully the case: in the al-
ternative semantics, commands may yield a “continuing” state with an undefined
loop expression (which will later lead to a “throwing” state when the loop expres-
sion is evaluated) but the transformed command immediately raises an evaluation
exception without passing through the continuing state. Only if we can rule out
continuing states with undefined loop expressions (in particular, if the command
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cannot trigger a “continuing” state as can be easily found out from the verification
calculus), C : F is also valid in the alternative semantics.

In general, however, as described by Lemma “Introducing Checks 2” we have to
transform F into another specification F ′

IF next.continues AND
NOT FD[next/now][I1’/I1, . . . , In’/In]

THEN EXSTATE #Is:
F [#Is/next] AND #Is.throws EXP

ELSE F

(where I1, . . . , In is the frame of variables modified by C and FD denotes the de-
finedness condition of the expression of the enclosing loop) such that C : F ′ holds
according to the extended semantics with undefined expressions. If C does not
occur inside a loop, then F ′ is identical to F .

The restriction “C has no subcommand tryC1 catch(EXP I)C2” (that appears
in the correctness claim of the transformed program) was only introduced to sim-
plify the elaboration. Actually, as shown in Subsection 5.9.5 (without proof), we
can abandon this restriction at the price of a slightly more complicated transfor-
mation of loop bodies to cover those cases where the loop expression is undefined
when a continue statement is executed inside a protected code block which
catches the “evaluation exception” EXP.

Based on above results, a full calculus for deriving specifications from “checked
programs” is now rather straight-forward to elaborate.

5.9.8 Well-Defined Expressions

We conclude this section by introducing a small expression language that con-
cretizes the framework elaborated in the previous subsections. For this purpose,
we assume that the domain Value of expressible values includes the domain B
of logical values TRUE and FALSE, a domain INT of bounded integers (modeling
machine numbers) including 0 and 1 and the domain INT∗ of finite sequences of
such integers (modeling arrays of machine numbers). Figure 5.46 gives formal
definition of the domains and of the associated operations.

The definitions follow the usual semantics of programming languages, e.g. the
domain Int contains 2M numbers {−M, . . . ,−1,0,1, . . . ,M−1} and the arithmetic
operationsª,⊕,®model bounded integer arithmetic on this domain (we omit the
proof that the result is indeed in Int). Furthermore, null, new, length, get, and put
model the “null” array (identified with an array of length 0), creating an array of a
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certain length, determining the length of an array, reading the element of an array
at a certain index and updating an array element at a certain index by a new value.

The functions ®, get, and put are made total by returning arbitrary results for
division by zero and array access outside the legal index range (we omit the
proof that the resulting functions are indeed total). According to the mathemati-
cal definition, new and length are already total because, e.g., new(−1) = null and
length(null) = 0. However, in the following, we will pretend that new is unde-
fined on negative arguments and length is undefined on null as it is usual in most
programming languages.

Figure 5.47 introduces a couple of predicates and functions for the formula lan-
guage; their interpretation depends on the previously introduced operations.

Figure 5.48 introduces the expression language, and gives it a “total” seman-
tics [ ] based on the semantic domains introduced above. On this basis, Fig-
ure 5.49 defines the “partial” semantics [ ]⊥ that returns ⊥ in those cases where
the result of [ ] is to be ignored. The construction makes use of the function [ ]D
that determines the “definedness” predicate for a given expression. Here we as-
sume that the expressions have been statically type-checked in the usual way such
that expressions yielding Boolean values, integers, and arrays are kept apart and
there is no need to deal with typing issues in the definedness predicate (for dy-
namically typed programming languages this however would be necessary).

For verifying that a program must not encounter states where an expression is
undefined, Figure 5.51 introduces a function [ ]DF that constructs from every
expression a “definedness formula”. This constructions makes use of the trans-
lation of expressions to terms described in Figure 5.50 (expressions not denoting
terms but formulas are translated to the constant error, but such applications of
the translation function do not occur in well-typed programs). Please note how
programming language operations are mapped to predicates and functions of the
formula language with adequate interpretations.

The core claim is then stated as follows.

Lemma (Definedness Formulas) The translation [ ]DF gives valid definedness
formulas:

∀E ∈ Expression : E
D' [E ]DF

Proof Take arbitrary E ∈ Expression and s ∈ State. It suffices to prove

(a) [E ]D(s)⇔ [ [E ]DF ](s)
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Semantic Domains and Operations
trunc :Q→ Z
trunc(r) =

IF r < 0
THEN MIN i ∈ Z : r ≤ i
ELSE MAX i ∈ Z : i≤ r

M := SUCH m ∈ N : m > 1
INT := ZM

ª : INT → INT
ª(x) = IF x =−M THEN −M ELSE − x
⊕ : INT× INT → INT
⊕(x,y) =

LET s = x+ y IN

IF s <−M THEN

s+M
ELSE IF s > M−1 THEN

s−M
ELSE s

® : INT× INT → INT
®(x,y) =

IF y = 0 THEN

0
ELSE

LET s = trunc(x/y) IN

IF s = M THEN −M ELSE s
null := /0
new : INT → INT∗
new(n) = {〈i,0〉 : i ∈ Nn}
length : INT∗→ INT
length(a) = LENGTH(a)
get : INT∗× INT → INT
get(a, i) = IF a 6= null∧0≤ i∧ i < length(a) THEN a(i) ELSE 0
put : INT∗× INT× INT → INT∗
put(a, i,x) =

IF a 6= null∧0≤ i∧ i < length(a) THEN a[i 7→ x] ELSE a

Figure 5.46: Semantic Algebras
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Formulas: Predicates and Constants

[ ] : Predicate→ Predicate
[eq ](v1,v2)⇔ v1 = v2
[lt ](v1,v2)⇔ v1 < v2
[le ](v1,v2)⇔ v1 ≤ v2

[ ] : Function→ Function
[error ] = 0
[zero ] = 0
[one ] = 1
[neg ](v) =ªv
[add ](v1,v2) = v1⊕ v2
[div ](v1,v2) = v1® v2
[null ] = null
[new ](v) = new(v)
[length ](v) = length(v)
[put ](v1,v2,v3) = put(v1,v2,v3)
[get ](v1,v2) = get(v1,v2)

Figure 5.47: Predicates and Constants of the Formula Language
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Syntax
E ∈ Expression.

E ::=
I |
0 | 1 | -E | E1+E2 | E1/E2 |
true | false | !E | E1&&E2 | E1||E2 |
E1==E2 | E1<E2 | E1<=E2 |
null | new E | E1.length | E1[E2] | E1[E2|->E3]

Total Semantics
[ ] : Expression→ StateFunction
[ I ](s) = read(s, I)
[0 ](s) = 0
[1 ](s) = 1
[-E ](s) =ª[E ](s)
[E1+E2 ](s) = [E1 ](s)⊕ [E2 ](s)
[E1/E2 ](s) = [E1 ](s)® [E2 ](s)
[true ](s) = TRUE

[false ](s) = FALSE

[!E ](s) = IF [E ](s) = TRUE THEN FALSE ELSE TRUE

[E1&&E2 ](s) = IF [E1 ](s) = TRUE THEN [E2 ](s) ELSE FALSE

[E1||E2 ](s) = IF [E1 ](s) = TRUE THEN TRUE ELSE [E2 ](s)
[E1==E2 ](s) = IF [E1 ](s) = [E2 ](s) THEN TRUE ELSE FALSE

[E1<E2 ](s) = IF [E1 ](s) < [E2 ](s) THEN TRUE ELSE FALSE

[E1<=E2 ](s) = IF [E1 ](s)≤ [E2 ](s) THEN TRUE ELSE FALSE

[null ](s) = null
[new E ](s) = new([E ](s))
[E.length ](s) = length([E ](s))
[E1[E2] ](s) = get([E1 ](s), [E2 ](s))
[E1[E2|->E3] ](s) = put([E1 ](s), [E2 ](s), [E3 ](s))

Figure 5.48: An Expression Language (Part 1/2)
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Partial Semantics

[ ]⊥ : Expression→ StateFunction⊥
[E ]⊥(s) = IF [E ]D(s) THEN [E ](s) ELSE ⊥

[ ]D : Expression→ StatePredicate
[ I ]D(s)⇔ TRUE

[0 ]D(s)⇔ TRUE

[1 ]D(s)⇔ TRUE

[-E ]D(s)⇔ [E ]D(s)
[E1+E2 ]D(s)⇔ [E1 ]D(s)∧ [E2 ]D(s)
[E1/E2 ]D(s)⇔ [E1 ]D(s)∧ [E2 ]D(s)∧ [E2 ](s) 6= 0
[true ]D(s)⇔ TRUE

[false ]D(s)⇔ TRUE

[!E ]D(s)⇔ [E ]D(s)
[E1&&E2 ]D(s)⇔ [E1 ]D(s)∧ [E2 ]D(s)
[E1||E2 ]D(s)⇔ [E1 ]D(s)∧ [E2 ]D(s)
[E1==E2 ]D(s)⇔ [E1 ]D(s)∧ [E2 ]D(s)
[E1<E2 ]D(s)⇔ [E1 ]D(s)∧ [E2 ]D(s)
[E1<=E2 ]D(s)⇔ [E1 ]D(s)∧ [E2 ]D(s)
[null ]D(s)⇔ TRUE

[new E ]D(s)⇔ [E ]D(s)∧0≤ [E ]
[E.length ]D(s)⇔ [E ]D(s)∧ [E ](s) 6= null
[E1[E2] ]D(s)⇔ [E1 ]D(s)∧ [E2 ]D(s) ∧

[E1 ](s) 6= null∧0≤ [E2 ](s)∧ [E2 ](s) < length([E1 ](s))
[E1[E2|->E3] ]D(s)⇔ [E1 ]D(s)∧ [E2 ]D(s)∧ [E3 ]D(s) ∧

[E1 ](s) 6= null∧0≤ [E2 ](s)∧ [E2 ](s) < length([E1 ](s))

Figure 5.49: An Expression Language (Part 2/2)
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Term Translations

[ ]TERM : Expression→ Term
[ I ]TERM = I
[0 ]TERM = 0
[1 ]TERM = 1
[-E ]TERM = neg([E ]TERM)
[E1+E2 ]TERM = add([E1 ]TERM,[E2 ]TERM)
[E1/E2 ]TERM = div([E1 ]TERM,[E2 ]TERM)
[true ]TERM = error
[false ]TERM = error
[!E ]TERM = error
[E1&&E2 ]TERM = error
[E1||E2 ]TERM = error
[E1==E2 ]TERM = error
[E1<E2 ]TERM = error
[E1<=E2 ]TERM = error
[null ]TERM = null
[newE ]TERM = new([E ]TERM)
[E.length ]TERM = length([E ]TERM)
[E1[[E2 ]TERM] ]TERM = get([E1 ]TERM,[E2 ]TERM)
[E1[[E2 ]TERM|->E3] ]TERM =

put([E1 ]TERM,[E2 ]TERM,[E3 ]TERM)

Figure 5.50: Term Translations
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Definedness Formulas

[ ]DF : Expression→ Formula
[ I ]DF = TRUE
[0 ]DF = TRUE
[1 ]DF = TRUE
[-E ]DF = [E ]DF
[E1+E2 ]DF = [E1 ]DF AND [E2 ]DF
[E1/E2 ]DF = [E1 ]DF AND [E2 ]DF && !eq([E2 ]TERM, zero)
[true ]DF = TRUE
[false ]DF = TRUE
[!E ]DF = [E ]DF
[E1&&E2 ]DF = [E1 ]DF AND [E2 ]DF
[E1||E2 ]DF = [E1 ]DF AND [E2 ]DF
[E1==E2 ]DF = [E1 ]DF AND [E2 ]DF
[E1<E2 ]DF = [E1 ]DF AND [E2 ]DF
[E1<=E2 ]DF = [E1 ]DF AND [E2 ]DF
[null ]DF = TRUE
[new E ]DF = [E ]DF AND le(zero, [E ]TERM)
[E.length ]DF = [E ]DF AND !eq([E ]TERM, null)
[E1[E2] ]DF = [E1 ]DF AND [E2 ]DF AND

!eq([E1 ]TERM, null) AND
le(zero,[E2 ]TERM) AND
lt([E2 ]TERM,length([E1 ]TERM))

[E1[E2|->E3] ]DF = [E1 ]DF AND [E2 ]DF AND [E3 ]DF AND
!eq([E1 ]TERM, null) AND
le(zero,[E2 ]TERM) AND
lt([E2 ]TERM,length([E1 ]TERM))

Figure 5.51: Definedness Formulas
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Definedness Expressions
[ ]DE : Expression→ Expression
[ I ]DE = true
[0 ]DE = true
[1 ]DE = true
[-E ]DE = [E ]DE
[E1+E2 ]DE = [E1 ]DE && [E2 ]DE
[E1/E2 ]DE = [E1 ]DE && [E2 ]DE && !(E2 == 0)
[true ]DE = true
[false ]DE = true
[!E ]DE = [E ]DE
[E1&&E2 ]DE = [E1 ]DE && [E2 ]DE
[E1||E2 ]DE = [E1 ]DE && [E2 ]DE
[E1==E2 ]DE = [E1 ]DE && [E2 ]DE
[E1<E2 ]DE = [E1 ]DE && [E2 ]DE
[E1<=E2 ]DE = [E1 ]DE && [E2 ]DE
[null ]DE = true
[new E ]DE = [E ]DE && 0 <= E
[E.length ]DE = [E ]DE&& !(E == null)
[E1[E2] ]DE = [E1 ]DE && [E2 ]DE &&

!(E1 == null) && 0 <= E2 && E2 < E1.length
[E1[E2|->E3] ]DE = [E1 ]DE && [E2 ]DE && [E3 ]DE &&

!(E1 == null) && 0 <= E2 && E2 < E1.length

Figure 5.52: Definedness Expressions
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The proof proceeds by induction on the structure of E. We omit the details. ¤

For inserting runtime checks into the program that capture those situations where
an expression is undefined, Figure 5.52 introduces a function [ ]DE that constructs
from every expression a checkable “definedness expression”. The core claim is
then stated as follows.

Lemma (Definedness Expressions) The translation [ ]DE gives valid defined-
ness expressions:

∀E ∈ Expression : E
D' [E ]DE

Proof Take arbitrary E ∈ Expression and s ∈ State. It suffices to prove

(a) [E ]D(s)⇔ [ [E ]DE ](s) = TRUE

The proof proceeds by induction on the structure of E. We omit the details. ¤
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Methods

In this chapter we extend the command language with interruptions by the con-
cept of methods (also called “procedures” or “functions” in various programming
languages)1. For this purpose, we first introduce the notion of contexts that assign
variables to identifiers such that different methods can operate with different sets
of local variables. This generalizes the previous treatment of variable declarations;
the semantics of the command language is adapted correspondingly.

Next, we introduce method declarations and, as a new kind of commands, method
calls, give them a semantics, and formulate a corresponding reasoning framework.
Finally, we generalize the method language to allow also recursive method calls
and extend the reasoning framework in order to take into account the problem of
non-termination due to recursion.

6.1 Programs with Contexts

We understand by the “context” of a command the set of variables (locations in
the store) that may be used by the command. Because the only way by which a
command may refer to the store is by identifiers mapped to variables, its context is
determined by this mapping. Up to now this mapping has been fixed by the valua-
tion function [ ] : Identifier→ Variable, thus all commands have operated in the
same context. Nevertheless, for command blocks with local variable declarations
and definitions, we have simulated “context switches” by updating the variable of
the identifier introduced by the declaration/definition before the command body is
executed and restoring the variable to its original value afterwards, for instance:

1For the moment, we restrict our consideration to the “static” methods of imperative languages
i.e. we do not consider the “dynamic” or “virtual” methods of object-oriented languages.
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[var I=E;C ](s,s′)⇔
∃s0,s1 ∈ State :

s0 = write(s, I, [E ](s)) ∧
[C ](s0,s1) ∧
s′ = write(s1, I,read(s, I))

This simple strategy works smoothly because the context of a command only
changes step by step by every declaration of a variable. However, if we also
introduce method calls

Ir = Im(E1, . . . ,Ep)

the body of method Im is executed in a context that is substantially different from
the current one: to simulate this context change by store updates, we have to
remember the current values of all variables denoted by locally declared identi-
fiers and restore these values to the values they had outside the local declarations
(which have to be captured in time). To switch back to the original context, the
values of the locally introduced identifiers have to be restored to the remembered
values. All in all, this shows that the strategy of simulating context changes by
store updates does not scale well beyond declarations of local variables.

Before we extend our language by methods, we thus introduce an explicit notion
of contexts to simplify context switches. A context then consists of two parts:

1. a view that represents the mapping of identifiers to variables and

2. a space that represents an infinite pool of addresses,

such that the view does not map different identifiers to the same variable and
the view also does not map any identifier to an element of the space. The view
thus satisfies the constraint denoted by the predicate DifferentVariables and the
space serves as a pool of unassigned variables. By the range of a context we
understand those variables that are accessible by the context (either through the
view or through the space).

Figure 6.1 gives the formal definition of domain Context and introduces a func-
tion push(c, I) that takes a context c and an identifier I and returns (with the use
of an auxiliary function take) a new context that differs from c only in that I is
mapped to a previously unassigned variable. The term push(c, I1, . . . , In) abbrevi-
ates the repeated application of push such that the resulting context maps I1, . . . , In
to unassigned variables. As we will see later, new contexts are constructed from
given ones by applications of push only.
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Contexts: Core Definitions

View = Identifier→ Variable
Space = P(Variable)∞

Context = View×Space

context : View×Space→ Context,context(v,s) = 〈v,s〉
view : Context → View,view(v,s) = v
space : Context → Space,space(v,s) = s

range : Context → Space→ P(Variable)
range(c) = range(view(c))∪ space(c)

take : Space→ (Variable×Space)
take(s) = LET x = SUCH x : x ∈ s IN 〈x,s\{x}〉

push : Context× Identifier→ Context
push(c, I) = LET 〈v,s〉= c,〈x,s′〉= take(s) IN 〈v[ I 7→ x ],s′〉

push(c, I1, . . . , In) ≡ push(. . .push(c, I1) . . . , In)

Figure 6.1: Contexts: Core Definitions
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Contexts and Identifiers

[ ] : Identifier→ Context→ Variable
[ I ]c = view(c)(I)

DifferentVariables⊆ Context
DifferentVariables(c)⇔
∀I1, I2 ∈ Identifier : I1 6= I2 ⇒ [ I1 ]c 6= [ I2 ]c∧
∀I ∈ Identifier : [ I ]c 6∈ space(c)

c0 = c1 EXCEPT I1, . . . , In :⇔
∀I ∈ Identifier : I 6= I1∧ . . .∧ I 6= In ⇒ [ I ]c0 = [ I ]c1

c0 = c1 AT I1, . . . , In :≡
∀I ∈ Identifier : I = I1∨ . . .∨ I = In ⇒ [ I ]c0 = [ I ]c1

c0 EQUALS c1 :≡
∀I ∈ Identifier : [ I ]c0 = [ I ]c1

Figure 6.2: Contexts and Identifiers

In Figure 6.2 we see that the meaning of an identifier now becomes relative to
the context: the valuation function of identifiers is generalized such that [ I ]c
denotes the variable assigned to identifier I in context c. The soundness con-
dition DifferentVariables(c) constrains the view and the space of a context c as
described above. The condition c0 = c1 EXCEPT I1, . . . , In states that contexts
c0 and c1 assign identical variables to all identifiers except I1, . . . , In. Likewise,
c0 = c1 AT I1, . . . , In states that contexts c0 and c1 assign identical variables to the
identifiers I1, . . . , In.

Moreover, reading and writing stores becomes dependent on the context; the
corresponding operations are generalized as shown in Figure 6.3 by the defi-
nitions of read(s, I)c and write(s, I,v)c. The formulas EQUALSc and =

EXCEPTc I1, . . . , In are corresponding generalizations of their original forms.
The formulas EQUALSc′

c and = EXCEPTc′
c I1, . . . , In describe corresponding

relations between stores in different contexts.

The function push preserves this constraint as stated by the following lemma.

Lemma (Soundness of Contexts) push preserves the soundness of contexts:
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Contexts and States

read : State× Identifier×Context→ Value
read(s, I)c = store(s)([ I ]c)

write : State× Identifier×Value×Context→ State
write(s, I,v)c = 〈store(s)[ [ I ]c 7→ v ],control(s)〉

writes(s, I1,v1, . . . , In,vn)c ≡ write(. . .write(s, I1,v1)c . . . , In,vn)c

s0 EQUALSc s1 ≡
∀I ∈ Identifier : read(s0, I)c = read(s1, I)c

s0 = s1 EXCEPTc I1, . . . , In ≡
∀I ∈ Identifier : I 6= I1∧ . . .∧ I 6= In ⇒

read(s0, I)c = read(s1, I)c

s0 EQUALSc′
c s1 ≡

∀I ∈ Identifier : read(s0, I)c = read(s1, I)c′

s0 = s1 EXCEPTc′
c I1, . . . , In ≡

∀I ∈ Identifier : I 6= I1∧ . . .∧ I 6= In ⇒
read(s0, I)c = read(s1, I)c′

s0 = s1 EXCEPT V ≡
∀v ∈ Variable : store(s0)(v) 6= store(s1)(v)⇒ v ∈V

Figure 6.3: Contexts and States
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∀c ∈ Context, I ∈ Identifier :
DifferentVariables(c)⇒ DifferentVariables(push(c, I))

Proof Immediate from the definitions of DifferentVariables and push. ¤

Furthermore, the function push narrows the range of a context as stated by the
following lemma.

Lemma (Range of Contexts) push removes from the range the variable cur-
rently denoted by the variable pushed:

∀c ∈ Context, I ∈ Identifier :
range(push(c, I)) = range(c)\{[ I ]c}

Proof Immediate from the definitions of range and push. ¤

The context created by push creates a new identifier assignment as stated by the
following lemma.

Lemma (Identifiers and Declarations 1) The variable assigned to an identi-
fier by a local declaration is different from the variable assigned to any identifier
outside the declaration:

∀c ∈ Context, I,J ∈ Identifier :
DifferentVariables(c)⇒ [ I ]push(c,I) 6= [J ]c

Proof Take arbitrary c ∈ Context, I,J ∈ Identifier. We assume

(1) DifferentVariables(c)

and show

(a) [ I ]push(c,I) 6= [J ]c

From the definition of Context, we know for some v ∈ View and s ∈ Space

(2) c = 〈v,s〉

From the definition of push, we know for some x ∈ Variable
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(3) x ∈ s

(4) push(c, I) = 〈v[ I 7→ x ],s\{x}〉

From (4) and the definition of [ ], we know

(5) [ I ]push(c,I) = x

From (1), (2), and the definition of DifferentVariables, we know

(6) [J ]c 6∈ s

From (3), (5), and (6), we know (a). ¤

Lemma (Identifiers and Declarations 2) The variable assigned to an identi-
fier by a local declaration is different from the variable assigned to any identifier
outside the declaration:

∀c ∈ Context, I,J ∈ Identifier :
DifferentVariables(c)∧ I 6= J ⇒ [J ]push(c,I) = [J ]c

Proof Take arbitrary c ∈ Context, I,J ∈ Identifier and assume

(1) DifferentVariables(c)

(2) I 6= J

We have to show

(a) [J ]push(c,I) = [J ]c

From the definition of take, there exists x ∈ Variable,s ∈ Space such that

(3) 〈x,s〉 := take(space(c))

From (3) and the definitions of [ ] and push, to show (a), it suffices to show

(b) view(c)[ I 7→ x ](J) = view(c)(J)

which by (2) is true. ¤

In a local declaration, a virtually store with identical values for the variables as-
signed to identifiers can be created as demonstrated by the following lemma.
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Lemma (Writing and Declarations) Writing into a locally declared variable
that value that the variable had outside the declaration yields indistinguishable
stores:

∀c ∈ Context,s ∈ State, I ∈ Identifier :
DifferentVariables(c)⇒

LET v = read(s, I)c,c′ = push(c, I),s′ = write(s, I,v)c′ IN

s EQUALSc′
c s′

Proof Take arbitrary c ∈ Context,s ∈ State, I ∈ Identifier and assume

(1) DifferentVariables(c)

We define

(2) v := read(s, I)c

(3) c′ := push(c, I)

(4) s′ := write(s, I,v)c′

We take arbitrary J ∈ Identifier and show

(a) read(s,J)c = read(s′,J)c′

We proceed by case distinction.

In the first case, we assume

(5) I = J

By (2), (3), (4), (5) and the definition of read, to show (a), it suffices to show

(b) s([ I ]c) = s[ [ I ]push(c,I) 7→ s([ I ]c) ]([ I ]push(c,I))

which is obviously true.

In the second case, we assume

(6) I 6= J

By (2), (3), (4), and the definition of read, to show (a), it suffices to show

(b) s([J ]c) = s[ [ I ]push(c,I) 7→ s([ I ]c) ]([J ]push(c,I))

From (1), (6) and Lemma “Identifiers and Declarations 2”, we have
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(7) [J ]c = [J ]push(c,I)

From (1), (6), Lemma “Soundness of Contexts”, and finally the definition of
DifferentVariables, we know

(8) [ I ]push(c,I) 6= [J ]push(c,I)

From (7), and (8), we know (b). ¤

Changes made with respect to a new identifier assignment are forgotten when the
assignment is forgotten, as stated by the following lemma.

Lemma (States and Declarations 0) Changing the value of a locally declared
variable has no visible effect outside the declaration:

∀c ∈ Context,s ∈ State, I ∈ Identifier,v ∈ Value :
DifferentVariables(c)⇒

s EQUALSc write(s, I,v)push(c,I)

Proof Take arbitrary c ∈ Context,s ∈ State, I ∈ Identifier,v ∈Value and assume

(1) DifferentVariables(c)

and show

(a) s EQUALSc write(s, I,v)push(c,I)

To show (2), by the definitions of EQUALS and read, it suffices to show

(b) ∀J ∈ Identifier : s([J ]c) = s[ [ I ]push(c,I) 7→ v ]([J ]c)

We take arbitrary J ∈ Identifier and show

(c) s([J ]c) = s[ [ I ]push(c,I) 7→ v ]([J ]c)

This is a consequence of (1) and Lemma “Identifiers and Declarations”. ¤

Furthermore, the effect of a variable declaration on the view is restricted as stated
by the following three lemmas.
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Lemma (States and Declarations 1) By a local declaration, only the view to
this variable is changed:

∀c ∈ Context,s ∈ State, I ∈ Identifier :
DifferentVariables(c)⇒

s = s EXCEPT
push(c,I)
c I

Proof We take arbitrary c ∈ Context,s ∈ State, I ∈ Identifier and assume

(1) DifferentVariables(c)

We show

(a) s = s EXCEPT
push(c,I)
c I

By the definition of EXCEPT, it suffices to show

(b) ∀J ∈ Identifier : J 6= I ⇒ read(s,J)c = read(s,J)push(c,I)

From (1), Lemma “Identifiers and Declarations 2”, and the definition of read, we
know (b). ¤

Lemma (States and Declarations 2) A local declaration does not change the
views on the identifiers not affected by the declaration:

∀c ∈ Context,s0,s1 ∈ State, I ∈ Identifier :
DifferentVariables(c)⇒

s0 = s1 EXCEPTc I ⇒ s0 = s1 EXCEPTpush(c,I) I

Proof Take arbitrary c ∈ Context,s0,s1 ∈ State, I ∈ Identifier. We assume

(1) DifferentVariables(c)

(2) s0 = s1 EXCEPTc I

and show

(a) s0 = s1 EXCEPTpush(c,I) I

From (1) and Lemma “Soundness of Contexts”, we know

(3) DifferentVariables(push(c, I))
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To show (a), it suffices to show

(b)
∀J ∈ Identifier : J 6= I ⇒

read(s0,J)push(c,I) = read(s1,J)push(c,I)

Take arbitrary J ∈ Identifier and assume

(4) J 6= I

From the definition of read, to show (b), it suffices to show

(c) s0([J ]push(c,I)) = s1([J ]push(c,I))

From the definition of [ ] and push, it suffices to show for arbitrary x ∈ space(c)

(d) s0(view(c)[ I 7→ x ](J)) = s1(view(c)[ I 7→ x ](J))

From (2), we know

(5) s0(view(c)(J)) = s1(view(c)(J))

From (4) and (5), we know (d). ¤

Lemma (States and Declarations 3) When leaving the scope of a declaration,
the view on the identifiers is unchanged except for the locally declared variable:

∀c ∈ Context,s0,s1 ∈ State, I ∈ Identifier :
DifferentVariables(c)⇒

s0 = s1 EXCEPTpush(c,I) I ⇒ s0 = s1 EXCEPTc I

Proof Take arbitrary c ∈ Context,s0,s1 ∈ State, I ∈ Identifier. We assume

(1) DifferentVariables(c)

(2) s0 = s1 EXCEPTpush(c,I) I

and show

(a) s0 = s1 EXCEPTc I

From (1) and Lemma “Soundness of Contexts”, we know

(3) DifferentVariables(push(c, I))
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To show (a), it suffices to show

(b) ∀J ∈ Identifier : J 6= I ⇒ read(s0,J)c = read(s1,J)c

Take arbitrary J ∈ Identifier and assume

(4) J 6= I

From the definition of read, to show (b), it suffices to show

(c) s0([J ]c) = s1([J ]c)

From the definition of [ ], it suffices to show

(d) s0(view(c)(J)) = s1(view(c)(J))

From (2), (4), and the definition of push, we know for some x ∈ space(c)

(5) s0(view(c)[ I 7→ x ](J)) = s1(view(c)[ I 7→ x ](J))

From (4) and (5), we know (d). ¤

With these provisions, we can modify the semantics of the command language as
shown in Figure 6.4. The context c becomes an additional argument to all valua-
tion functions and is forwarded from one valuation function to the next. Syntacti-
cally this means in most cases just the transformation of applications [ ] to [ ]c;
we omit a repetition of these.

The only case where the context actually plays a role are (apart from the mean-
ing of identifiers in expressions already given in Figure 6.2), the definitions in
Figure 6.4 that determine the semantics of variable assignments, local variable
declarations and definitions, and exception handlers. The valuation of local vari-
able declarations/definitions demonstrates the core purpose of contexts: from the
current context c, a new context c′ is generated in which the body of the command
is evaluated; the poststore of the body itself is the poststore of the block without
restoring any variable value.

Figure 6.5 generalizes the valuation functions of formulas and terms correspond-
ingly; here the only rules of relevance are those for the prestate/poststate values
of variables. The semantics of formulas does not change the meaning of formulas
as stated by the following lemma.
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Programs with Contexts: Valuation Functions

[ ] : Program→ Context→ StateRelation
[C ]c = [C ]c

[ ] : Command→ Context→ StateRelation
[ I = E ]c(s,s′)⇔

s′ = write(s, I, [E ]c(s))c

[var I; C ]c(s,s′)⇔
LET c′ = push(c, I) IN [C ]c

′
(s,s′)

[var I=E;C ]c(s,s′)⇔
LET c′ = push(c, I),s0 = write(s, I, [E ]c(s))c′ IN [C ]c

′
(s0,s′)

[try C1 catch(Ik Iv)C2 ]c(s,s′)⇔
∃s0,s1 ∈ State :

[C1 ]c(s,s0) ∧
IF throws(control(s0))∧ key(control(s0)) = Ik THEN

LET c′ = push(c, Iv) IN

s1 = write(execute(s0), Iv,value(control(s0)))c′ ∧
[C2 ]c

′
(s1,s′)

ELSE s′ = s0
[ . . . ]c(s,s′)⇔ . . .

[ ] : Expression→ Context→ StateFunction
[ . . . ]c(s) = . . .

Programs with Contexts: Termination

[ ]T : Command→ Context→ StateCondition
[ . . . ]cT(s)⇔ . . .

Figure 6.4: A Context Language: Valuation Functions
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Formulas and Terms with Contexts: Valuation Functions

[ ] : Formula→ Context→ Environment→ StateRelation
[ . . . ]c(e)(s,s′)⇔ . . .

[ ] : Term→ Context→ Environment→ BinaryStateFunction
[ I ]c(e)(s,s′) = read(s, I)c

[ I’ ]c(e)(s,s′) = read(s′, I)c

[ . . . ]c(e)(s,s′) = . . .

Figure 6.5: A Context Language: Formulas and Terms

Lemma (Formulas with Contexts) For the same mapping of identifiers to vari-
ables, the semantics of formulas with contexts is equivalent to the original one.

∀c ∈ Context : (∀I ∈ Identifier : [ I ] = [ I ]c) ⇒
∀F ∈ Formula,e ∈ Environment,s,s′ ∈ State :

[F ](e)(s,s′)⇔ [F ]c(e)(s,s′)

Proof A consequence of the semantics of identifiers with contexts. ¤

Lemma (Equal Stores/ESF”) A formula preserves in different contexts and
different stores its value provided that the variables denoted by identifiers and the
control data remain the same:

∀F ∈ Formula,e ∈ Environment,s0,s′0,s1,s′1 ∈ State,c ∈ Context :
s0 EQUALSc′

c s1∧ s′0 EQUALSc′
c s′1 ∧

control(s0) = control(s1)∧ control(s′0) = control(s′1)⇒
[F ]c(e)(s0,s′0)⇔ [F ]c

′
(e)(s1,s′1)

Proof A consequence of the semantics of identifiers with contexts. ¤

However, the semantics of a program with contexts is not necessarily equivalent to
the original semantics, because in the former the program may modify variables in
the space of the context that were not modified (even not accessible) in the original
semantics. Nevertheless, their semantices are very closely related; for elaborating
this relationship, we need a couple of results that are introduced below.
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First, as well in the original semantics as in the semantics with contexts, com-
mands cannot distinguish states apart from their control data and the contents of
variables denoted by identifiers.

Lemma (Commands and States 1) Commands cannot distinguish between
states that hold the same control data and the same values in all variables denoted
by identifiers:

∀C ∈ Command,s0,s′0,s1,s′1 ∈ State :
control(s0) = control(s1)∧ s0 EQUALS s1 ∧
control(s′0) = control(s′1)∧ s′0 EQUALS s′1 ⇒

[C ](s0,s′0)⇔ [C ](s1,s′1)

Proof By induction on the structure of C. No command accesses other variables
than those referenced by identifiers. ¤

Lemma (Commands and States 2) Commands cannot distinguish between
states that hold the same control data and the same values in all variables denoted
by identifiers in the view of the context:

∀C ∈ Command,s0,s′0,s1,s′1 ∈ State,c ∈ Context :
DifferentVariables(c) ∧
control(s0) = control(s1)∧ s0 EQUALSc s1 ∧
control(s′0) = control(s′1)∧ s′0 EQUALSc s′1 ⇒

[C ]c(s0,s′0)⇔ [C ]c(s1,s′1)

Proof By induction on the structure of C. No command accesses other variables
than those referenced by identifiers. ¤

Second, the context of a command restricts the modifications that the command
may make on the store as stated by the following lemma.

Lemma (Commands and Contexts) A command can only change variables
that are in the range of its context:

∀C ∈ Command,c ∈ Context,s,s′ ∈ State :
DifferentVariables(c)∧ [C ]c(s,s′)⇒ s = s′ EXCEPT range(c)



418 Chapter 6. Methods

Proof From the fact that the only variables referenced in the command are the
results of the application of some view and that all views in the command are
derived from the current view by applications of push which, by Lemma “Range
of Contexts” does not widen the range. ¤

Next, changes made by a command to a locally declared variable are not visible
to the outer context as stated by the following lemma.

Lemma (Commands and Declarations 1) If a command changes a variable
inside a local declaration, this change is not visible outside the declaration:

∀C ∈ Command,c ∈ Context, I ∈ Identifier,s,s′ ∈ State :
DifferentVariables(c)∧ [C ]push(c,I)(s,s′)⇒

read(s, I)c = read(s′, I)c

Proof Take arbitrary C ∈ Command,c ∈ Context,J ∈ Identifier,s,s′ ∈ State and
assume

(1) DifferentVariables(c)

(2) [C0 ]push(c,J)(s,s′)

From (1) and Lemma “Soundness of Contexts”, we also know

(3) DifferentVariables(push(c,J))

We show

(a) read(s,J)c = read(s′,J)c

From the definition of read, to show (a), it suffices to show

(b) store(s)([J ]c) = store(s′)([J ]c)

The proof proceeds by induction on the structure of C0. We focus on the rele-
vant cases of assignments, local variable definitions/declarations, and exception
handlers.

• Case C0 = I=E:

From (2) and the definition of [ ], we know

(4) s′ = write(s, I, [E ]push(c,J)(s))push(c,J)
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From (4) and the definition of write, we know

(6) store(s′) = store(s)[ [ I ]push(c,J) 7→ [E ]push(c,J)(s) ]

From (1) and Lemma “Identifiers and Declarations 1”, we know

(7) [ I ]push(c,I) 6= [J ]c

From (6) and (7), we know (b).

• Case C0 = var I;C: From (2) and the definition of [ ], we know

(4) [C ]push(push(c,J),I)(s,s′)

From (3) and Lemma “Soundness of Contexts”, we also know

(5) DifferentVariables(push(push(c,J), I))

From (4), (5) and Lemma “Commands and Contexts”, to show (b), it suf-
fices to show

(c) [J ]c 6∈ range(push(push(c,J), I))

From Lemma “Range of Contexts”, we know

(6) range(push(push(c,J), I)) = range(c)\{[J ]c, [ I ]push(c,J)}
From (6), we know (c).

• Case C0 = var I=E;C: we define

(4) s0 := write(s, I, [E ]c(s))push(c,I)

From (2), (4), and the definition of [ ], we know

(4) [C ]push(push(c,J),I)(s0,s′)

From (3) and Lemma “Soundness of Contexts”, we also know

(5) DifferentVariables(push(push(c,J), I))

From Lemma “Range of Contexts”, we know

(6) range(push(push(c,J), I)) = range(c)\{[J ]c, [ I ]push(c,J)}
From (6), we know

(7) [J ]c 6∈ range(push(push(c,J), I))

From (4), (5), (7), and Lemma “Commands and Contexts”, we know

(8) store(s0)([J ]c) = store(s′)([J ]c)

From (4) and the definition of write, we know
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(9) store(s0) = store(s)[ [ I ]push(c,I) 7→ [E ]c(s) ]
From (1) and Lemma “Identifiers and Declarations 1”, we know

(10) [J ]c 6= [ I ]push(c,I)

From (8), (9), and (10), we know (b).

• Case C0 = try C1 catch(Ik Iv) C2: from (2) and the definition of [ ],
we know for some s0,s1 ∈ State:

(4) [C1 ]push(c,J)(s,s0)

(5)

IF throws(control(s0))∧ key(control(s0)) = Ik THEN

LET c′ = push(push(c,J), Iv) IN

s1 = write(execute(s0), Iv,value(control(s0)))c′ ∧
[C2 ]c

′
(s1,s′)

ELSE s′ = s0

From (3), (4), the induction hypothesis, and the definition of read, we know

(6) store(s)([J ]c) = store(s0)([J ]c)

If ¬(throws(control(s0))∧ key(control(s0)) = Ik), (5) and (6) imply (a).

We may thus proceed with the assumptions

(7) throws(control(s0))
(8) key(control(s0)) = Ik
(9) s1 = write(execute(s0), Iv,value(control(s0)))push(push(c,J),Iv)

(10) [C2 ]push(push(c,J),Iv)(s1,s′)

From (3) and Lemma “Soundness of Contexts”, we know

(11) DifferentVariables(push(push(c,J), Iv))

From Lemma “Range of Contexts”, we know

(12) range(push(push(c,J), Iv)) = range(c)\{[J ]c, [ I ]push(c,J)}
From (12), we know

(13) [J ]c 6∈ range(push(push(c,J), Iv))

From (10), (11), (13), and Lemma “Commands and Contexts”, we know

(14) store(s1)([J ]c) = store(s′)([J ]c)

From (9) and the definitions of write and execute, we know

(15) store(s1) = store(s0)[ [ Iv ]push(c,Iv) 7→ value(control(s0)) ]
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Simulation of State Relations

∼ ⊆ StateRelation×Context×StateRelation
R∼c S⇔
∀s,s′ ∈ State : executes(control(s))∧R(s,s′) ⇒
∃s0,s1 ∈ State : S(s0,s1) ∧

s0 EQUALSc s ∧ control(s0) = control(s) ∧
s1 EQUALSc s′ ∧ control(s1) = control(s′)

Figure 6.6: Simulation of State Relations

From (1) and Lemma “Identifiers and Declarations 1”, we know

(16) [J ]c 6= [ Iv ]push(c,Iv)

From (6), (14), (15), and (16), we know (b). ¤

The following lemma shows how may create in a local declaration context stores
that let a command behave like outside the declaration.

Lemma (Commands and Declarations 2) In a local declaration, a command
behaves like it does outside declaration, if the stores in the declaration is updated
such that the locally declared variable has the same value as the variable had
outside the declaration.

∀c ∈ Context, I ∈ Identifier,C ∈ Command,s′,s′ ∈ Store :
DifferentVariables(c)⇒

LET c′ = push(c, I) IN

[C ]c(s,s′) ⇔
[C ]c

′
(write(s, I,read(s, I)c)c′ ,write(s′, I,read(s′, I)c)c′)

Proof The proof proceeds by induction on the structure of C; it is essentially a
consequence of Lemma “Writing and Declarations”. ¤

Figure 6.6 introduces (for every context c) a relation ∼c between state relations
that is weaker than complete equivalence: R∼c S holds, if R(s,s′) implies S(s0,s1)
where state s0 is identical to s and state s1 is identical to s1 with respect to their
control states and the view of c (the states may differ in the storage contents of
the variables outside the view). Based on this definition, we can state the actual
relationship of the semantics of programs with contexts to the original semantics.
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Lemma (Programs with Contexts) For the same mapping of identifiers to vari-
ables, the semantics of programs with contexts simulates the basic semantics and
vice versa:

∀C ∈ Command,c ∈ Context :
DifferentVariables(c)∧ (∀I ∈ Identifier : [ I ] = [ I ]c) ⇒

[C ]∼c [C ]c∧ [C ]c ∼c [C ]

Proof Take arbitrary C0 ∈ Command,c ∈ Context and assume

(1) DifferentVariables(c)

(2) ∀I ∈ Identifier : [ I ] = [ I ]c

From (1) and (2), we also have

(3) DifferentVariables

We have to show for arbitrary s,s′ ∈ State

(a.1) [C0 ](s,s′)∼c [C0 ]c(s,s′)
(a.2) [C0 ]c(s,s′)∼ [C0 ](s,s′)

The proof proceeds by induction on the structure of C0. The correctness is obvi-
ous for all the cases without structural change of the definition of the valuation
function. The cases for assignments, identifiers in expressions, and pre/post-state
variables in terms follow directly from the definitions. In the following, we re-
strict our consideration to local variable declarations; the cases of local variable
definitions and exception handlers are handled in a similar way.

Case C0 = var I; C To show (a.1), we assume for some s0,s1 ∈ State

(4) executes(control(s))

(5) s0 = s EXCEPT I

(6) control(s0) = control(s)

(7) [C ](s0,s1)

(8) s′ = write(s1, I,read(s, I))

and show
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(a.1.a)

∃s2,s3 ∈ State :
LET c′ = push(c, I) IN [C ]c

′
(s2,s3) ∧

s2 EQUALSc s ∧ control(s2) = control(s) ∧
s3 EQUALSc s′ ∧ control(s3) = control(s′)

From (4), (7) and the induction hypothesis, we know for some s4,s5 ∈ State

(9) [C ]c(s4,s5)

(10) s4 EQUALSc s0

(11) control(s4) = control(s0)

(12) s5 EQUALSc s1

(13) control(s5) = control(s1)

From (2), (9), (12), and the definition of EQUALS, we know

(14) s4 EQUALS s0

(15) s5 EQUALS s1

We define

(16) c′ := push(c, I)

(17) s2 := write(s, I,read(s0, I)c)c′

(18) s3 := write(s′, I,read(s1, I)c)c′

From (1), (16), and Lemma “Soundness of Contexts”, we know

(19) DifferentVariables(c′)

To show (a.1.a), it suffices to show

(a.1.b.1) [C ]c
′
(s2,s3)

(a.1.b.2) s2 EQUALSc s

(a.1.b.3) control(s2) = control(s)

(a.1.b.4) s3 EQUALSc s′

(a.1.b.5) control(s3) = control(s′)
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From (1), (17), and Lemma “States and Declarations 0”, we know (a.1.b.2).

From (17) and (CW), we know (a.1.b.3).

From (1), (18), and Lemma “States and Declarations 0”, we know (a.1.b.4).

From (18) and (CW), we know (a.1.b.5).

From (1), (9) and Lemma “Commands and Declarations 2”, we know

(20) [C ]c
′
(write(s4, I,read(s4, I)c)c′,write(s5, I,read(s5, I)c)c′)

From (19), (20), and Lemma “Commands and States 2”, to show (a.1.b.1), it suf-
fices to show

(a.1.b.1.a.1) control(s2) = control(write(s4, I,read(s4, I)c)c′)

(a.1.b.1.a.2) s2 EQUALSc′ write(s4, I,read(s4, I)c)c′

(a.1.b.1.a.3) control(s3) = control(write(s5, I,read(s5, I)c)c′)

(a.1.b.1.a.4) s3 EQUALSc′ write(s5, I,read(s5, I)c)c′

From (6), (11), (17), and (CW), we know (a.1.b.1.a.1).

To show (a.1.b.1.a.2), from (RVE) and (NEQ), it suffices to show

(a.1.b.1.a.2.a.1) s2 = write(s4, I,read(s4, I)c)c′EXCEPTc′ I

(a.1.b.1.a.2.a.2) read(s2, I)c′ = read(write(s4, I,read(s4, I)c)c′, I)c′

To show (a.1.b.1.a.2.a.1), from (19), (WS), (TRE), it suffices to show

(a.1.b.1.a.2.a.1.a) s2 = s4 EXCEPTc′ I

To show (a.1.b.1.a.2.a.1.a), from (16), (19), and Lemma “States and Declara-
tions 2”, it suffices to show

(a.1.b.1.a.2.a.1.b) s2 = s4 EXCEPTc I

From (2) and (5), we know

(21) s0 = s EXCEPTc I

From (10), (21), (a.1.b.2), and (TRE), we know (a.1.b.1.a.2.a.1.b).

To show (a.1.b.1.a.2.a.2), from (17) and (RW1), it suffices to show

(a.1.b.1.a.2.a.2.a) read(s0, I)c = read(s4, I)c
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From (10), (RSE), and (NEQ), we know (a.1.b.1.a.2.a.2.a).

From (8), (13), (18), and (CW), we know (a.1.b.1.a.3).

To show (a.1.b.1.a.4), from (RVE) and (NEQ), it suffices to show

(a.1.b.1.a.4.a.1) s3 = write(s5, I,read(s5, I)c)c′EXCEPTc′ I

(a.1.b.1.a.4.a.2) read(s3, I)c′ = read(write(s5, I,read(s5, I)c)c′ , I)c′

To show (a.1.b.1.a.4.a.1), from (19), (WS), (TRE), it suffices to show

(a.1.b.1.a.4.a.1.a) s3 = s5 EXCEPTc′ I

To show (a.1.b.1.a.4.a.1.a), from (16), (19), and Lemma “States and Declara-
tions 2”, it suffices to show

(a.1.b.1.a.4.a.1.b) s3 = s5 EXCEPTc I

From (1), (2), (8), and (WS), we know

(22) s1 = s′ EXCEPTc I

From (12), (NEQ), and (AVE), we know

(23) s5 = s1 EXCEPTc I

From (18) and (RW1), we know

(24) s3 = s′ EXCEPTc′ I

From (16), (19), (24), and Lemma “States and Declarations 3”, we know

(25) s3 = s′ EXCEPTc I

From (22), (23), (25), and (TRE), we know (a.1.b.1.a.4.a.1.b).

To show (a.1.b.1.a.4.a.2), from (18) and (RW1), it suffices to show

(a.1.b.1.a.4.a.2.a) read(s1, I)c = read(s5, I)c

From (12), (RSE), and (NEQ), we know (a.1.b.1.a.4.a.2.a).

To show (a.2), we define

(4) c′ = push(c, I)
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and assume

(5) executes(control(s))

(6) [C ]c
′
(s,s′)

From (1), (4), and Lemma “Soundness of Contexts”, we know

(7) DifferentVariables(c′)

We have to show

(a.2.a)

∃s0,s1,s2,s3 ∈ State :
s2 = s0 EXCEPT I ∧ control(s2) = control(s0) ∧
[C ](s2,s3) ∧
s1 = write(s3, I,read(s0, I)) ∧
s0 EQUALSc s ∧ control(s0) = control(s) ∧
s1 EQUALSc s′ ∧ control(s1) = control(s′)

From (1), (2), (5), (6), and the induction hypothesis, we know for some s2,s3 ∈
State

(8) [C ](s2,s3)

(9) s2 EQUALSc s

(10) control(s2) = control(s)

(11) s3 EQUALSc s′

(12) control(s3) = control(s′)

We define

(13) s0 := s2

(14) s1 := write(s3, I,read(s0, I))

To show (a.2.a), from (8), it suffices to show

(a.2.b.1) s2 = s0 EXCEPT I

(a.2.b.2) control(s2) = control(s0)

(a.2.b.3) s0 EQUALSc s

(a.2.b.4) control(s0) = control(s)

(a.2.b.5) s1 EQUALSc s′
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(a.2.b.6) control(s1) = control(s′)

From (13) and (RE), we know (a.2.b.1).

From (13) we know (a.2.b.2).

From (9) and (13), we know (a.2.b.3).

From (10) and (13), we know (a.2.b.4).

From (2), (14), and the definition of EQUALS, we know

(15) read(s1, I)c = read(s0, I)c

(16) s1 = s3 EXCEPTc I

From (11), (16), and the definition of EQUALS, we know

(17) s1 = s′ EXCEPTc I

From (15) and (17), to show (a.2.b.5), it suffices to show

(a.2.b.5.a) read(s0, I)c = read(s′, I)c

From (1), (4), (6), and Lemma “Commands and Declarations 1”, we know fi-
nally (a.2.b.5.a).

From (12), (14), and (CW), we know (a.2.b.6). ¤

Based on this result, we get the following crucial relationship between commands
and specifications in both semantices.

Lemma (Specifications of Programs with Contexts) For the same mapping of
identifiers to variables, programs with contexts satisfy the same specifications as
the programs in the basic semantics:

∀C ∈ Command,F ∈ Formula,c ∈ Context :
DifferentVariables(c)∧ (∀I ∈ Identifier : [ I ] = [ I ]c) ⇒

(∀s,s′ ∈ State,e ∈ Environment :
executes(control(s))∧ [C ](s,s′)⇒ [F ](e)(s,s′)) ⇔

(∀s,s′ ∈ State,e ∈ Environment :
executes(control(s))∧ [C ]c(s,s′)⇒ [F ]c(e)(s,s′))
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Proof Take arbitrary C ∈ Command,F ∈ Formula,c ∈ Context and assume

(1) DifferentVariables(c)

(2) ∀I ∈ Identifier : [ I ] = [ I ]c

From (1), (2), and Lemma “Programs with Contexts”, we know

(3) [C ]∼c [C ]c

(4) [C ]c ∼c [C ]

From (3), (4), and the definition of ∼ , we know

(5)

∀s,s′ ∈ State : executes(control(s))∧ [C ](s,s′) ⇒
∃s0,s1 ∈ State : [C ]c(s0,s1) ∧

s0 EQUALSc s∧ control(s0) = control(s) ∧
s1 EQUALSc s′∧ control(s1) = control(s′)

(6)
∀s,s′ ∈ State : executes(control(s))∧ [C ]c(s,s′) ⇒
∃s′′ ∈ State : [C ](s,s′′) ∧

s′′ EQUALSc s′∧ control(s′′) = control(s′)

We have to show

(a)

(∀s,s′ ∈ State,e ∈ Environment :
executes(control(s))∧ [C ](s,s′)⇒ [F ](e)(s,s′)) ⇔

(∀s,s′ ∈ State,e ∈ Environment :
executes(control(s))∧ [C ]c(s,s′)⇒ [F ]c(e)(s,s′))

To show the ⇒ direction of (a), we assume

(7)
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C ](s,s′)⇒ [F ](e)(s,s′)

and show

(b)
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C ]c(s,s′)⇒ [F ]c(e)(s,s′)

To show (b), we take arbitrary s,s′ ∈ State,e ∈ Environment and assume

(8) executes(control(s)

(9) [C ]c(s,s′)

and show
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(c) [F ]c(e)(s,s′)

From (6), (8), and (9), we know for some s0,s1 ∈ State

(10) [C ](s0,s1)

(11) s0 EQUALSc s

(12) control(s0) = control(s)

(13) s1 EQUALSc s′

(14) control(s1) = control(s′)

From (7), (8), and (10), we know

(15) [F ](e)(s,s′′)

From (2), (11), (13), and the definition of EQUALS, we know

(16) s0 EQUALS s

(17) s1 EQUALS s′

From (12), (14), (15), (16), (17), and (ESF’), we know

(18) [F ](e)(s,s′)

From (1), (2), (18), and Lemma “Formulas with Contexts”, we know (c).

To show the ⇐ direction of (a), we assume

(19)
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C ]c(s,s′)⇒ [F ]c(e)(s,s′)

and show

(b)
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C ](s,s′)⇒ [F ](e)(s,s′)

To show (b), we take arbitrary s,s′ ∈ State,e ∈ Environment and assume

(20) executes(control(s)

(21) [C ](s,s′)

and show

(c) [F ](e)(s,s′)
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From (5), (20), and (21), we know for some s0,s1 ∈ State

(22) [C ]c(s0,s1)

(23) s0 EQUALSc s

(24) control(s0) = control(s)

(25) s1 EQUALSc s′

(26) control(s1) = control(s′)

From (7), (8), and (22), we know

(27) [F ]c(e)(s0,s1)

From (1), (2), (27), and Lemma “Formulas with Contexts”, we know

(28) [F ](e)(s0,s1)

From (2), (23), (25), and the definition of EQUALS, we know

(29) s0 EQUALS s

(30) s1 EQUALS s′

From (24), (26), (28), (29), (30), and (ESF’), we know (c). ¤

Based on the generalized definition of the semantics of formulas that takes con-
texts into account, Figure 6.7 gives the modified soundness claim for the three
core judgements for commands. The correctness of the soundness claim for C : F
is a consequence of the correctness of the corresponding claim for the language
without contexts and Lemma “Specifications of Programs with Contexts”. In a
similar fashion, also the correctness of the other claims can be derived.

In the following sections, we elaborate the semantics of programs with methods
on the basis of the semantics of programs with contexts. For establishing the
corresponding verification calculus, we take the soundness of the core judgements
for commands with contexts as granted.

6.2 Method Declarations and Method Calls

Figure 6.8 extends the command language by the concept of methods. In this
extended “method language”, a program consists of a sequence of method decla-
rations Ms and a program body (i.e. command) C which is executed in the envi-
ronment established by the declarations. Every method declaration M consists of
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Definitions

[ ] : Formula→ Context→ StateCondition
[F ]c(s)⇔∀e ∈ Environment : [F ]c(e)(s,s)

[ ] : Formula→ StateCondition
[F ](s)⇔∀c ∈ Context : DifferentVariables(c)⇒ [F ]c(s)

Judgements

CXF ⇔
∀c ∈ Context : DifferentVariables(c)⇒
∀s,s′ ∈ State : executes(control(s))∧ [F ]c(s)⇒

([C ]c(s,s′)⇔ [C ]c⊥(s,s′))

C : F ⇔
∀c ∈ Context : DifferentVariables(c)⇒
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C ]c(s,s′)⇒ [F ]c(e)(s,s′)

C ↓ F ⇔
F has no free (mathematical or state) variables ∧
F does not depend on the poststate ⇒
∀c ∈ Context : DifferentVariables(c)⇒
∀s ∈ State :

executes(control(s))∧ [F ]c(s)⇒ [C ]cT(s)

Figure 6.7: A Context Language: Judgements
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a method header Im(J1, . . . ,Jp) and a method body (i.e. command) C. The method
header introduces the name Im of the method and a sequence of formal parameters
J1, . . . ,Jp which denote those variables that hold the values of the actual arguments
of a method call.

The program body as well as the method bodies are prefixed by a specification S
that describes the effect of the respective command by

• a frame of identifiers I1, . . . , In,?J1, . . . ,?Jo that denotes the set of those vari-
ables whose values may be altered by the command (the identifier form ?Ji
must be chosen if a parameter name Ji shadows the name of a variable),

• the exceptions K1, . . . ,Km that may by thrown by the command,

• a formula FC that denotes a state condition, and

• a formula FR that denotes a state relation,

• a term T that denotes a measure for limiting the recursion depth,

where both FC and FR constrain the behavior of the command. Specifications will
not be used for describing the semantics of programs but for reasoning about them,
as will be explained later.

A command may now also be a method call Ir = Im(E1, . . . ,Ep) which assigns
to the formal parameters J1, . . . ,Jp of Im of the method declarations the values
of the actual arguments E1, . . . ,Ep of the method call, then executes the body
of Im, and finally delivers the return value generated by the command into the
variable denoted by Ir. In the following, we assume that the number of arguments
in method calls always equals the number of parameters in the declarations of
the corresponding methods (this constraint can be established by a simple static
checking mechanism).

The domain MethodEnv defined in Figure 6.8 denotes the set of environments
established by method declarations. Such a “method environment” maps a method
name to a view (the global variables visible by the method) and an element of
domain Behavior; each such “method behavior” maps a context and a sequence
of values (the arguments of a method call) to a pair of a state relation and a state
condition (the transition relation and the termination condition of the method body
executed with these arguments).

As shown by the valuation function for programs in Figure 6.9, a program is ex-
ecuted in a pre-established method environment which is updated by the method
declarations in the program; the resulting environment is the one in which the
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Method Language: Abstract Syntax

Ms ∈Methods
M ∈Method
S ∈ Specification
P ∈ Program
C ∈ Command
E ∈ Expression
I,J,K ∈ Identifier
F ∈ Formula

P ::= Ms S {C}.

Ms ::= | Ms M.

M ::= method Im(J1, . . . ,Jp) S {C}.

S ::= writesonly I1, . . . , In,?J1, . . . ,?Jo
throwsonly K1, . . . ,Km assumes FC implements FR

decreases T
C ::= . . . | Ir = Im(E1, . . . ,Ep).

Definitions

Behavior := Context×Value∗→ (StateRelation×StateCondition)
MethodEnv := Identifier→ (View×Behavior)

view : View×Behavior → View
view(v,b) = v

call : View×Context → Context
call(v,c′) = context(v,space(c′))

Figure 6.8: A Method Language (1/3)
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Method Language: Valuation Functions

[ ] : Program→ Context→MethodEnv→
(StateRelation×StateCondition)

[Ms S {C} ]c(me) =
LET me′ = [Ms ]view(c)(me) IN 〈[C ]c,me′, [C ]c,me′

T 〉

[ ] : Methods→ View→MethodEnv→MethodEnv
[ ]v(me) = me
[Ms M ]v(me) = [M ]v([Ms ]v(me))

[ ] : Method→ View→MethodEnv→MethodEnv
[method Im(J1, . . . ,Jp) S {C} ]v(me) =

LET

b = [method Im(J1, . . . ,Jp) S {C} ](me)
IN me[ Im 7→ 〈v,b〉 ]

[ ] : Method→MethodEnv→ Behavior
[method Im(J1, . . . ,Jp) S {C} ](me) =

LET

b : Behavior
bc(v1, . . . ,vp) =

LET

c′ = push(c,J1, . . . ,Jp)
r ∈ StateRelation
r(s,s′)⇔
∃s0 : State :

[C ]c
′,me(writes(s,J1,v1, . . . ,Jp,vp)c′,s0) ∧

s′ = IF throws(control(s0))
THEN s0 ELSE executes(s0)

t ∈ StateCondition
t(s)⇔ [C ]c

′,me
T (writes(s,J1,v1, . . . ,Jp,vp)c′)

IN 〈r, t〉
IN b

Figure 6.9: A Method Language (2/3)
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Method Language: Valuation Functions (Contd)

[ ] : Command→ (Context×MethodEnv)→ StateRelation
[ . . . ]c,me(s,s′)⇔ . . .
[ Ir = Im(E1, . . . ,Ep) ]c,me(s,s′)⇔

LET 〈v,b〉= me(Im) IN

LET 〈r, t〉= bcall(v,c)([E1 ]c(s), . . . , [Ep ]c(s)) IN

∃s0 ∈ State : r(s,s0) ∧
IF throws(control(s0))

THEN s′ = s0
ELSE s′ = write(s0, Ir,value(control(s0)))c

[ ]T : Command→ (Context×MethodEnv)→ StateCondition
[ . . . ]c,me

T (s)⇔ . . .
[ Ir = Im(E1, . . . ,Ep) ]c,me

T (s)⇔
LET 〈v,b〉= me(Im) IN

LET 〈r, t〉= bcall(v,c)([E1 ]c(s), . . . , [Ep ]c(s)) IN

t(s)

Figure 6.10: A Method Language (3/3)
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body of the program is executed. As shown by the valuation function for method
declaration sequences, every declaration is evaluated in the environment estab-
lished by the previous ones; the method declaration updates the environment by
a new method behavior. Consequently method bodies can only call those meth-
ods that have been previously established; recursive or mutually recursive method
calls are thus prohibited (this restriction will be relaxed later).

Since the declaration of a method takes place outside the scope of any call of
that method, any local declaration in effect at the point of the call should have no
effect on the execution of the method body (the principle of static scoping); the
execution of the body thus must take place in a different context than that one in
which the method call is executed. In more detail, the context of the method is
constructed from

• the view that is in use at the point of the declaration (indicating the “global
variables” of the method) and

• the space of that context that is in use at the point of the call (indicating the
space that may be used for allocation of local variables)

The context of the method body is the context of the method updated by the dec-
larations of the parameters of the method. Figures 6.9 and 6.10 give the valuation
functions for method declarations and method calls that together establish a cor-
responding “context switching discipline”.

The declaration of a method Im(J1, . . . ,Jp) receives in the parameter v the view
of the current context. It then constructs a method behavior b which receives
the method context c and the argument values values v1, . . . ,vp from the caller;
from c the context c′ of the method body is constructed by the declarations of the
formal parameters J1, . . . ,Jp. The declaration returns a new method environment
that maps the method name Im to the pair 〈v,b〉.
The method behavior b returns a pair pair 〈r, t〉 of a transition relation r and a
termination condition t derived from the transition relation and the termination
condition of the method body C. This body is executed in that state that is con-
structed from the prestate s of the method call by writing (in context c′) into the
variables denoted by identifiers J1, . . . ,Jp the argument values v1, . . . ,vp of the
call. If the poststate of C throws an exception, it also represents the poststate of
the call; otherwise the poststate is made “executing” (the poststate of C should be
“returning”, i.e., delivering a result value, which can be ensured by a simple static
check but is actually not required by the semantics).

The valuation functions [ ] and [ ]T for commands are generalized to take also
the method environment me into account. In a method call Ir = Im(E1, . . . ,Ep),
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this environment is looked up to yield a method view and method behavior. From
the view of the method declaration and the space of the current context, a new
context is created and passed to the behavior, together with the values of the argu-
ments E1, . . . ,Ep.

The application of the behavior yields the pair 〈r, t〉 of a transition relation r and
a termination condition t. In [ ]T, t is applied to the prestate s of the call in
order to tell whether the call of the method is guaranteed to terminate. In [ ], r
is applied to the prestate s of the call to yield some state s0; if s0 is “throwing”,
then it immediately represents the poststate of the call. Otherwise the poststate
is (according to the semantics of method declarations) “executing”; the control
data of the state then holds the result value of the method (deposited there by a
return statement) and writes it into the variable denoted by Ir.

6.3 Formulas with Global Variables

As a prerequisite for specifying the commands of the method language, Fig-
ure 6.12 extends the language of formulas and terms based on the definitions given
in Figure 6.11. The extension introduces the concept of global variables which
are denoted by references of the form ?I, for some identifier I. These references
are evaluated in a “global” context that is in general different from the “local”
context of those variables that are denoted by references of the form I (which we
call local variables from now on). In this way we are able to express statements
about the variables that are visible in the global context (where methods are de-
clared) even inside the context of a command (where some of the global variables
may be shadowed by local declarations).

For instance, take the method

method inc(J)
writesonly I throwsonly assumes TRUE
implements I’=I+J
{ I=I+J }

which increases the value of the global variable I visible in the context of the
declaration of the method by the value of the parameter J.

Now the method may be invoked in a context where the declaration of a local
variable I shadows the global variable:

{ var I=1; inc(I) }
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Formulas with Global Variables: Definitions

s EQUALSc,c′ s′ ≡
∀x ∈ Variable : x ∈ space(c′)∨ store(s)(x) = store(s′)(x)

s = s′ EXCEPTc,c′I1, . . . , In,?J1, . . . ,?Jm ≡
∀x ∈ Variable : x 6∈ {[ I1 ]c

′
, . . . , [ In ]c

′
, [J1 ]c, . . . , [Jm ]c} ⇒

x ∈ space(c′)∨ store(s)(x) = store(s′)(x)
s = s′ ATc,c′I1, . . . , In,?J1, . . . ,?Jm ≡
∀x ∈ Variable : x ∈ {[ I1 ]c

′
, . . . , [ In ]c

′
, [J1 ]c, . . . , [Jm ]c} ⇒

store(s)(x) = store(s′)(x)

Figure 6.11: Definitions for Formulas with Global Variables

The effect of the method invocation

inc(I)

can (in the local context of the invocation) be expressed by the formula

I=1 AND ?I’=?I+I AND I’=I

which says that the value of the global variable I is increased by the value of the
local variable I and that the value of the local variable I remains unchanged.

In the global context, however, the effect of the method invocation is described by
the formula

EXISTS $I,$J:
$I=1 AND I’=I+$I AND $J=$I

Here the global variable I can be directly referenced and the pre/poststate values
of the local variable I are described by the mathematical values $I and $J; this
formula can be finally simplified to

I’=I+1

which expresses the effect of the program in a concise way.
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Formulas with Global Variables: Abstract Syntax

F ∈ Formula
T ∈ Term
R ∈ Reference
I ∈ Identifier

F ::= p(T1, . . . ,Tn)
| readsonly | writesonly I1, . . . , In,?J1, . . . ,?Jm |
| unchanged I1, . . . , In,?J1, . . . ,?Jm | . . .

T ::= R | R’ | . . .
R ::= I | ?I

Valuation Functions

[ ] : Formula→
(Context×Context)→ Environment→ StateRelation

[p(T1, . . . ,Tn) ]c0,c1(e)(s,s′)⇔
[ p ]([T1 ]c0,c1(e)(s,s′), . . . , [Tn ]c0,c1(e)(s,s′))

[readsonly ]c0,c1(s,s′)⇔
s EQUALSc0,c1s′

[writesonly I1, . . . , In,?J1, . . . ,?Jm ]c0,c1(s,s′)⇔
s = s′ EXCEPTc0,c1 I1, . . . , In,?J1, . . . ,?Jm

[unchanged I1, . . . , In,?J1, . . . ,?Jm ]c0,c1(s,s′)⇔
s = s′ ATc0,c1 I1, . . . , In,?J1, . . . ,?Jm

[ . . . ]c0,c1(e)(s,s′)⇔ . . .

[ ] : Term→
(Context×Context)→ Environment→ BinaryStateFunction

[ I ]c0,c1(e)(s,s′) = read(s, I)c1

[?I ]c0,c1(e)(s,s′) = read(s, I)c0

[ I’ ]c0,c1(e)(s,s′) = read(s′, I)c1

[?I’ ]c0,c1(e)(s,s′) = read(s′, I)c0

[ . . . ]c0,c1(e)(s,s′) = . . .

Figure 6.12: Formulas with Global Variables
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The reasoning calculus we are going to devise will in an “inside-out” manner first
construct the “local context” description of the method invocation and from this
construct the “global context” description.

Figure 6.12 depicts the valuation functions for formulas and terms with global
variables. These functions depend on two contexts c0 and c1 where c0 denotes the
the global context which is used to resolve store references of form ?I respectively
?I’ and c1 denotes the local context which is used to resolve store references of
form I respectively I’. Since variable references only occur inside terms in the
form of such store references, we expand the semantics of variable references
within the semantics of terms (i.e. we omit a separate valuation function for vari-
able references). Thus we are able to make use of the generalized form of the read
operation introduced in a previous section.

6.4 Method Specifications

As a provision for the reasoning calculus of the method language, we introduce in
Figure 6.13 the domain MethodSpec of “method specifications”. Each such spec-
ification consists of a sequence of method parameters and a “core specification”,
i.e. an element of domain Spec, which represents the content of the specification
S by which the body of the method has been annotated (the frame of potentially
modified variables, the list of potentially thrown exceptions, the formulas denot-
ing a state relation and a state condition). The domain SpecEnv of “specification
environments” then maps method names to method specifications.

The predicate specifies states whether, in a given context, a method specification
adequately describes a method behavior. Based on this predicate, another predi-
cate of the same name is introduced which states whether, in a given context, an
environment se of method specification adequately models an environment me of
method implementations.

A method specification is an adequate description of a method implementation, if
the following is true for any prestate s of the method call (compare with the formal
definition): after creating from the declaration context c a new context c′ for the
formal parameters J1, . . . ,Jp and writing into the variables denoted by parameters
J1, . . . ,Jp the actual argument values v1, . . . ,vp of the call, the execution of the
method body yields a poststate s′ which is “executing” or “throwing” such that

• s′ is allowed by the formula FC =>FR in context c′ for the prestate of the
method body,



6.4 Method Specifications 441

Method Specifications: Definitions

Spec := Identifier∗× Identifier∗×Formula×Formula×Term
MethodSpec := Identifier∗×Spec
SpecEnv := Identifier→MethodSpec

specifies⊆MethodSpec×Behavior×Context
specifies(〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉,

b,c)⇔
{J1, . . . ,Jp}∩{I1, . . . , In}= /0 ∧
FC,FR and T have no free (mathematical or state) variables ∧
FC and T do not depend on the poststate ∧
∀v1, . . . ,vp ∈ Value,s ∈ State,e ∈ Environment,c′ ∈ Context :

executes(control(s))∧DifferentVariables(c′) ∧
c′ EQUALS c∧ space(c′)⊆ space(c) ⇒
LET

〈r, t〉= bc′(v1, . . . ,vp),
c′′ = push(c′,J1, . . . ,Jp),
s1 = writes(s,J1,v1, . . . ,Jp,vp)c′′

IN (∀s′ ∈ State : r(s,s′) ⇒
[FC => FR ]c,c

′′
(e)(s1,s′) ∧

s = s′ EXCEPT range(c′)∪ range(view(c)) ∧
s = s′ EXCEPTc,c I1, . . . , In ∧
(executes(control(s′))∨ throws(control(s′))) ∧
(throws(control(s′)) ⇒

key(control(s′)) ∈ {K1, . . . ,Km}))
∧ ([FC ]c,c

′′
(e)(s1,s1)⇒ t(s))

specifies⊆ SpecEnv×MethodEnv×Context
specifies(se,me,c)⇔
∀I ∈ Identifier :

LET 〈v,b〉= me(I) IN

v = view(c)∧ specifies(se(I),b,c)

Figure 6.13: Definitions for Method Specifications
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• the only variable values in which s′ differs from s in context c are among
those denoted by I1, . . . , In,

• s′ throws no other exceptions than those denoted by K1, . . . ,Km.

Furthermore, if the formula FC holds in the context c′ on the prestate of the method
body, then the execution of the method terminates.

In this formulation, we note the following points:

• the specification formulas FC and FR are formulated from the method body’s
point of view (prestate, poststate, and context),

• except that a state flag that is “returning” (or, if not prohibited by static
checks, also “continuing” or “breaking”) is cleared to “executing”;

• FC serves two roles: on the one hand, it denotes the termination condition
of the command; on the other hand, it is also taken as an additional precon-
dition to the transition formula FR.

The first item establishes the fundamental mindset for understanding a method
specification: variable values and control data are taken from those states that are
in effect immediately before respectively after the execution of the method body.

On the contrary, the last two items are pragmatic design decisions (which might
be reconsidered): First, we abstract from the fact that method bodies are expected
to terminate in a “returning” state to make their execution look like that of a com-
mand in the current context (where a normal poststate is “executing”).

Second, we restrict the “constraining power” of the transition relation to only
those prestates where the method is guaranteed to terminate. This condition is
typically inserted anyway, because otherwise specifications have to become much
more general as intended (and consequently much more complicated). As an ex-
ample, take the method (with operations being interpreted over N)

method count(i) S {
s = 0;
while (i > 0) { s = s+1; i = i-1; }
return s;

}

where the loop has invariant
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(i >= 0 => i’ >= 0) AND
s’+i’ = s+i

From the rules of the calculus, we may construct for the method body the specifi-
cation formula

(i >= 0 => i’ >= 0) AND
s’+i’ = i AND
i’ <= 0

which can be simplified to

(i >= 0 => i’ = 0) AND
s’+i’ = i AND
i’ <= 0

While this specification formula is correct, it is very general and does not really
capture our intention. By adding the termination condition i >= 0 as a precon-
dition, we can simplify the formula to a weaker but more natural version

i >= 0 => (i’ = 0 AND s’ = i)

respectively (if we are not interested in the poststate value of the parameter i)

i >= 0 => s’ = i

which actually expresses all that we want to say about the method body.

6.5 Reasoning about Commands

Based on the generalized class of formulas introduced in the previous section,
Figure 6.14 introduces some auxiliary definitions. In particular, the predicate
pushes(c,c′,{V1, . . . ,Vo}) states that c and c′ are two contexts that differ only in
their views of the identifiers V1, . . . ,Vo and that the variables denoted by these
identifiers and the space of c′ are from the space of c.

Figure 6.15 now gives updated versions of the three core judgements for the com-
mands of the method language2. When reasoning about a command C, we now

2The first judgement also uses of a valuation [C ]c,me
⊥ which is a natural generalization of the

previously introduced valuation [C ]⊥ by taking contexts and method environments into account.



444 Chapter 6. Methods

Method Language: Definitions

pushes⊆ Context×Context× Idenfier∗

pushes(c,c′,{V1, . . . ,Vo}) :⇔
DifferentVariables(c)∧DifferentVariables(c′) ∧
c = c′ EXCEPT V1, . . . ,Vo ∧
{[V1 ]c

′
, . . . , [Vo ]c

′}∪ space(c′)⊆ space(c)

[ ] : Formula→ (Context×Context)→ StateCondition
[F ]c0,c1(s)⇔∀e ∈ Environment : [F ]c0,c1(e)(s,s)

[ ] : Formula→ StateCondition
[F ](s)⇔
∀c0,c1 ∈ Context :

DifferentVariables(c0)∧DifferentVariables(c1) ⇒
[F ]c0,c1(s)

' : P(Expression×Term)
E ' T ⇔

T has no free (mathematical or state) variables ∧
T has no primed program variables ∧
T has no occurrence of next ∧
∀c0,c1 ∈ Context :

DifferentVariables(c0)∧DifferentVariables(c1)⇒
∀s,s′ ∈ Store,e ∈ Environment :

[E ]c1(s) = [T ]c0,c1(e)(s,s′)

D' : P(Expression×Formula)

E
D' FD ⇔
∀c0,c1 ∈ Context :

DifferentVariables(c0)∧DifferentVariables(c1)⇒
∀s ∈ State : [E ]c1

D (s)⇔ [FD ]c0,c1(s)

Figure 6.14: Definitions for the Method Language
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Commands: Judgements

se,{V1, . . . ,Vo} ` CXF ⇔
F has no free (mathematical or state) variables ∧
F does not depend on the poststate ⇒
∀c,c′ ∈ Context,me ∈MethodEnv :

specifies(se,me,c) ∧pushes(c,c′,{V1, . . . ,Vo}) ⇒
∀s,s′ ∈ State : executes(control(s))∧ [F ]c,c

′
(s)⇒

([C ]c
′,me(s,s′)⇔ [C ]c

′,me
⊥ (s,s′))

se,{V1, . . . ,Vo} ` C : F ⇔
F has no free (mathematical or state) variables ∧
∀c,c′ ∈ Context,me ∈MethodEnv :

specifies(se,me,c)∧pushes(c,c′,{V1, . . . ,Vo}) ⇒
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C ]c
′,me(s,s′)⇒

[F ]c,c
′
(e)(s,s′)

se,{V1, . . . ,Vo} ` C ↓ F ⇔
F has no free (mathematical or state) variables ∧
F does not depend on the poststate ⇒
∀c,c′ ∈ Context,me ∈MethodEnv :

specifies(se,me,c)∧pushes(c,c′,{V1, . . . ,Vo}) ⇒
∀s ∈ State : executes(control(s))∧ [F ]c,c

′
(s)⇒

[C ]c
′,me

T (s)

Figure 6.15: Judgements for Commands of the Method Language
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take into account a specification environment se which we assume to correctly
describe all methods that may be invoked by C and a set of identifiers {V1, . . . ,Vo}
that denote those locally declared variables in which scope the command C is
executed. Then

• se,{V1, . . . ,Vo} ` CXF guarantees the well-definedness of all expressions
encountered by the execution of C in any prestate that satisfies F ;

• se,{V1, . . . ,Vo} ` C : F guarantees that C only performs such state transi-
tions that are allowed by F ;

• se,{V1, . . . ,Vo} ` C ↓ F guarantees the termination of of the execution of
C in any prestate that satisfies F .

It should be noted that the judgements are based on the specifications of the meth-
ods that may be invoked by C, not on their implementations. This allows a style
of compositional reasoning which decouples the correct usage of a method from
the accidents of its implementation by placing the method specification into the
focus of consideration:

• on the one hand, we may verify the correctness of a program from the spec-
ifications of the methods it calls,

• on the other hand, we have to verify that the implementations of the methods
satisfy their specifications.

The specification of a method thus becomes the “contract” between the caller of
the method and its implementor (design by contract principle): any change to the
implementation of a method does not affect the overall correctness of the program
provided that we can verify that the modified implementation also satisfies the
specification (i.e. that the contract is preserved).

Most rules of the command language can be easily generalized to the new forms
of judgements by forwarding the specification environment and the set of locally
declared variables from the conclusions to to the corresponding hypotheses (it
should be noted, however, that the generated proof obligations may now involve
global variable references ?V1, . . . ,?Vo denoting variables different from the local
variables V1, . . . ,Vo). Substantial modifications are only necessary in the rules
for variable declarations/definitions and exception handlers, because these are the
only commands that introduce local variables.

Figures 6.16 and 6.17 give the new well-definedness rules for variable decla-
rations/definitions and exception handlers. They are derived from the original
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Variable Declarations/Definitions: Well-Definedness

I 6∈ {V1, . . . ,Vo}
se,{V1, . . . ,Vo, I} ` CXP[?J/I]
se,{V1, . . . ,Vo} ` var I;CXP

I ∈ {V1, . . . ,Vo}
$J does not occur in P
se,{V1, . . . ,Vo} ` CXEXISTS $J : P[$J/I]
se,{V1, . . . ,Vo} ` var I;CXP

I 6∈ {V1, . . . ,Vo}
E

D' FD
∀s ∈ State : [(now.executes AND P) => FD ](s)
se,{V1, . . . ,Vo, I} ` CXP[?J/I] AND I = T [?I/I]
se,{V1, . . . ,Vo} ` var I=E;CXP

I ∈ {V1, . . . ,Vo}
E

D' FD
∀s ∈ State : [(now.executes AND P) => FD ](s)
$J does not occur in P and T
se,{V1, . . . ,Vo} ` CXEXISTS $J : P[$J/I] AND I = T [$J/I]
se,{V1, . . . ,Vo} ` var I=E;CXP

Figure 6.16: Well-Definedness Rules for Variable Declarations/Definitions
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Exception Handlers: Well-Definedness

Iv 6∈ {V1, . . . ,Vo}
#Is does not occur in Q
se,{V1, . . . ,Vo} ` POST(C1,P) = Q
se,{V1, . . . ,Vo} ` C1 XP
se,{V1, . . . ,Vo, Iv} ` C2 X

EXSTATE #Is:
Q[#Is/now][?Iv/Iv] AND
#Is.throws Ik AND #Is.value = Iv

se,{V1, . . . ,Vo} ` try C1 catch(Ik Iv)C2 XP

Iv ∈ {V1, . . . ,Vo}
$J does not occur in Q
#Is does not occur in Q
se,{V1, . . . ,Vo} ` POST(C1,P) = Q
se,{V1, . . . ,Vo} ` C1 XP
se,{V1, . . . ,Vo} ` C2 X

EXISTS $J: EXSTATE #Is:
Q[#Is/now][$J/Iv] AND
#Is.throws Ik AND #Is.value = Iv

se,{V1, . . . ,Vo} ` try C1 catch(Ik Iv)C2 XP

Figure 6.17: Well-Definedness Rules for Exception Handlers
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Variable Declarations: Verification

I 6∈ {V1, . . . ,Vo}
se,{V1, . . . ,Vo, I} ` C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In,?I
Ia 6= Ib
$Ia,$Ib do not occur in F
se,{V1, . . . ,Vo} ` var I;C :

[EXISTS $Ia,$Ib:

F [$Ia/I,$Ib/I’][I/?I, I’/?I’] ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In,I

I 6∈ {V1, . . . ,Vo}
se,{V1, . . . ,Vo, I} ` C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

?I 6∈ {I1, . . . , In}
Ia 6= Ib
$Ia,$Ib do not occur in F
se,{V1, . . . ,Vo} ` var I;C :

[EXISTS $Ia,$Ib:

F [$Ia/I,$Ib/I’][I/?I, I’/?I’] ]Fc,Fb,Fr,{K1,...,Km}
{I1,...,In}\{I}

I ∈ {V1, . . . ,Vo}
se,{V1, . . . ,Vo} ` C : [F ]Fc,Fb,Fr,{K1,...,Km}

{I1,...,In}
Ia 6= Ib
$Ia,$Ib do not occur in F
se,{V1, . . . ,Vo} ` var I;C :

[EXISTS $Ia,$Ib:

F [$Ia/I,$Ib/I’] ]Fc,Fb,Fr,{K1,...,Km}
{I1,...,In}\{I}

Figure 6.18: Verification Rules for Variable Declarations
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Variable Definitions: Verification

I 6∈ {V1, . . . ,Vo}
se,{V1, . . . ,Vo, I} ` C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In,?I
Ia 6= Ib
$Ia,$Ib do not occur in F
E ' T
se,{V1, . . . ,Vo} ` var I=E;C :

[EXISTS $Ia,$Ib: $Ia=T AND

F [$Ia/I,$Ib/I’][I/?I, I’/?I’] ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In,I

I 6∈ {V1, . . . ,Vo}
se,{V1, . . . ,Vo, I} ` C : [F ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

?I 6∈ {I1, . . . , In}
Ia 6= Ib
$Ia,$Ib do not occur in F
E ' T
se,{V1, . . . ,Vo} ` var I=E;C :

[EXISTS $Ia,$Ib: $Ia=T AND

F [$Ia/I,$Ib/I’][I/?I, I’/?I’] ]Fc,Fb,Fr,{K1,...,Km}
{I1,...,In}\{I}

I ∈ {V1, . . . ,Vo}
se,{V1, . . . ,Vo} ` C : [F ]Fc,Fb,Fr,{K1,...,Km}

{I1,...,In}
Ia 6= Ib
$Ia,$Ib do not occur in F
E ' T
se,{V1, . . . ,Vo} ` var I=E;C :

[EXISTS $Ia,$Ib:$Ia=T AND

F [$Ia/I,$Ib/I’] ]Fc,Fb,Fr,{K1,...,Km}
{I1,...,In}\{I}

Figure 6.19: Verification Rules for Variable Definitions
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Exception Handlers: Verification

Iv 6∈ {V1, . . . ,Vo}
se,{V1, . . . ,Vo} ` C1 : [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}

I1,...,In

se,{V1, . . . ,Vo, Iv} ` C2 : [F2 ]Fc2,Fb2,Fr2,{L1,...,Lo}
I1,...,In

Ia 6= Ib
{Ia, Ib}∩{I1, . . . , In}= /0
Is 6= It
$I1, . . . ,$In,#Is do not occur in F1 and F2
$Ia,$Ib,#It do not occur in F2
se,{V1, . . . ,Vo} ` tryC1 catch(Ik Iv)C2 :

[EXISTS $I1, . . . ,$In: EXSTATE #Is:
F1[#Is/next][$I1/I1’, . . . ,$In/In’] AND
IF #Is.throws Ik THEN

EXISTS $Ia,$Ib: EXSTATE #It:
$Ia = #Is.value AND #It.executes AND
F2[#It/now][$Ia/Iv][$I1/I1, . . . ,$In/In][$Ib/Iv’]

[Iv/?Iv, Iv’/?Iv’]
ELSE

I1’=$I1 AND . . . AND In’=$In AND next==#Is

]Fc1 OR Fc2,Fb1 OR Fb2,Fr1 OR Fr2,({K1,...,Km}\{Ik})∪{L1,...,Lo}
I1,...,In

Figure 6.20: Verification Rules for Exception Handlers (1/2)
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Exception Handlers: Verification

Iv ∈ {V1, . . . ,Vo}
se,{V1, . . . ,Vo} ` C1 : [F1 ]Fc1,Fb1,Fr1,{K1,...,Km}

I1,...,In

se,{V1, . . . ,Vo} ` C2 : [F2 ]Fc2,Fb2,Fr2,{L1,...,Lo}
I1,...,In

Ia 6= Ib
{Ia, Ib}∩{I1, . . . , In}= /0
Is 6= It
$I1, . . . ,$In,#Is do not occur in F1 and F2
$Ia,$Ib,#It do not occur in F2
se,{V1, . . . ,Vo} ` try C1 catch(Ik Iv)C2 :

[EXISTS $I1, . . . ,$In: EXSTATE #Is:
F1[#Is/next][$I1/I1’, . . . ,$In/In’] AND
IF #Is.throws Ik THEN

EXISTS $Ia,$Ib: EXSTATE #It:
$Ia = #Is.value AND #It.executes AND
F2[#It/now][$Ia/Iv][$I1/I1, . . . ,$In/In][$Ib/Iv’]

ELSE
I1’=$I1 AND . . . AND In’=$In AND next==#Is

]Fc1 OR Fc2,Fb1 OR Fb2,Fr1 OR Fr2,({K1,...,Km}\{Ik})∪{L1,...,Lo}
I1,...,In

Figure 6.21: Verification Rules for Exception Handlers (2/2)
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Variable Declarations and Definitions: Termination

I 6∈ {V1, . . . ,Vo}
se,{V1, . . . ,Vo, I} ` C ↓ F [?I/I]
se,{V1, . . . ,Vo} ` var I;C ↓ F

I ∈ {V1, . . . ,Vo}
$I does not occur in F
se,{V1, . . . ,Vo} ` C ↓ EXISTS $I: F [$I/I]
se,{V1, . . . ,Vo} ` var I;C ↓ F

I 6∈ {V1, . . . ,Vo}
E ' T
se,{V1, . . . ,Vo, I} ` C ↓ I=T [?I/I] AND F [?I/I]
se,{V1, . . . ,Vo} ` var I=E;C ↓ F

I ∈ {V1, . . . ,Vo}
E ' T
$I does not occur in T and F
se,{V1, . . . ,Vo} ` C ↓ EXISTS $I: I = T [$I/I] AND F [$I/I]
se,{V1, . . . ,Vo} ` var I=E;C ↓ F

Figure 6.22: Termination Rules for Variable Declarations and Definitions
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Exception Handlers: Termination

Iv 6∈ {V1, . . . ,Vo}
se,{V1, . . . ,Vo} ` C1 ↓ F
se,{V1, . . . ,Vo} ` C1 : [S ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

se,{V1, . . . ,Vo, Iv} ` C2 ↓ now.executes AND
EXISTS $I1, . . . ,$In: EXSTATE #Is,#It:

#Is.executes AND
#It.throws Ik AND Iv = #It.value AND
F [#Is/now][$I1/I1, . . . ,$In/In][?Iv/Iv] AND
S[#Is/now,#It/next][$I1/I1, . . . ,$In/In]

[?Iv/Iv,?Iv’/Iv’][I1/I1’, . . . , In/In’]
Is 6= It
$I1, . . . ,$In,#Is,#It do not occur in F and S
se,{V1, . . . ,Vo} ` try C1 catch(Ik Iv)C2 ↓ F

Iv ∈ {V1, . . . ,Vo}
se,{V1, . . . ,Vo} ` C1 ↓ F
se,{V1, . . . ,Vo} ` C1 : [S ]Fc,Fb,Fr,{K1,...,Km}

I1,...,In

se,{V1, . . . ,Vo} ` C2 ↓ now.executes AND
EXISTS $I1, . . . ,$In,$Ia,$Ib: EXSTATE #Is,#It:

#Is.executes AND
#It.throws Ik AND Iv = #It.value AND
F [#Is/now][$I1/I1, . . . ,$In/In][$Ia/Iv] AND
S[#Is/now,#It/next][$I1/I1, . . . ,$In/In]

[$Ia/Iv,$Ib/Iv’][I1/I1’, . . . , In/In’]
Ia 6= Ib∧{Ia, Ib}∩{I1, . . . , In}= /0∧ Is 6= It
$I1, . . . ,$In,$Ia,$Ib,#Is,#It do not occur in F and S
se,{V1, . . . ,Vo} ` try C1 catch(Ik Iv)C2 ↓ F

Figure 6.23: Termination Rules for Exception Handlers
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rules but take into account whether the declaration of a variable I for the com-
mand C shadows a global variable (I 6∈ {V1, . . . ,Vo}) or just another local variable
(I ∈ {V1, . . . ,Vo}). In the first case, any reference I in the formula P characterizing
the current state is replaced by ?I in the formula characterizing the state of the
command C; since the declaration shadows the global variable, for checking the
well-definedness of C the variable set has to be extended to {V1, . . . ,Vo, I}. In the
second case, I is replaced by a fresh mathematical variable $J; since I already
denotes a local variable, the variable set {V1, . . . ,Vo} needs not be extended.

Correspondingly, Figure 6.18 gives the new verification rules for variable decla-
rations. The first two cover the case I 6∈ {V1, . . . ,Vo} where a locally declared
variable I shadows the global variable of the same name; the third rule covers the
case I ∈ {V1, . . . ,Vo} where the local variable shadows another local variable. The
third rule is essentially the same as the original rule for variable declarations.

The first two rules differ in whether the command changes the shadowed global
variable (which is possible if C invokes a method). The first rule applies, if this
is indeed the case as indicated by the reference ?I in the list of modified vari-
ables; this reference can be renamed to I in the list of variables modified by the
declaration (since I and ?I denote the same variable in the context of the dec-
laration). The second rule applies, if the global variable has not been modified
(?I 6∈ {I1, . . . , In}); any potential occurrence of I in the list of variables modified
by C may thus be removed from the list of variables modified by the declaration.
In both cases, any reference ?I respectively ?I’ in the specification of F must be
renamed to I respectively I’ in the specification of the variable declaration.

Figure 6.19 gives the corresponding rules for variable definitions. The rules in
Figures 6.20 and 6.21 are straight-forward generalizations of the rule for exception
handlers; one is applicable if the exception parameter Iv shadows a global variable
of the same name, the other one is applicable, if this is not the case.

The correspondingly generalized rules for the termination calculus are shown in
Figures 6.22 and 6.23; also they can be derived from the original rules by taking
care of the appropriate renaming of a global variable whenever it is shadowed by
a local declaration.

We omit the proofs of the rules discussed above but rather focus on the corre-
sponding rules for the new command “method call” shown in Figures 6.24, 6.25,
6.26, and 6.27. While there is one rule for deriving the well-definedness respec-
tively termination of method calls, the verification of method calls is covered by
two rules, because this judgement depends on the status of the variable Ir that
receives the result of the method calls:

• The rule in Figure 6.25 is applicable if Ir is locally declared or is not in
the frame of the method call (Ir ∈ {V1, . . . ,Vo}∨ Ir 6∈ {I1, . . . , In}). In this
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Method Calls: Well-Definedness

se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
E1

D' F1, . . . ,EP
D' Fp

∀s ∈ State :
[(now.executes AND F) => (F1 AND . . . AND Fp) ](s)

se,{V1, . . . ,Vo} ` Ir = Im(E1, . . . ,Ep)XF

Figure 6.24: Well-Definedness of Method Calls

case, if the method throws an exception, the poststate value of the variable
remains unchanged.

• The rule in Figure 6.26 is applicable if Ir is a global variable that also ap-
pears in the frame of the method (Ir ∈∈ {I1, . . . , In}\{V1, . . . ,Vo}). In this
case, if the method throws an exception, the poststate value of Ir is the value
that the variable has received by the method call.

The soundness of these rules is shown in the following subsections.

6.5.1 Well-Definedness of Method Calls

se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
E1

D' F1, . . . ,EP
D' Fp

∀s ∈ State :
[(now.executes AND F) => (F1 AND . . . AND Fp) ](s)

se,{V1, . . . ,Vo} ` Ir = Im(E1, . . . ,Ep)XF

For proving the soundness of this rule, we first have to give method calls a valua-
tion in the semantics with undefined expressions:
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Method Calls: Verification

se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
L1, . . . ,Lp is a renaming of J1, . . . ,Jp
{J1, . . . ,Jp}∩{L1, . . . ,Lp}= /0
{J1, . . . ,Jp,L1, . . . ,Lp}∩{R}= /0
Ir ∈ {V1, . . . ,Vo}∨ Ir 6∈ {I1, . . . , In}
$J1, . . . ,$Jp,$L1, . . . ,$Lp,$R do not occur in FC,FR
se,{V1, . . . ,Vo} ` Ir = Im(E1, . . . ,Ep) :

[EXISTS $J1, . . . ,$Jp,$L1, . . . ,$Lp,$R:
$J1=T1 AND . . . AND $Jp=Tp AND
(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Ir’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] AND

IF next.executes
THEN Ir’= next.value
ELSE Ir’= Ir

]FALSE,FALSE,FALSE,{K1,...,Km}
({I1,...,In}\{V1,...,Vo})∪{?I:I∈{I1,...,In}∩{V1,...,Vo}}∪{Ir}

Figure 6.25: Verification of Method Calls (1/2)
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Method Calls: Verification

se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
L1, . . . ,Lp is a renaming of J1, . . . ,Jp
{J1, . . . ,Jp}∩{L1, . . . ,Lp}= /0
{J1, . . . ,Jp,L1, . . . ,Lp}∩{R}= /0
Ir ∈ {I1, . . . , In}\{V1, . . . ,Vo}
$J1, . . . ,$Jp,$L1, . . . ,$Lp,$R do not occur in FC,FR
se,{V1, . . . ,Vo} ` Ir = Im(E1, . . . ,Ep) :

[EXISTS $J1, . . . ,$Jp,$L1, . . . ,$Lp,$R:
$J1=T1 AND . . . AND $Jp=Tp AND
(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Ir’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] AND

IF next.executes
THEN Ir’= next.value
ELSE Ir’= $R

]FALSE,FALSE,FALSE,{K1,...,Km}
({I1,...,In}\{V1,...,Vo})∪{?I:I∈{I1,...,In}∩{V1,...,Vo}}

Figure 6.26: Verification of Method Calls (2/2)

Method Calls: Termination

se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
L1, . . . ,Lp is a renaming of J1, . . . ,Jp
$L1, . . . ,$Lp do not occur in FC
∀s ∈ State :

[now.executes AND F =>
FORALL $L1, . . . ,$Lp :

$L1=T1 AND . . . AND $Lp=Tp =>
FC[$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]

[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ](s)
se,{V1, . . . ,Vo} ` Ir = Im(E1, . . . ,Ep) ↓ F

Figure 6.27: Termination of Method Calls
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[ Ir = Im(E1, . . . ,Ep) ]c,me
⊥ (s,s′)⇔

LET v1 = [E1 ]c⊥(s) IN

. . .
LET vp = [Ep ]c⊥(s) IN

IF v1 =⊥∨ . . .∨ vp =⊥ THEN

s′ = expthrow(s)
ELSE

LET 〈v,b〉= me(Im) IN

LET 〈r, t〉= bcall(v,c)(v1, . . . ,vp) IN

∃s0 ∈ State : r(s,s0) ∧
IF throws(control(s0))

THEN s′ = s0
ELSE s′ = write(s0, Ir,value(control(s0)))c

Based on this definition, the soundness of the rule is shown below.

Proof Take c,c′ ∈ Context,me ∈ MethodEnv,s,s′ ∈ State,e ∈ Environmet and
assume

(2) F has no free (mathematical or state) variables

(3) F does not depend on the poststate

(4) specifies(se,me,c)

(5) pushes(c,c′,{V1, . . . ,Vo})
(6) executes(control(s))

(7) [F ]c,c
′
(s)

We have to show

(a.1) [ Ir = Im(E1, . . . ,Ep) ]c
′,me(s,s′)⇒ [ Ir = Im(E1, . . . ,Ep) ]c

′,me
⊥ (s,s′)

(a.2) [ Ir = Im(E1, . . . ,Ep) ]c
′,me
⊥ (s,s′)⇒ [ Ir = Im(E1, . . . ,Ep) ]c

′,me(s,s′)

From the hypotheses, we know

(8) se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
(9) E1

D' F1, . . . ,EP
D' Fp

(10)
∀s ∈ State :

[(now.executes AND F) => (F1 AND . . . AND Fp) ](s)
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From (5) and the definition of pushes, we know

(11) DifferentVariables(c)

(12) DifferentVariables(c′)

From (6), (10), (11), (12) and the definition of [ ], we know

(13) [F ]c,c
′
(s)⇒ [F1 ]c,c

′
(s)∧ . . .∧ [Fp ]c,c

′
(s)

From (7) and (13), we know

(14) [F1 ]c,c
′
(s)∧ . . .∧ [Fp ]c,c

′
(s)

From (9), (11), (12), and the definition of
D', we know

(15) ([E1 ]c
′

D(s)⇔ [F1 ]c,c
′
(s))∧ . . .([Ep ]c

′
D(s)⇔ [Fp ]c,c

′
(s))

From (11), (14) and (15), we know

(16) [E1 ]c
′

D(s)∧ . . .∧ [Ep ]c
′

D(s)

From (16) and the definition of [ ]⊥, we know

(17) [E1 ]c
′
⊥(s) = [E1 ]c

′
(s)∧ . . .∧ [Ep ]c

′
⊥(s) = [Ep ]c

′
(s)

To show (a.1), we take v ∈ View,b ∈ Behavior,r ∈ StateRelation as well as t ∈
StateCondition and s0 ∈ State such that

(18) 〈v,b〉= me(Im)

(19) 〈r, t〉= bcall(v,c′)([E1 ]c
′
(s), . . . , [Ep ]c

′
(s))

(20) r(s,s0)

(21)
IF throws(control(s0))

THEN s′ = s0

ELSE s′ = write(s0, Ir,value(control(s0)))c′

We also define v1, . . . ,vp ∈ Value such that

(22) v1 = [E1 ]c
′
⊥(s)∧ . . .∧ vp = [Ep ]c

′
⊥(s)

and take r0 ∈ StateRelation, t0 ∈ StateCondition such that

(23) 〈r0, t0〉= bcall(v,c′)(v1, . . . ,vp)
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It suffices to show

(a.1.a.1) r0(s,s0)

(a.1.a.2)
IF throws(control(s0))

THEN s′ = s0

ELSE s′ = write(s0, Ir,value(control(s0)))c′

From (17), (19), (20), (22), and (23), we know (a.1.a.1).

From (21) we know (a.1.a.2).

To show (a.2), we define v1, . . . ,vp ∈ Value such that

(24) v1 = [E1 ]c
′
⊥(s)∧ . . .∧ vp = [Ep ]c

′
⊥(s)

(25)

IF v1 =⊥∨ . . .∨ vp =⊥ THEN

s′ = expthrow(s)
ELSE

LET 〈v,b〉= me(Im) IN

LET 〈r, t〉= bcall(v,c′)(v1, . . . ,vp) IN

∃s0 ∈ State : r(s,s0) ∧
IF throws(control(s0))

THEN s′ = s0

ELSE s′ = write(s0, Ir,value(control(s0)))c′

and take r ∈ StateRelation, t ∈ StateCondition such that

(26) 〈r, t〉= bcall(v,c′)([E1 ]c
′
(s), . . . , [Ep ]c

′
(s))

It suffices to show

(a.2.a.1) r(s,s0)

(a.2.a.2)
IF throws(control(s0))

THEN s′ = s0

ELSE s′ = write(s0, Ir,value(control(s0)))c′

From (17) and (24), we know

(27) v1 6=⊥∧ . . .∧ vp 6=⊥

From (18), (25), and (27), we have some r0 ∈ StateRelation, t0 ∈ StateCondition,
and s0 ∈ State with

(28) 〈r0, t0〉= bcall(v,c′)(v1, . . . ,vp)



462 Chapter 6. Methods

(29) r0(s,s0)

(30)
IF throws(control(s0))

THEN s′ = s0

ELSE s′ = write(s0, Ir,value(control(s0)))c′

From (17), (24), (26), (28), and (29), we know (a.2.a.1).

From (25), we know (a.2.a.2). ¤

6.5.2 Verification of Method Calls (Rule 1)

se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
L1, . . . ,Lp is a renaming of J1, . . . ,Jp
{J1, . . . ,Jp}∩{L1, . . . ,Lp}= /0
{J1, . . . ,Jp,L1, . . . ,Lp}∩{R}= /0
Ir ∈ {V1, . . . ,Vo}∨ Ir 6∈ {I1, . . . , In}
$J1, . . . ,$Jp,$L1, . . . ,$Lp,$R do not occur in FC,FR
se,{V1, . . . ,Vo} ` Ir = Im(E1, . . . ,Ep) :

[EXISTS $J1, . . . ,$Jp,$L1, . . . ,$Lp,$R:
$J1=T1 AND . . . AND $Jp=Tp AND
(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Ir’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] AND

IF next.executes
THEN Ir’= next.value
ELSE Ir’= Ir

]FALSE,FALSE,FALSE,{K1,...,Km}
({I1,...,In}\{V1,...,Vo})∪{?I:I∈{I1,...,In}∩{V1,...,Vo}}∪{Ir}

The proof of the soundness of the rule is given below.

Proof Take arbitrary c,c′ ∈ Context, me ∈ MethodEnv, s,s′ ∈ State, as well as
e ∈ Environment and assume

(1) specifies(se,me,c)

(2) pushes(c,c′,{V1, . . . ,Vo})
(3) executes(control(s))

(4) [ Ir = Im(E1, . . . ,Ep) ]c
′,me(s,s′)
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We define

(5)

F :=
(EXISTS $J1, . . . ,$Jp,$L1, . . . ,$Lp,$R:

$J1=T1 AND . . . AND $Jp=Tp AND
(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Ir’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] AND

IF next.executes
THEN Ir’= next.value
ELSE Ir’= Ir) AND

writesonly ({I1, . . . , In}\{V1, . . . ,Vo}) ∪
{?I : I ∈ {I1, . . . , In}∩{V1, . . . ,Vo}}∪{Ir} AND

(next.continues => FALSE) AND
(next.breaks => FALSE) AND
(next.returns => FALSE) AND
(next.throws =>

(next.throws K1 OR . . . OR next.throws Kn))

We have to show

(a.1) F has no free (mathematical or state) variables

(a.2) [F ]c,c
′
(e)(s,s′)

From the hypotheses, we know

(6) se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
(7) E1 ' T1, . . . ,Ep ' Tp

(8) L1, . . . ,Lp is a renaming of J1, . . . ,Jp

(9) {J1, . . . ,Jp}∩{L1, . . . ,Lp}= /0

(9a) {J1, . . . ,Jp,L1, . . . ,Lp}∩{R}= /0

(10) Ir ∈ {V1, . . . ,Vo}∨ Ir 6∈ {I1, . . . , In}
(11) $J1, . . . ,$Jp,$L1, . . . ,$Lp,$R do not occur in FC,FR

We define

(12) c′′ := call(view(c),c′)

(13) v1 := [E1 ]c
′
(s), . . . ,vp := [Ep ]c

′
(s)
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From (4), (12), (13), and the definition of [ ], we know for some v ∈ View,b ∈
Behavior,r ∈ StateRelation, t ∈ StateCondition,s0 ∈ State

(14) 〈v,b〉= me(Im)

(15) 〈r, t〉= bcall(v,c′)(v1, . . . ,vp)

(16) r(s,s0)

(17)
IF throws(control(s0))

THEN s′ = s0

ELSE s′ = write(s0, Ir,value(control(s0)))c′

From (2) and the definition of pushes, we know

(18) DifferentVariables(c)

(19) DifferentVariables(c′)
(21) c = c′ EXCEPT V1, . . . ,Vo

(21a) {[V1 ]c
′
, . . . , [Vo ]c

′} ⊆ space(c)

From (2), (12), and (COC), we know

(20) DifferentVariables(c′′)

From (1), (14) and the definition of specifies, we know

(22) v = view(c)

(23) specifies(se(Im),b,c)

From (12), the definitions of call and view, and (COV), we know

(23a) c EQUALS c′′

From (2), (12), and the definitions of pushes, call, and view, we know

(23b) space(c′′)⊆ space(c)

We define

(24) c′′′ := push(c′′,J1, . . . ,Jp)

(25) s1 := writes(s,J1,v1, . . . ,Jp,vp)c′′′

From (3), (12), (15), (16), (20), (22), (23), (23a), (23b), (24), (25), and finally the
definition of specifies, we know
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(26) {J1, . . . ,Jp}∩{I1, . . . , In}= /0

(27) FC,FR and T have no free (mathematical or state) variables

(28) FC and T do not depend on the poststate

(29) [FC => FR ]c,c
′′′
(e)(s1,s0)

(29a) s = s0 EXCEPT range(c′′)∪ range(view(c))

(30) s = s0 EXCEPTc,c I1, . . . , In

(31) executes(control(s0))∨ throws(control(s0))

(32) throws(control(s0)) ⇒ key(control(s0)) ∈ {K1, . . . ,Km}

From (5) and (27), we know (a.1).

From (5), to show (a.2), it suffices to show

(a.2.1)

[EXISTS $J1, . . . ,$Jp,$L1, . . . ,$Lp,$R:
$J1=T1 AND . . . AND $Jp=Tp AND
(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Lr’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] AND

IF next.executes
THEN Ir’= next.value

ELSE Ir’= Ir ]c,c
′
(e)(s,s′)

(a.2.2) s = s′ EXCEPTc,c′({I1, . . . , In}\{V1, . . . ,Vo}) ∪
{?I : I ∈ {I1, . . . , In}∩{V1, . . . ,Vo}}∪{Ir}

(a.2.3) ¬continues(control(s′))
(a.2.4) ¬breaks(control(s′))
(a.2.5) ¬returns(control(s′))
(a.2.6) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

From (17), (31), (32), (CW), and Lemma “State Control Predicates”, we know
(a.2.3), (a.2.4), (a.2.5), and (a.2.6).

We define

(33) w1 := read(s0,J1)c′′′ , . . .wp := read(s0,Jp)c′′′ ,u := read(s0, Ir)c′′′

(34) e0 = e[J1 7→ v1, . . . ,Jp 7→ vp,L1 7→ w1, . . . ,Lp 7→ wp,R 7→ u ]

To show (a.2.1), from (34) and the definition of [ ], it suffices to show

(a.2.1.1) v1 = [T1 ]c,c
′
(e0)(s,s′)∧ . . .∧ vp = [Tp ]c,c

′
(e0)(s,s′)
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(a.2.1.2)
[(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Ir’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ]c,c′(e0)(s,s′)

(a.2.1.3)
IF executes(control(s′))

THEN read(s′, Ir)c′ = value(control(s′))
ELSE read(s′, Ir)c′ = read(s, Ir)c′

From (7), (13), (18), (19), and the definition of ', we know (a.2.1.1).

From (25) and (WSE), we know

(35) s1 = s EXCEPTc,c′′′ J1, . . . ,Jp

From (25) and (RWE), we know

(36) v1 = read(s1,J1)c′′′ ∧ . . .∧ vp = read(s1,Jp)c′′′

From (8), (11), (29), (33), (35), (36), (REE), (PMVF1”), and finally (PMVF2”),
we know

(37)
[(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’]
[$R/Ir’] ]c,c′′′(e0)(s,s0)

From (20), (24), (COP), and the definition of pushes, we know

(38) c′′ = c′′′ EXCEPT J1, . . . ,Jp

From (37), (38), (MPVF0’), (MPVF1’), and (COF1), we know

(39)
[(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’]
[$R/Ir’] ]c,c′′(e0)(s,s0)

From (12), the definitions of call and view, and (COV), we know

(40) c EQUALS c′′

From (40) and the definitions of EQUALS and AT, we know

(41) c = c′′ AT V1, . . . ,Vo

From (21), (40), and the definitions of EQUALS and EXCEPT, we know
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(42) c′ = c′′ EXCEPT V1, . . . ,Vo

From (39), (41), (42), and (PMGF), we know

(43)
[(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Ir’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ]c,c′(e0)(s,s0)

From (17) and (WS), we know

(44) s′ = s0 EXCEPTc′ Ir

From (17) and (CW), we know

(45) control(s′) = control(s0)

From (43), (44), (45), (MPVF1’), and (PVF4’), we know (a.2.1.2).

To show (a.2.1.3), we show

(a.2.1.3.1) executes(control(s′))⇒ read(s′, Ir)c′ = value(control(s′))

(a.2.1.3.2) ¬executes(control(s′))⇒ read(s′, Ir)c′ = read(s, Ir)c′

To show (a.2.1.3.1), we assume

(46) executes(control(s′))

and show

(a.2.1.3.1.a) read(s′, Ir)c′ = value(control(s′))

From (17), (45), (46), (RW1), and Lemma “State Control Predicates”, we know
(a.2.1.3.1.a).

To show (a.2.1.3.2), we assume

(47) ¬executes(control(s′))

and show

(a.2.1.3.2.a) read(s′, Ir)c′ = read(s, Ir)c′

From (47), (a.2.4), (a.2.5), (a.2.6) (all shown above), and Lemma “State Control
Predicates”, we know
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(48) throws(control(s′))

From (17), (45), and (48), we know

(49) s′ = s0

We proceed by case distinction.

In the first case, we assume

(50) Ir ∈ {V1, . . . ,Vo}

From (29a), (49), and the definitions of EXCEPT and read, it suffices to show

(a.2.1.3.2.b) [ Ir ]c
′ 6∈ range(c′′)∪ range(view(c))

From (19) and the definition of DifferentVariables, we know

(51) [ Ir ]c
′ 6∈ space(c′)

From (12), (51), and the definitions of call and space, it suffices to show

(a.2.1.3.2.c) [ Ir ]c
′ 6∈ range(view(c))

From (18) and the definition of DifferentVariables, it suffices to show

(a.2.1.3.2.d) [ Ir ]c
′ ∈ space(c)

From (21a) and (50), we know (a.2.1.3.2.d).

In the second case, we assume

(52) Ir 6∈ {V1, . . . ,Vo}

From (10) and (52), we know

(53) Ir 6∈ {I1, . . . , In}

From (30), (53), and (RSE), we know

(54) read(s, Ir)c = read(s0, Ir)c

From (21), (52), and the definition of EXCEPT, we know

(55) [ Ir ]c = [ Ir ]c
′
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From (49), (54), (55), and the definition of read, we know (a.2.1.3.2.a).

To show (a.2.2), from the definition of EXCEPT, it suffices to take arbitrary x ∈
Variable with

(56) x 6∈ {[ I ]c
′
: I ∈ {I1, . . . , In}\{V1, . . . ,Vo}}

(57) x 6∈ {[ I ]c : I ∈ {I1, . . . , In}∩{V1, . . . ,Vo}}
(58) x 6= [ Ir ]c

′

(59) store(s)(x) 6= store(s′)(x)

and show a contradiction.

From (56) and (57), we know

(60) x 6∈ {[ I1 ]c
′
, . . . , [ In ]c

′}∨ x ∈ {[V1 ]c
′
, . . . , [Vo ]c

′}
(61) x 6∈ {[ I1 ]c, . . . , [ In ]c}∨ x 6∈ {[V1 ]c, . . . , [Vo ]c}

From (17), (58), and the definition of write, we know

(62) store(s′)(x) = store(s0)(x)

From (60), we have two cases.

In the first case, we assume

(63) x ∈ {[V1 ]c
′
, . . . , [Vo ]c

′}
From (19), (63), and the definition of DifferentVariables, we know

(64) x 6∈ space(c′)

From (2), (63) and the definition of pushes, we know

(65) x ∈ space(c)

From (18), (65), and the definition of DifferentVariables, we know

(66) x 6∈ range(view(c))

From (12), (64), (66), and the definitions of call and range, we know

(67) x 6∈ range(c′′)

From (29a), (66), (67), and the definition of EXCEPT, we know
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(68) store(s)(x) = store(s0)(x)

But (62) and (68) contradict (59).

In the second case, we assume

(69) x 6∈ {[V1 ]c
′
, . . . , [Vo ]c

′}
(70) x 6∈ {[ I1 ]c

′
, . . . , [ In ]c

′}

From (61), we have two subcases.

In the first subcase, we assume

(71) x 6∈ {[ I1 ]c, . . . , [ In ]c}

From (30), (71), and the definition of EXCEPT, we know

(72) store(s)(x) = store(s0)(x)

But (62) and (72) contradict (59).

In the second subcase, we assume

(73) x ∈ {[ I1 ]c, . . . , [ In ]c}
(74) x 6∈ {[V1 ]c, . . . , [Vo ]c}

From (73) and (74), we have some I ∈ Identifier such that

(75) x = [ I ]c

(76) I = I1∨ . . .∨ I = In

(77) I 6= V1∧ . . .∧ I 6= Vo

From (21), (75), (77), and the definition of EXCEPT, we know

(78) x = [ I ]c
′

But (76) and (78) contradict (69). ¤
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6.5.3 Verification of Method Calls (Rule 2)

se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
L1, . . . ,Lp is a renaming of J1, . . . ,Jp
{J1, . . . ,Jp}∩{L1, . . . ,Lp}= /0
{J1, . . . ,Jp,L1, . . . ,Lp}∩{R}= /0
Ir ∈ {I1, . . . , In}\{V1, . . . ,Vo}
$J1, . . . ,$Jp,$L1, . . . ,$Lp,$R do not occur in FC,FR
se,{V1, . . . ,Vo} ` Ir = Im(E1, . . . ,Ep) :

[EXISTS $J1, . . . ,$Jp,$L1, . . . ,$Lp,$R:
$J1=T1 AND . . . AND $Jp=Tp AND
(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Ir’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] AND

IF next.executes
THEN Ir’= next.value
ELSE Ir’= $R

]FALSE,FALSE,FALSE,{K1,...,Km}
({I1,...,In}\{V1,...,Vo})∪{?I:I∈{I1,...,In}∩{V1,...,Vo}}

The proof of the soundness of the rule is given below.

Proof Take arbitrary c,c′ ∈ Context, me ∈ MethodEnv, s,s′ ∈ State, as well as
e ∈ Environment and assume

(1) specifies(se,me,c)

(2) pushes(c,c′,{V1, . . . ,Vo})
(3) executes(control(s))

(4) [ Ir = Im(E1, . . . ,Ep) ]c
′,me(s,s′)

We define
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(5)

F :=
(EXISTS $J1, . . . ,$Jp,$L1, . . . ,$Lp,$R:

$J1=T1 AND . . . AND $Jp=Tp AND
(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Ir’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] AND

IF next.executes
THEN Ir’= next.value
ELSE Ir’= $R) AND

writesonly ({I1, . . . , In}\{V1, . . . ,Vo}) ∪
{?I : I ∈ {I1, . . . , In}∩{V1, . . . ,Vo}} AND

(next.continues => FALSE) AND
(next.breaks => FALSE) AND
(next.returns => FALSE) AND
(next.throws =>

(next.throws K1 OR . . . OR next.throws Kn))

We have to show

(a.1) F has no free (mathematical or state) variables

(a.2) [F ]c,c
′
(e)(s,s′)

From the hypotheses, we know

(6) se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
(7) E1 ' T1, . . . ,Ep ' Tp

(8) L1, . . . ,Lp is a renaming of J1, . . . ,Jp

(9) {J1, . . . ,Jp}∩{L1, . . . ,Lp}= /0

(9a) {J1, . . . ,Jp,L1, . . . ,Lp}∩{R}= /0

(10) Ir ∈ {I1, . . . , In}\{V1, . . . ,Vo}
(11) $J1, . . . ,$Jp,$L1, . . . ,$Lp,$R do not occur in FC,FR

We define

(12) c′′ := call(view(c),c′)

(13) v1 := [E1 ]c
′
(s), . . . ,vp := [Ep ]c

′
(s)

From (4), (12), (13), and the definition of [ ], we know for some v ∈ View,b ∈
Behavior,r ∈ StateRelation, t ∈ StateCondition,s0 ∈ State
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(14) 〈v,b〉= me(Im)

(15) 〈r, t〉= bcall(v,c′)(v1, . . . ,vp)

(16) r(s,s0)

(17)
IF throws(control(s0))

THEN s′ = s0

ELSE s′ = write(s0, Ir,value(control(s0)))c′

From (2), (12), and the definition of pushes, we know

(18) DifferentVariables(c)

(19) DifferentVariables(c′)
(21) c = c′ EXCEPT V1, . . . ,Vo

(21a) {[V1 ]c
′
, . . . , [Vo ]c

′} ⊆ space(c)

From (2), (12), and (COC), we know

(20) DifferentVariables(c′′)

From (1), (14) and the definition of specifies, we know

(22) v = view(c)

(23) specifies(se(Im),b,c)

From (12), the definitions of call and view, and (COV), we know

(23a) c EQUALS c′′

From (2), (12), and the definitions of pushes, call, and view, we know

(23b) space(c′′)⊆ space(c)

We define

(24) c′′′ := push(c′′,J1, . . . ,Jp)

(25) s1 := writes(s,J1,v1, . . . ,Jp,vp)c′′′

From (3), (12), (15), (16), (20), (22), (23), (23a), (23b), (24), (25), and finally the
definition of specifies, we know

(26) {J1, . . . ,Jp}∩{I1, . . . , In}= /0
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(27) FC,FR and T have no free (mathematical or state) variables

(28) FC and T do not depend on the poststate

(29) [FC => FR ]c,c
′′′
(e)(s1,s0)

(29a) s = s0 EXCEPT range(c′′)∪ range(view(c))

(30) s = s0 EXCEPTc,c I1, . . . , In

(31) executes(control(s0))∨ throws(control(s0))

(32) throws(control(s0)) ⇒ key(control(s0)) ∈ {K1, . . . ,Km}

From (5) and (27), we know (a.1).

From (5), to show (a.2), it suffices to show

(a.2.1)

[EXISTS $J1, . . . ,$Jp,$L1, . . . ,$Lp,$R:
$J1=T1 AND . . . AND $Jp=Tp AND
(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Lr’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] AND

IF next.executes
THEN Ir’= next.value

ELSE Ir’= $R ]c,c′(e)(s,s′)

(a.2.2) s = s′ EXCEPTc,c′({I1, . . . , In}\{V1, . . . ,Vo}) ∪
{?I : I ∈ {I1, . . . , In}∩{V1, . . . ,Vo}}

(a.2.3) ¬continues(control(s′))

(a.2.4) ¬breaks(control(s′))

(a.2.5) ¬returns(control(s′))

(a.2.6) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

From (17), (31), (32), (CW), and Lemma “State Control Predicates”, we know
(a.2.3), (a.2.4), (a.2.5), and (a.2.6).

We define

(33) w1 := read(s0,J1)c′′′ , . . .wp := read(s0,Jp)c′′′,u := read(s0, Ir)c′′′

(34) e0 = e[J1 7→ v1, . . . ,Jp 7→ vp,L1 7→ w1, . . . ,Lp 7→ wp,R 7→ u ]

To show (a.2.1), from (34) and the definition of [ ], it suffices to show

(a.2.1.1) v1 = [T1 ]c,c
′
(e0)(s,s′)∧ . . .∧ vp = [Tp ]c,c

′
(e0)(s,s′)
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(a.2.1.2)
[(FC => FR)

[$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’][$R/Ir’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ]c,c′(e0)(s,s′)

(a.2.1.3)
IF executes(control(s′))

THEN read(s′, Ir)c′ = value(control(s′))
ELSE read(s′, Ir)c′ = read(s0, Ir)c′′′

The proofs of (a.2.1.1) and (a.2.1.2) proceed as shown in the proof of the sound-
ness of Rule 1.

To show (a.2.1.3), we show

(a.2.1.3.1) executes(control(s′))⇒ read(s′, Ir)c′ = value(control(s′))

(a.2.1.3.2) ¬executes(control(s′))⇒ read(s′, Ir)c′ = read(s0, Ir)c′′′

The proof of (a.2.1.3.1) proceeds as shown in the proof of the soundness of Rule 1.

To show (a.2.1.3.2), we assume

(47) ¬executes(control(s′))

and show

(a.2.1.3.2.a) read(s′, Ir)c′ = read(s0, Ir)c′′′

From (47), (a.2.4), (a.2.5), (a.2.6) (all shown above), and Lemma “State Control
Predicates”, we know

(48) throws(control(s′))

From (17), (45), and (48), we know

(49) s′ = s0

From (49), it suffices to show

(a.2.1.3.2.b) read(s′, Ir)c′ = read(s′, Ir)c′′′

From the definition of read, it suffices to show

(a.2.1.3.2.c) [ Ir ]c
′
= [ Ir ]c

′′′

From (10), we know
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(50) Ir ∈ {I1, . . . , In}
(51) Ir 6∈ {V1, . . . ,Vo}

From (26) and (50), we know

(52) Ir 6∈ {J1, . . . ,Jp}

From (21), (51), and the definition of EXCEPT, we know

(53) [ Ir ]c
′
= [ Ir ]c

From (12) and the definition of call, we know

(54) [ Ir ]c
′′
= [ Ir ]c

From (20), (24), (COP), and the definition of pushes, we know

(55) c′′′ = c′′ EXCEPT J1, . . . ,Jp

From (52), (55), and the definition of EXCEPT, we know

(56) [ Ir ]c
′′′

= [ Ir ]c
′′

From (53), (54), and (56), we know (a.2.1.3.2.c).

To show (a.2.2), from the definition of EXCEPT, it suffices to take arbitrary x ∈
Variable with

(57) x 6∈ {[ I ]c
′
: I ∈ {I1, . . . , In}\{V1, . . . ,Vo}}

(58) x 6∈ {[ I ]c : I ∈ {I1, . . . , In}∩{V1, . . . ,Vo}}
(59) store(s)(x) 6= store(s′)(x)

and show a contradiction.

In case x 6= [ Ir ]c
′
, a contradiction can be shown as in the proof of the soundness

of Rule (1).

We may thus assume

(60) x = [ Ir ]c
′

Then (10) and (60) contradict (57). ¤
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6.5.4 Termination of Method Calls

se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
L1, . . . ,Lp is a renaming of J1, . . . ,Jp
$L1, . . . ,$Lp do not occur in FC
∀s ∈ State :

[now.executes AND F =>
FORALL $L1, . . . ,$Lp :

$L1=T1 AND . . . AND $Lp=Tp =>
FC[$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]

[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ](s)
se,{V1, . . . ,Vo} ` Ir = Im(E1, . . . ,Ep) ↓ F

The proof of the soundness of the rule is given below.

Proof Take arbitrary c,c′ ∈ Context,me ∈MethodEnv,s ∈ State and assume

(2) F has no free (mathematical or state) variables

(3) F does not depend on the poststate

(4) specifies(se,me,c)

(5) pushes(c,c′,{V1, . . . ,Vo})
(6) executes(control(s))

(7) [F ]c,c
′
(s)

We have to show

(a) [ Ir = Im(E1, . . . ,Ep) ]c
′,me

T (s)

From the definition of [ ]T, it suffices to show for some v ∈ View, b ∈ Behavior,
r ∈ StateRelation, t ∈ StateCondition with

(8) 〈v,b〉= me(Im)

(9) 〈r, t〉= bcall(v,c′)([E1 ]c
′
(s), . . . , [Ep ]c

′
(s))

that we have

(b) t(s)

From the hypotheses, we know
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(10) se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
(14) E1 ' T1, . . . ,Ep ' Tp

(15) L1, . . . ,Lp is a renaming of J1, . . . ,Jp

(16) $L1, . . . ,$Lp do not occur in FC

(17)

∀s ∈ State :
[now.executes AND F =>

FORALL $L1, . . . ,$Lp :
$L1=T1 AND . . . AND $Lp=Tp =>
FC[$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]

[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ](s)

From (4) and the definition of specifies, we know

(18) specifies(se(Im),me(Im),c)

From (10) and (18), we know

(19) specifies(〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR〉〉,me(Im),c)

From (8), (19) and the definition of specifies, we know

(11) {J1, . . . ,Jp}∩{I1, . . . , In}= /0

(12) FC,FR and T have no free (mathematical or state) variables

(13) FC and T do not depend on the poststate

(20) v = view(c)

(21) specifies(se(Im),b,c)

We define

(22) c′′ := call(v,c′)

From (20), (22), the definitions of call and view, and (COV), we know

(22a) c EQUALS c′′

From (5) and the definition of pushes, we know

(23) DifferentVariables(c)

(24) DifferentVariables(c′)
(25) c = c′ EXCEPT V1, . . . ,Vo
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From (5), (20), (22) and (COC), we know

(26) DifferentVariables(c′′)

We define

(27) v1 := [E1 ]c
′
(s), . . . ,vp := [Ep ]c

′
(s)

From (6), (9), (11), (21), (22a), (25), (26), and the definition of specifies, we know
for for some c′′′ ∈ Context and s1 ∈ State

(28) c′′′ = push(c′′,J1, . . . ,Jp)

(29) s1 = writes(s,J1,v1, . . . ,Jp,vp)c′′′

(30) ∀e ∈ Environment : [FC ]c,c
′′′
(e)(s1,s1)⇒ t(s)

From (30) and the definition of [ ], to show (b), it suffices to show for arbitrary
e ∈ Environment

(c) [FC ]c,c
′′′
(e)(s1,s1)

From (6), (7), (17), and the definition of [ ], we know

(31)

[FORALL $L1, . . . ,$Lp :
$L1=T1 AND . . . AND $Lp=Tp =>
FC[$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]

[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ]c,c′(e)(s,s)

From (14) and (27), we know

(32) v1 = [T1 ]c,c
′
(e)(s,s)∧ . . .∧ vp = [Tp ]c,c

′
(e)(s,s)

(33) T1, . . . ,Tp have no free (mathematical or state) variables

We define

(34) e0 := e[L1 7→ v1, . . . ,Lp 7→Vp ]

From (31), (32), (33), (34), the definition of [ ], and (MVT’), we know

(35)
[FC[$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]

[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ]c,c′(e0)(s,s)

From (20), (22), and the definitions of context and view, we know
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(36) view(c) = view(c′′)

From (36) and (COV), we know

(37) c EQUALS c′′

From (37) and the definitions of EQUALS, and AT, we know

(38) c = c′′ AT V1, . . . ,Vo

From (25), (37), and the definitions of EQUALS, and EXCEPT, we know

(39) c′ = c′′ EXCEPT V1, . . . ,Vo

From (35), (38), (39), and (PMGF), we know

(40) [FC[$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’] ]c,c
′′
(e0)(s,s)

From (26), (28) and (COP), we know

(41) pushes(c′′,c′′′,{J1, . . . ,Jp})

From (41) and the definition of pushes, we know

(42) c′′ = c′′′ EXCEPT J1, . . . ,Jp

From (40), (42), (MPVF0’), (MPVF1’), and (COF1), we know

(43) [FC[$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’] ]c,c
′′′
(e0)(s,s)

From (29) and (RWE), we know

(44) read(s1,J1)c′′′ = v1∧ . . .∧ read(s1,Jp)c′′′ = vp

From (29) and (WSE), we know

(45) s1 = s EXCEPTc′′′ J1, . . . ,Jp

From (29) and (CWE), we know

(46) control(s1) = control(s)

From (15), (16), (34), (43), (44), (45), (46), and finally (PMVF1”) and (PMVF2”),
we know (c). ¤
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6.5.5 Further Judgements

Figure 6.28 generalizes the judgements for preconditions, postconditions and as-
sertions from the command language to the method language with contexts. The
corresponding generic rules for computing pre- and postconditions are shown in
Figure 6.29. They are straight-forward generalizations of the basic rules; we omit
the proofs of their soundness. Likewise, the existing rules of the assertion calculus
can be generalized in a straight-forward way to the method language; Figure 6.29
gives a new rule for method calls.

6.6 Reasoning about Programs

In this section, we lift the reasoning calculus from the level of individual methods
to the level of whole programs. For this purpose, we first define in Figure 6.30 an
auxiliary function [Ms ]S which computes the environment of method specifica-
tions established by the method declarations Ms.

Next, we introduce in Figure 6.31 a judgement

[F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

§ K1,...,Km
I1,...,In

which establishes that a command specification [F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

entails that
the command does not yield a continuing or a breaking state, that it does not
modify variables apart from those denoted by I1, . . . , In, and that it does not raise
exceptions apart from those with keys K1, . . . ,Km. A command satisfying this
specification thus represents a suitable body for a method specified as

writesonly I1, . . . , In throwsonly K1, . . . ,Km

The condition on the result state of the command ensures that the statements
continue and break cannot escape the body of a while loop. The condition
denoted by the method specification is in particular satisfied if {M1, . . . ,Mo} ⊆
{I1, . . . , In} and {L1, . . . ,Lr} ⊆ {K1, . . . ,Km}. The judgement however gives the
additional freedom of satisfying the condition, rather than by syntactic constraints
on the method body, by proof from the specification formula F .

The derivation of this judgement is shown in Figure 6.31 with the aid of four
auxiliary judgments derived in Figure 6.32:

• F §c Fc: establishes that the specification
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Method Language: Further Judgements

se,{V1, . . . ,Vo} ` PRE(C,Q) = P ⇔
Q has no primed program variables and no occurr. of next⇒

P has no primed prog. variables and no occurr. of next ∧
∀c,c′ ∈ Context,me ∈MethodEnv :

specifies(se,me,c)∧pushes(c,c′,{V1, . . . ,Vo})⇒
∀e ∈ Environment,s,s′ ∈ State :

executes(control(s))⇒
([P ]c,c

′
(e)(s,s)∧ [C ]c

′,me(s,s′)⇒
[Q ]c,c

′
(e)(s′,s′))

se,{V1, . . . ,Vo} ` POST(C,P) = Q ⇔
P has no primed program variables and no occurr. of next⇒

Q has no primed prog. variables and no occurr. of next ∧
∀c,c′ ∈ Context,me ∈MethodEnv :

specifies(se,me,c)∧pushes(c,c′,{V1, . . . ,Vo})⇒
∀e ∈ Environment,s,s′ ∈ State :

executes(control(s)) ⇒
([P ]c,c

′
(e)(s,s)∧ [C ]c

′,me(s,s′)⇒
[Q ]c,c

′
(e)(s′,s′))

se,{V1, . . . ,Vo} ` TRANS(C,P) = C′ ⇔
P has no primed program variables and no occurr. of next⇒
∀c,c′ ∈ Context,me ∈MethodEnv :

specifies(se,me,c)∧pushes(c,c′,{V1, . . . ,Vo})⇒
∀s,s′ ∈ State : executes(control(s))⇒

([P ]c,c
′
(s)∧ [C ]c

′,me(s,s′)⇔ [C′ ]c
′,me(s,s′))

Figure 6.28: Further Judgements for the Method Language



6.6 Reasoning about Programs 483

Method Language: Further Judgements

se,{V1, . . . ,Vo} ` C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in Q
#Is do not occur in Q
se,{V1, . . . ,Vo} ` PRE(C,Q) =

FORALL $J1, . . . ,$Jn: ALLSTATE #Is:
F [#Is/next][$J1/I1’, . . . ,$Jn/In’] =>
Q[#Is/now][$J1/I1, . . . ,$Jn/In]

se,{V1, . . . ,Vo} ` C : [F ]Fc,Fb,Fr,{K1,...,Km}
I1,...,In

J1, . . . ,Jn is a renaming of I1, . . . , In
$J1, . . . ,$Jn do not occur in P
#Is do not occur in P
se,{V1, . . . ,Vo} ` POST(C,P) =

EXISTS $J1, . . . ,$Jn: EXSTATE #Is:
P[#Is/now][$J1/I1, . . . ,$Jn/In] AND
F [#Is/now,now/next]

[$J1/I1, . . . ,$Jn/In, I1/I1’, . . . , In/In’]

se,{V1, . . . ,Vo} ` TRANS(Ir = Im(E1, . . . ,Ep),P) =
assert P+; Ir = Im(E1, . . . ,Ep)

Figure 6.29: Further Judgements for the Method Language
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Method Specifications: Definitions

[ ]S : Methods→ SpecEnv→ SpecEnv
[ ]S(se) = se
[Ms M ]S(se) = [M ]S([Ms ]S(se))

[ ]S : Method→ SpecEnv→ SpecEnv
[method Im(J1, . . . ,Jp) S {C} ]S(se) =

se[ Im 7→ [method Im(J1, . . . ,Jp) S {C} ]S ]

[ ]S : Method→MethodSpec
[method Im(J1, . . . ,Jp) S {C} ]S = 〈(J1, . . . ,Jp), [S ]〉

[ ] : Specification→ Spec
[writesonly I1, . . . , In,?J1, . . . ,?Jo throwsonly K1, . . . ,Km

assumes FC implements FR decreases T ] =
〈(I1, . . . , In,?J1, . . . ,?Jo),(K1, . . . ,Km),FC,FR,T 〉

Figure 6.30: Definitions for Method Specifications (2/2)

next.continues => Fc

entails that the command does not result in a continuing state.

• F §b Fb: establishes that the specification

next.breaks => Fb

entails that the command does not result in a breaking state.

• F §s
M1,...,Mo
I1,...,In

: establishes that the specification

F AND writesonly M1, . . . ,Mo

entails that the command does not change variables other than those denoted
by I1, . . . , In.

• F §e
L1,...,Lr
K1,...,Km

: establishes that the specification

F AND
(next.throws =>

(next.throws L1 OR . . . OR next.throws Lr))
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Method Specifications: Judgements

[F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

§ K1,...,Km
I1,...,In

⇔
∀c ∈ Context,s,s′ ∈ State,e ∈ Environment :

executes(control(s)) ∧
[ [F ]Fc,Fb,Fr,{L1,...,Lr}

M1,...,Mo
]
c,c

(e)(s,s′)⇒
¬continues(control(s′)) ∧
¬breaks(control(s′)) ∧
s = s′ EXCEPTc,c I1, . . . , In ∧
(throws(control(s′)) ⇒

key(control(s′)) ∈ {K1, . . . ,Km})

Method Specifications: Rules

F §c Fc
F §b Fb

F §s
M1,...,Mo
I1,...,In

F §e
L1,...,Lr
K1,...,Km

[F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

§ K1,...,Km
I1,...,In

Figure 6.31: Judgements and Rules for Method Specifications
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Method Specifications: Rules

F §c FALSE

∀c ∈ Context,e ∈ Environment,s,s′ ∈ Store :
[now.executes AND F =>

!next.continues ]c,c(e)(s,s′)
F §c Fc

F §b FALSE

∀c ∈ Context,e ∈ Environment,s,s′ ∈ Store :
[now.executes AND F =>

!next.breaks ]c,c(e)(s,s′)
F §b Fb

∀c ∈ Context,e ∈ Environment,s,s′ ∈ Store :
[now.executes AND F =>

M1=Mo’ AND . . . AND M1=Mo’ ]c,c(e)(s,s′)
F §s

I1,...,Im,M1,...,Mo
I1,...,Im,Im+1,...,In

∀c ∈ Context,e ∈ Environment,s,s′ ∈ Store :
[now.executes AND F =>

!next.throws L1 AND . . . AND
!next.throws Lr ]c,c(e)(s,s′)

F §s
K1,...,Kn,L1,...,Lr
K1,...,Kn,Kn+1,...,Km

Figure 6.32: Rules for Method Specifications
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entails that the command does not change variables other than those denoted
by K1, . . . ,Km.

The soundness of the rule is fairly obvious; we omit the proof.

In Figure 6.33, we introduce the three core judgements of the method language:

• se ` M : se′: this judgement states that in specification environment se the
method M is correct with respect to its specification and that the method
declaration yields a new specification environment se′.

• se ` Ms : se′: this judgement states that in specification environment se
the methods Ms are correct with respect to their specifications and that the
method declarations yield a new specification environment se′.

• se ` Ms S {C}: this is the “top-level” judgement of our calculus. Given a
specification environment se and program Ms S {C}, it states that the meth-
ods Ms are correct with respect to their specifications and that the program
body C is correct with respect to its specification S.

As shown in the definitions of the judgements, the notion of the “correctness of
a method” is captured by the previously defined predicate specifies, while the
“correctness of the program body” is captured by the predicate correctness defined
in Figure 6.33. In both cases, it is essentially claimed that the transition relation
induced by the method/program body is captured by the predicate FC =>FR, that
the termination condition is captured by FC and that the poststate is constrained
by the frame condition and list of exceptions stated in the specification.

Actually, also our notion of method/program correctness should also comprise a
“well-definedness” condition that states that the execution of the method/program
body C does not encounter undefined expression values, i.e. that the transition
relation [C ] coincides with the transition relation [C ]⊥ (and likewise for the ter-
mination condition). This, however, would require to extend our definition of
method environments in order to record for every method two state relations and
two termination conditions (rather than one). To keep our definitions simple, we
omit the claim (but nevertheless keep the well-definedness judgement in the rules
for method declarations and programs, even if it is not required for proving the
soundness of the rules).

The rules for the three judgements are given in Figures 6.34 and 6.35. The sound-
ness of the two rules for the judgement on the correctness of method declaration
sequences Ms is obvious from the the rules and definition of [Ms ]S; we thus focus
in the following on the soundness of the rules for the other two judgements on the
correctness of method declarations and on the correctness of programs.

The soundness proofs depend on the following lemmas.
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Method Language: Definitions

correctness⊆ Spec×StateRelation×StateCondition×Context
correctness(〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉,r, t,c)⇔
∀s ∈ State,e ∈ Environment : executes(control(s))⇒

(∀s′ ∈ State : r(s,s′)⇒
[FC => FR ]c,c(e)(s,s′) ∧
s = s′ EXCEPTc,c I1, . . . , In ∧
¬continues(control(s′))∧¬breaks(control(s′)) ∧
(throws(control(s′))⇒

key(control(s′)) ∈ {K1, . . . ,Km}))
∧ ([FC ]c,c(e)(s,s)⇒ t(s))

Method Language: Judgements

se ` M : se′⇔
se′ = [M ]S(se) ∧
∀c ∈ Context,me ∈MethodEnv :

DifferentVariables(c)∧ specifies(se,me,c)⇒
specifies(se′, [M ]view(c)(me),c)

se ` Ms : se′⇔
se′ = [Ms ]S(se) ∧
∀c ∈ Context,me ∈MethodEnv :

DifferentVariables(c)∧ specifies(se,me,c)⇒
specifies(se′, [Ms ]view(c)(me),c)

se ` Ms S {C}⇔
∀c ∈ Context,me ∈MethodEnv :

DifferentVariables(c)∧ specifies(se,me,c)⇒
LET me′ = [Ms ]view(c)(me) IN

specifies([Ms ]S(se),me′,c) ∧
correctness([S ], [C ]c,me′, [C ]c,me′

T ,c)

Figure 6.33: Judgements for the Method Language
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Lemma (Commands with Methods) A command can only change variables
that are in the range of its context or in the views of the methods that can be called
by the command:

∀C ∈ Command,me ∈MethodEnv,c′ ∈ Context,s,s′ ∈ State :
LET V =

⋃
I∈Identifier range(view(me(I))) IN

DifferentVariables(c′)∧ [C ]c
′,me(s,s′)⇒

s = s′ EXCEPT range(c′)∪V

Proof From the fact that the only variables referenced in the command are the
results of the application of some view and that all views in the command are
derived from either c′ or from the view of some method by applications of push
which, by Lemma “Range of Contexts” does not widen the range. ¤

Lemma (Changing Local Variables) When leaving the scope of a declaration,
the view on the locally declared identifiers is unchanged:

∀c,c′,c′′ ∈ Context, I1, . . . , In,J1, . . . ,Jm,V1, . . . ,Vo ∈ Identifier :
∀s0,s1 ∈ State :

DifferentVariables(c)∧DifferentVariables(c′) ∧
range(c′)⊆ range(c)∧ space(c′)⊆ space(c) ∧
pushes(c′,c′′,{V1, . . . ,Vo}) ∧
s0 = s1 EXCEPTc,c′′ I1, . . . , In,?J1, . . . ,?Jm ⇒

s0 = s1 EXCEPTc,c′

{I1, . . . , In}\{V1, . . . ,Vo}∪{?J1, . . . ,?Jm}

Proof Take arbitrary c,c′ ∈ Context, I1, . . . , In,J1, . . . ,Jm,V1, . . . ,Vo ∈ Identifier
and s0,s1 ∈ State. We assume

(1) DifferentVariables(c)

(2) DifferentVariables(c′)
(3) range(c′)⊆ range(c)

(4) space(c′)⊆ space(c)

(5) pushes(c′,c′′,{V1, . . . ,Vo})
(6) s0 = s1 EXCEPTc,c′′ I1, . . . , In,?J1, . . . ,?Jm

and show
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(a) s0 = s1 EXCEPTc,c′ {I1, . . . , In}\{V1, . . . ,Vo}∪{?J1, . . . ,?Jm}

From the definition of EXCEPT, it suffices to assume for arbitrary x ∈ Variable

(7) x 6∈ {[ I1 ]c
′
, . . . , [ In ]c

′}\{[V1 ]c
′
, . . . ,V c′

o }∪{[J1 ]c, . . . , [Jm ]c}
(8) x 6∈ space(c′)
(9) store(s0)(x) 6= store(s1)(x)

and show a contradiction.

From (5) and the definition of pushes, we know

(10) DifferentVariables(c′′)
(11) c′ = c′′ EXCEPT V1, . . . ,Vo

(12) {[V1 ]c
′′
, . . . , [Vo ]c

′′}∪ space(c′′)⊆ space(c′)

From (8) and (12), we know

(13) x 6∈ space(c′′)

From (7), we know

(14) x 6∈ {[ I1 ]c
′
, . . . , [ In ]c

′}∨ x ∈ {[V1 ]c
′
, . . . , [Vo ]c

′}
(15) x 6∈ {[J1 ]c, . . . , [Jm ]c}

From (6), (9), (13), (15), and the definition of EXCEPT, we know

(16) x ∈ {[ I1 ]c
′′
, . . . , [ In ]c

′′}

From (14), we have two cases.

In the first case, we assume

(17) x ∈ {[V1 ]c
′
, . . . , [Vo ]c

′}

From (8) and (12), we know

(18) x 6∈ {[V1 ]c
′′
, . . . , [Vo ]c

′′}

From (16) and (18), we have some I ∈ Identifier such that

(19) x = [ I ]c
′′
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(20) I 6∈ {V1, . . . ,Vo}

From (11), (19), and (20), we know

(21) x = [ I ]c
′

But (2), (17), (20), and (21), contradict the definition of DifferentVariables.

In the second case, we assume

(22) x 6∈ {[V1 ]c
′
, . . . , [Vo ]c

′}
(23) x 6∈ {[ I1 ]c

′
, . . . , [ In ]c

′}

From (16), we have some I ∈ Identifier such that

(24) x = [ I ]c
′′

(25) I ∈ {I1, . . . , In}

From (8), (12), and (24), we know

(26) I 6∈ {V1, . . . ,Vo}

From (11), (24), (26), and the definition of EXCEPT, we know

(27) x = [ I ]c
′

But (23), (25), and (27) form a contradiction. ¤
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Method Language: Rules

S = writesonly I1, . . . , In throwsonly K1, . . . ,Km
assumes FC implements FR decreases T

{J1, . . . ,Jp}∩{I1, . . . , In}= /0
FC,FR and T have no free (mathematical or state) variables
FC,FR and T do not depend on the poststate
se,{J1, . . . ,Jp} ` C : [F ]Fc,Fb,Fr,{L1,...,Lr}

M1,...,Mo

L1, . . . ,Lp is a renaming of J1, . . . ,Jp
$J1, . . . ,$Jp,$L1, . . . ,$Lp, do not occur in F
[EXISTS $J1, . . . ,$Jp,$L1, . . . ,$Lp:

F [$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’]
]Fc,Fb,Fr,{L1,...,Lr}
{M1,...,Mo}\{J1,...,Jp} § K1,...,Km

I1,...,In

se,{J1, . . . ,Jp} ` CXFC
#Is does not occur in F
∀s,s′ ∈ State,e ∈ Environment,c0,c1 ∈ Context :

[(now.executes AND
EXSTATE #Is:

F [#Is/next] AND
IF #Is.throws THEN

next == #Is
ELSE

next.executes AND
next.value = #Is.value) =>

(FC => FR) ]c0,c1(e)(s,s′)
se,{J1, . . . ,Jp} ` C ↓ FC
se ` method Im(J1, . . . ,Jp) S {C} :

se[ Im 7→ 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉 ]

se ` : se

se ` Ms : se′
se′ ` M : se′′

se ` Ms;M : se′′

Figure 6.34: Rules for the Method Language
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Method Language: Rules

se ` Ms : se′
S = writesonly I1, . . . , In throwsonly K1, . . . ,Km

assumes FC implements FR decreases T
FC,FR and T have no free (mathematical or state) variables
FC andT do not depend on the poststate
se′, /0 ` C : [F ]Fc,Fb,Fr,{L1,...,Lr}

M1,...,Mo

[F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

§ K1,...,Km
I1,...,In

se′, /0 ` CXFC
∀s,s′ ∈ State,e ∈ Environment,c0,c1 ∈ Context :

[(now.executes AND F) => (FC => FR) ]c0,c1(e)(s,s′)
se′, /0 ` C ↓ FC
se ` Ms S {C}

Figure 6.35: Rules for the Method Language
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6.6.1 Verification of Method Declarations

S = writesonly I1, . . . , In throwsonly K1, . . . ,Km
assumes FC implements FR decreases T

{J1, . . . ,Jp}∩{I1, . . . , In}= /0
FC,FR and T have no free (mathematical or state) variables
FC and T do not depend on the poststate
se,{J1, . . . ,Jp} ` C : [F ]Fc,Fb,Fr,{L1,...,Lr}

M1,...,Mo

L1, . . . ,Lp is a renaming of J1, . . . ,Jp
$J1, . . . ,$Jp,$L1, . . . ,$Lp, do not occur in F
[EXISTS $J1, . . . ,$Jp,$L1, . . . ,$Lp:

F [$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’]
]Fc,Fb,Fr,{L1,...,Lr}
{M1,...,Mo}\{J1,...,Jp} § K1,...,Km

I1,...,In

se,{J1, . . . ,Jp} ` CXFC
#Is does not occur in F
∀s,s′ ∈ State,e ∈ Environment,c0,c1 ∈ Context :

[(now.executes AND
EXSTATE #Is:

F [#Is/next] AND
IF #Is.throws THEN

next == #Is
ELSE

next.executes AND
next.value = #Is.value) =>

(FC => FR) ]c0,c1(e)(s,s′)
se,{J1, . . . ,Jp} ` C ↓ FC
se ` method Im(J1, . . . ,Jp) S {C} :

se[ Im 7→ 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR〉〉 ]
This rule claims correctness of a method declaration with respect to its specifica-
tion. It essentially generalizes the rule for the correctness of the program body
(see the next subsection for a more detailed explanation) in that the context of
reasoning is set up by the method parameters J1, . . . ,Jp.

Furthermore, hypothesis 11 has become substantially more complicated: the as-
sumption for establishing FC =>FR is not any more F but

EXSTATE #Is: F [#Is/next] AND
IF #Is.throws THEN

next == #Is
ELSE

next.executes AND next.value = #Is.value
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This version of the assumption arises from our wish to formulate the method spec-
ification FC =>FR with respect to the control data of that state in which the execu-
tion of the program proceeds after the execution of the method (i.e. in a state that
is “executing” or “throwing”) rather than of that state in which the execution of
the body of the method terminates (which might by e.g. also “returning”). Thus it
becomes possible to specify a method as

method f(x)
...
implements next.executes AND next.value = x
{ return x }

rather than using the formula next.returns in the specification.

Soundness Proof Take arbitrary c ∈ Context and me ∈MethodEnv and assume

(1) DifferentVariables(c)

(2) specifies(se,me,c)

We define

(3) M := method Im(J1, . . . ,Jp) S {C}

(4) se′ := se[ Im 7→ 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR〉〉 ]
(5) me′ := [M ]view(c)(me)

We have to show

(a.1) se′ = [M ]S(se)

(a.2) specifies(se′,me′,c)

From (3), (4), hypothesis 1, and the definition of [ ]S, we know (a.1).

Take arbitrary v ∈ View,b ∈ Behavior and v1, . . . ,vp ∈ Value,s,s1,s′ ∈ State, e ∈
Environment, c′,c′′ ∈ Context,r ∈ StateRelation, t ∈ StateCondition such that

(6) 〈v,b〉= me′(Im)

(7) executes(control(s))

(8) DifferentVariables(c′)
(9) c′ EQUALS c

(10) space(c′)⊆ space(c)
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(11) 〈r, t〉= bc′(v1, . . . ,vp)

(12) c′′ = push(c′,J1, . . . ,Jp)

(13) s1 = writes(s,J1,v1, . . . ,Jp,vp)c′′

(14) r(s,s′)

To show (a.2), from (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14),
and the definition of specifies, it suffices to show

(a.2.1) v = view(c)

(a.2.2) {J1, . . . ,Jp}∩{I1, . . . , In}= /0

(a.2.3) FC,FR and T have no free (mathematical or state) variables

(a.2.4) FC and T do not depend on the poststate

(a.2.5) [FC => FR ]c,c
′′
(e)(s1,s′)

(a.2.6) s = s′ EXCEPT range(c′)∪ range(view(c))

(a.2.7) s = s′ EXCEPTc,c I1, . . . , In

(a.2.8) executes(control(s′))∨ throws(control(s′))
(a.2.9) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

(a.2.10) [FC ]c,c
′′
(e)(s1,s1)⇒ t(s)

From (5), (6), (11), (14), (12), (13), and finally the definition of [ ], we know for
some s0 ∈ State

(15) [C ]c
′′,me(s1,s0)

(16) s′ = IF throws(control(s0)) THEN s0 ELSE executes(s0)

(17) [C ]c
′′,me

T (s1)

We define

(18) e0 := e[ Is 7→ control(s0) ]

From (3), (5), (6), and the definition of [ ], we know (a.2.1). From hypothesis
2, we know (a.2.2). From hypothesis 3, we know (a.2.3). From hypothesis 4, we
know (a.2.4).

In order to show (a.2.5), by hypothesis 11, (7), (18), and the definition of [ ], it
suffices to show

(a.2.5.1) executes(control(s1))
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(a.2.5.2) [F [#Is/next] ]c,c
′′
(e0)(s1,s′)

(a.2.5.3) throws(control(s0))⇒ control(s′) = control(s0)

(a.2.5.4)
¬throws(control(s0))⇒

executes(control(s′))∧ value(control(s′)) = value(control(s0))

From (7), (13), and (CW), we know (a.2.5.1). From (16), we know (a.2.5.3). From
(16) and (CD1), we know (a.2.5.4). It remains to show (a.2.5.2).

From (8), (12), and (COP), we know

(19) pushes(c′,c′′,{J1, . . . ,Jp})

From (19) and the definition of pushes, we know

(20) DifferentVariables(c′′)
(21) c′ = c′′ EXCEPT J1, . . . ,Jp

(22) {[J1 ]c
′′
, . . . , [Jp ]c

′′}∪ space(c′′)⊆ space(c′)

From (9), (21), and the definitions of EQUALS and EXCEPT, we know

(23) c = c′′ EXCEPT J1, . . . ,Jp

From (10) and (22), we know

(24) {[J1 ]c
′′
, . . . , [Jp ]c

′′}∪ space(c′′)⊆ space(c)

From (1), (20), (23), (24), and the definition of pushes, we know

(25) pushes(c,c′′,{J1, . . . ,Jp})

From hypothesis 5, (2), (15), (25), (a.2.5.1), we know

(27) [F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

has no free (mathematical or state) variables

(28) [ [F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

]
c,c′′

(e)(s1,s0)

From (28) and the definition of [ ], we know

(29) [F ]c,c
′′
(e)(s1,s0)

(30) s1 = s0 EXCEPTc,c′′ M1, . . . ,Mo

(31) throws(control(s0))⇒ key(control(s0)) ∈ {L1, . . . ,Lr}
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From (29), hypothesis 10, and (CNEF2), we know

(32) [F [#Is/next] ]c,c
′′
(e0)(s1,s0)

From (16), (REE), (NEQ), and (CD2), we know

(33) s′ EQUALSc,c′′ s0

From (33), (CD0), and (CD4), we know

(34) s′ = (store(s),control(s′))

From (32), (34), (REE), (NEQ), (CNEF1), and (PVFNE), we know (a.2.5.2).

From (2) and the definition of specifies, we know

(35) range(view(c)) =
⋃

I∈Identifier range(view(me(I)))

From (15), (20), (35), and Lemma “Commands with Methods”, we know

(36) s1 = s0 EXCEPT range(c′′)∪ range(view(c))

From (13) and the definition of writes, we know

(37) ∀x ∈ Variable : store(s)(x) 6= store(s1)(x)⇒ x ∈ range(c′′)

From (16), (CD2), and (CD3), we know

(38) store(s0) = store(s′)

From (36), (37), (38), and the definition of EXCEPT, we know

(39) s = s′ EXCEPT range(c′′)∪ range(view(c))

From (12) and Lemma “Range of Contexts”, we know

(40) range(c′′)⊆ range(c′)

From (39), (40), and the definition of EXCEPT, we know (a.2.6).

Assume we have the auxiliary proposition (shown below)

(a.3)
[ [EXISTS $J1, . . . ,$Jp,$L1, . . . ,$Lp:

F [$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’]
]Fc,Fb,Fr,{L1,...,Lr}
{M1,...,Mo}\{J1,...,Jp} ]

c,c(e)(s,s′)
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From hypothesis 8, (7), and (a.3), we then know

(41) ¬continues(control(s′))
(42) ¬breaks(control(s′))
(43) s = s′ EXCEPTc,c I1, . . . , In

(44) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

From (43), we know (a.2.7).

From (16) and (CD1), we know (a.2.8).

From (44), we know (a.2.9).

To show (a.2.10), we assume

(45) [FC ]c,c
′′
(e)(s1,s1)

and show

(a.2.10.a) t(s)

From (5), (6), (11), (12), (13), and the definition of [ ], it suffices to show

(a.2.10.b) [C ]c
′′,me

T (s1)

From hypothesis 12, (2), (25), (45), (a.2.3), (a.2.4), and finally (a.2.5.1), we
know (a.2.10.b).

To show (a.3), from (46) and the definition of [ ], it suffices to show

(a.3.1)
[EXISTS $J1, . . . ,$Jp,$L1, . . . ,$Lp:

F [$J1/J1, . . . ,$Jp/Jp,$L1/J1’, . . . ,$Lp/Jp’] ]c,c(e)(s,s′)
(a.3.2) s = s′ EXCEPTc,c {M1, . . . ,Mo}\{J1, . . . ,Jp}
(a.3.3) continues(control(s′))⇒ [Fc ]c,c(e)(s,s′)
(a.3.4) breaks(control(s′))⇒ [Fb ]c,c(e)(s,s′)
(a.3.5) returns(control(s′))⇒ [Fr ]c,c(e)(s,s′)
(a.3.6) throws(control(s′))⇒ key(control(s′)) ∈ {L1, . . . ,Lr}

From hypothesis 6, hypothesis 7, (23), (29), and (COF2), we know (a.3.1).

From (1), (25), (30) and Lemma “Changing Local Variables”, we know

(46) s1 = s0 EXCEPTc,c {M1, . . . ,Mo}\{J1, . . . ,Jp}
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From (16), (REE), (NEQ), and (CD2), we know

(47) s′ EQUALSc,c s0

From (13) and the definition of writes, we know

(48) s1 = s EXCEPT {[J1 ]c
′′
, . . . , [Jp ]c

′′}

From (1), (10), (12), and the definition of push, we know

(49) {[J1 ]c
′′
, . . . , [Jp ]c

′′} ⊆ space(c)

From (48), (49), and the definitions of EXCEPT and EQUALS, we know

(50) s1 EQUALSc,c s

From (46), (47), (50), (TRE), and (NEQ), we know (a.3.2).

From (16), (CD1), and Lemma “State Control Predicates”, we know (a.3.3.),
(a.3.4), and (a.3.5).

From (16), (31), (CD1), and Lemma and Lemma “State Control Predicates”, we
know (a.3.6). ¤

6.6.2 Verification of Programs

se ` Ms : se′
S = writesonly I1, . . . , In throwsonly K1, . . . ,Km

assumes FC implements FR decreases T
FC,FR and T have no free (mathematical or state) variables
FC and T do not depend on the poststate
se′, /0 ` C : [F ]Fc,Fb,Fr,{L1,...,Lr}

M1,...,Mo

[F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

§ K1,...,Km
I1,...,In

se′, /0 ` CXFC
∀s,s′ ∈ State,e ∈ Environment,c0,c1 ∈ Context :

[(now.executes AND F) => (FC => FR) ]c0,c1(e)(s,s′)
se′, /0 ` C ↓ FC
se ` Ms S {C}

This rule is the “top-level” rule of our reasoning calculus. It claims correctness
for the program Ms S {C} in specification environment se provided that:
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• se ` Ms : se′: the sequence of declarations Ms gives rise to the declaration
environment se′.

• S = . . . : the specification S of the program body C consists of the denoted
components where FC and FR must be appropriately formed.

• se′, /0 ` C : [F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

: within the specification environment se′
and a context with no local variables, C induces the state relation formula
[F ]Fc,Fb,Fr,{L1,...,Lr}

M1,...,Mo
.

• [F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

§ K1,...,Km
I1,...,In

: the state relation of C entails the frame condi-
tion and the exception condition of the specification formula of C.

• se′, /0 ` CXFC: C is well-defined with respect to the precondition FC of the
specification formula.

• ∀ . . . : [(now.executes AND F) => (FC => FR) ]c0,c1(e)(s,s′): the state
relation F induced by C entails the specification condition FC => FR.

• se′, /0 ` C ↓ FC: C terminates provided that the precondition FC of the spec-
ification formula holds.

Among these conditions, only the last four ones give rise to actual “reasoning
tasks”. Furthermore, the triple role of FC should be noted:

• as the precondition for verifying the well-definedness of C,

• as the hypothesis in the specification condition of C,

• as the precondition for verifying the termination of C.

Logically, these three roles are independent and can be served by different for-
mulas. However, from the pragmatic point of view (because it reflects the most
typical case), we find it more appropriate to cover these roles by a single precon-
dition FC; anyway, this design decision has no deeper impact on the calculus and
can be easily reverted.

As previously discussed, the soundness of the rule (and the corresponding proof)
does not depend on the hypothesis se′, /0 ` CXFC because the soundness claim
does not state that the execution of C does only encounter expressions with well-
defined values. Furthermore, as discussed in Section 5.9.4, the verification of
se, /0 ` CXFC may be omitted if we rather choose to verify a transformed com-
mand C′ with runtime checks for undefined expressions inserted.
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Soundness Proof Take arbitrary c ∈ Context and me,me′ ∈MethodEnv and as-
sume

(1) DifferentVariables(c)

(2) specifies(se,me,c)

(3) me′ = [Ms ]view(c)(me)

We have to show

(a) specifies([Ms ]S(se),me′)

(b) correctness([S ], [C ]c,me′ , [C ]c,me′
T ,c)

From hypothesis 1, we know with (1) and (2)

(4) se′ = [Ms ]S(se)

(5) specifies(se′, [Ms ]view(c)(me),c)

From (3), (4), and (5), we know (a).

To show (b), from hypothesis 2 and the definitions of [ ] and correctness, it
suffices to assume for arbitrary s,s′ ∈ State,e ∈ Environment

(6) executes(control(s))

(7) [C ]c,me′(s,s′)

and show

(b.1) [FC =>FR ]c,c(e)(s,s′)
(b.2) s = s′ EXCEPTc,c I1, . . . , In

(b.3) ¬continues(control(s′))
(b.4) ¬breaks(control(s′))
(b.5) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}
(b.6) [FC ]c,c(e)(s,s)⇒ [C ]c,me′

T (s)

From (1) and the definition of pushes, we know

(8) pushes(c,c, /0)

From hypothesis 5, we know with (3), (5), (6), (7), and (8)
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(9) [F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

has no free (mathematical or state) variables

(10) [ [F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

]
c,c

(e)(s,s′)

From (9) and (10), we know by the definitions of [ ] and [ ]

(11) F has no free (mathematical or state) variables

(12) [F ]c,c(e)(s,s′)
(13) s = s′ EXCEPTc,c M1, . . . ,Mo

(14) continues(control(s′))⇒ [Fc ]c,c(e)(s,s′)
(15) breaks(control(s′))⇒ [Fc ]c,c(e)(s,s′)
(16) returns(control(s′))⇒ [Fr ]c,c(e)(s,s′)
(17) throws(control(s′))⇒ key(control(s′)) ∈ {L1, . . . ,Lr}

From (6), (12), hypothesis 8 and the definition of [ ], we know (b.1).

From (6), (10), and hypothesis 6, we know

(18) ¬continues(control(s′))
(19) ¬breaks(control(s′))
(20) s = s′ EXCEPTc,c I1, . . . , In

(21) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

From (20), we know (b.2). From (18), we know (b.3). From (19), we know (b.4).
From (21), we know (b.5).

From hypotheses 3, 4, 9, (3), (5), (6), and (8), we know (b.6). ¤

6.7 Recursion

The semantics of programs presented in Figure 6.8 allows every method M to
call only those methods that are visible at the point of the declaration of M i.e.
that are declared before M. This rules out that M calls itself (direct recursion) or
that M calls methods that are declared after M and in turn might call M (indirect
recursion). In this section, we get rid of this restriction: we allow every method
to call every other method (including itself) i.e. we discuss the modeling of and
reasoning about programs with directly or indirectly recursive methods.

The core idea is that we describe the behavior of a recursive method M by an
infinite sequence of non-recursive methods that is constructed by unfolding the
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Recursion Language: Definitions

RecBehavior0 := Behavior
RecMethodEnv0 := MethodEnv

RecBehaviori+1 := Context×RecMethodEnvi×Value∗→
(StateRelation×StateCondition)

RecMethodEnvi+1 :=
Identifier→ (View×RecMethodEnvi×RecBehaviori+1)

RecMethodEnvsi :=
⋃

j∈N, j≤i RecMethodEnv j
RecMethodEnvs :=

⋃
i∈N RecMethodEnvi

Figure 6.36: Definitions for Programs with Recursion (1/2)

recursive calls of M: a method Mi+1 in that sequence may call its predecessor
Mi which in turn may call its predecessor; however, calling the base method M0
gives rise to a non-terminating computation. Any application of the recursive
method M in a prestate s is considered to terminate normally with a poststate s′
if the application of some non-recursive method Mi in s terminates with s′ (which
corresponds to an execution of M with less than i recursive invocations).

Since method Mi+1 may call method Mi, it is given an environment that holds the
behavior of Mi; we denote the type of such a “recursive method environment” as
RecMethodEnvi and the type of the “recursive behavior” of Mi as RecBehaviori. A
recursive method environment of type RecBehaviori+1 maps every method name
to a triple 〈v,me,b〉 where b is a method behavior b type RecBehaviori+1 which
receives from the caller as arguments (in addition to the value arguments) the
variable view v and the method environment me of type RecMethodEnvi. The
base types RecMethodEnv0 and RecBehavior0 are identified with Behavior and
MethodEnv; they can be considered to describe all “pre-defined” methods that
may be called by the “user-defined” methods contained in the program. The envi-
ronment RecMethodEnvsi holds the behaviors of all methods M j with j ≤ i, like-
wise RecMethodEnvs holds the behaviors of all M j. The corresponding definitions
are given in Figure 6.36.

Given a view v in which methods are declared, a method environment me of pre-
defined methods, and a sequence of user-defined methods Ms, we can thus con-
struct the infinite sequence envSeqv,me,Ms of method environments: each method
in position i+1 of that sequence may call each method in position i; at position 0,
the sequence holds the behaviors of all pre-defined methods respectively, for all
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Recursion Language: Definitions (Contd)

[ ]I : Method→ Identifier
[method Im(J1, . . . ,Jp) S {C} ]I := Im

[ ]I : Methods→ P(Identifier)
[ ]I := /0
[Ms M ]I := [Ms ]I∪{[M ]I}

envBase : View×MethodEnv×P(Identifier)→ RecMethodEnv0
envBasev,me,Is(I) :=

IF I ∈ Is THEN

LET

b : RecBehavior0
bc(v1, . . . ,vp) := 〈 /0, /0〉

IN 〈v,b〉
ELSE me(I)

envNexti : View×RecMethodEnvi×→ RecMethodEnvi+1
envNextv,me,

0 (I) :=
LET

b : RecBehavior1
bc,me(v1, . . . ,vp) :=

LET 〈v,b0〉= me(I) IN bc,me
0 (v1, . . . ,vp)

IN 〈v,me,b〉
envNextv,me,

i+1 (I) :=
LET

b : RecBehaviori+2
bc,me(v1, . . . ,vp) :=

LET 〈v,me0,b0〉= me(I) IN bc,me0
0 (v1, . . . ,vp)

IN 〈v,me,b〉

envSeq : View×MethodEnv×Methods→ RecMethodEnvs∞

envSeqv,me,Ms(0) = envBasev,me,[Ms]I

envSeqv,me,Ms(i+1) =
LET me′ = envSeqv,me,Ms(i) IN

[Ms ]vi (me′,envNextv,me′
i )

Figure 6.37: Definitions for Programs with Recursion (2/2)
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Recursion Language: Valuation Functions

[ ] : Program→ Context→MethodEnv→
(StateRelation×StateCondition)

[Ms S {C} ]c(me) =
LET

mes = envSeqview(c),me,Ms

R : StateRelation,R(s,s′)⇔∃i ∈ N : [C ]c,mes(i)
i (s,s′)

T : StateCondition,T (s)⇔∃i ∈ N : [C ]c,mes(i)
Ti

(s)
IN 〈R,T 〉

[ ]i : Methods→ View→
(RecMethodEnvsi×RecMethodEnvsi+1)→
RecMethodEnvsi+1

[ ]vi (me,me′) = me′
[Ms M ]vi (me,me′) = [M ]vi (me, [Ms ]vi (me,me′))

Figure 6.38: Programs with Recursion (1/3)

user-defined methods, non-terminating behaviors. The corresponding definitions
are given in Figure 6.37.

Based on these definitions, the semantics of programs with recursion is stated in
Figure 6.38. Given a prestate s, the program terminates in a post-state s′, if there
is some position i in the sequence of method environments mes such that the pro-
gram when executed with the method environment mes(i) in prestate s terminates
with poststate s′. The sequence of method declarations Ms in the program is used
to construct, starting with the base environment mes(0), from every method envi-
ronment mes(i) it successor mes(i+1).

Figure 6.39 describes the semantics of the declaration of a method with name Im.
Given the current variable view v, the environment me of methods that may be
called by Im, and the environment me′ that is to be updated by the declaration, a
behavior b is constructed and me′ is updated by mapping Im to the triple 〈v,me,b〉.
When b is invoked, it receives as arguments (in addition to the argument values
v1, . . . ,vp) a context c (with view v) and me such that it can access the variables
and invoke the methods that were visible at the point of the method declaration.

Figure 6.40 depicts the updated semantics of the call of a method Im in context
c and method environment me. We look up me(Im) to get the triple 〈v,me′,b〉
describing the method and then invoke bcall(v,c),me′ with the given argument values.
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Recursion Language: Valuation Functions (Contd)

[ ]i : Method→ View→
(RecMethodEnvsi×RecMethodEnvsi+1)→
RecMethodEnvsi+1

[method Im(J1, . . . ,Jp) S {C} ]vi (me,me′) =
LET

b = [method Im(J1, . . . ,Jp) S {C} ]i
IN me′[ Im 7→ 〈v,me,b〉 ]

[ ]i : Method→ RecBehaviori+1

[method Im(J1, . . . ,Jp) S {C} ]i =
LET

b : RecBehaviori
bc,me(v1, . . . ,vp) =

LET

c′ = push(c,J1, . . . ,Jp)
r ∈ StateRelation
r(s,s′)⇔
∃s0 : State :

[C ]c
′,me

i (writes(s,J1,v1, . . . ,Jp,vp)c′,s0) ∧
s′ = IF throws(control(s0))

THEN s0 ELSE executes(s0)
t ∈ StateCondition
t(s)⇔

[C ]c
′,me

Ti
(writes(s,J1,v1, . . . ,Jp,vp)c′)

IN 〈r, t〉
IN b

Figure 6.39: Programs with Recursion (2/3)
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Recursion Language: Valuation Functions (Contd)

[ ]i : Command→
(Context×RecMethodEnvsi)→ StateRelation

[ . . . ]c,me
i (s,s′)⇔ . . .

[ Ir = Im(E1, . . . ,Ep) ]c,me
0 (s,s′)⇔

LET 〈v,b〉= me(Im) IN

LET 〈r, t〉= bcall(v,c)([E1 ]c(s), . . . , [Ep ]c(s)) IN

∃s0 ∈ State : r(s,s0) ∧
IF throws(control(s0))

THEN s′ = s0
ELSE s′ = write(s0, Ir,value(control(s0)))c

[ Ir = Im(E1, . . . ,Ep) ]c,me
i+1 (s,s′)⇔

LET 〈v,me′,b〉= me(Im) IN

LET 〈r, t〉= bcall(v,c),me′([E1 ]c(s), . . . , [Ep ]c(s)) IN

∃s0 ∈ State : r(s,s0) ∧
IF throws(control(s0))

THEN s′ = s0
ELSE s′ = write(s0, Ir,value(control(s0)))c

[ ]Ti
: Command→
(Context×RecMethodEnvsi)→ StateCondition

[ . . . ]c,me
Ti

(s)⇔ . . .
[ Ir = Im(E1, . . . ,Ep) ]c,me

T0
(s)⇔

LET 〈v,b〉= me(Im) IN

LET 〈r, t〉= bcall(v,c)([E1 ]c(s), . . . , [Ep ]c(s)) IN

t(s)
[ Ir = Im(E1, . . . ,Ep) ]c,me

Ti+1
(s)⇔

LET 〈v,me′,b〉= me(Im) IN

LET 〈r, t〉= bcall(v,c),me′([E1 ]c(s), . . . , [Ep ]c(s)) IN

t(s)

Figure 6.40: Programs with Recursion (3/3)
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Recursion Language: Definitions

F makes $I a natural number ≡
∀e ∈ Environment,c,c′ ∈ Context,s,s′ ∈ State :

[F ]c,c
′
(e)(s,s′)⇒ e(I) ∈ N

F makes T a natural number ≡
∀e ∈ Environment,c,c′ ∈ Context,s,s′ ∈ State :

[F ]c,c
′
(e)(s,s′)⇒ [T ]c,c

′
(e)(s,s′) ∈ N

wellformed ⊆MethodSpec
wellformed(〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉)⇔
{J1, . . . ,Jp}∩{I1, . . . , In}= /0 ∧
FC,FR and T have no free (mathematical or state) variables ∧
FC and T do not depend on the poststate ∧
FC makes T a natural number

Figure 6.41: Definitions for the Recursion Language (1/4)

The core problem in the calculus of the recursion language is to ensure that a
method terminates in a finite number of recursive invocations (analogous to a loop
that terminates in a finite number of iterations). For this purpose, every method
specification is accompanied by a termination term T that denotes (in the context
of the precondition FC) a natural number. For every invocation of a method this
value must be decreased; consequently the value of T represents a bound for the
number of recursive invocations.

In order to formulate this calculus and state its soundness, we need a couple of
auxiliary definitions. First, Figure 6.41 introduces a predicate wellformed that
constrains the construction of method specifications; on this basis, Figure 6.42
defines the predicate rspecifiesi which states that a recursive method named I with
behavior b of type RecBehaviori+1 is correctly described by a specification.

Then Figure 6.43 introduces a predicate rspecifiesi which states that a speci-
fication environment se correctly describes a method environment me of type
RecMethodEnvsi. On this basis, rspecifies(se,M, Is) states that se correctly spec-
ifies a method declaration M where Is are the names of all methods declared in
the program; likewise, the predicate rspecifies(se,Ms, Is) states that se correctly
specifies a sequence of method declarations Ms.

Finally, Figure 6.44 defines a predicate correctness that states the core correctness
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Recursion Language: Definitions (Contd)

rspecifiesi : MethodSpec ×
RecBehaviori+1×Context×RecMethodEnvi ×
P(Identifier)× Identifier

rspecifiesi(〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉,
b,c,me, Is, I)⇔

wellformed(〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉)
∧

∀v1, . . . ,vp ∈ Value,s ∈ State,e ∈ Environment,c′ ∈ Context :
executes(control(s))∧DifferentVariables(c′) ∧
c′ EQUALS c∧ space(c′)⊆ space(c) ⇒
LET

〈r, t〉= bc′,me(v1, . . . ,vp),
c′′ = push(c′,J1, . . . ,Jp),
s1 = writes(s,J1,v1, . . . ,Jp,vp)c′′

m = [T ]c,c
′′
(e)(s1,s1)

IN (∀s′ ∈ State : r(s,s′) ⇒
[FC => FR ]c,c

′′
(e)(s1,s′) ∧

s = s′ EXCEPT range(c′)∪ range(view(c)) ∧
s = s′ EXCEPTc,c I1, . . . , In ∧
(executes(control(s′))∨ throws(control(s′))) ∧
(throws(control(s′)) ⇒

key(control(s′)) ∈ {K1, . . . ,Km}))
∧ ([FC ]c,c

′′
(e)(s1,s1)∧ (I ∈ Is⇒ m ∈ N∧m < i)⇒ t(s))

Figure 6.42: Definitions for the Recursion Language (2/4)



6.7 Recursion 511

claim for the specification of a whole program.

In the following, we give a crucial relationship between the predicate rspecifies
and the predicate rspecifiesi which will become important later in proving the
soundness of the calculus of the recursion language.

Lemma (Specification of Recursively Defined Functions) If a method is well-
specified, it is well-specified with respect to every environment in the sequence of
method environments constructed from the method declarations:

∀se ∈ SpecEnv,Ms ∈Methods :
rspecifies(se,Ms, [Ms ]I)⇒
∀c ∈ Context,me ∈MethodEnv :

DifferentVariables(c)∧ specifies(se,me,c)⇒
LET se′ = [Ms ]S(se),mes := envSeqview(c),me,Ms IN

∀i ∈ N : rspecifiesi(se′,mes(i),c, [Ms ]I)

Proof Take arbitrary se ∈ SpecEnv,Ms ∈Methods as well as c ∈ Context,me ∈
MethodEnv and define

(1) se′ = [Ms ]S(se)

(2) mes := envSeqview(c),me,Ms

We assume

(3) rspecifies(se,Ms, [Ms ]I)

(4) DifferentVariables(c)

(5) specifies(se,me,c)

We show

(a) ∀i ∈ N : rspecifiesi(se′,mes(i),c, Is)

by induction on i.

As the induction base, we show

(a.1) rspecifies0(se′,mes(0),c, Is)

From (2) and the definition of envSeq, it suffices to show

(a.1.a) rspecifies0(se′,envBaseview(c),me,[Ms]I ,c, [Ms ]I)
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Recursion Language: Definitions (Contd)

rspecifiesi ⊆ SpecEnv×RecMethodEnvsi×Context×P(Identifier)
rspecifies0(se,me,c, Is)⇔
∀I ∈ Identifier :

LET 〈v,b〉= me(I) IN

v = view(c) ∧
IF I ∈ Is THEN

wellformed(se(I)) ∧
∀c ∈ Context,v1, . . . ,vp ∈ Value : bc(v1, . . . ,vp) = 〈 /0, /0〉

ELSE

specifies(se(I),b,c)
rspecifiesi+1(se,me,c, Is)⇔
∀I ∈ Identifier :

LET 〈v,me′,b〉= me(I) IN

v = view(c)∧ rspecifiesi(se(I),b,c,me′, Is, I)

rspecifies⊆ SpecEnv×Method×P(Identifier)
rspecifies(se,M, Is)⇔
∀c ∈ Context : DifferentVariables(c)⇒
∀i ∈ N,me ∈ RecMethodEnvsi,me′ ∈ RecMethodEnvsi+1 :

rspecifiesi(se,me,c, Is)∧ rspecifiesi+1(se,me′,c, Is)⇒
rspecifiesi+1(se, [M ]view(c)

i (me,me′),c, Is)

rspecifies⊆ SpecEnv×Methods×P(Identifier)
rspecifies(se,Ms, Is)⇔
∀c ∈ Context : DifferentVariables(c)⇒
∀i ∈ N,me ∈ RecMethodEnvsi :

rspecifiesi(se,me,c, Is)⇒
LET me′ = [Ms ]view(c)

i (me,envNextview(c),me
i ) IN

rspecifiesi+1(se,me′,c, Is)

Figure 6.43: Definitions for the Recursion Language (3/4)
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Recursion Language: Definitions (Contd)

assumption : Spec→ Formula
assumption(〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉) = FC

correctness⊆ Spec×Context×Environment×State×State
correctness(〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉,c,e,s,s′)⇔

[FC => FR ]c,c(e)(s,s′) ∧
s = s′ EXCEPTc,c I1, . . . , In ∧
¬continues(control(s′)) ∧
¬breaks(control(s′)) ∧
(throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km})

Figure 6.44: Definitions for the Recursion Language (4/4)

By the definition of rspecifies0, to show (a.1.a), it suffices to take arbitrary I ∈
Identifier and v ∈ View,b ∈ Behavior such that

(6) 〈v,b〉= envBaseview(c),me,[Ms]I(I)

and show

(a.1.a.1) v = view(c)

(a.1.a.2) I ∈ [Ms ]I ⇒∀c ∈ Context,v1, . . . ,vp ∈ Value : bc(v1, . . . ,vp) = 〈 /0, /0〉
(a.1.a.3) I 6∈ [Ms ]I ⇒ specifies(se′(I),b,c)

If I ∈ [Ms ]I, we know (a.1.a.3), and, from (6), (7), and the definition of envBase,
also (a.1.a.2).

Thus we may assume

(7) I 6∈ [Ms ]I

From (6), (7), and the definition of envBase, we know

(8) 〈v,b〉 ∈ me(I)

From (5), (8), and the definition of specifies, we know (a.1.a.1).

From (7), we know (a.1.a.2).

From (1), (6), and the definition of [ ]S, we know
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(9) se(I) = se′(I)

From (5), (8), (9), and the definition of specifies, we know (a.1.a.3).

As for the induction step, we assume

(10) rspecifiesi(se′,mes(i),c, [Ms ]I)

and show

(a.2) rspecifiesi+1(se′,mes(i+1),c, [Ms ]I)

We define

(11) me′ := [Ms ]view(c)
i (mes(i),envNextview(c),mes(i)

i )

From (2), (11) and the definition of envSeq, it suffices to show

(a.2.a) rspecifiesi+1(se′,me′,c, [Ms ]I)

From (3), (4), (10), (11), and the definition of rspecifies, we know (a.2.a). ¤
Based on the previously defined predicates and functions, Figure 6.45 introduces
new judgements for the recursion language. The first two judgements are used
to derive the specification environment se′ constructed by a method declaration
M respectively a sequence of method declarations Ms in a given specification
environment me. The next two judgements state the correctness of a method dec-
laration M respectively a sequence of method declarations Ms in a specification
environment se where Is are the names of all user-defined methods. The last judge-
ment states the correctness of a program with method declarations Ms, program
specification S and program body C.

Figure 6.46 updates the previously stated judgements for the well-definedness,
correctness, and termination of commands which now all take as additional argu-
ments the names Is of the user-defined methods. The last judgement for termina-
tion also includes a parameter I which refers to a mathematical variable $I that
describes by a natural number the value of the termination term T when the cur-
rent method was invoked. Since this value represents a bound for the number of
recursive invocations, the soundness claim is only valid for a method environment
me ∈MethodEnvsi where i is at least as large as $I.

The rules for these judgements are given in Figures 6.47, 6.48, and 6.49. Among
these, the second rule in Figure 6.48 is most important: it establishes the termi-
nation of a (possibly recursive) call of a user-defined method by ensuring that the
value of the termination term T at the point of the invocation is less than $I. A
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Recursion Language: Judgements

se ` M : se′ ⇔ se′ = [M ]S(se)

se ` Ms : se′ ⇔ se′ = [Ms ]S(se)

se, Is ` M ⇔ rspecifies(se,M, Is)

se, Is ` Ms ⇔ rspecifies(se,Ms, Is)

se ` Ms S {C} ⇔
rspecifies(se,Ms, [Ms ]I) ∧
∀c ∈ Context,me ∈MethodEnv :

DifferentVariables(c)∧ specifies(se,me,c) ⇒
LET mes = envSeqview(c),me,Ms IN

∀s,s′ ∈ State,e ∈ Environment : executes(control(s))⇒
(∀i ∈ N : [C ]c,mes(i)

i (s)⇒ correctness([S ]S,c,e,s,s
′)) ∧

([assumption(S) ]c,c(e)(s,s)⇒∃i ∈ N : [C ]c,mes(i)
Ti

(s))

Figure 6.45: Judgements for the Recursion Language
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Commands: Judgements

se,{V1, . . . ,Vo}, Is ` CXF ⇔
F has no free (mathematical or state) variables ∧
F does not depend on the poststate ⇒
∀c,c′ ∈ Context, i ∈ N,me ∈MethodEnvi :

rspecifiesi(se,me,c, Is) ∧pushes(c,c′,{V1, . . . ,Vo}) ⇒
∀s,s′ ∈ State : executes(control(s))∧ [F ]c,c

′
(s)⇒

([C ]c
′,me

i (s,s′)⇔ [C ]c
′,me
⊥i

(s,s′))

se,{V1, . . . ,Vo}, Is ` C : F ⇔
F has no free (mathematical or state) variables ∧
∀c,c′ ∈ Context, i ∈ N,me ∈MethodEnvi :

rspecifiesi(se,me,c, Is)∧pushes(c,c′,{V1, . . . ,Vo}) ⇒
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C ]c
′,me

i (s,s′)⇒
[F ]c,c

′
(e)(s,s′)

se,{V1, . . . ,Vo}, Is ` C ↓I F ⇔
F has as its only free variable $I ∧
F does not depend on the poststate ∧
F makes $I a natural number ⇒
∀c,c′ ∈ Context, i ∈ N,me ∈MethodEnvsi :

rspecifiesi(se,me,c, Is)∧pushes(c,c′,{V1, . . . ,Vo}) ⇒
∀s ∈ State,e ∈ Environment : executes(control(s))⇒

[F ]c,c
′
(e)(s,s)∧ i≥ e(I)⇒ [C ]c

′,me
Ti

(s)

Figure 6.46: Judgements for Commands of the Recursion Language
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Recursion Language: Rules

S = writesonly I1, . . . , In throwsonly K1, . . . ,Km
assumes FC implements FR decreases T

se ` method Im(J1, . . . ,Jp) S {C} :
se[ Im 7→ 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉 ]

se ` : se

se ` Ms : se′
se′ ` M : se′′

se ` Ms M : se′′

Figure 6.47: Rules for the Recursion Language (1/3)

similar proof obligation is also included in the rule for the correctness of pro-
grams in Figure 6.49; however, here it is only used for uniformity of the calculus
(we could well do without this obligation and just use the correctness rules for
commands given in the previous section).

We now turn our attention to the soundness of these rules. The soundness of
the rules given in Figure 6.47 for building up specification environments from
(sequences of) method declarations is obvious from the rules and the definition of
[ ]S. The soundness of the remaining rules is shown in the following subsections.

6.7.1 Method Calls (Pre-Defined Methods)

Im 6∈ Is
se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
L1, . . . ,Lp is a renaming of J1, . . . ,Jp
$L1, . . . ,$Lp do not occur in FC
∀s ∈ State :

[now.executes AND (EXISTS $I : F) =>
FORALL $L1, . . . ,$Lp :

$L1=T1 AND . . . AND $Lp=Tp =>
FC[$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]

[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ](s)
se,{V1, . . . ,Vo}, Is ` Ir = Im(E1, . . . ,Ep) ↓I F
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Recursion Language: Rules (Contd)

Im 6∈ Is
se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
L1, . . . ,Lp is a renaming of J1, . . . ,Jp
$L1, . . . ,$Lp do not occur in FC
∀s ∈ State :

[now.executes AND (EXISTS $I : F) =>
FORALL $L1, . . . ,$Lp :

$L1=T1 AND . . . AND $Lp=Tp =>
FC[$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]

[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ](s)
se,{V1, . . . ,Vo}, Is ` Ir = Im(E1, . . . ,Ep) ↓I F

Im ∈ Is
se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
L1, . . . ,Lp is a renaming of J1, . . . ,Jp
$L1, . . . ,$Lp do not occur in FC
I 6∈ {L1, . . . ,Lp}
∀s ∈ State,e ∈ Environment,c,c′ ∈ Context :
∀m ∈ N,v1, . . . ,vp ∈ Value :

LET e0 = e[ I 7→ m,L1 7→ v1, . . . ,Lp 7→ vp ] IN

[now.executes AND F AND

$L1=T1 AND . . . AND $Lp=Tp ]c,c
′
(e0)(s,s) ⇒

([FC[$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ]c,c′

(e0)(s,s) ∧
LET m′ =

[T [$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ]c,c′

(e0)(s,s)
IN m′ ∈ N∧m > m′)

se,{V1, . . . ,Vo}, Is ` Ir = Im(E1, . . . ,Ep) ↓I F

Figure 6.48: Rules for the Recursion Language (2/3)
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Recursion Language: Rules (Contd)

. . .
(all hypotheses except the last one from the rule in Figure 6.34)
Im ∈ Is
T has no free (mathematical or state) variables
T does not depend on the poststate
FC makes T a natural number
se,{J1, . . . ,Jp}, Is ` C ↓I FC AND $I = T
se, Is ` method Im(J1, . . . ,Jp) S {C}

se, Is `
se, Is ` Ms
se, Is ` M
se, Is ` Ms M

se ` Ms : se′
Is = [Ms ]I
se′, Is ` Ms
S = writesonly I1, . . . , In throwsonly K1, . . . ,Km

assumes FC implements FR decreases T
FC,FR and T have no free (mathematical or state) variables
FC and T do not depend on the poststate
FC makes T a natural number
se′, /0, Is ` C : [F ]Fc,Fb,Fr,{L1,...,Lr}

M1,...,Mo

[F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

§ K1,...,Km
I1,...,In

se′, /0, Is ` CXFC
∀s,s′ ∈ State,e ∈ Environment,c0,c1 ∈ Context :

[(now.executes AND F) => (FC => FR) ]c0,c1(e)(s,s′)
se′, /0, Is ` C ↓I FC AND $I = T
se ` Ms S {C}

Figure 6.49: Rules for the Recursion Language (3/3)
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Soundness Proof Take arbitrary c,c′ ∈ Context, i ∈ N,me ∈ MethodEnvsi and
s ∈ State,e ∈ Environment : executes(control(s)) and assume

(1) F has as its only free variable $I

(2) F does not depend on the poststate

(3) F makes $I a natural number

(4) rspecifiesi(se,me,c, Is)

(5) pushes(c,c′,{V1, . . . ,Vo})
(6) executes(control(s))

(7) [F ]c,c
′
(e)(s,s)

(8) i≥ e(I)

We show

(a) [ Ir = Im(E1, . . . ,Ep) ]c
′,me

Ti
(s)

From the first hypothesis, we know

(9) Im 6∈ Is

From (3), (8), and the definition of “makes a natural number”, we know

(10) i > 0

From (10), we have some j ∈ N with

(11) i = j +1

From (11) and the definition of [ ]T , it suffices to take arbitrary v ∈ View,me′ ∈
RecMethodEnv j,b ∈ RecBehavior j,r ∈ StateRelation, t ∈ StateCondition with

(12) 〈v,me′,b〉= me(Im)

(13) 〈r, t〉= bcall(v,c),me′([E1 ]c
′
(s), . . . , [Ep ]c

′
(s))

and show

(b) t(s)

From (4), (11), (12), (13), and the definition of rspecifies j+1, we know

(14) v = view(c)
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(15) rspecifies j(se(Im),b,c,me′, Is, Im)

We define

(16) c′′ = push(call(v,c),J1, . . . ,Jp)

(17) s1 := writes(s,J1, [E1 ]c
′
(s), . . . ,Jp, [Ep ]c

′
(s))c′

(18) m := [T ]c,c
′′
(e)(s1,s1)

In close analogy to the proof given in Section 6.5.4, we can show

(19) [FC ]c,c
′′
(e)(s1,s1)

From (9), we know

(20) Im ∈ Is ⇒ m ∈ N∧m < i

From (15), (16), (17), (18), (19), (20), and ultimately the definition of rspecifies j,
we know (b). ¤

6.7.2 Method Calls (User-Defined Methods)

Im ∈ Is
se(Im) = 〈(J1, . . . ,Jp),〈(I1, . . . , In),(K1, . . . ,Km),FC,FR,T 〉〉
E1 ' T1, . . . ,Ep ' Tp
L1, . . . ,Lp is a renaming of J1, . . . ,Jp
$L1, . . . ,$Lp do not occur in FC
I 6∈ {L1, . . . ,Lp}
∀s ∈ State,e ∈ Environment,c,c′ ∈ Context :
∀m ∈ N,v1, . . . ,vp ∈ Value :

LET e0 = e[ I 7→ m,L1 7→ v1, . . . ,Lp 7→ vp ] IN

[now.executes AND F AND

$L1=T1 AND . . . AND $Lp=Tp ]c,c
′
(e0)(s,s) ⇒

([FC[$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ]c,c′

(e0)(s,s) ∧
LET m′ =

[T [$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]
[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ]c,c′

(e0)(s,s)
IN m′ ∈ N∧m > m′)

se,{V1, . . . ,Vo}, Is ` Ir = Im(E1, . . . ,Ep) ↓I F
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Soundness Proof Take arbitrary c,c′ ∈ Context, i ∈ N,me ∈ MethodEnvsi and
s ∈ State,e ∈ Environment : executes(control(s)) and assume

(1) F has as its only free variable $I

(2) F does not depend on the poststate

(3) F makes $I a natural number

(4) rspecifiesi(se,me,c, Is)

(5) pushes(c,c′,{V1, . . . ,Vo})
(6) executes(control(s))

(7) [F ]c,c
′
(e)(s,s)

(8) i≥ e(I)

We show

(a) [ Ir = Im(E1, . . . ,Ep) ]c
′,me

Ti
(s)

From the first hypothesis, we know

(9) Im 6∈ Is

From (3), (8), and the definition of “makes a natural number”, we know

(10) i > 0

From (10), we have some j ∈ N with

(11) i = j +1

From (11) and the definition of [ ]T , it suffices to take arbitrary v ∈ View,me′ ∈
RecMethodEnv j,b ∈ RecBehavior j,r ∈ StateRelation, t ∈ StateCondition with

(12) 〈v,me′,b〉= me(Im)

(13) 〈r, t〉= bcall(v,c),me′([E1 ]c(s), . . . , [Ep ]c(s))

and show

(b) t(s)

From (4), (11), (12), (13), and the definition of rspecifies j+1, we know

(14) v = view(c)
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(15) rspecifies j(se(Im),b,c,me′, Is, Im)

We define

(16) c′′ = push(call(v,c),J1, . . . ,Jp)

(17) s1 := writes(s,J1, [E1 ]c
′
(s), . . . ,Jp, [Ep ]c

′
(s))c′

In close analogy to the proof given in Section 6.5.4, we can show

(18) [FC ]c,c
′′
(e)(s1,s1)

We define

(19) m := [T ]c,c
′′
(e)(s1,s1)

From (15), (16), (17), (18), and the definition of rspecifies j, it suffices to show

(c.1) m ∈ N
(c.2) m < i

From (15) and the definition of rspecifies j, we know

(20) FC makes T a natural number

From (18), (19), (20), and then the definition of “makes a natural number”, we
know (c.1).

We define

(21) v1 := [E1 ]c
′
(s), . . . ,vp := [Ep ]c

′
(s)

(22) e0 := e[ I 7→ e(I),L1 7→ v1, . . . ,Lp 7→ vp ]

(23)
m′ := [T [$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]

[?V1/V1, . . . ,?Vo/Vo,?V1’/V1’, . . . ,?Vo’/Vo’] ]c,c′(e0)(s,s)

From (21), (22), (23), and hypothesis 6, we know

(24)
[now.executes AND F AND

$L1=T1 AND . . . AND $Lp=Tp ]c,c
′
(e0)(s,s)⇒ m′ ∈ N∧ e(I) > m′

To show (c.2), from (8), (24), and the definition of [ ], it suffices to show

(c.2.1) executes(control(s))



524 Chapter 6. Methods

(c.2.2) [F ]c,c
′
(e0)(s,s)

(c.2.3) v1 = [T1 ]c,c
′
(e0)(s,s)∧ . . .∧ vp = [Tp ]c,c

′
(e0)(s,s)

(c.2.4) m = m′

From (6), we know (c.2.1).

From (22), we know

(25) e(I) = e0(I)

From (1), (7), and (25), we know (c.2.2).

From hypothesis 3, (5), and the definitions of pushes and ', we know (c.2.3).

From (5) and the definition of pushes, we know

(25a) c = c′ EXCEPT V1, . . . ,Vo

From (23), (25a), (PMGF), and the definition of AT, we know

(26) m′ = [T [$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’] ]c,c(e0)(s,s)

From (26) and the definition of call, we know

(27)
m′ =

[T [$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’] ]c,call(v,c)(e0)(s,s)

From (16) and the definition of push, we know

(28) call(v,c) = c′′ EXCEPT J1, . . . ,Jo

From (MPVF0’) and (MPVF1’), we know

(29)
J1, . . . ,Jp do not occur in

T [$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]

(30)
J1’, . . . ,Jp’ do not occur in

T [$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’]

From (27), (28), (29), (30), and the definitions of [ ] and EXCEPT, we know

(31) m′ = [T [$L1/J1, . . . ,$Lp/Jp,$L1/J1’, . . . ,$Lp/Jp’] ]c,c′′(e0)(s,s)

From (4), hypothesis 2, and the definition of rspecifiesi, we know
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(32) $J1, . . . ,$Jp do not occur in T

From hypothesis 4, we know

(33) L1, . . . ,Lp is a renaming of J1, . . . ,Jp

From (17) and (WSE), we know

(34) s = s1 EXCEPT J1, . . . ,Jp

From (17) and (CWE), we know

(35) control(s) = control(s1)

From (17) and (RWE), we know

(36) read(s1,J1)c′ = [E1 ]c
′
(s)∧ . . .∧ read(s1,Jp)c′ = [Ep ]c

′
(s)

From (21), (22), and (36), we know

(37) e0 = e[L1 7→ [E1 ]c
′
(s), . . . ,Lp 7→ [Ep ]c

′
(s) ]

From (31), (33), (34), (36), (37), (PMVT1”), and (PMVT”), we know

(38) m′ = [T ]c,c
′′
(e)(s1,s1)

From (19) and (38), we know (c.2.4). ¤

6.7.3 Method Declarations

. . .
(all hypotheses except the last one from the rule in Figure 6.34)
Im ∈ Is
T has no free (mathematical or state) variables
T does not depend on the poststate
FC makes T a natural number
se,{J1, . . . ,Jp}, Is ` C ↓I FC AND $I = T
se, Is ` method Im(J1, . . . ,Jp) S {C}
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Soundness Proof We define

(1) M := method Im(J1, . . . ,Jp) S {C}

and prove

(a) rspecifies(se,M, Is)

From the definition of rspecifies, it suffices to take arbitrary c ∈ Context, i ∈
N,me ∈ RecMethodEnvsi and me′,me′′ ∈ RecMethodEnvsi+1 with

(2) DifferentVariables(c)

(3) rspecifiesi(se,me,c, Is)

(4) rspecifiesi+1(se,me′,c, Is)

(5) me′′ = [M ]view(c)
i (me,me′)

and show

(b) rspecifiesi+1(se,me′′,c, Is)

To show (b), from the definition of rspecifiesi+1, it suffices to take arbitrary I ∈
Identifier,v ∈ View,me′′′ ∈ RecMethodEnvsi,b ∈ RecBehaviori+1 such that

(6) 〈v,me′′′,b〉= me′′(I)

and show

(b.1) v = view(c)

(b.2) rspecifiesi(se(I),b,c,me′′′, Is, I)

We proceed by case distinction.

In the first case, we assume

(7) I 6= Im

From (1), (5), (7), and the definition of [M ], we know

(8) me′′(I) = me′(I)

From (4), (8), and the definition of rspecifiesi+1, we know (b.1) and (b.2).

In the second case, we assume
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(9) I = Im

From (1), (5), (6), (9), and the definition of [M ], we know (b.1) and

(10) me′′′ = me

To show (b.2), from (10) and the definition of rspecifies, it suffices to take ar-
bitrary v1, . . . ,vp ∈ Value,s,s1,s′ ∈ State, e ∈ Environment, c′,c′′ ∈ Context,r ∈
StateRelation, t ∈ StateCondition,m ∈ Value such that

(11) executes(control(s))

(12) DifferentVariables(c′)
(13) c′ EQUALS c

(14) space(c′)⊆ space(c)

(15) 〈r, t〉= bc′,me(v1, . . . ,vp)

(16) c′′ = push(c′,J1, . . . ,Jp)

(17) s1 = writes(s,J1,v1, . . . ,Jp,vp)c′′

(18) r(s,s′)

(18a) m = [T ]c,c
′′
(e)(s1,s1)

and show

(b.2.1) {J1, . . . ,Jp}∩{I1, . . . , In}= /0

(b.2.2) FC,FR and T have no free (mathematical or state) variables

(b.2.3) FC andT do not depend on the poststate

(b.2.4) [FC => FR ]c,c
′′
(e)(s1,s′)

(b.2.5) s = s′ EXCEPT range(c′)∪ range(view(c))

(b.2.6) s = s′ EXCEPTc,c I1, . . . , In

(b.2.7) executes(control(s′))∨ throws(control(s′))
(b.2.8) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}
(b.2.9) [FC ]c,c

′′
(e)(s1,s1)∧ (I ∈ Is⇒ m ∈ N∧m < i)⇒ t(s)

We can show (b.2.1),. . . ,(b.2.8) as illustrated in Section 6.6.1.

To show (b.2.9), we assume

(19) [FC ]c,c
′′
(e)(s1,s1)
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(20) I ∈ Is⇒ m ∈ N∧m < i

and show

(b.2.9.a) t(s)

From (5), (6), (9), (15), (16), (17), and the definition of [ ], it suffices to show

(b.2.9.b) [C ]c
′′,me

Ti
(s1)

From the first new hypothesis, we know

(21) I ∈ Is

From (18a), (20), and (21), we know

(22) [T ]c,c
′′
(e)(s1,s1) < i

From hypothesis 3 and the second new hypothesis, we know

(23) FC AND $I = T has as its only free variable $I

From hypothesis 4 and the third new hypothesis, we know

(24) FC AND $I = T does not depend on the poststate

From the fourth new hypothesis and the definitions of “makes a natural number”,
we know

(25) FC AND $I = T makes $I a natural number

From (23), (24), (25), and the fifth new hypothesis, we know

(26)

∀c,c′ ∈ Context, i ∈ N,me ∈MethodEnvsi :
rspecifiesi(se,me,c, Is)∧pushes(c,c′,{V1, . . . ,Vo}) ⇒
∀s ∈ State,e ∈ Environment : executes(control(s))⇒

[FC AND $I = T ]c,c
′
(e)(s,s)∧ i≥ e(I)⇒ [C ]c

′,me
Ti

(s)

From (12), (16) and (COP), we know

(27) pushes(c′,c′′,{J1, . . . ,Jp})

From (2), (13), (14), (27), (NEQ), (AVE), (TRE), and the definition of pushes, we
know
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(28) pushes(c,c′′,{J1, . . . ,Jp})

From (11), (17), and (CW), we know

(29) executes(control(s1))

We define

(30) e0 := e[ I 7→ [T ]c,c
′′
(e)(s1,s1) ]

From (3), (26), (28), and (29), we know

(31) [FC AND $I = T ]c,c
′′
(e0)(s1,s1)∧ i≥ e0(I)⇒ [C ]c

′′,me
Ti

(s1)

From (19), the third assumption, and (MVF’), we know

(32) [FC ]c,c
′′
(e0)(s1,s1)

From the last but fourth assumption, we know

(33) [T ]c,c
′′
(e)(s1,s1) = [T ]c,c

′′
(e0)(s1,s1)

From (30), (33), and the definition of [ ], we know

(34) [$I = T ]c,c
′′
(e0)(s1,s1)

From (22) and (30), we know

(35) e0(I) < i

From (31), (32), (34), and (35), we know (b.2.9.b). ¤

6.7.4 Empty Method Sequences

se, Is `
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Soundness Proof We have to show

(a) rspecifies(se, , Is)

From the definition of rspecifies, it suffices to take arbitrary c ∈ Context, i ∈
N,me ∈ RecMethodEnvsi and me′ ∈ RecMethodEnvsi+1 with

(1) DifferentVariables(c)

(2) rspecifiesi(se,me,c, Is)

(3) me′ = [ ]view(c)
i (me,envNextview(c),me

i )

and show

(b) rspecifiesi+1(se,me′,c, Is)

To show (b), from the definition of rspecifiesi+1, it suffices to take arbitrary I ∈
Identifier,v ∈ View,me′′ ∈ RecMethodEnvsi,b ∈ RecBehaviori+1 such that

(4) 〈v,me′′,b〉= me′(I)

and show

(b.1) v = view(c)

(b.2) rspecifiesi(se(I),b,c,me′′, Is, I)

From (3) and the definition of [ ]i, we know

(5) me′ = envNextview(c),me
i

From (4), (5), and the definition of envNexti, we know

(5a) me′′ = me

From (4), (5), and the definition of envNexti, we know (b.1).

We proceed by case distinction.

In the first case, we assume

(6) i = 0

We take v0 ∈ View,b0 ∈ Behavior such that

(7) 〈v0,b0〉= me(I)
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From (4), (5), (5a), (6), (7), and the definition of envNext0, we know

(8) ∀v1, . . . ,vp ∈ Value : bc,me(v1, . . . ,vp) = bc
0(v1, . . . ,vp)

We proceed with two subcases. In the first subcase, we assume

(9) I ∈ Is

From (2), (6), (7), and (9), we know

(10) wellformed(se(I)

(11) ∀c ∈ Context,v1, . . . ,vp ∈ Value : bc
0(v1, . . . ,vp) = 〈 /0, /0〉

From (5a), (6), (8), (10), (11), and the definition of rspecifies0, we can show (b.2).

In the second subcase, we assume

(12) I 6∈ Is

From (2), (6), (7), and (12), we know

(13) specifies(se(I),b0,c)

From (5a), (6), (8), (13), and the definitions of specifies and rspecifies0, we can
show (b.2).

In the second case, we assume for some j ∈ N

(14) i = j +1

We take v0 ∈ View,me0 ∈ RecMethodEnv j,b0 ∈ RecBehavior j+1 such that

(15) 〈v0,me0,b0〉= me(I)

From, (4), (5), (5a), (14), (15), and the definition of envNext j+1, we know

(16) ∀v1, . . . ,vp ∈ Value : bc,me(v1, . . . ,vp) = bc,me0
0 (v1, . . . ,vp)

From (2), (14), and (15), we know

(17) rspecifies j+1(se(I),b0,c,me0, Is, I)

From (5a), (14), (16), and (17), we can show (b.2). ¤
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6.7.5 Non-Empty Method Sequences

se, Is ` Ms
se, Is ` M
se, Is ` Ms M

Soundness Proof We have to show

(a) rspecifies(se,Ms M, Is)

From the definition of rspecifies, it suffices to take arbitrary c ∈ Context, i ∈
N,me ∈ RecMethodEnvsi and me′ ∈ RecMethodEnvsi+1 with

(1) DifferentVariables(c)

(2) rspecifiesi(se,me,c, Is)

(3) me′ = [Ms M ]view(c)
i (me,envNextview(c),me

i )

and show

(b) rspecifiesi+1(se,me′,c, Is)

We define

(4) me0 := [Ms ]view(c)
i (me,envNextview(c),me

i )

From (3), (4), and the definition of [ ], we know

(5) me′ = [M ]view(c)
i (me,me0)

From hypothesis 1, (1), (2), (4), and the definition of rspecifies, we know

(6) rspecifiesi+1(se,me0,c, Is)

From hypothesis 2, (1), (2), (5), (6), and the definition of rspecifies, we know
(b). ¤
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6.7.6 Verification of Programs

se ` Ms : se′
Is = [Ms ]I
se′, Is ` Ms
S = writesonly I1, . . . , In throwsonly K1, . . . ,Km

assumes FC implements FR decreases T
FC,FR and T have no free (mathematical or state) variables
FC and T do not depend on the poststate
FC makes T a natural number
se′, /0, Is ` C : [F ]Fc,Fb,Fr,{L1,...,Lr}

M1,...,Mo

[F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

§ K1,...,Km
I1,...,In

se′, /0, Is ` CXFC
∀s,s′ ∈ State,e ∈ Environment,c0,c1 ∈ Context :

[(now.executes AND F) => (FC => FR) ]c0,c1(e)(s,s′)
se′, /0, Is ` C ↓I FC AND $I = T
se ` Ms S {C}

Soundness Proof Take arbitrary c ∈ Context,me ∈MethodEnv,s,s′ ∈ State,e ∈
Environment and define

(1) mes := envSeqview(c),me,Ms

We assume

(2) specifies(se,me,c)

(3) DifferentVariables(c)

(4) executes(control(s))

and show

(a.1) rspecifies(se,Ms, [Ms ]I)

(a.2) ∀i ∈ N : [C ]c,mes(i)
i (s)⇒ correctness([S ]S,c,e,s,s

′)

(a.3) [assumption(S) ]c,c(e)(s,s)⇒∃i ∈ N : [C ]c,mes(i)
Ti

(s)

From hypotheses 1, 2, and 3 we know

(5) se′ = [Ms ]S(se)

(6) rspecifies(se,Ms, [Ms ]I)
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From hypotheses 4, 5, and 6, we know

(7)
S = writesonly I1, . . . , In throwsonly K1, . . . ,Km

assumes FC implements FR decreases T

(8) FC,FR and T have no free (mathematical or state) variables

(9) FC and T do not depend on the poststate

From hypothesis 7 and the definition of “makes a natural number”, we know

(10)
∀e ∈ Environment,c,c′ ∈ Context,s,s′ ∈ State :

[FC ]c,c
′
(e)(s,s′)⇒ [T ]c,c

′
(e)(s,s′) ∈ N

From hypotheses 2 and 8 and the definition of [ ] , we know

(11) F has no free (mathematical or state) variables

(12)

∀c,c′ ∈ Context, i ∈ N,me ∈MethodEnvi :
rspecifiesi(se′,me,c, [Ms ]I)∧pushes(c,c′, /0) ⇒
∀s,s′ ∈ State,e ∈ Environment :

executes(control(s))∧ [C ]c
′,me

i (s,s′)⇒
[ [F ]Fc,Fb,Fr,{L1,...,Lr}

M1,...,Mo
]
c,c′

(e)(s,s′)

From hypothesis 9, we know

(13)

∀c ∈ Context,s,s′ ∈ State,e ∈ Environment :
executes(control(s)) ∧
[ [F ]Fc,Fb,Fr,{L1,...,Lr}

M1,...,Mo
]
c,c

(e)(s,s′)⇒
¬continues(control(s′)) ∧
¬breaks(control(s′)) ∧
s = s′ EXCEPTc,c I1, . . . , In ∧
(throws(control(s′)) ⇒

key(control(s′)) ∈ {K1, . . . ,Km})
From hypothesis 11, we know

(14)
∀s,s′ ∈ State,e ∈ Environment,c0,c1 ∈ Context :

[(now.executes AND F) => (FC => FR) ]c0,c1(e)(s,s′)

From (8), (9), and hypotheses 2 and 12, we know

(15)

∀c,c′ ∈ Context, i ∈ N,me ∈MethodEnvsi :
rspecifiesi(se′,me,c, [Ms ]I)∧pushes(c,c′,{V1, . . . ,Vo}) ⇒
∀s ∈ State,e ∈ Environment : executes(control(s))⇒

[FC AND $I=T ]c,c
′
(e)(s,s)∧ i≥ e(I)⇒ [C ]c

′,me
Ti

(s)
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From (1), (2), (3), (5), (6) and Lemma “Specification of Recursively Defined
Functions”, we know

(16) rspecifiesi(se′,mes(i),c, [Ms ]I)

From (3) and the definition of pushes, we know

(17) pushes(c,c, /0)

From (6), we know (a.1).

To show (a.2), we take i ∈ N,me ∈ RecMethodEnvsi and assume

(18) [C ]c,mes(i)
i (s)

From (7) and the definitions of correctness and [ ]S, it suffices to show

(a.2.1) [FC => FR ]c,c(e)(s,s′)
(a.2.2) hs = s′ EXCEPTc,c I1, . . . , In

(a.2.3) ¬continues(control(s′))
(a.2.4) ¬breaks(control(s′))
(a.2.5) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

From (4), (12), (16), (17) and (18), we know

(19) [ [F ]Fc,Fb,Fr,{L1,...,Lr}
M1,...,Mo

]
c,c

(e)(s,s′)

From (19) and the definitions of [ ] and [ ], we know

(20) [F ]c,c(e)(s,s′)

From (4), (14), (20), and the definition of [ ], we know (a.2.1).

From (4), (13), and (19), we know

(21) ¬continues(control(s′))
(22) ¬breaks(control(s′))
(23) s = s′ EXCEPTc,c I1, . . . , In

(24) throws(control(s′))⇒ key(control(s′)) ∈ {K1, . . . ,Km}

From (23), we know (a.2.2). From (21), we know (a.2.3). From (22), we know
(a.2.4). From (24), we know (a.2.5).

To show (a.3), by (7) and the definition of assumption, it suffices to assume
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(25) [FC ]c,c(e)(s,s)

and show

(a.3.a) ∃i ∈ N : [C ]c,mes(i)
Ti

(s)

We define

(26) i := [T ]c,c(e)(s,s)

From (10), (25), and (26), we know

(27) i ∈ N

From (27), to show (a.3.a), it suffices to show

(a.3.b) [C ]c,mes(i)
Ti

(s)

We define

(28) e0 := e[ I 7→ [T ]c,c(e)(s,s) ]

From (4), (15), (16), (17), (25), and the definition of [ ], it suffices to show

(a.4.c.1) [FC ]c,c(e0)(s,s)

(a.4.c.2) e0(I) = [T ]c,c(e0)(s,s)

(a.4.c.3) i≥ e0(I)

From (8), (25), (26), (28), (MVF), and (MVFT), we know (a.4.c.1), (a.4.c.2) and
(a.4.c.3). ¤

6.7.7 Generalizations

The calculus of the recursion language presented up to now is very rigid in the
sense that all user-defined methods are considered as (potential) participants of a
recursion cycle; correspondingly a universal termination measure has to be found
that is increased by every method invocation. In reality, however, many functions
are not recursive (such that actually no termination measure would be required for
them); furthermore, different function definitions may be actually part of different
recursion cycles (with different termination measures).
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The solution for dealing with such situations by a more flexible form of the cal-
culus is conceptually simple: take the directed graph whose vertices represent the
user-defined methods and whose edges represents the “is called by” relation. We
identify in this graph all strongly connected components (SCCs) where a SCC
is a maximal subgraph with a path between every pair of nodes that fully lies
within that subgraph. Each SCC thus represents a set of methods that are defined
recursively, either directly or indirectly by calls of other methods in that set.

By contracting each SCC to a “macro-vertex”, we get a directed acyclic graph. By
topological sorting, we may put all SCCs in that graph in a sequence such that each
method is only called by methods in the same SCC or by a method in a SCC that
appears prior in that sequence. The semantics of recursive method declarations
given in the previous subsection may thus be considered as the semantics of a
single SCC in that sequence; the “base environment” used in the semantics is the
environment sequence constructed by the preceding SCC; the base environment
of the first SCC is the set of “pre-defined” functions.

In this construction, for every SCC a separate measure may be used which only
has to consider the methods within the SCC. Furthermore, rather than using the
same well-founded ordering 〈N,<〉 as the domain of every measure, we may use
different well-founded orderings for different measures: in practice, e.g. 〈Nn,<n〉
is frequently used, where Nn is the set of n-tuples of natural numbers and <n

represents the lexicographical order among such tuples.

We leave the concrete elaboration of this sketch to future work.



Appendix A

Mathematical Language

This appendix summarizes the mathematical language used in this document. Our
theoretical framework is classical Zermelo-Fraenkel set theory (ZF) formalized
in first-order predicate logic (FOL), as it is presented in typical introductions to
mathematics for computer scientists. We therefore mostly refrain from providing
formal definitions of the concepts but focus on a presentation of the notations
we use together with informal explanations of their interpretations. The exact
definitions can be looked up in various text books on this subject.

In the following descriptions, we use the meta-variables x,x1, . . . to denote ob-
ject variables, f , f1, . . . to denote function names, p, p1, . . . to denote predicate
names, T,T1, . . . to denote terms, F,F1, . . . to denote formulas, and P,P1, . . . to de-
note generic phrases (terms or formulas).

Terms We use the following kinds of terms to denote values:

• x : the variable x.

• f: the constant (0-ary function) f .

• f(T1, . . . ,Tn): the application of the n-ary function f to T1, . . . ,Tn (n≥ 1).

• SUCH x : F: some x such that F is true for x, if F is true for any value, and
x is arbitrary, otherwise.

Formulas We use the following kinds of formulas to denote propositions:

• p(T1, . . . ,Tn): the n-ary predicate p is true for T1, . . . ,Tn (n≥ 1).
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• T1 = T2: T1 equals T2.

• ¬F: F is not true.

• F1∧F2: F1 is true and F2 is true.

• F1∨F2: F1 is true or F2 is true (also both may be true).

• F1 ⇒ F2: if F1 is true, then F2 is also true (but F1 may be false).

• F1 ⇔ F2: both F1 and F2 are true or both are false.

• ∀x : F: for every x, F is true.

• ∃x : F: for some x, F is true.

Generic Phrases We use the following generic phrases:

• IF F THEN P1 ELSE P2: if F is true, then P1, else P2.

• LET x = T IN P: P, where the value of x is the value of T (the meaning of
this phrase is the same as that of P[T/x], see below).

Free and Bound Variables An occurrence of a variable x in one of the phrases
SUCH x : F , ∀x : F , ∃x : F , or LET x = T IN P is called bound by that phrase. A
non-bound occurrence of a variable in a phrase is free in that phrase.

Term Substitutions We introduce the following substitutions of terms by other
terms in a phrase P:

• P[U1/T1, . . . ,Un/Tn]: that variant of P where all occurrences of terms
T1, . . . ,Tn (pairwise-different) are replaced by terms U1, . . . ,Un.

• P[U1(x)/T1(x), . . . ,Un(x)/Tn(x) : F]: that variant of P where, for every
term x for which F is true, all occurrences of terms T1(x), . . . ,Tn(x) (pair-
wise different and different for different x) are replaced by the correspond-
ing terms U1(x), . . . ,Un(x).
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Sets We use the following predicates, constants, and functions on sets:

• T1 ∈ T2: T1 is in T2.

• T1 ⊆ T2: T1 is a subset of T2, i.e., every x which is in T1 is also in T2.

• /0: the empty set.

• T1∩T2,T1∪T2, T1\T2: the intersection, union, and difference of T1 and T2.

• {T1, . . . ,Tn}: the set of values T1, . . . ,Tn.

• {x ∈ T : F}: the set of values x in T for which F is true.

• {f(x1, . . . ,xn) ∈ T : F}: the set of values f (x1, . . . ,xn) in T such that F is
true for x1, . . . ,xn.

• B: the set {TRUE, FALSE} of truth values (Boolean values).

• N: the set {0,1,2, . . .} of the natural numbers including 0.

• Nn: the set {0,1, . . . ,n− 1} of the n natural numbers less than n (hence
N0 = /0).

• Z: the set {0,1,−1,2,−2, . . .} of the integer numbers including 0 (hence
Z0 = /0).

• Zn: the set {−n, . . . ,−1,0,1, . . . ,n− 1} of the 2n integer numbers greater
than or equal −n and less than n.

• Q: the set of all rational numbers.

• P(T): the powers et of T (the set of its subsets), also considered as the set
of relations on T : for every r in P(T ) (i.e. r ⊆ T ) and for every x in T , r(x)
(i.e. x ∈ r) is true or false.

• P(T)∞: the set of all infinite subsets of T .

Tuples The datatype tuple (ordered sequence of unnamed values) is introduced
as follows:

• T1× . . .×Tn: the set of tuples 〈v1, . . . ,vn〉 with v1 ∈ T1, . . . ,vn ∈ Tn; if t =
〈v1, . . . ,vn〉, then t.i = vi (1≤ i≤ n).

• Tt[i 7→ T]: the tuple which is identical to tuple Tt except that Tt .i = T (i.e.
Tt [i 7→ T ].i′ = Tr.i′, for all i′ 6= i).
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Records The datatype record (ordered sequence of named values) is introduced
as follows:

• t1 : T1× . . .× tn : Tn: the set of records 〈t1 : v1, . . . , tn : vn〉 (= {〈t1,v1〉, . . . ,
〈tn,vn〉}) where t1, . . . , tn are disjoint values (tags) and v1 ∈ T1, . . . ,vn ∈ Tn;
if r = 〈t1 : v1, . . . , tn : vn〉, then r.ti = vi (1≤ i≤ n).

• Tr[t 7→ T]: the record which is identical to record Tr except that Tr.t = T
(i.e. Tr[t 7→ T ].t ′ = Tr.t ′, for all t ′ 6= t).

Maps The datatype map (the set-theoretic counterpart of a function) is intro-
duced as follows:

• T1
part.−→ T2: the set of partial maps from T1 to T2; for every f in T1

part.−→ T2
and for every x in domain( f ) ⊆ T1, f (x) is in T2 and 〈x, f (x)〉 is in f (i.e.
T1

part.−→ T2 is a subset of T1×T2).

• T1 → T2: the set of total maps from T1 to T2 (a subset of T1
part.−→ T2); for

every f in T1 → T2 and for every x in T1, f (x) is in T2 (i.e. domain( f ) = T1).

• Tm[Tx 7→ Ty]: the map which is identical to map Tm except that Tm[Tx 7→
Ty](Tx) = Ty (i.e. Tm[Tx 7→ Ty](x) = Tm(x) for every x 6= Tx).

• [Tx 7→ Ty]: the map m such that domain(m) = {Tx} and m(Tx) = Ty.

Sequences The domain sequence (finite sequence of arbitrary length) is intro-
duced as follows:

• Ak := Nk → A: the set of sequences of length k ∈N whose values are in A;
for every s ∈ Ak, i ∈ Nk,v ∈ A, we have s(i) ∈ A and s[ i 7→ v ] ∈ Ak.

• A∗ :=
⋃

k∈NAk: the set of finite sequences whose values are in A with func-
tion LENGTH : A∗→ N: for every s ∈ Ak ⊆ A∗, we have LENGTH(s) = k.

The domain of infinite sequences is correspondingly introduced:

• A∞ := N→ A: the set of infinite sequences whose values are in A; for every
s ∈ A∞, i ∈ N,v ∈ A, we have s(i) ∈ A and s[ i 7→ v ] ∈ A∞.
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Abbreviations We use the following syntactic abbreviations of terms and for-
mulas (“P1 ≡ P2” means “P1 is an abbreviation of P2”):

• SUCH x ∈ T : F ≡ SUCH x : x ∈ T ∧ F

• ∀x ∈ T : F ≡ ∀x : x ∈ T ⇒ F

• ∀x1 ∈ T1, . . . ,xn ∈ Tn : F ≡ ∀x1 ∈ T1 : . . . : ∀xn ∈ Tn : F

• ∀x1, . . . ,xn ∈ T : F ≡ ∀x1 ∈ T, . . . ,xn ∈ T : F

• ∃x ∈ T : F ≡ ∃x : x ∈ T ∧ F

• ∃x1 ∈ T1, . . . ,xn ∈ Tn : F ≡ ∃x1 ∈ T1 : . . . : ∃xn ∈ Tn : F

• ∃x1, . . . ,xn ∈ T : F ≡ ∃x1 ∈ T, . . . ,xn ∈ T : F

• LET x1 = T1, . . . ,xn = Tn IN P ≡ LET x1 = T1 IN LET . . . IN LET xn =
Tn IN P

• T[T1 7→ T′1, . . . ,Tn 7→ T′n] ≡ T [T1 7→ T ′1] . . . [Tn 7→ T ′n]

• [T1 7→ T′1, . . . ,Tn 7→ T′n] ≡ [T1 7→ T ′1] . . . [Tn 7→ T ′n]

• MIN x ∈ S : F ≡ SUCH x ∈ S : (F ∧¬∃y ∈ S : y < x∧F [y/x])

• MAX x ∈ S : F ≡ SUCH x ∈ S : (F ∧¬∃y ∈ S : y > x∧F [y/x])

Definitions of Relations and Maps We use the following formats to define re-
lations and maps.

• r ∈ P(T1× . . .×Tn), r(x1, . . . ,xn)⇔ F

This definition introduces a relation r on T1 × . . .× Tn such that, for all
x1 ∈ T1, . . . ,xn ∈ Tn, the formula r(x1, . . . ,xn) is true if and only if F is true.

The relation r ∈ P(T1× . . .×Tn) is the set

r = {〈x1, . . . ,xn〉 ∈ T1× . . .×Tn : F}

The formula r(x1, . . . ,xn) is the syntactic abbreviation

r(x1, . . . ,xn) ≡ 〈x1, . . . ,xn〉 ∈ r
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• f ∈ T1× . . .×Tn → T0, f(x1, . . . ,xn) = T
This definition introduces a total map f from T1× . . .×Tn to T0 such that,
for all x1 ∈ T1, . . . ,xn ∈ Tn, the value of the term f (x1, . . . ,xn) is in T0 and
equals the value of T .

The map f ∈ T1× . . .×Tn → T0 is the set

f = {〈x1, . . . ,xn,y〉 ∈ T1× . . .×Tn×T0 : y = T}

The term f (x1, . . . ,xn) is the syntactic abbreviation

f (x1, . . . ,xn) ≡ SUCH y ∈ T0 : 〈x1, . . . ,xn,y〉 ∈ f

Since relations and maps are just special sets, they may serve as the values of
variables in terms and formulas (in contrast to logical predicates and functions).
On the other hand, the abbreviations r(x1, . . . ,xn) and f (x1, . . . ,xn) make a relation
r and a map f usable like a predicate respectively function; we thus use the notions
“predicate” and ”relation” respectively “function” and “map” interchangeably.



Appendix B

Mathematical Properties

This appendix summarizes various properties of domains introduced in this docu-
ment and presents (or at least sketches) their proofs.

B.1 States as Plain Stores

This section deals with the properties of states as plain stores based on the follow-
ing definitions:

Store := Variable→ Value
State := Store

read : State× Identifier→ Value
read(s, I) = s([ I ])

write : State× Identifier×Value→ State
write(s, I,v) = s[ [ I ] 7→ v ]

writes(s, I1,v1, . . . , In,vn)≡ s[ [ I1 ] 7→ v1 ] . . .[ [ In ] 7→ vn ]

s0 EQUALS s1 ≡
∀I ∈ Identifier : read(s0, I) = read(s1, I)

s0 = s1 AT I1, . . . , In ≡
∀I ∈ Identifier : I = I1∨ . . .∨ I = In ⇒ read(s0, I) = read(s1, I)
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s0 = s1 EXCEPT I1, . . . , In ≡
∀I ∈ Identifier : I 6= I1∧ . . .∧ I 6= In ⇒ read(s0, I) = read(s1, I)

DifferentVariables :⇔∀I1, I2 ∈ Identifier : I1 6= I2 ⇒ [ I1 ] 6= [ I2 ]

The lemmas listed in Figure B.1 are:

ID (Store Identity) This lemma states that writing in a store the value read from
that store does not change the store.

RW1 (Reading and Writing Stores 1) This lemma states that reading the last
variable written to a store returns the value that was last written.

RW2 (Reading and Writing Stores 2) This lemma says that reading a variable
different from the one that was last written to a store returns the value of the
variable in the original store.

WS (Writing Stores) This lemma says that the store to which a variable denoted
by identifier I has been written and the original store agree in the values of
all variables denoted by identifiers different from I provided that different
identifiers denote different variables.

RS (Reading Stores) This lemma says that if two stores differ only in the value
of a variable I1, they agree on the value of any other variable I2.

RE (Reflexivity) This lemma says that the plain equality of stores is an excep-
tional equality for any variable.

SY (Symmetry) This lemma states that exceptional equality is symmetric on
stores for single exceptions.

TR (Transitivity) This lemma states that exceptional equality is transitive on
stores for single exceptions.

AV (Addition of Variables) This lemma says that any variable may be added to
an exception of a store equality.

RV (Removal of Variables) This lemma says that an identifier may be removed
from two exceptions to the equality of two stores, if the denoted variable
has the same value in both stores.

SV (Swapping of Variables) This lemma says that the order of two identifiers in
the list of exceptions of a store equality may be swapped.
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Definition

DifferentVariables :⇔∀I1, I2 ∈ Identifier : I1 6= I2 ⇒ [ I1 ] 6= [ I2 ]

Store Identity

(ID) ∀s ∈ State, I ∈ Identifier : s = write(s, I,read(s, I))

Reading and Writing Stores

(RW1)
∀s ∈ State, I ∈ Identifier,v ∈ Value :

read(write(s, I,v), I) = v

(RW2)
∀s ∈ State, I1, I2 ∈ Identifier,v ∈ Value :

[ I1 ] 6= [ I2 ]⇒ read(write(s, I1,v), I2) = read(s, I2)

Equal Stores with Exceptions

(WS)
DifferentVariables⇒
∀s ∈ State, I ∈ Identifier,v ∈ Value :

write(s, I,v) = s EXCEPT I

(RS)
∀s1,s2 ∈ State, I1, I2 ∈ Identifier :

I1 6= I2∧ s1 = s2 EXCEPT I1 ⇒ read(s1, I2) = read(s2, I2)

Basic Store Equalities

(RE) ∀s ∈ State, I ∈ Identifier : s = s EXCEPT I

(SY)
∀s1,s2 ∈ State, I ∈ Identifier :

s1 = s2 EXCEPT I ⇒ s2 = s1 EXCEPT I

(TR)
∀s1,s2,s3 ∈ State, I ∈ Identifier :

s1 = s2 EXCEPT I∧ s2 = s3 EXCEPT I ⇒ s1 = s3 EXCEPT I

(AV)
∀s1,s2 ∈ State, I1, I2 ∈ Identifier :

s1 = s2 EXCEPT I1 ⇒ s1 = s2 EXCEPT I1, I2

(RV)
∀s1,s2 ∈ State, I1, I2 ∈ Identifier :

s1 = s2 EXCEPT I1, I2∧ read(s1, I2) = read(s2, I2)⇒
s1 = s2 EXCEPT I1

(SV)
∀s1,s2 ∈ State, I1, I2 ∈ Identifier :

s1 = s2 EXCEPT I1, I2 ⇒ s1 = s2 EXCEPT I2, I1

Figure B.1: Store Lemmas (Part 1 of 2)
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Extended Store Properties

(IDE)
∀s ∈ State, I1, . . . , In ∈ Identifier :

s = writes(s, I1,read(s, I1), . . . , In,read(s, In))

(RWE)
∀s ∈ State, I1, . . . , In ∈ Identifier,v1, . . . ,vn ∈ Value :

LET s′ = writes(s, I1,v1 . . . , In,vn) IN

read(s′, I1) = v1∧ . . .∧ read(s′, In) = vn

(WSE)
DifferentVariables⇒
∀s ∈ State, I1, . . . , In ∈ Identifier,v1, . . . ,vn ∈ Value :

writes(s, I1,v1, . . . , In,vn) = s EXCEPT I1, . . . , In

(RSE)
∀s1,s2 ∈ State, I1, . . . , In, I ∈ Identifier :

s1 = s2 EXCEPT I1, . . . , In∧ I 6= I1∧ . . .∧ I 6= In ⇒
read(s1, I) = read(s2, I)

(REE) ∀s ∈ State, I1, . . . , In ∈ Identifier : s = s EXCEPT I1, . . . , In

(SYE)
∀s1,s2 ∈ State, I1, . . . , In ∈ Identifier :

s1 = s2 EXCEPT I1, . . . , In ⇒ s2 = s1 EXCEPT I1, . . . , In

(TRE)
∀s1,s2,s3 ∈ State, I1, . . . , In ∈ Identifier :

s1 = s2 EXCEPT I1, . . . , In∧ s2 = s3 EXCEPT I1, . . . , In ⇒
s1 = s3 EXCEPT I1, . . . , In

(AVE)
∀s1,s2 ∈ State, I1, . . . , In,J1, . . . ,Jm ∈ Identifier :

s1 = s2 EXCEPT I1, . . . , In ⇒ s1 = s2 EXCEPT I1, . . . , In,J1, . . . ,Jm

(RVE)

∀s1,s2 ∈ State, I1, . . . , In,J1, . . . ,Jm ∈ Identifier :
s1 = s2 EXCEPT I1, . . . , In,J1, . . . ,Jm∧
read(s1,J1) = read(s2,J1)∧ . . .∧ read(s1,Jm) = read(s2,Jm)⇒

s1 = s2 EXCEPT I1, . . . , In

(SVE)

∀s1,s2 ∈ State, I1, . . . In ∈ Identifier, p :
s1 = s2 EXCEPT I1, . . . In ∧
p is a permutation of {1, . . . ,n}⇒

s1 = s2 EXCEPT Ip(1), . . . , Ip(n)

(NEQ) ∀s1,s2 ∈ State : s1 EQUALS s2 ⇔ s1 = s2 EXCEPT

Figure B.2: Store Lemmas (Part 2 of 2)
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The lemmas listed in Figure B.2 are:

IDE (Store Identity Extended) This lemma states that writing in a store the val-
ues read from that store does not change the store.

RWE (Reading and Writing Stores Extended) This states that if we write into
a store into multiple variables the values of the same variables from another
store, then both stores hold the same values in these variables.

WSE (Writing Stores Extended) This lemma says that if two a store the values
of the variables denoted by identifiers I1, . . . , In are written, the new store and
the old store agree on the value of all variables denoted by other identifiers
provided that different identifiers denote different variables.

RSE (Reading Stores Extended) This lemma says that if two stores differ only
in the values of variables I1, . . . , In, they agree on the value of any other
variable I.

REE (Reflexivity Extended) This lemma says that the plain equality of stores is
an exceptional equality for any collection of variables.

SYE (Symmetry Extended) This lemma says that exceptional equality is sym-
metric on stores for multiple exceptions.

TRE (Transitivity Extended) This lemma says that exceptional equality is tran-
sitive on stores for multiple exceptions.

AVE (Addition of Variables Extended Variables) This lemma states that arbi-
trary variables may be added to the list of exceptions of a store equality.

RVE (Removal of Variables Extended) This lemma says that identifiers may be
removed from the exceptions to the equality of two stores, if the denoted
variables have the same value in both stores.

SVE (Swapping of Variables Extended) This lemma says that the identifiers in
the list of exceptions of a store equality may be arbitrarily permuted.

NEQ (No Exception Equality) This lemma states that the predicate EQUALS de-
scribes equality without exceptions.

The following subsections gives the proofs of these properties.



B.1 States as Plain Stores 549

B.1.1 Reading and Writing Stores

Store Identity

(ID) ∀s ∈ State, I ∈ Identifier : s = write(s, I,read(s, I))

Proof: Take arbitrary s∈ State, I ∈ Identifier. By the definitions of read and write,
we know write(s, I,read(s, I)) = s[ [ I ] 7→ s([ I ]) ] = s. ¤

Reading and Writing 1

(RW1)
∀s ∈ State, I ∈ Identifier,v ∈ Value :

read(write(s, I,v), I) = v

Proof: Take arbitrary s ∈ State, I ∈ Identifier,v ∈ Value. Then we know by the
definitions of read and write that read(write(s, I,v), I) = s[ [ I ] 7→ v ]([ I ]) = v. ¤

Reading and Writing 2

(RW2)
∀s ∈ State, I1, I2 ∈ Identifier,v ∈ Value :

[ I1 ] 6= [ I2 ]⇒ read(write(s, I1,v), I2) = read(s, I2)

Proof: Take arbitrary s ∈ State, I1, I2 ∈ Identifier,v ∈ Value and assume

(1) [ I1 ] 6= [ I2 ]

Then we know by the definitions of read and write that read(write(s, I1,v), I2) =
s[ [ I1 ] 7→ v ]([ I2 ]) = s([ I2 ]) = read(s, I2). ¤

B.1.2 Equal Stores with Exceptions

Writing Stores

(WS)
DifferentVariables⇒
∀s ∈ State, I ∈ Identifier,v ∈ Value :

write(s, I,v) = s EXCEPT I

Proof: Assume DifferentVariables, i.e.

(1) ∀I1, I2 ∈ Identifier : I1 6= I2 ⇒ [ I1 ] 6= [ I2 ]
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We show

(a)
∀s ∈ State, I ∈ Identifier,v ∈ Value :

write(s, I,v) = s EXCEPT I

Take arbitrary s ∈ State, I ∈ Identifier,v ∈ Value. By the definition of EXCEPT, we
have to show

(b) ∀J ∈ Identifier : J 6= I ⇒ read(write(s, I,v),J) = read(s,J)

Take arbitrary J ∈ Identifier and assume

(2) J 6= I

We have to show

(c) read(write(s, I,v),J) = read(s,J)

From (1) and (2), we know

(3) [J ] 6= [ I ]

From this and (RW2), we know (c). ¤

Reading Stores

(RS)
∀s1,s2 ∈ State, I1, I2 ∈ Identifier :

s1 = s2 EXCEPT I1∧ I1 6= I2 ⇒ read(s1, I2) = read(s2, I2)

Proof: Take arbitrary s1,s2 ∈ State, I1, I2 ∈ Identifier and assume

(1) s1 = s2 EXCEPT I1

(2) I1 6= I2

We have to show

(a) read(s1, I2) = read(s2, I2)

From (1) and the definition of EXCEPT, we know

(3) ∀I ∈ Identifier : I 6= I1 ⇒ read(s, I) = read(s, I)

From (2) and (3), we know (a). ¤
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B.1.3 Basic Store Equalities

Reflexivity

(RE) ∀s ∈ State, I ∈ Identifier : s = s EXCEPT I

Proof: Take arbitrary s ∈ State, I ∈ Identifier. By the definition of EXCEPT, we
have to show

(a) ∀J ∈ Identifier : J 6= I ⇒ read(s,J) = read(s,J)

which is of course true. ¤

Symmetry

(SY)
∀s1,s2 ∈ State, I ∈ Identifier :

s1 = s2 EXCEPT I ⇒ s2 = s1 EXCEPT I

Proof: Take arbitrary s1,s2 ∈ State, I ∈ Identifier and assume

(1) s1 = s2 EXCEPT I

i.e., by the definition of EXCEPT,

(2) ∀J ∈ Identifier : J 6= I ⇒ read(s1,J) = read(s2,J)

We have to show

(a) s2 = s1 EXCEPT I

i.e., by the definition of EXCEPT,

(2) ∀J ∈ Identifier : J 6= I ⇒ read(s2,J) = read(s1,J)

which follows from (2). ¤
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Transitivity

(TR)
∀s1,s2,s3 ∈ State, I ∈ Identifier :

s1 = s2 EXCEPT I∧ s2 = s3 EXCEPT I ⇒ s1 = s3 EXCEPT I

Proof: Take arbitrary s1,s2,s3 ∈ State, I ∈ Identifier and assume

(1) s1 = s2 EXCEPT I

(2) s2 = s3 EXCEPT I

We have to show

(a) s1 = s3 EXCEPT I

i.e., by the definition of EXCEPT,

(b) ∀J ∈ Identifier : J 6= I ⇒ read(s1,J) = read(s3,J)

From (1) and (2) we know

(3) ∀J ∈ Identifier : J 6= I ⇒ read(s1,J) = read(s2,J)

(4) ∀J ∈ Identifier : J 6= I ⇒ read(s2,J) = read(s3,J)

from which we know (b). ¤

Addition of Variables

(AV)
∀s1,s2 ∈ State, I1, I2 ∈ Identifier :

s1 = s2 EXCEPT I1 ⇒ s1 = s2 EXCEPT I1, I2

Proof: Take arbitrary s1,s2 ∈ State, I1, I2 ∈ Identifier and assume

(1) s1 = s2 EXCEPT I1

We have to show

(a) s1 = s2 EXCEPT I1, I2

i.e. by the definition of EXCEPT

(b) ∀I ∈ Identifier : I 6= I1∧ I 6= I2 ⇒ read(s1, I) = read(s2, I)

From (1) we know by the definition of EXCEPT

(b) ∀I ∈ Identifier : I 6= I1 ⇒ read(s1, I) = read(s2, I)

and thus (b). ¤
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Removal of Variables

(RV)
∀s1,s2 ∈ State, I1, I2 ∈ Identifier :

s1 = s2 EXCEPT I1, I2∧ read(s1, I2) = read(s2, I2)⇒
s1 = s2 EXCEPT I1

Proof: Take arbitrary s1,s2 ∈ State, I1, I2 ∈ Identifier and assume

(1) s1 = s2 EXCEPT I1, I2

(2) read(s1, I2) = read(s2, I2)

From (1), we know by the definition of EXCEPT

(3) ∀I ∈ Identifier : I 6= I1∧ I 6= I2 ⇒ read(s1, I) = read(s2, I)

We have to show

(a) s1 = s2 EXCEPT I1

i.e. by the definition of EXCEPT

(b) ∀I ∈ Identifier : I 6= I1 ⇒ read(s1, I) = read(s2, I)

Take arbitrary I ∈ Identifier and assume

(4) I 6= I1

We have to show

(c) read(s1, I) = read(s2, I)

In the case of I = I2, we know (c) from (2). In the case of I 6= I2, we know (c)
from (3) and (4). ¤

Swapping of Variables

(SV)
∀s1,s2 ∈ State, I1, I2 ∈ Identifier :

s1 = s2 EXCEPT I1, I2 ⇒ s1 = s2 EXCEPT I2, I1

Proof: Take arbitrary s1,s2 ∈ State, I1, I2 ∈ Identifier and assume

(1) s1 = s2 EXCEPT I1, I2
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We have to show

(a) s1 = s2 EXCEPT I2, I1

i.e. by the definition of EXCEPT

(b) ∀I ∈ Identifier : I 6= I1∧ I 6= I2 ⇒ read(s, I) = read(s, I)

From (1) we know by the definition of EXCEPT

(2) ∀I ∈ Identifier : I 6= I2∧ I 6= I1 ⇒ read(s, I) = read(s, I)

and thus (b). ¤

B.1.4 Extended Properties

Store Identity (Extended)

(IDE)
∀s ∈ State, I1, . . . , In ∈ Identifier :

s = writes(s, I1,read(s, I1), . . . , In,read(s, In))

Proof: An extended version of the proof of (ID). ¤

Reading and Writing Stores (Extended)

(RWE)
∀s1,s2 ∈ State, I1, . . . , In ∈ Identifier :

LET s = writes(s1, I1,read(s2, I1), . . . , In,read(s2, In)) IN

read(s, I1) = read(s2, I1)∧ . . .∧ read(s, In) = read(s2, In)

Proof: An extended version of the proof of (RWE). It should be noted that the
lemma is not true for an arbitrary sequence of values written into the store: since
the same variable may be denoted by different occurrences in the identifier se-
quence, it is essential that for these occurrences the same value is written; this
is guaranteed by reading these values from another store (where these identifiers
then also denote the same variables). ¤

Writing Stores (Extended)

(WSE)
DifferentVariables⇒
∀s ∈ State, I1, . . . , In ∈ Identifier,v1, . . . ,vn ∈ Value :

writes(s, I1,v1, . . . , In,vn) = s EXCEPT I1, . . . , In

Proof: Analogous to the proof of (WS). ¤
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Reading Stores (Extended)

(RSE)
∀s1,s2 ∈ State, I1, . . . , In, I ∈ Identifier :

s1 = s2 EXCEPT I1, . . . , In∧ I6 = I1∧ . . .∧ I 6= In ⇒
read(s1, I) = read(s2, I)

Proof: Analogous to the proof of (RS). ¤

Reflexivity (Extended)

(REE)
∀s ∈ State, I1, . . . , In ∈ Identifier :

s = s EXCEPT I1, . . . , In

Proof: By (RE) and repeated application of (AV). ¤

Symmetry (Extended)

(SYE)
∀s1,s2 ∈ State, I1, . . . , In ∈ Identifier :

s1 = s2 EXCEPT I1, . . . , In ⇒ s2 = s1 EXCEPT I1, . . . , In

Proof: Analogous to the proof of (SY).

Transitivity (Extended)

(TRE)
∀s1,s2,s3 ∈ State, I1, . . . , In ∈ Identifier :

s1 = s2 EXCEPT I1, . . . , In∧ s2 = s3 EXCEPT I1, . . . , In ⇒
s1 = s3 EXCEPT I1, . . . , In

Proof: Analogous to the proof of (TR).

Addition of Variables (Extended)

(AVE)
∀s1,s2 ∈ State, I1, . . . , In, I ∈ Identifier :

s1 = s2 EXCEPT I1, . . . , In ⇒ s1 = s2 EXCEPT I1, . . . , In, I

Proof: Analogous to the proof of (AV). ¤

Removal of Variables (Extended)

(RVE)
∀s1,s2 ∈ State, I1, . . . , In, I ∈ Identifier :

s1 = s2 EXCEPT I1, . . . , In, I∧ read(s1, I) = read(s2, I)⇒
s1 = s2 EXCEPT I

Proof: Analogous to the proof of (RVE). ¤



556 Chapter B. Mathematical Properties

Swapping of Variables (Extended)

(SVE)
∀s1,s2 ∈ State, I1, . . . In ∈ Identifier, p :

p is a permutation of {1, . . . ,n}⇒
s1 = s2 EXCEPT Ip(1), . . . , Ip(n)

Proof: By repeated application of (SV). ¤

No Exception Equality

(NEQ) ∀s1,s2 ∈ State : s1 EQUALS s2 ⇔ s1 = s2 EXCEPT

Proof: by definition of EQUALS and EXCEPT. ¤

B.2 Formulas and Terms

The lemmas in this section state that formula respectively term values remain
invariant under certain conditions. The proofs of these lemmas are omitted.

The lemmas in Figures B.3 and B.4 state invariance properties under certain mod-
ifications of contexts (states or environments):

ESF/EST (Equal Stores) The value of a phrase is invariant in all states that have
the same values for the variables denoted by identifiers (i.e. the value of a
phrase does not depend on unreferencable variables).

MVF/MVT (Mathematical Variables) A phrase without any free variable oc-
currences cannot distinguish between

MVF/MVT0 (Mathematical Variables 0) That value of a phrase that does not
have any free occurrence of a certain variable is not sensitive to environment
updates with respect to that variable.

PVF/PVT1 (Program Variables 1) A phrase without references to the prestate
values of program variables cannot distinguish between different prestates.

PVF/PVT1 (Program Variables 2) A phrase without references to the poststate
values of program variables cannot distinguish between different poststates.

PVF/PVT3 (Program Variables 3) A phrase without references to the prestate
values of program variables I1, . . . , In cannot distinguish between prestates
that only differ in the contents of these variables.
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Basic Formula Lemmas

(ESF)
∀F ∈ Formula,e ∈ Environment,s0,s′0,s1,s′1 ∈ State :

s0 EQUALS s1∧ s′0 EQUALS s′1 ⇒
[F ](e)(s0,s′0)⇔ [F ](e)(s1,s′1)

(MVF)
∀F ∈ Formula : F has no free variables ⇒
∀e1,e2 ∈ Environment,s,s′ ∈ State :

[F ](e1)(s,s′)⇔ [F ](e2)(s,s′)

(MVF0)
∀F ∈ Formula, I ∈ Identifier : $I is not free in F ⇒
∀e ∈ Environment,s,s′ ∈ State,v ∈ Value :

[F ](e)(s,s′)⇔ [F ](e[ I 7→ v ])(s,s′)

(PVF1)
∀F ∈ Formula : F has no plain program variables ⇒
∀e ∈ Environment,s1,s2,s′ ∈ State :

[F ](e)(s1,s′)⇔ [F ](e)(s2,s′)

(PVF2)
∀F ∈ Formula : F has no primed program variables ⇒
∀e ∈ Environment,s,s′1,s

′
2 ∈ State :

[F ](e)(s,s′1)⇔ [F ](e)(s,s′2)

(PVF3)
∀F ∈ Formula, I1, . . . , In ∈ Identifier : I1, . . . , In do not occur in F ⇒
∀e ∈ Environment,s1,s2,s′ ∈ State :

s1 = s2 EXCEPT I1, . . . , In ⇒ [F ](e)(s1,s′)⇔ [F ](e)(s2,s′)

(PVF4)
∀F ∈ Formula, I1, . . . , In ∈ Identifier : I1’, . . . , In’ do not occur in F ⇒
∀e ∈ Environment,s,s′1,s

′
2 ∈ State :

s′1 = s′2 EXCEPT I1, . . . , In ⇒ [F ](e)(s,s′1)⇔ [F ](e)(s,s′2)

Figure B.3: Basic Formula Lemmas
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Basic Term Lemmas

(EST)
∀T ∈ Term,e ∈ Environment,s0,s′0,s1,s′1 ∈ State :

s0 EQUALS s1∧ s′0 EQUALS s′1 ⇒
[T ](e)(s0,s′0) = [T ](e)(s1,s′1)

(MVT)
∀T ∈ Term : T has no free variables ⇒
∀e1,e2 ∈ Environment,s,s′ ∈ State :

[T ](e1)(s,s′) = [T ](e2)(s,s′)

(MVT0)
∀T ∈ Term, I ∈ Identifier : $I is not free in T ⇒
∀e ∈ Environment,s,s′ ∈ State,v ∈ Value :

[T ](e)(s,s′) = [T ](e[ I 7→ v ])(s,s′)

(PVT1)
∀T ∈ Term : T has no plain program variables ⇒
∀e ∈ Environment,s1,s2,s′ ∈ State :

[T ](e)(s1,s′) = [F ](e)(s2,s′)

(PVT2)
∀T ∈ Term : T has no primed program variables ⇒
∀e ∈ Environment,s,s′1,s

′
2 ∈ State :

[T ](e)(s,s′1) = [T ](e)(s,s′2)

(PVT3)
∀T ∈ Term, I1, . . . , In ∈ Identifier : I1, . . . , In do not occur in T ⇒
∀e ∈ Environment,s1,s2,s′ ∈ State :

s1 = s2 EXCEPT I1, . . . , In ⇒ [T ](e)(s1,s′) = [T ](e)(s2,s′)

(PVT4)
∀T ∈ Term, I1, . . . , In ∈ Identifier : I1’, . . . , In’ do not occur in T ⇒
∀e ∈ Environment,s,s′1,s

′
2 ∈ State :

s′1 = s′2 EXCEPT I1, . . . , In ⇒ [T ](e)(s,s′1) = [T ](e)(s,s′2)

Figure B.4: Basic Term Lemmas
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PVF/PVT3 (Program Variables 4) A phrase without references to the poststate
values of program variables I1, . . . , In cannot distinguish between poststates
that only differ in the contents of these variables.

The lemmas in Figure B.5 state that substituting mathematical variables by pro-
gram variables and vice versa lets these variables disappear from the correspond-
ing phrases (formulas or terms); likewise substituting poststate references to pro-
gram variables by corresponding prestate references and vice versa lets these ref-
erences disappear.

The lemmas in Figures B.6 and B.7 state invariance properties under certain vari-
able substitutions:

PPVF1/PPVT1 (Program to Program Variables 1) Replacing all references to
the prestate values of program variables by references to their poststate val-
ues has the same effect as updating the variables in the prestate by their
poststate values.

PPVF2/PPVT2 (Program to Program Variables 2) Replacing all references to
the poststate values of program variables by references to their prestate val-
ues has the same effect as updating the variables in the poststate by their
prestate values.

PMVF1/PMVT1 (Program to Mathematical Variables 1) Replacing all refer-
ences to the prestate values of some program variables by new mathemat-
ical variables does not change the value of a phrase, if the mathematical
variables denote these values; furthermore the prestate can be replaced by
any prestate that has the same values in all other variables.

PMVF2/PMVT2 (Program to Mathematical Variables 2) Replacing all refer-
ences to the poststate some values of program variables by new mathemat-
ical variables does not change the value of a phrase, if the mathematical
variables denote these values; furthermore the poststate can be replaced by
any poststate that has the same values in all other variables.

MPVF0/MPVT0 (Mathematical to Program Variables 0) Replacing all refer-
ences to some plain program variables by mathematical variables generates
formulas/terms that do not refer to these plain program variables.

MPVF1/MPVT1 (Mathematical to Program Variables 1) Replacing all refer-
ences to some primed program variables by mathematical variables gener-
ates formulas/terms that do not refer to these primed program variables.
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Basic Phrase Substitution Lemmas

(PMVF0)
∀F ∈ Formula, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :

$J1, . . . ,$Jn do not occur in F [ I1/$J1, . . . , In/$Jn ]

(MPVF0)
∀F ∈ Formula, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :

I1, . . . , In do not occur in F [$J1/I1, . . . ,$Jn/In ]

(MPVF1)
∀F ∈ Formula, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :

I1’, . . . , In’ do not occur in F [$J1/I1’, . . . ,$Jn/In’ ]

(PMVT0)
∀T ∈ Term, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :

$J1, . . . ,$Jn do not occur in T [ I1/$J1, . . . , In/$Jn ]

(MPVT0)
∀T ∈ Term, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :

I1, . . . , In do not occur in T [$J1/I1, . . . ,$Jn/In ]

(MPVT1)
∀T ∈ Term, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :

I1’, . . . , In’ do not occur in T [$J1/I1’, . . . ,$Jn/In’ ]

(PPVF0)
∀F ∈ Formula, I1, . . . , In ∈ Identifier :

I1’, . . . , In’ do not occur in F [ I1/I1’, . . . , In/In’ ]

(PPVT0)
∀T ∈ Term, I1, . . . , In ∈ Identifier :

I1’, . . . , In’ do not occur in T [ I1/I1’, . . . , In/In’ ]

Figure B.5: Basic Phrase Substitution Lemmas
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Formula Substitution Lemmas

(PPVF1)
∀F ∈ Formula,e ∈ Environment,s,s′ ∈ State, I1, . . . , In ∈ Identifier :

[F [I1’/I1, . . . , In’/In] ](e)(s,s′)⇔
[F ](e)(writes(s, I1,read(s′, I1), . . . , In,read(s′, In)),s′)

(PPVF2)
∀F ∈ Formula,e ∈ Environment,s,s′ ∈ State, I1, . . . , In ∈ Identifier :

[F [I1/I1’, . . . , In/In’] ](e)(s,s′)⇔
[F ](e)(s,writes(s′, I1,read(s, I1), . . . , In,read(s, In)))

(PMVF1)

∀F ∈ Formula,J1, . . . ,Jn ∈ Identifier : $J1, . . . ,$Jn not in F ⇒
∀I1, . . . , In ∈ Identifier,e ∈ Environment,s,s′,s0 ∈ State :

J1, . . . ,Jn is a renaming of I1, . . . , In ∧
s = s0 EXCEPT I1, . . . , In ⇒

[F ](e)(s0,s′)⇔
[F [$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s0, I1), . . . ,Jn 7→ read(s0, In)])(s,s′)

(PMVF2)

∀F ∈ Formula,J1, . . . ,Jn ∈ Identifier : $J1, . . . ,$Jn not in F ⇒
∀I1, . . . , In ∈ Identifier,e ∈ Environment,s,s′,s1 ∈ State :

J1, . . . ,Jn is a renaming of I1, . . . , In ∧
s1 = s′ EXCEPT I1, . . . , In ⇒

[F ](e)(s,s1)⇔
[F [$J1/I1’, . . . ,$Jn/In’] ]

(e[J1 7→ read(s1, I1), . . . ,Jn 7→ read(s1, In)])(s,s′)

(MPVF2)

∀F ∈ Formula, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :
J1, . . . ,Jn is a renaming of I1, . . . , In ∧
I1, . . . , In do not occur in F ⇒

F [ I1/$J1, . . . , In/$Jn ][$J1/I1, . . . ,$Jn/In ] = F

Figure B.6: Formula Substitution Lemmas
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Term Substitution Lemmas

(PPVT1)
∀T ∈ Term,e ∈ Environment,s,s′ ∈ State, I1, . . . , In ∈ Identifier :

[T [I1’/I1, . . . , In’/In] ](e)(s,s′) =
[T ](e)(writes(s, I1,read(s′, I1), . . . , In,read(s′, In)),s′)

(PPVT2)
∀T ∈ Term,e ∈ Environment,s,s′ ∈ State, I1, . . . , In ∈ Identifier :

[T [I1/I1’, . . . , In/In’] ](e)(s,s′) =
[T ](e)(s,writes(s′, I1,read(s, I1), . . . , In,read(s, In)))

(PMVT1)

∀T ∈ Term,J1, . . . ,Jn ∈ Identifier : $J1, . . . ,$Jn do not occur in F ⇒
∀I1, . . . , In ∈ Identifier,e ∈ Environment,s,s′,s0 ∈ State :

J1, . . . ,Jn is a renaming of I1, . . . , In ∧
s = s0 EXCEPT I1, . . . , In ⇒

[T ](e)(s0,s′) =
[T [$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s0, I1), . . . ,Jn 7→ read(s0, In)])(s,s′)

(PMVT2)

∀T ∈ Term,J1, . . . ,Jn ∈ Identifier : $J1, . . . ,$Jn do not occur in F ⇒
∀I1, . . . , In ∈ Identifier,e ∈ Environment,s,s′,s1 ∈ State :

J1, . . . ,Jn is a renaming of I1, . . . , In ∧
s1 = s′ EXCEPT I1, . . . , In ⇒

[T ](e)(s,s1) =
[T [$J1/I1’, . . . ,$Jn/In’] ]

(e[J1 7→ read(s1, I1), . . . ,Jn 7→ read(s1, In)])(s,s′)

(MPVT0)
∀T ∈ Term, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :

I1, . . . , In do not occur in T [$J1/I1, . . . ,$Jn/In ]

(MPVT2)

∀T ∈ Term, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :
J1, . . . ,Jn is a renaming of I1, . . . , In ∧
I1, . . . , In do not occur in T ⇒

T [ I1/$J1, . . . , In/$Jn ][$J1/I1, . . . ,$Jn/In ] = T

Figure B.7: Term Lemmas
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Control Data Lemmas

(CD0) ∀s ∈ State : s = (store(s),control(s))

(CD1)

∀s ∈ State,k ∈ Key,v ∈ Value :
executes(control(execute(s)))∧
value(control(execute(s))) = value(control(s))∧
continues(control(continue(s)))∧
breaks(control(break(s)))∧
returns(control(return(s,v)))∧
value(control(return(s,v))) = v∧
throws(control(throw(s,k,v)))∧
key(control(throw(s,k,v))) = k∧
value(control(throw(s,k,v))) = v

(CD2)

∀s ∈ State,k ∈ Key,v ∈ Value :
s EQUALS execute(s) ∧
s EQUALS continue(s) ∧
s EQUALS break(s) ∧
s EQUALS return(s,v) ∧
s EQUALS throw(s,k,v)

(CD3) ∀s ∈ State,c ∈ Control : s EQUALS (store(s),c)

(CD4) ∀s,s′ ∈ State : s EQUALS s′⇔ store(s) = store(s′)

Figure B.8: Lemmas for States with Control Data

MPVF2/MPVT2 (Mathematical to Program Variables 2) Replacing all of the
occurrences of some mathematical variables by plain program variables that
do not occur in the formula/term and then replacing these plain program
variables by the mathematical variables again generates the original for-
mula/term.

B.3 States with Control Data

Figures B.8 and B.9 summarize basic properties of states with control data.

Figures B.10, B.11, B.12, B.13, B.14, B.14, B.16, B.17, B.18, and B.19 general-
ize the properties of phrases given in Appendix B.2 by taking into account the new
state control predicates introduced for the specification of programs operating on
states with control data.
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Reading and Writing Stores (with Control Data)

(CR)

∀s ∈ State, I ∈ Identifier,k ∈ key,v ∈ Value :
read(s, I) = read(execute(s), I)
read(s, I) = read(continue(s), I)
read(s, I) = read(break(s), I)
read(s, I) = read(return(s,v), I)
read(s, I) = read(throw(s,k,v), I)

(CW)
∀s ∈ State, I ∈ Identifier,v ∈ Value :

control(s) = control(write(s, I,v))

(CWE)
∀s ∈ State, I1, . . . , In ∈ Identifier :

control(s) = control(write(s, I1,v1, . . . , In,vn))

Figure B.9: Lemmas for States with Control Data

Basic Formula Lemmas (with State Control Predicates)

(ESF’)

∀F ∈ Formula,e ∈ Environment,s0,s′0,s1,s′1 ∈ State :
s0 EQUALS s1∧ s′0 EQUALS s′1 ∧
control(s0) = control(s1)∧ control(s′0) = control(s′1)⇒

[F ](e)(s0,s′0)⇔ [F ](e)(s1,s′1)

(MVF’)
∀F ∈ Formula : F has no free (mathematical or state) variables ⇒
∀e1,e2 ∈ Environment,s,s′ ∈ State :

[F ](e1)(s,s′)⇔ [F ](e2)(s,s′)

(MVF0’)
∀F ∈ Formula, I ∈ Identifier : $I is not free in F ⇒
∀e ∈ Environment,s,s′ ∈ State,v ∈ Value :

[F ](e)(s,s′)⇔ [F ](e[ I 7→ v ])(s,s′)

(MVF1’)
∀F ∈ Formula, I ∈ Identifier : #I is not free in F ⇒
∀e ∈ Environment,s,s′ ∈ State,c ∈ State :

[F ](e)(s,s′)⇔ [F ](e[ I 7→ c ]c)(s,s′)

Figure B.10: Basic Formula Lemmas
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Basic Formula Lemmas (with State Control Predicates)

(PVF1’)

∀F ∈ Formula : F has no plain program variables ⇒
∀e ∈ Environment,s1,s2,s′ ∈ State :

control(s1) = control(s2)⇒
[F ](e)(s1,s′)⇔ [F ](e)(s2,s′)

(PVF2’)

∀F ∈ Formula : F has no primed program variables ⇒
∀e ∈ Environment,s,s′1,s

′
2 ∈ State :

control(s′1) = control(s′2)⇒
[F ](e)(s,s′1)⇔ [F ](e)(s,s′2)

(PVF3’)

∀F ∈ Formula, I1, . . . , In ∈ Identifier : I1, . . . , In do not occur in F ⇒
∀e ∈ Environment,s1,s2,s′ ∈ State :

s1 = s2 EXCEPT I1, . . . , In∧ control(s1) = control(s2)⇒
[F ](e)(s1,s′)⇔ [F ](e)(s2,s′)

(PVF4’)

∀F ∈ Formula, I1, . . . , In ∈ Identifier : I1’, . . . , In’ do not occur in F ⇒
∀e ∈ Environment,s,s′1,s

′
2 ∈ State :

s′1 = s′2 EXCEPT I1, . . . , In∧ control(s′1) = control(s′2)⇒
[F ](e)(s,s′1)⇔ [F ](e)(s,s′2)

Figure B.11: Basic Formula Lemmas
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Basic Formula Substitution Lemmas (with State Control Predicates)

(CNOF0)
∀F ∈ Formula, I ∈ Identifier :

now does not occur in F [#I/now]

(CNEF0)
∀F ∈ Formula, I ∈ Identifier :

next does not occur in F [#I/next]

(CNOF1)
∀F ∈ Formula, I ∈ Identifier :

now does not occur in F [next/now]

(CNEF1)
∀F ∈ Formula, I ∈ Identifier :

next does not occur in F [now/next]

(CNOF2)

∀F ∈ Formula,J ∈ Identifier : #J does not occur in F ⇒
∀e ∈ Environment,s,s′ ∈ State :

[F ](e)(s,s′)⇔
[F [#J/now] ](e[J 7→ control(s) ]c)(s,s′)

(CNEF2)

∀F ∈ Formula,J ∈ Identifier : #J does not occur in F ⇒
∀e ∈ Environment,s,s′ ∈ State :

[F ](e)(s,s′)⇔
[F [#J/next] ](e[J 7→ control(s′) ]c)(s,s′)

(PVFNO)
∀F ∈ Formula : now does not occur in F ⇒
∀e ∈ Environment,s,s′ ∈ State,c ∈ Control :

[F ](e)(s,s′)⇔ [F ](e)((store(s),c),s′)

(PVFNE)
∀F ∈ Formula : next does not occur in F ⇒
∀e ∈ Environment,s,s′ ∈ State,c ∈ Control :

[F ](e)(s,s′)⇔ [F ](e)(s,(store(s′),c))

Figure B.12: Basic Formula Substitution Lemmas
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Basic Formula Substitution Lemmas (with State Control Predicates)

(PMVF0’)
∀F ∈ Formula, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :

$J1, . . . ,$Jn do not occur in F [ I1/$J1, . . . , In/$Jn ]

(MPVF0’)
∀F ∈ Formula, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :

I1, . . . , In do not occur in F [$J1/I1, . . . ,$Jn/In ]

(MPVF1’)
∀F ∈ Formula, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :

I1’, . . . , In’ do not occur in F [$J1/I1’, . . . ,$Jn/In’ ]

(PPVF0’)
∀F ∈ Formula, I1, . . . , In ∈ Identifier :

I1’, . . . , In’ do not occur in F [ I1/I1’, . . . , In/In’ ]

(PPVG0’)
∀F ∈ Formula, I1, . . . , In ∈ Identifier :

I1, . . . , In do not occur in F [ I1’/I1, . . . , In’/In ]

(MPVF2’)

∀F ∈ Formula, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :
J1, . . . ,Jn is a renaming of I1, . . . , In ∧
I1, . . . , In do not occur in F ⇒

F [ I1/$J1, . . . , In/$Jn ][$J1/I1, . . . ,$Jn/In ] = F

Figure B.13: Basic Formula Substitution Lemmas
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Formula Substitution Lemmas (with State Control Predicates)

(PNNF1)
∀F ∈ Formula,e ∈ Environment,s,s′ ∈ State :

[F [next/now] ](e)(s,s′)⇔ [F ](e)((store(s),control(s′)),s′)

(PNNF2)
∀F ∈ Formula,e ∈ Environment,s,s′ ∈ State :

[F [now/next] ](e)(s,s′)⇔ [F ](e)(s,(store(s′),control(s)))

(PPVF1’)
∀F ∈ Formula,e ∈ Environment,s,s′ ∈ State, I1, . . . , In ∈ Identifier :

[F [I1’/I1, . . . , In’/In] ](e)(s,s′)⇔
[F ](e)(writes(s, I1,read(s′, I1), . . . , In,read(s′, In)),s′)

(PPVF2’)
∀F ∈ Formula,e ∈ Environment,s,s′ ∈ State, I1, . . . , In ∈ Identifier :

[F [I1/I1’, . . . , In/In’] ](e)(s,s′)⇔
[F ](e)(s,writes(s′, I1,read(s, I1), . . . , In,read(s, In)))

(PMVF1’)

∀F ∈ Formula,J1, . . . ,Jn ∈ Identifier :
now does not occur in F ∧$J1, . . . ,$Jn do not occur in F ⇒
∀I1, . . . , In ∈ Identifier,e ∈ Environment,s,s′,s0 ∈ State :

J1, . . . ,Jn is a renaming of I1, . . . , In ∧
s = s0 EXCEPT I1, . . . , In ⇒

[F ](e)(s0,s′)⇔
[F [$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s0, I1), . . . ,Jn 7→ read(s0, In)])(s,s′)

(PMVF2’)

∀F ∈ Formula,J1, . . . ,Jn ∈ Identifier :
next does not occur in F ∧$J1, . . . ,$Jn do not occur in F ⇒
∀I1, . . . , In ∈ Identifier,e ∈ Environment,s,s′,s1 ∈ State :

J1, . . . ,Jn is a renaming of I1, . . . , In ∧
s1 = s′ EXCEPT I1, . . . , In ⇒

[F ](e)(s,s1)⇔
[F [$J1/I1’, . . . ,$Jn/In’] ]

(e[J1 7→ read(s1, I1), . . . ,Jn 7→ read(s1, In)])(s,s′)

Figure B.14: Formula Substitution Lemmas
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Formula Substitution Lemmas (with State Control Predicates)

(PMVF1”)

∀F ∈ Formula,J1, . . . ,Jn ∈ Identifier : $J1, . . . ,$Jn not in F ⇒
∀I1, . . . , In ∈ Identifier,e ∈ Environment,s,s′,s0 ∈ State :

J1, . . . ,Jn is a renaming of I1, . . . , In ∧
s = s0 EXCEPT I1, . . . , In∧ control(s) = control(s0)⇒

[F ](e)(s0,s′)⇔
[F [$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s0, I1), . . . ,Jn 7→ read(s0, In)])(s,s′)

(PMVF2”)

∀F ∈ Formula,J1, . . . ,Jn ∈ Identifier : $J1, . . . ,$Jn not in F ⇒
∀I1, . . . , In ∈ Identifier,e ∈ Environment,s,s′,s1 ∈ State :

J1, . . . ,Jn is a renaming of I1, . . . , In ∧
s1 = s′ EXCEPT I1, . . . , In∧ control(s1) = control(s′)⇒

[F ](e)(s,s1)⇔
[F [$J1/I1’, . . . ,$Jn/In’] ]

(e[J1 7→ read(s1, I1), . . . ,Jn 7→ read(s1, In)])(s,s′)

Figure B.15: Formula Substitution Lemmas

B.4 Contexts and Global Variables

Figures B.20, B.21, and B.22, depict properties of contexts respectively the be-
havior of states and formulas under certain context transformations. Figure B.23
shows the behavior of formulas under substitutions of global variables.

Figure B.23 depicts the effect of substitutions of global variable references in
phrases.
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Term Lemmas (with State Control Predicates)

(EST’)

∀T ∈ Term,e ∈ Environment,s0,s′0,s1,s′1 ∈ State :
s0 EQUALS s1∧ s′0 EQUALS s′1 ∧
control(s0) = control(s1)∧ control(s′0) = control(s′1)⇒

[T ](e)(s0,s′0) = [T ](e)(s1,s′1)

(MVT’)
∀T ∈ Term : T has no free variables ⇒
∀e1,e2 ∈ Environment,s,s′ ∈ State :

[T ](e1)(s,s′) = [T ](e2)(s,s′)

(PVT1’)

∀T ∈ Term : T has no plain program variables ⇒
∀e ∈ Environment,s1,s2,s′ ∈ State :

control(s1) = control(s2)⇒
[T ](e)(s1,s′)⇔ [T ](e)(s2,s′)

(PVT2’)

∀T ∈ Term : T has no primed program variables ⇒
∀e ∈ Environment,s,s′1,s

′
2 ∈ State :

control(s′1) = control(s′2)⇒
[T ](e)(s,s′1)⇔ [T ](e)(s,s′2)

Figure B.16: Term Lemmas
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Term Substitution Lemmas (with State Control Predicates)

(PPVT1’)
∀T ∈ Term,e ∈ Environment,s,s′ ∈ State, I1, . . . , In ∈ Identifier :

[T [I1’/I1, . . . , In’/In] ](e)(s,s′) =
[T ](e)(writes(s, I1,read(s′, I1), . . . , In,read(s′, In)),s′)

(PPVT2’)
∀T ∈ Term,e ∈ Environment,s,s′ ∈ State, I1, . . . , In ∈ Identifier :

[T [I1/I1’, . . . , In/In’] ](e)(s,s′) =
[T ](e)(s,writes(s′, I1,read(s, I1), . . . , In,read(s, In)))

(CNOT1)
∀T ∈ Term, I ∈ Identifier :

now does not occur in T [next/now]

(CNET1)
∀T ∈ Term, I ∈ Identifier :

next does not occur in T [now/next]

(PVTNO)
∀T ∈ Term : now does not occur in T ⇒
∀e ∈ Environment,s,s′ ∈ State,c ∈ Control :

[T ](e)(s,s′) = [T ](e)((store(s),c),s′)

(PVTNE)
∀T ∈ Term : next does not occur in T ⇒
∀e ∈ Environment,s,s′ ∈ State,c ∈ Control :

[T ](e)(s,s′) = [T ](e)(s,(store(s′),c))

(PNNT1)
∀T ∈ Term,e ∈ Environment,s,s′ ∈ State :

[T [next/now] ](e)(s,s′) = [T ](e)((store(s),control(s′)),s′)

(PNNT2)
∀T ∈ Term,e ∈ Environment,s,s′ ∈ State :

[T [now/next] ](e)(s,s′) = [T ](e)(s,(store(s′),control(s)))

Figure B.17: Term Substitution Lemmas
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Term Substitution Lemmas (with State Control Predicates)

(PMVT1’)

∀T ∈ Term,J1, . . . ,Jn ∈ Identifier :
now does not occur in T ∧$J1, . . . ,$Jn do not occur in T ⇒
∀I1, . . . , In ∈ Identifier,e ∈ Environment,s,s′,s0 ∈ State :

J1, . . . ,Jn is a renaming of I1, . . . , In ∧
s = s0 EXCEPT I1, . . . , In ⇒

[T ](e)(s0,s′) =
[T [$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s0, I1), . . . ,Jn 7→ read(s0, In)])(s,s′)

(PMVT2’)

∀T ∈ Term,J1, . . . ,Jn ∈ Identifier :
next does not occur in T ∧$J1, . . . ,$Jn do not occur in T ⇒
∀I1, . . . , In ∈ Identifier,e ∈ Environment,s,s′,s1 ∈ State :

J1, . . . ,Jn is a renaming of I1, . . . , In ∧
s1 = s′ EXCEPT I1, . . . , In ⇒

[T ](e)(s,s1) =
[T [$J1/I1’, . . . ,$Jn/In’] ]

(e[J1 7→ read(s1, I1), . . . ,Jn 7→ read(s1, In)])(s,s′)

Figure B.18: Term Substitution Lemmas
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Term Substitution Lemmas (with State Control Predicates)

(PMVT1”)

∀T ∈ Term,J1, . . . ,Jn ∈ Identifier : $J1, . . . ,$Jn not in T ⇒
∀I1, . . . , In ∈ Identifier,e ∈ Environment,s,s′,s0 ∈ State :

J1, . . . ,Jn is a renaming of I1, . . . , In ∧
s = s0 EXCEPT I1, . . . , In∧ control(s) = control(s0)⇒

[T ](e)(s0,s′) =
[T [$J1/I1, . . . ,$Jn/In] ]

(e[J1 7→ read(s0, I1), . . . ,Jn 7→ read(s0, In)])(s,s′)

(PMVT2”)

∀T ∈ Term,J1, . . . ,Jn ∈ Identifier : $J1, . . . ,$Jn not in T ⇒
∀I1, . . . , In ∈ Identifier,e ∈ Environment,s,s′,s1 ∈ State :

J1, . . . ,Jn is a renaming of I1, . . . , In ∧
s1 = s′ EXCEPT I1, . . . , In∧ control(s1) = control(s′)⇒

[T ](e)(s,s1) =
[T [$J1/I1’, . . . ,$Jn/In’] ]

(e[J1 7→ read(s1, I1), . . . ,Jn 7→ read(s1, In)])(s,s′)

Figure B.19: Term Substitution Lemmas

Contexts

(COV)
∀c0,c1 ∈ Context :

view(c0) = view(c1)⇔ c0 EQUALS c1

(COP)
∀c ∈ Context, I1, . . . , In ∈ Identifier :

DifferentVariables(c)⇒
pushes(c,push(c, I1, . . . , In),{I1, . . . , In})

(COC)
∀c,c′ ∈ Context, I1, . . . , In ∈ Identifier :

pushes(c,c′,{I1, . . . , In})⇒
DifferentVariables(call(view(c),c′))

Figure B.20: Contexts
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Contexts and States

(COS)

∀c,c′ ∈ Context, I1, . . . , In ∈ Identifier,s,s′ ∈ State :
pushes(c,c′,{I1, . . . , In}) ∧
s = s′ EXCEPTcall(view(c),c′) I1, . . . , In ⇒

s EQUALSc′ s′

Figure B.21: Contexts and States

Contexts and Formulas

(COF1)

∀F ∈ Formula, I1, . . . , In ∈ Identifier :
I1, . . . , In do not occur in F ∧
I1’, . . . , In’ do not occur in F ⇒
∀s,s′ ∈ Store,e ∈ Environment,c,c′,c′′ ∈ Context :

c′ = c′′ EXCEPT I1, . . . , In ⇒
([F ]c,c

′
(e)(s,s′)⇔ [F ]c,c

′′
(e)(s,s′))

(COF2)

∀F ∈ Formula, I1, . . . , In,J1, . . . ,Jn ∈ Identifier :
J1, . . . ,Jn is a renaming of I1, . . . , In ∧
$I1, . . . ,$In,$J1, . . . ,$Jn do not occur in F ⇒
∀s,s′ ∈ Store,e ∈ Environment,c,c′,c′′ ∈ Context :

c′ = c′′ EXCEPT I1, . . . , In ⇒
([F ]c,c

′
(e)(s,s′)) ⇔

[EXISTS $I1, . . . ,$In,$J1, . . . ,$Jn :
F [$I1/I1, . . . ,$In/In,$J1/I1’, . . . ,$Jn/In’] ]c,c′′

(e)(s,s′))

Figure B.22: Contexts and Formulas

Global Variable Substitutions

(PMGF)

∀F ∈ Formula, I1, . . . , In ∈ Identifier :
∀s,s′ ∈ State,e ∈ Environment,c,c′,c′′ ∈ Context :

c = c′′ AT I1, . . . , In∧ c′ = c′′ EXCEPT I1, . . . , In ⇒
[F ]c,c

′′
(e)(s,s′)⇔

[F [?I1/I1, . . . ,?In/In,?I1’/I1’, . . . ,?In’/In’] ]c,c
′
(e)(s,s′)

Figure B.23: Global Variable Subsitutions
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[2] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification
of Object-Oriented Software: The KeY Approach. Springer, Berlin, Ger-
many, 2007.

[3] Raymond T. Boute. Calculational Semantics: Deriving Programming The-
ories from Equations by Functional Predicate Calculus. ACM Transactions
on Programming Languages and Systems, 28(4):747–793, July 2006.

[4] Mike Gordon. Specification and Verification I. Lecture Notes, http://
www.cl.cam.ac.uk/ mjcg/Teaching/SpecVer1/SpecVer1.html.

[5] Eric C.R. Hehner. A Practical Theory of Programming. Springer, New York,
2006. http://www.cs.utoronto.ca/˜hehner/aPToP.

[6] C.A.R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice
Hall, London, UK, 1998.

[7] The Java Modeling Language (JML), 2008. http://www.cs.ucf.edu/ leav-
ens/JML.

[8] Cliff B. Jones. Systematic Software Devleopment Using VDM. Prentice Hall,
2nd edition, 1990.

[9] K. Rustan M. Leino and James B. Saxe and Raymie Stata. Checking Java
Programs via Guarded Commands. Compaq SRC Technical Note 1999-
002, Compaq, 1999. http://gatekeeper.dec.com/pub/DEC/SRC/technical-
notes/abstracts/src-tn-1999-002.html.

[10] Leslie Lamport. Specifying Systems; The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002. http:// re-
search.microsoft.com/users/lamport/tla/book.html.



576 REFERENCES

[11] Carroll Morgan. Programming from Specifications. Prentice Hall, London,
UK, 2nd edition, 1998.

[12] J. M. Morris. A Theoretical Basis for Stepwise Refinement and the Program-
ming Calculus. Science of Computer Programming, 9(3):287–306, Decem-
ber 1987.

[13] David A. Schmidt. Denotational Semantics: A Methodology for Lan-
guage Development. Allyn and Bacon, 1986. http://people.cis.ksu.edu/
˜schmidt/text/densem.html.

[14] Spec#, 2008. http://research.microsoft.com/SpecSharp.


