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Preface

This report contains the preliminary proceedings of the 22nd International Work-
shop on Unification (UNIF 2008). The workshop was held in the Castle of Ha-
genberg, Austria on July 18, 2008 and collocated with the 19th International
Conference on Rewriting Techniques and Applications (RTA 2008). The aim
of UNIF 2008 is to bring together people interested in unification, present re-
cent (even unfinished) work, and discuss new ideas and trends in unification
and related fields. This includes scientific presentations, but also descriptions of
applications and software using unification as a strong component.

This workshop is the 22nd in the series: UNIF’87 (Val D’Ajol, France),
UNIF’88 (Val D’Ajol, France), UNIF’89 (Lambrecht, Germany), UNIF’90 (Leeds,
England), UNIF’91 (Barbizon, France), UNIF’92 (Dagstuhl, Germany), UNIF’93
(Boston, USA), UNIF’94 (Val D’Ajol, France), UNIF’95 (Sitges, Spain), UNIF’96
(Herrsching, Germany), UNIF’97 (Orléans, France), UNIF’98 (Rome, Italy),
UNIF’99 (Frankfurt, Germany), UNIF’00 (Pittsburgh, USA), UNIF’01 (Siena,
Italy), UNIF’02 (Copenhagen, Denmark). UNIF’03 (Valencia, Spain). UNIF’04
(Cork, Ireland). UNIF’05 (Nara, Japan). UNIF’06 (Seattle, USA). UNIF’07
(Paris, France).

UNIF 2008 received 9 submissions, and every paper was carefully reviewed
by 2 reviews. We have accepted 8 papers, which are included in this report.
The submission and programme committee work was organized through the
EasyChair system.

I would like to thank all authors of submitted papers, the Program Com-
mittee members, the referees for their time and effort spent in the reviewing
process, and the RTA 2008 organizers for hosting our workshop. The financial
support of the following sponsors is gratefully acknowledged: Linzer Hochschul-
fonds, Upper Austrian Government, Austrian Federal Ministry of Science and
Research (BMWF), and Johann Radon Institute for Computational and Applied
Mathematics of the Austrian Academy of Sciences (RICAM).
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1 Université d’Orléans (Fr.) (siva@univ-orleans.fr)
2 Clarkson University, Potsdam, NY, USA ({clynch, linh}@clarkson.edu )

3 University at Albany-SUNY, USA (dran@cs.albany.edu)
4 Loria-INRIA Lorraine, Nancy (Fr.) (rusi@loria.fr)

1 Introduction

Several methods based on rewriting have been proposed, with success, for the
formal analysis of cryptographic protocols. They all have a common starting
point: it is possible to model encryption and decryption operations by collapsing
(right-hand sides are variables) convergent rewrite systems, which express simply
that decryption cancels encryption, when provided with the right key. We thus
get the following basic convergent rewrite system – referred to as the Dolev-Yao
(DY) system – where ‘.’ is the ‘pairing’ operation on messages, p1, p2 stand for
the respective projections from pairs, and ‘dec’ (resp.‘enc’) stands for decryption
(resp. encryption); the second argument of these latter functions are usually
referred to as keys:

(DY) p1(x.y)→ x
p2(x.y)→ y

dec(enc(x, y), y)→ x
enc(dec(x, y), y)→ x

Various decision procedures have been designed for handling other equational
properties of the cryptographic primitives [8, 5, 4]. Some works have tried to de-
rive generic decidability results for some specific class of intruder theories. De-
laune and Jacquemard [7] consider the class of public collapsing theories. These
theories have to be presented by rewrite systems where the rhs of every rule is a
ground term or a variable. Some other results assume that the rhs of any rule is
a (proper) subterm of the lhs. A general procedure for protocol security analysis
has been given in [3] for such systems, extensively using equational unification
and narrowing techniques. Rewrite systems with such a ‘subterm’ property have
been called dwindling in [1], where a decision procedure was given for passive
deduction (i.e., detecting secrecy attacks by an intruder not interacting actively
with the protocol sessions). The technique used is one that combines unification
and narrowing with a notion of cap closure, modeling the evolution of the in-
truder knowledge. The algorithm presented was also shown to be complete, for
passive deduction, for a larger class of rewrite systems called Δ-strong, strictly
including the dwindling class. This larger class includes, in particular, the theory
of Homomorphic Encryption (HE) that plays an important role in several pro-
tocols, obtained by just extending DY by requiring that encryption distributes
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over pairs, HE can be defined by the following convergent, non-dwindling system,
that we shall also refer to as HE:

(HE)

p1(x.y) = x
p2(x.y) = y
enc(dec(x, y), y) = x
dec(enc(x, y), y) = x

enc(x.y, z) = enc(x, z).enc(y, z)
dec(x.y, z) = dec(x, z).dec(y, z)

We prove the following results in this paper:
(i) Unification modulo general (convergent) Δ-strong systems is undecidable.
(ii) Unification modulo HE is decidable.

Now, it is known that for active deduction modulo an intruder theory R to be
decidable – i.e. in order that such an intruder can capture any message intended
as secret, by interacting actively with the protocol sessions –, it is necessary
that equational unification modulo R be decidable ([6]). It follows, therefore,
from the result (i) above, that active deduction modulo general convergent Δ-
strong intruder systems is undecidable – although passive deduction has been
shown to be decidable for such theories in [1]. As for active deduction modulo
HE, it is part of our ongoing work, cf. [2]. Note on the other hand, that each
homomorphism enc(−, y) in HE has also an inverse homomorphism dec(−, y);
so, the HE-unification problem does not reduce easily to unification modulo
one-sided distributivity.

This paper is structured as follows: The needed preliminaries are given in
Section 2. In Section 3, we establish the result (i), via a suitable reduction from
MPCP. Unification modulo HE is shown to be decidable in Section 4. The main
idea consists in reducing any given HE-unification problem into one of solving
a ‘simpler’ set of equations of the form Z = enc(X,V ) or Z = dec(X,V ), with
none among its variables getting split into pairs. Solving such a set of equations
is essentially the unification problem modulo the two rules for encryption and
decryption:

dec(enc(x, y), y)→ x
enc(dec(x, y), y)→ x

which form a confluent, dwindling system, so has a decidable unification problem,
cf. [9]. However, we propose a graph-based algorithm in this work, that is specific
to HE-unification problems, and show that even solving ‘simple’ HE-unification
problems (without pairings) is NP-complete.

2 Notation and Preliminaries

As usual, Σ will stand for a ranked signature, and X a countably infinite set
of variables. T = T (Σ,X ) is the algebra of terms over this signature; terms in
T will be denoted as s, t, . . ., and variables as u, v, x, y, z, . . ., all with possible
suffixes. The set of all positions on any term t is denoted as Pos(t); if q ∈ Pos(t),
then t|q denotes the subterm of t at position q; and the term obtained from t
by replacing the subterm t|q by any given term t′ will be denoted as t[q ← t′]; a
similar notation is employed also for the substitution of variables of t by terms.
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We assume given a simplification ordering � on T that is total on ground terms
(terms not containing variables). A rewrite rule is a pair of terms (l, r) such
that l � r, and is represented as usual, as l → r; a rewrite system is a finite
set of rewrite rules. The notions of reduction and of normalization of a term
by a rewrite system are assumed known, as well as those of termination and of
confluence of the reduction relation defined by such a system on terms. A rewrite
system R is convergent iff the reduction relation it defines on the set of terms is
terminating and confluent. R is said to be dwindling iff the right-hand-side (rhs)
of every rule in R is a proper subterm of its left-hand-side (lhs).

We also assume given a proper subset P of symbols of Σ – referred to as the
set of public symbols – such that Σ � P contains at least one ground constant;
the symbols of Σ � P will be said to be private. Any convergent rewrite system
R, such that the top-symbol of the lhs of every rule in R is a public symbol, will
be said to be an intruder theory.

Suppose R0 is any given convergent intruder system. An n-ary public symbol
f is said to be transparent in/for R0, or R0-transparent , if and only if, for all
x1, . . . , xn, there exist ‘context-terms’ (with a single hole) t1(�), . . . , tn(�) such
that ti[� ← f(x1, . . . , xn)]→∗

R0
xi, for every 1 ≤ i ≤ n. For instance, the public

function ‘.’ (“pair”) is transparent for the system: p1(x.y) → x, p2(x.y) → y,
where p1 and p2 are both public. We shall consider public constants as trans-
parent for any intruder system R0. A public function symbol is R0-resistant (or
simply resistant if R0 is clear from the context) iff it is not R0-transparent.
Private functions will be considered as resistant for any intruder system R0. By
definition, an R0-resistant term is one whose top-symbol is R0-resistant.

Let now R be any given convergent intruder theory, containing a dwindling
subsystem. We shall assume that the given simplification ordering � containing
R, is precedence based (like rpo or lpo), and is such that every private symbol
is greater than any public symbol, under �. Let Δ be a subsystem consisting
of (some of the) dwindling rules of R. A rewrite rule l → r ∈ R is said to be
Δ-strong, wrt the given simplification ordering�, if and only if everyΔ-resistant
subterm of l is greater than r wrt �. The intruder theory R is said to be Δ-strong
wrt � if and only if every rule in R�Δ is Δ-strong wrt �.

The rewrite system HE, presented above, is a Δ-strong system, if Δ is taken
to be the subsystem formed of the four dwindling rules to the left of HE: indeed
the lpo ordering built over the precedence: enc > dec > . > p1 > p2 is ground
total and contains HE; and the symbols ‘dec’ and ‘enc’ are both Δ-resistant.

3 Unification modulo Δ-strong Theories Is Undecidable

Proposition 1 Unification modulo general (convergent) Δ-strong theories is
undecidable.

Proof. The proof is by reduction from a restricted version of the modified Post
Correspondence Problem (MPCP).
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Let Σ = {a, b}, and let P = {(φi, ψi) | i = 1, . . . , n} ⊆ Σ+ ×Σ+ be a finite
sequence of non-empty strings over Σ such that the following restricted version
of the Modified Post Correspondence Problem (MPCP) is undecidable:
Instance: A non-empty string α ∈ Σ+.
Question: Do there exist indices i1, . . . , ik ∈ {1, . . . , n} such that

αφi1φi2 . . . φik
= ψi1ψi2 . . . ψik

?
For any string w over Σ, let w̃(x) denote the term formed by treating a

and b as unary function symbols and the concatenation operator as function
composition; more precisely, we set:

˜λ(x) = x, ãu(x) = a(ũ(x)), ˜bu(x) = b(ũ(x)).

Let f be a ternary function and g1, . . . , gn be distinct unary function symbols.
Consider then the system P formed of the following rewrite rules:

f( ˜φi(x), gi(y), ˜ψi(z))→ f(x, y, z)
for every pair (φi, ψi) of the MPCP. We also add a new unary function symbol
h and the following set Δ of dwindling rules:

h(a(x))→ x

h(b(x))→ x

h(gi(x))→ x, i ∈ {1, . . . , n}.

The effect of this addition is that the monadic functions a, b, g1, . . . , gn are
all Δ-transparent, whereas f isΔ-resistant. The role played by the gi is to ensure
that the rewrite system has no critical pairs. The system E formed of all these
rewrite rules (i.e., P ∪ Δ) is therefore convergent and Δ-strong.

It is not hard then to see that the unification problem
f(X, Y, α̃(X)) =?

E f(c, c, c)
has a solution iff the instance of the restricted MPCP above has a solution.
The “if” part is fairly straightforward, since if αφi1φi2 . . . φik

= ψi1ψi2 . . . ψik
for

some indices i1, . . . , ik ∈ {1, . . . , n}, then the substitution

τ = {X ← ˜φi1
˜φi2 . . .

˜φik
(c), Y ← gi1gi2 . . . gik

(c)}

is a solution: indeed, α̃(τ(X)) = α̃ ˜φi1
˜φi2 . . .

˜φik
(c) = ˜ψi1

˜ψi2 . . .
˜ψik

(c).
On the other hand, suppose θ is a solution for the above equation. Without

loss of generality it can be assumed that θ is normalized modulo E . Then it must
be that f(θ(X), θ(Y ), α̃(θ(X))) −→!

P f(c, c, c). Now a solution for the MPCP
instance can be obtained from θ(Y ). 
�

4 Unification modulo HE

Theorem 1. Unification modulo the theory HE is decidable.

For the proof, we shall be applying several reductions on the given unification
problem. To start with, we shall assume (via usual arguments, and reasoning mod
HE) that the given unification problem P is in a standard form, in the following
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sense: each of its equations to solve, modulo HE, is assumed to have one of the
following forms:

Z = T , Z = X.Y , Z = enc(X,Y ), Z = const.,
where the T,X, Y, Z, . . . stand for variables, and const is any free ground con-
stant. (If an equation in P is given in the form U = dec(V,W ), it is rewritten
mod HE as V = enc(U,W ).) The equations in P of the first (resp. second) form
are said to be ‘equalities’ (resp. ‘pairings’); those of the third form are said to be
of the enc type, and the last ones of the ‘constant’ type. The second arguments
of enc, in the equations of P , are referred to as the keys or key variables of P .

The conjugate of any enc equation Z = enc(X,Y ) in P , is defined as the equa-
tion X = dec(Z, Y ), said to be of the ‘dec’ type. For every key variable/constant
Y occurring in P , let hY (resp. hY ) denote the homomorphism enc(−, Y ) (resp.
dec(−, Y )) defined on terms. An enc equation Z = enc(X,Y ) can thus be written
as Z = hY (X), and its conjugate as X = hY (Z). Let n be the number of distinct
key variables/constants appearing in P , and let H stand for the set of all homo-
morphisms (2n in number), thus associated with these key variables/constants.

We construct next a graph of dependency G = GP between the variables of
the problem P . Its nodes will be the variables (or constants) of P . From a node
Z on G, there is an oriented arc to a node X iff the following holds:

a) P has an equation of the form Z = hi(X), or Z = hi(X), for some i ∈
{1, . . . , n}; the arc is then labeled with the symbol hi (resp. with hi);

b) P has an equation of the form Z = X.V (resp. Z = V.X): the arc is then
labelled with p1 (resp. with p2).

Semantics: If G contains an edge of the form Z →h X , then Z can be evaluated
by applying the homomorphism h to the evaluation of X .

Several reductions, called trimming, will be applied to our problems. One
of them ensures that the graph of P is irredundant, in the sense that variables
which are ‘equal’ in P will have exactly one representative node on G (which is
why GP has no equality edges); some others result from the so-called Perfect
Encryption assumption. The principal aim of these reductions is to ensure that
the non-key variables of P do not get split into pairs. We first define the following
relations on the set of variables/constants X = X (P) that appear in P :

1. U ∼ V is the finest equivalence relation on X such that:

– if U = V ∈ P then U ∼ V ;
– if U = enc(V, T ) ∈ P or V = enc(U, T ) ∈ P , for some T , then U ∼ V ;
– if P contains two pairings of the form W = U.X and W ′ = V.X ′ (or of

the form W = X.U and W ′ = X ′.V ), where W ∼W ′, then U ∼ V .

2. U � V iff there is a loop-free chain from U to V formed of ∼- or p1/p2-steps,
at least one of them being a a p1- or p2- step.

Rules for Trimming: We denote by Eq (resp. Pair,Enc) the set of equalities
(resp. pairings, the enc-equations) in P , respectively.
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Rule 1. (Perfect Encryption)

a)
Eq; Pair; Enc � {Z = enc(X,Y ), Z = enc(V, Y )}

Eq ∪ {V = X}; Pair; Enc � {Z = enc(X,Y )}

b)
Eq; Pair; Enc � {Z = enc(X,Y ), Z = enc(X,T )}

Eq ∪ {T = Y }; Pair; Enc � {Z = enc(X,Y )}

Rule 1’. (Variable Elimination)

{U = V } �Eq; Pair; Enc
{U = V } ∪ [V/U ](Eq); [V/U ](Pair); [V/U ](Enc)

Rule 2. (Pairing is free in HE)

Eq; Pair � {Z = U1.U2, Z = V1.V2}; Enc
Eq ∪ {V1 = U1, V2 = U2};Pair � {Z = U1.U2}; Enc

Rule 3. (Split on Pairs)

a)
Eq; Pair; Enc � {Z = enc(X,Y )}; Z = Z1.Z2 ∈ Pair

Eq; ; Pair � {X = X1.X2}; Enc � {Z1 = enc(X1, Y ), Z2 = enc(X2, Y )}

b)
Eq; Pair; Enc � {Z = enc(X,Y )}; X = X1.X2 ∈ Pair

Eq; Pair � {Z = Z1.Z2}; Enc � {Z1 = enc(X1, Y ), Z2 = enc(X2, Y )}

Rule 4. (Occur check)

Eq; Pair; Enc; Z ∼ Z ′ and Z � Z ′

FAIL

Rule 5. (Equate Some Keys)

Eq; Pair; Enc; U, V are keys of P
Eq ∪ {U = V }; Pair; Enc

The X1, X2 in rule 3a (resp. Z1, Z2 in rule 3b) are fresh variables – as indi-
cated by the notation, the � signifying disjoint union as is standard. Inference
Rule 1′ serves to keep the graph of the current problem irredundant. The infer-
ence rules 1’, 4 are both to be applied eagerly; if rule 4 leads to ‘FAIL’, then the
procedure stops. Inference rules 1 to 4 are ‘mandatory’ in the sense that they
cannot be ignored if applicable; the last rule 5 is ‘auxiliary’: its role is to guess
some additional equalities between the keys of P that have not already been
‘inferred as equal’ by the other rules (its role is to ensure the completeness of
our method for solving P , as we shall be seeing farther down; cf. e.g. Example
2.(i), Section 4.1). At any stage of the process, the inferences under 1a, 1b, 2 and
5 are all to be derived ‘in block’ with the Variable Elimination rule 1′.

We must show that such an inference procedure terminates on any problem
given in standard form. For that purpose, we need to define certain notions.

(1): The relation � defined above on the set of variables X = XP of any
problem P , for which the above inference system does not lead to FAIL, is a
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well-defined, strict, partial order. For any such P , and for any given Z ∈ X , the
sp-depth of Z – denoted as spd(Z) – is defined as the maximum number of p1-
or p2- steps from Z to all possible X ∈ X , along the loop-free chains formed of
∼- or enc/dec- or p1/p2- steps from Z to X .

(2): Let P be any such given problem. We introduce a binary, infix operator
‘◦’ representing pairs (but denoted differently, to avoid confusion); and define
Tp(P) = Tp as the set of all terms formed over X , the symbol ‘◦’, and the set of
all homomorphisms hT – where T runs over all the key variables of P .

- Any pairing X = X1.X2 in P , is seen as a rewrite rule: X → X1 ◦X2;
- Any equation Z = enc(X,T ) in P gives rise to two rewrite rules:

Z →hT X , and X →hT Z.
Rules of the former type will be called pairing rules; those of the latter type will
be respectively called h-rules or h-rules, with key T , and with target X for the
first among them, and Z for the second. We define RP to be the rewrite system
formed of all such rules. By a critical configuration wrt RP , we mean any given
pair of distinct rewrite rules of RP such that:

- both rules have the same variable X ∈ XP to their left;
- if one of them is a h-rule (resp. h-rule), then the other rule must be a

pairing rule or a h-rule (resp. pairing rule or a h-rule);
- if both are h-rules (or h-rules), they have the same key or the same target.

The common lhs variable of a critical configuration is referred to as its peak.
(3): For any such given problem P , and any given critical configuration wrt

RP with X ∈ X as its peak, let nX stand for the number of distinct nodes on GP
to which there is a loop-free, non-empty chain from X formed only of ∼-steps.
The weight of the critical configuration is then defined as the (lexicographically)
ordered pair of integers (spd(X), nX).

Lemma 1. Trimming terminates on problems given in standard form.

Proof. Given P in standard form, we only need to consider the inferences other
than 4 (which – applied whenever applicable – would yield ‘FAIL’). We define
the measure m(P) of P as the lexicographic combination of 2 components: m1 =
m1(P), m2 = m2(P), where:

- m1 is the number of distinct key variables appearing in P ;
- m2 is the multiset of weights of all the critical configurations over RP .

Consider now any inference on P , by a rule other than 4 (which – applied
whenever applicable – would yield ‘FAIL’). We then have the following:

- Inference rule 1b and 5 will lower m1.
- Inference rules 1a, 2, 3a, 3b – applied in block with 1′ – will all

leave m1 unchanged, but will lower m2.
Indeed if some nodes “become equal” under the inferences, and if the number

of keys is not lower for the new problem derived, then:
- either some of the critical configurations have been eliminated, while the

others remain unchanged;
- or some ‘current’ critical configurations have been replaced by new ones.

In the latter case, for any new critical config with Y as its peak, that replaces
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an old one with X as peak, we should have: either spd(Y ) < spd(X) (Inference
rules 3a, 3b), or else spd(Y ) = spd(X) and nY < nX (Inference rules 1a, 2). 
�

The problem P is said to be trimmed iff it is saturated under rules 1, 2 and
3 and 4. It is not necessary to be saturated under rule 5; this signifies that rule
5 may be applied (when it is applicable and we ‘intend two key variables to
be equal’), or may not applied. Therefore, there are many possible trimmings,
depending on which keys variables are ‘made equal’ under the auxiliary inference
rule 5. A trimmed problem P gets actually divided into two sub-problems which
can be treated ‘almost’ separately, as we shall be seeing below: one containing
only the pairings and equalities of P , and the other containing only its enc
equations; this latter sub-problem will be referred to as the simple kernel, or
just kernel, of P . A problem P is said to be simple iff it is its own kernel.

Example 1. i) The following problem is not in standard form:
Z = T , Z = enc(X,Y ), X = dec(T, Y ), X = U.V , Y = Y1.Y2, Y2 = a;
we first put it in standard form:
Z = T , Z = enc(X,Y ), T = enc(X,Y ), X = U.V , Y = Y1.Y2, Y2 = a.
Under redundancy elimination, we first get:
T = Z, Z = enc(X,Y ), X = U.V , Y = Y1.a, Y2 = a;
which has one critical configuration, namely: Z ←hY X → U ◦ V .

Only a splitting inference is applicable (on Z), and the final trimmed equi-
valent is the following problem:

Z = T , Z = Z1.Z2, X = U.V , Y = Y1.a, Y2 = a,
Z1 = enc(U, Y ), Z2 = enc(V, Y ).

ii) The following problem:
Z = enc(X,Y ), Y = enc(Z, T ), T = enc(Z,W ), Y = Y1.Y2.

is in standard form, but not trimmed: we have one critical configuration, namely:
Z ←hT Y → Y1 ◦ Y2, with peak at Y . Now spd(Y ) = 1, but nY = 3 (we can
go from Y to T,X,Z using only enc/dec arcs); so m2 here is {(1, 3)}, and the
measure m(P) of the problem is (3, {(1, 3)}).

Trimming needs here several splitting steps. We first write Z = Z1.Z2, and
replace the second enc equation by the 2 equations: Y1 = enc(Z1, T ), Y2 =
enc(Z2, T ); we get a problem with two critical configurations, both with peak at
Z, spd(Z) = 1 and nZ = 2; so the measure is lowered to (3, {(1, 2), (1, 2)}). Next,
we writeX = X1.X2 and replace the first enc equation by: Z1 = enc(X1, Y ), Z2 =
enc(X2, Y ), and get a problem with measure (3, {(1, 1)}). Finally, we write T =
T1.T2 and replace the last enc equation by: T1 = enc(Z1,W ), T2 = enc(Z2,W ).
We thus get the following trimmed equivalent, with measure (3, {(0, 0)}:

Z1 = enc(X1, Y ), Z2 = enc(X2, Y ),
Y1 = enc(Z1, T ), Y2 = enc(Z2, T ),
T1 = enc(Z1,W ), T2 = enc(Z2,W ),

Y = Y1.Y2, Z = Z1.Z2, X = X1.X2, T = T1.T2.

Remark 1. (i) The number of equations in a trimmed equivalent of a problem
P given in standard form – derived at the end of the inference procedure, when
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it does not FAIL – can be exponential wrt the number of initial equations in P ;
a typical illustrative example is the following:

X1 = enc(X2, U1)
X1 = X11.X12

X11 = enc(X12, U2)
X11 = X111.X112

X111 = enc(X112, U3)
X111 = X1111.X1112

A rough upper bound N(P) for the number of equations generated by trim-
ming P can be given as follows: Let Variant(P) be the set of all ‘variants’ of P
obtained by adding some further equalities between the key variables; let m be
the sup of the number of equations in any of these variants, and let d stand for
the sup of the sp-depths of the variables in these variants. Then N(P) ≤ m 2d.

(ii) In view of the lemma above (and our non-redundancy assumption on the
dependency graph), a trimmed problem is essentially a problem P in standard
form – with no critical configurations on pairings alone –, such that:

• There is no node Z on the dependency graph of P from which there is an
outgoing ‘enc’ or ‘dec’ arc, as well as an outgoing arc labeled with a p1 or p2.
• If X,V are any two distinct nodes on the graph of P , then the equality
X = V is not an equality in P .

(iii) As a consequence, solving a trimmed problem P essentially reduces to
solving its kernel P ′: any variable to the left of a pairing gets its solution by
substituting from the solutions for the variables of the kernel.

(iv) Observe that the key variables in any problem P given in standard form,
remain as they are under splitting (as the Y, T,W in Example 1.ii) above); so
their number remains unaffected by trimming. 
�

4.1 Solving a (Trimmed) Simple Problem

For solving a trimmed problem P , we shall make an assumption which expresses
a necessary condition for P to admit a solution in normal form modulo HE ; this
assumption is again based on the Perfect Encryption hypothesis:

(SNF): For any loop γ on GP from some node Z to itself, the word formed by
the symbols labeling the arcs composing γ must simplify to the empty word,
under the following set of rules:

(#) hihi → ε, hihi → ε, 1 ≤ i ≤ n.

A problem P in trimmed form will be said to be admissible iff it satisfies SNF.
For such problems P , it follows in particular from SNF, that:
• there can be no loop containing an arc labeled with a p1 or p2, from any

node to itself, on the graph G = GP (“the pairing operator is free in HE”).

We henceforth assume all our problems P to be trimmed and admissible; and
P ′ will stand for the kernel of P . Our objective now is to conceive an algorithm
for solving P ′. Note that the labels on the arcs of the sub-graph G′ (of GP) of
dependency for the problem P ′, are all in H. Note also that, thanks to the SNF
assumption on P , there is a uniquely determined, loop-free, oriented path from
any given node on G′, to any other node on G′. For solving P ′, we shall be using
– but only partly – the following idea on every connected component Γ of G′:
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- choose an ‘end-variable’ V (in a sense to be formalized) on Γ , and
assign some value v to V ;

- then, to every other node X on Γ , assign the value derived by ‘propagating
that value from’ V to X ; i.e., assign to X the value α(v) where α is the word
over H that labels the unique oriented path from X to V .

However, such an idea can only be used with some restrictive assumptions.
A first assumption we make is that a variable X of P ′ may not be evaluated
by using a word over H already containing hX or hX ; this corresponds to the
occur-check assumption in standard unification over the empty theory.

Definition 1 i) An oriented (loop-free) path γ, on the dependency graph of G′,
is said to satisfy the condition Occur-Check-Path – or is said to pass the test
OCP – if and only if the following holds:
(OCP): For any arc U →h V on G′ composing γ, with label h = hX or hX ,
none of the nodes traversed by γ prior to U , is X or a factor of X for pairing.

(Remark 1.(iv) gives the reason for such a roundabout formulation for OCP:
a variable can be a node as well as a key; if it can get split as a node, as a key it
remains unchanged.) Unfortunately, one cannot derive a complete procedure for
solving simple problems, based only on checking for OCP along all the maximal
paths or their inverse paths (this is illustrated by several examples given below).
The approach needs to be a little more complex.

Let P be any simple problem (i.e., with no pairing equations). We know that
solving P amounts to solving the unification problem modulo the convergent
system R formed of the following two rules:

(R) : enc(dec(x, y), y)→ x, dec(enc(x, y), y)→ x.
First, we may assume obviously that the graph of P is connected (apply the

same reasoning on every connected component of GP ). We also assume explicitly
that the nodes of GP , as well the keys of P , are all distinct mod R, i.e., ‘unequal’
modulo R; and that the solutions to P looked for are in R-normal form, and
discriminating in the sense that variables which are distinct in P, are assigned
distinct ground terms.

We then define a relation – denoted as �k, and called key-dependency –
between the variables of such a P , as follows:
• Y �k X iff Y �= X and the (unique) path from Y to X on the graph GP

contains an arc labeled with hX′ or hX′ where X ′ is X or contains X as a factor
for pairing.

We then get the following criterion referred to as NKDC (standing for ‘No-
Key-Dependency-Cycle’), for a simple problem P to admit a discriminating so-
lution (under the assumption that its keys are to be unequal modulo R):
• (NKDC): The graph G = GP does not contain a node X such that

X �+
k X where �+

k is the transitive closure of �k.
In intuitive terms: NKDC says that G cannot contain two nodes X,Y such

that the path from X to Y fails the OCP test for X , and its reversed path fails
the OCP test for Y .

10



NKDC is Necessary for Solvability: In this paragraph, θ will stand for a
discriminating substitution on the set X of variables/constants of P , into the
algebra of terms over enc, dec, X and the ground constants. For any X ∈ X , h̃X

stands for either hX or its conjugate hX ; and C,C′, . . . , referred to as contexts,
stand for words over the h̃X . All terms are assumed to be in normal form modulo
R unless otherwise mentioned.

Lemma 2. Assume that Y = h̃X(C[p ← t]) for some context C, term t, and
position p ∈ {1}∗. Then for any normalized ground substitution θ we have that
θ(Y ) is either a subterm of θ(t) or θ(X) is the outermost key in the term θ(Y ).

Proof. Case i) Where the encryption keys on top of θ(t) get cancelled by the
decryption keys of the context C up to θ(X): in this case, θ(Y ) must be a
subterm of the term θ(t).

Case ii) Where the encryption by θ(X) is not cancelled by a decryption key
just below, in the term θ(Y ): By assumption θ assigns different terms to different
variables; so, in this case θ(X) will remain the outermost key of θ(Y ). 
�

Lemma 3. Assume that Y = h̃X′(C[p← X ]) for some context C, and position
p ∈ {1}∗, where X = X ′ or X is a factor of X ′ for pairing. Then θ(X ′) is the
outermost key of θ(Y ), and |θ(Y )| > |θ(X)|.

Proof. We apply the previous lemma with t = X ; we will be in Case ii) of
that proof, se we deduce that θ(X ′) is the outermost key of θ(Y ). Since both
θ(X), θ(Y ) are in normal form, we also get the assertion on their sizes. 
�

Lemma 4. If Y = C′[p′ ← h̃X′(C[p ← X ])] for some contexts C,C′, and
positions p, p′ ∈ {1}∗, where X = X ′ or X is a factor of X ′ for pairing, then
θ(t) is a subterm of θ(Y ), where t = h̃X′(C[p← X ]).

Proof. θ(X ′) is the outermost key of θ(t) by Lemma 3. And no reduction above
θ(t) is possible, since θ is assumed discriminating. 
�

Corollary 1. If the graph GP does not satisfy the criterion NKDC, then there
is no discriminating substitution that is a solution for the simple problem P.

Example 2. Consider the following problems:
(i) P1: Y = enc(Z,X), X = enc(Z, Y )
(ii) P2: Z = enc(X,X), Z = dec(T, T )
(iii) P3: U = enc(X,Z), Z = enc(U, Y ), Y = enc(U,X)

(i) P1 does not admit any discriminating substitution as solution: indeed we
have Y �k X �k Y . So, if there is a solution, it must assign the same value
to X,Y ; so if the keys are to be unequal, then P1 would be unsolvable; or else,
we could have guessed the key equality X = Y , and reduce the problem to one
single equation X = enc(Z,X), which is solvable as Z = dec(X,X).

(ii) Problem P2 is unsolvable: First, we have X �k T �k X , so P2 does not
admit any discriminating solution; if the keys are to be unequal, one deduces
then that there is no solution. On the other hand, if we had guessed X = T , the
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problem to solve would reduce to: Z = enc(X,X), Z = dec(X,X), for which
there can be no solution at all modulo the 2-rule system R.

(iii) No discriminating solution is possible for P3, since X �k Z �k Y �k X .
And guessing an equality on the keys, such as, e.g., Y = Z, would transform the
problem into one of the two problems just studied. 
�

NKDC is Sufficient for Solvability: We assume henceforth that our simple
problems P satisfy the criterion NKDC. Under the already made assumption
that the keys of P are to be unequal modulo R, and the graph of P is connected,
we propose a procedure for finding a discriminating solution for P . Let us first
illustrate the underlying idea with an example.
Example 3. Consider the following problem:

(P): X = enc(U, V ), U = enc(V, T ), V = enc(Y, U)
Its graph is connected, comprising a single maximal (loop-free) path γ be-

tween the end-nodes X and Y . Although it does not satisfy the OCP condition
in either direction between X and Y , the path γ does satisfy NKDC: indeed, we
only have two key-dependencies X �k V and Y �k U ; there are no cycles, and
both U and V are minimal for the relation �k.

This means, in intuitive terms, that the path from any given node Z towards
U , or towards V , passes the OCP test for that node Z; so, either U , or V , can
be chosen as a base-node, to solve for Z via propagation. Thus, if we take U to
be the base-node, the following substitution is a discriminating solution for P :

V = hT (U), Y = hU (V ) = hUhT (U), with U and T arbitrary,
and subsequently solve for X as: X = hV (U). 
�
Definition 2 Let Γ be any connected component on the graph G of a simple
problem P, and V0 ∈ Γ a node that is minimal for the key-dependency relation
�k. Then V0 is called a base-node for P on the connected component Γ .

Remark 2. A connected component Γ can have more than one base-nodes.
But if Y ′, Y ′′ are two base-nodes for P on Γ , then they are ‘equivalent’ in the
following sense:

- the path joining Y ′ to Y ′′ passes the OCP test for Y ′ as well as for Y ′′;
- and the keys of the arcs on this path are not nodes outside this path.

It follows then that any intermediary node on this path between Y ′ and Y ′′ is
also a base-node for Γ .

Lemma 5. If P is simple (with keys all assumed unequal) and satisfies NKDC,
then P admits a discriminating solution.

Proof. On every given connected component Γ of the graphG = GP of P , choose
some base-node V ; by definition then, for any given node X on Γ , the unique
path from X to V on G must satisfy the condition OCP for X ; we solve for X
by propagating to X any value v that is assignable to the chosen base-variable
V : i.e., we set X = αXV (v), where αXV is the word over H labeling the path
from X to V . 
�

We are in a position, now, to formulate a non-deterministic decision proce-
dure for solving any HE-unification problem, given in standard form.
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4.2 Solving a Problem in Standard Form: The Algorithm A
Given: P = a HE-unification problem P , given in standard form.

G = the dependency graph for P .
1a. Non-deterministically, choose a non-Failing saturation of P by Trimming.
1b. Replace P by a trimmed equivalent;

P ′ = the kernel of P ; G′ = the sub-graph of G for P ′.
1c. If G does not satisfy SNF, or if P contains two equations of the form

Z = a, Z = b, where a, b are two different constants, exit with ‘Fail’.
2a. Check for the criterion NKDC on every connected component of G′;
2b. If NKDC is unsatisfied on some component, exit with ‘Fail’;
3a. On each connected component Γ of G′, choose a base-node VΓ for P ′

(i.e., a minimal node for the key-dependency relation �k).
3b. Build a substitution for the variables on each component Γ : assign to VΓ

some term, and to every other node X ∈ Γ the value derived via propagation
from VΓ to X . Let σ′ be the substitution, solution for P ′, thus obtained.

4. Propagate the values deduced from σ′ to the variables (of the equalities and
pairings) of G, that are not in G′;

- if inconsistency, exit with ‘Fail’;
- else return σ = substitution thus obtained, as solution to P .

The soundness of the algorithm A follows from the fact that each of its steps
is syntactically coherent with P . Completeness means that if there is a solution,
then we will non-derminstically find one; completeness results from the fact that
NKDC is a condition necessary for any simple problem to admit a discriminating
solution, the distinct key variables of P being all assumed unequal modulo HE.

A Complexity Estimate: The algorithm A is of cost NP with respect to the
number of equations of the simple kernel P ′ of the problem P ; this is so, since
checking for the criterion NKDC on any component can be done in time NP, wrt
the number nodes on G′. And in view of Remark 1, the overall complexity turns
out to be NEXPTIME wrt the number of initial equations for any non-simple
problem (given in standard form).

However, the complexity estimate is much sharper for simple problems:

Proposition 2 Solving general simple unification problems is NP-complete.

Proof. We need only to prove the NP lower bound, and that is done by reduction
from the following so-called Monotone 1-in-3 SAT problem:

• Given a propositional formula without negation, in CNF over 3 variables,
check for its satisfiability under the assumption that exactly one literal in
each clause evaluates to true.

This problem is known to be NP-complete, cf. [10]. Now consider the simple
problem (without pairings) derived from the following unification problem over
the 2-rule system R, involving 3 variables x1, x2, x3:

dec(enc(dec(enc(dec(enc(a, b), x1), b), x2), b), x3) =? dec(enc(a, b), c)
Obviously, solving this problem amounts to saying that exactly one of the three
variables x1, x2, x3 is assigned the term c. 
�
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4.3 Illustrative Examples

Note that the substitution that the algorithm A returns as a solution for a
problem P , is built “in a lazy style” in its steps 3a through 4: the variables are
left uninstantiated, in general; they get instantiated only if/when needed (cf.
e.g., Example 4 below).
Example 4. Consider the following problem:

(P ′): Z = enc(X,Y ), Y = enc(Z, T ), T = enc(Z,W ).
The problem is simple, and its dependency graph is connected:

Y
Z

Y T

X
hY

hW

hT hWhT

h

The graph does satisfy NKDC: the key-dependency relations are X �k Y �k T ;
so, T is the only base-node here. We solve for Z and Y , along the path from
Y to T (that satisfies OCP, by definition): namely Y →hT Z →hW T ; choosing
arbitrarily T,W we get Z = hW (T ), Y = hThW (T ) as solutions for Z, Y ; and
for the variable X , connected to this path at Z, we deduce get X = hY (Z) =
hY hW (T ). (Note: the base-node T has not been assigned any specific term here.)

Suppose now, the problem (P ′) is the kernel of a non-simple problem, e.g.:
(P): Z = enc(X,Y ), Y = enc(Z, T ), T = enc(Z,W ). X = a

Then, for the above solution for its simple kernel to be valid, we need to check if
a = hY hW (T ) holds; this can be done by instantiating T , now, as hWhY (a). 
�
Example 5. The following simple problem is unsolvable :

X = enc(Y, T ), Y = enc(Z,X), Z = enc(W,V ), W = enc(V, S)
Indeed, its (connected) graph fails to satisfy the NKDC criterion, so no dis-

criminating solution can exist; on the other hand, it is easy to check that, no
matter which keys and/or nodes are ‘made equal’, the NKDC criterion will con-
tinue to fail. 
�
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Abstract. In this paper, we consider policies that are described by reg-
ular languages. Such regular policies L are assumed to describe situa-
tions that are problematic, and thus should be avoided. Given a trace
pattern u, i.e., a sequence of action symbols and variables, were the vari-
ables stand for unknown (i.e., not observed) sequences of actions, we ask
whether u potentially violates a given policy L, i.e., whether the variables
in u can be replaced by sequences of actions such that the resulting trace
belongs to L. We determine the complexity of this violation problem, de-
pending on whether trace patterns are linear or not, and on whether the
policy is assumed to be fixed or not.

1 Introduction

In an online transaction system, policies that define which sequences of actions
(called traces in the following) are viewed as being problematic can be specified
using regular languages over the alphabet of action symbols. A trace w violates
the policy L if w ∈ L. Sometimes, it is not possible to observe all the actions that
take place. For example, assume that an online auctioning firm such as ebay.com
is trying to monitor the behaviour of its buyers and sellers w.r.t. certain secu-
rity policies. Then some of the actions (like making a bid or giving a positive
evaluation of the seller/buyer) can be observed by ebay, whereas other actions
(like actually sending the goods or paying for received goods) are not observ-
able. We model this with the help of trace patterns, i.e., sequences of actions
and variables, where the variables stand for unknown sequences of actions. For
example, abXaY is a trace pattern where a, b are actions (more precisely, sym-
bols for actions) and X,Y are variables. This trace pattern says: all we know
about the actual trace is that it starts with ab, is followed by some trace w,
which is followed by a, which is in turn followed by some trace u. Given such a
trace pattern, all traces that can be obtained from it by replacing its variables
with traces (i.e., finite sequences of actions) are possibly the actual traces. In our
example, these are all the traces of the form abwau where w and u are arbitrary
traces. The policy L is potentially violated if one of the traces obtained by such

? Supported by NICTA, Canberra Research Lab.
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a substitution of the variables by traces belongs to L. In our example, abXaY

potentially violates L = (ab)∗ since replacing X by ab and Y by b yields the
trace ababab ∈ L.

The trace pattern in our examples is linear since every variable occurs at
most once in it. We can also consider non-linear trace patterns such as abXaX,
where different occurrences of the same variable must be replaced by the same
trace. The underlying idea is that, though we do not know which actions took
place in the unobserved part of the trace, we know (from some source) that the
same sequence of actions took place. It is easy to see that the policy L = (ab)∗

is not potentially violated by the non-linear trace pattern abXaX since it is not
possible to replace X by a trace w such that abwaw ∈ L.

In this paper, we will show that the complexity of the problem of deciding
whether a given trace pattern potentially violates a regular policy depends on
whether the trace pattern is linear or not. For linear trace patterns, the prob-
lem is decidable in polynomial time whereas for non-linear trace patterns the
problem is PSpace-complete. If we assume that the size of the security policy
(more precisely, of a non-deterministic finite automaton or regular expression
representing it) is constant, then the problem can be solved in linear time for
linear trace patterns and is NP-complete for non-linear trace patterns.

2 Preliminaries

In the following, we consider finite alphabets Σ, whose elements are called action
symbols. A trace is a (finite) word over Σ, i.e., an element of Σ∗. A trace pattern
is an element of (Σ ∪ V)∗, i.e., a finite word over the extended alphabet Σ ∪ V,
where V is a finite set of trace variables. The trace pattern u is called linear
if every trace variable occurs at most once in u. A substitution is a mapping
σ : V → Σ∗. This mapping is extended to a mapping σ̂ : (Σ ∪ V)∗ → Σ∗

in the obvious way, by defining σ̂(ε) = ε for the empty word ε, σ̂(a) = a for
every action symbol a ∈ Σ, σ̂(X) = σ(X) for every trace variables X ∈ V, and
σ̂(uv) = σ̂(u)σ̂(v) for every pair of non-empty trace patterns u, v.

A policy is a regular language over Σ. We assume that such a policy is given
either by a regular expression or by a (non-deterministic) finite automaton. For
our complexity results, it is irrelevant which of these representations we actually
use.

Definition 1. Given a trace pattern u and a policy L, we say that u potentially
violates L (written u . L) if there is a substitution σ such that σ̂(u) ∈ L. The
violation problem is the following decision problem:

Given: A policy L and a trace pattern u.

Question: Does u . L hold or not?

If the trace pattern u in this decision problem is restricted to being linear, then
we call this the linear violation problem.
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a, b a, b
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Fig. 1. A non-deterministic finite automaton accepting abΣ∗aΣ∗.

We assume that the reader is familiar with regular expressions and finite
automata. Given a (non-deterministic) finite automaton A, states p, q in A, and
a word w, we write p →w

A q to say that there is a path in A from p to q with
label w. The set of labels of all paths from p to q is denoted by Lp,q.

The following problem for regular languages turns out to be closely con-
nected to the violation problem. The intersection emptiness problem for regular
languages is the following decision problem:

Given: Regular languages L1, . . . , Ln.
Question: Does L1 ∩ . . . ∩ Ln = ∅ hold or not?

It is well-known that this problem is PSpace-complete [3, 1], independent of
whether the regular languages are given as regular expressions, non-deterministic
finite automata, or deterministic finite automata.

In the following, we assume that regular languages are given by a regular
expression, a non-deterministic finite automaton, or a deterministic finite au-
tomaton.

3 The linear violation problem

Assume that u is a linear trace pattern and L is a regular language. Let the trace
pattern u be of the form u = u0X1u1 . . . Xmum where ui ∈ Σ∗ (i = 0, . . . ,m)
and X1, . . . , Xm are distinct variables. Obviously, we have

u . L iff u0Σ
∗u1 . . . Σ∗um ∩ L 6= ∅.

If n is the length of u0u1 . . . um, then we can build a non-deterministic finite au-
tomaton A accepting the language u0Σ

∗u1 . . . Σ∗um that has n + 1 states. For
example, given the linear trace pattern abXaY from the introduction, we con-
sider the language abΣ∗aΣ∗, where Σ = {a, b}. Fig. 1 shows a non-deterministic
finite automaton with 4 states accepting this language.1 In addition, there is
a non-deterministic finite automaton B accepting L such that the number of
states ` of B is polynomial in the size of the original representation for L.2 By

1 Note that arrows without a source pointing into a state denote initial states, and
arrows without a target coming out of a state denote final states.

2 In fact, it is well-known that, given a regular expression r for L, one can construct a
non-deterministic finite automaton accepting L in time polynomial in the size of r.
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Fig. 2. A non-deterministic finite automaton A accepting (ab)∗ (left) and the corre-

sponding automaton bA (right).

constructing the product automaton of A and B, we obtain a non-deterministic
finite automaton accepting u0Σ

∗u1 . . . Σ∗um ∩ L with (n + 1) · ` states. Thus,
emptiness of this language can be tested in time polynomial in (n+1)·`, and thus
in time polynomial in the size of the input u, L of our linear violation problem.

Theorem 1. The linear violation problem can be solved in polynomial time.

In the following, we describe an alternative way of showing this polynomiality
result, which will turn out to be more convenient for proving that the problem
is linear in case the size of the policy L is assumed to be constant.

Let • be an action symbol not contained in Σ. Given a linear trace pattern
u, let û denote the trace over the alphabet Σ• := Σ ∪ {•} obtained from u by
replacing every variable in u by •. Now, assume that A is a non-deterministic fi-
nite automaton accepting the policy L. We transform A into a non-deterministic
finite automaton Â by adding to the transitions of A all transitions (p, •, q) such
that there is u ∈ Σ∗ with p →u

A q. Fig. 2 illustrates this construction for the
policy L = (ab)∗.

The following is an easy consequence of the way û and Â have been con-
structed.

Lemma 1. Let u be a linear trace pattern, and L a policy that is accepted by
the non-deterministic finite automaton A. Then,

u . L iff û is accepted by Â.

For example, we have already seen in the introduction that the linear trace
pattern u = abXaY violates the policy L = (ab)∗. The trace over Σ• corre-
sponding to u is û = ab•a•. Obviously, û is accepted by the non-deterministic
finite automaton Â in Fig. 2.

The above lemma reduces the violation problem to the word problem for the
automaton Â. It is well-know that, given a non-deterministic finite automaton
B of size m (where the size of B is the sum of the number of states and the
number of transitions of B) and a word w of length n, the question whether w

is accepted by B can be decided in O(n · m). This yields an alternative proof of

Theorem 1. In fact, the size of Â is polynomial in the size of A (and it can be
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computed in polynomial time), and the length of û is the same as the length of

u. In addition, if A is assumed to be constant, then the size of Â is also constant
(and it can be computed in constant time).

Theorem 2. Assume that the policy is fixed. Then, the linear violation problem
can be solved in time linear in the length of the input trace pattern.

4 The general violation problem

Allowing also the use of non-linear patterns increases the complexity of the
violation problem.

Theorem 3. The violation problem is PSpace-complete.

Proof. PSpace-hardness can be shown by a reduction of the intersection empti-
ness problem for regular languages. Given regular languages L1, . . . , Ln, we con-
struct the trace pattern un := #X#X . . . #X# of length 2n + 1 and the pol-
icy L(L1, . . . , Ln) := #L1#L2 . . . #Ln#. Here X is a variable and # is a new
action symbol not occurring in any of the words belonging to one of the lan-
guages L1, . . . , Ln. Obviously, both un and (a representation of) L(L1, . . . , Ln)
can be constructed in time polynomial in the size of (the representation of)
L1, . . . , Ln. To be more precise regarding the representation issue, if we want to
show PSpace-hardness for the case where the policy is given by a regular expres-
sion (a non-deterministic finite automaton, a deterministic finite automaton),
then we assume that the regular languages L1, . . . , Ln are given by the same
kind of representation. It is easy to see that the following equivalence holds:

L1 ∩ . . . ∩ Ln 6= ∅ iff un . L(L1, . . . , Ln).

Thus, we have shown that the intersection emptiness problem for regular lan-
guages can be reduced in polynomial time to the violation problem. Since the
intersection emptiness problem is PSpace-complete (independent of whether the
regular languages are given as regular expressions, non-deterministic finite au-
tomata, or deterministic finite automata), this shows that the violation problem
is PSpace-hard (also independent of whether the policy is given as a regular
expression, a non-deterministic finite automaton, or a deterministic finite au-
tomaton).

To show membership of the violation problem in PSpace, consider the viola-
tion problem for the trace pattern u and the policy L. Let n be the length of u

and A a non-deterministic finite automaton accepting L. For i ∈ {1, . . . , n}, we
denote the symbol in Σ ∪ V occurring at position i in u with ui, and for every
variable X occurring in u, we denote the set of positions in u at which X occurs
with PX , i.e., PX = {i | 1 ≤ i ≤ n ∧ ui = X}.

It is easy to see that u . L iff there is a sequence q0, . . . , qn of states of A
such that the following conditions are satisfied:

1. q0 is an initial state and qn is a final state;
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2. for every i ∈ {1, . . . , n}, if ui ∈ Σ, then qi−1 →ui

A
qi;

3. for every variable X occurring in u, we have

⋂

i∈PX

Lqi−1,qi
6= ∅.3

In fact, if u . L, then there is a substitution σ with σ̂(u) ∈ L. Thus, σ̂(u) is
accepted by A, which yields a sequence q0, . . . , qn of states of A such that q0 is

an initial, qi−1 →
bσ(ui)
A

qi, and qn is a final state. In particular, this shows that
the sequence satisfies Condition 1 from above. If ui ∈ Σ, then σ̂(ui) = ui, which
shows that Condition 2 from above is also satisfied. Finally, if ui = X ∈ V,

then σ̂(ui) = σ(X), and thus qi−1 →
bσ(ui)
A

qi implies that σ(X) ∈ Lqi−1,qi
. Since

this holds for all i ∈ PX , this shows that σ(X) ∈
⋂

i∈PX
Lqi−1,qi

. Consequently,
Condition 3 is satisfied as well.

Conversely, assume that q0, . . . , qn is a sequence of states of A satisfying the
Conditions 1–3 from above. By Condition 3, for every variable X occurring in
u, there is a trace sX ∈

⋂
i∈PX

Lqi−1,qi
. If we define the substitution σ such that

σ(X) = sX , then it is easy to see that σ̂(u) is accepted by A. Thus, we have
u . L.

Based on this characterisation of “u . L” we can obtain a PSpace deci-
sion procedure for the violation problem as follows. This procedure is non-
deterministic, which is not a problem since NPSpace = PSpace by Savitch’s
theorem [5]. It guesses a sequence q0, . . . , qn of states of A, and then checks
whether this sequence satisfies the Conditions 1–3 from above. Obviously, the
first two conditions can be checked in polynomial time, and the third condition
can be checked within PSpace since the intersection emptiness problem for reg-
ular languages is PSpace-complete. ut

Alternatively, we could have shown membership in PSpace by reducing it to
solvability of word equations with regular constraints [6]. In the terminology of
this paper, this problem can be defined as follows:

Given: Trace patterns u, v and for every variable X occurring in u or v a regular
language LX .

Question: Is there a substitution σ such that σ̂(u) = σ̂(v) and σ(X) ∈ LX for
all variables X occurring in u or v?

This problem is known to be PSpace-complete [4]. The violation problem can
be reduced to it (in polynomial time) as follows. Let u be a trace pattern and
L a regular language. We take a new variable X (i.e., one not occurring in u),
and build the the following word equation with regular constraints: the trace
patterns to be unified are u and X, and the regular constraints are given as
LX = L and LY = Σ∗ for all other variables Y . It is easy to see that u . L

iff there is a substitution σ such that σ̂(u) = σ̂(X) and σ(X) ∈ L, i.e., if the
constructed word equation with regular constraints has a solution.

3 Recall that, for a given non-deterministic finite automaton A and states p, q in A,
we denote the set of words labeling paths from p to q in A by Lp,q.
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It should be noted, however, the algorithm for testing solvability of word
equations with regular constraints described in [4] is rather complicated and it
is not clear how it could be transformed into a “practical” algorithm.

Let us now consider the complexity of the violation problem for the case
where the policy is assumed to be fixed. In this case, the NPSpace algorithm
described in the proof of Theorem 3 actually becomes an NP algorithm. In fact,
guessing the sequence of states q0, . . . , qn can be realized using polynomially
many binary choices (i.e., with an NP algorithm), testing Conditions 1 and 2
is clearly polynomial, and testing Condition 3 becomes polynomial since the
size of A, and thus of non-deterministic finite automata accepting the languages
Lqi−1,qi

, is constant.

Theorem 4. If the policy is assumed to be fixed, then the violation problem is
in NP.

The matching NP-hardness result of course depends on the fixed policy. For
example, if L = Σ∗, then we have u . L for all trace patterns u, and thus the
violation problem for this fixed policy can be solved in constant time. However,
we can show that there are policies for which the problem is NP-hard. Given a
fixed policy L, the violation problem for L is the following decision problem

Given: A trace pattern u.
Question: Does u . L hold or not?

Theorem 5. There exists a fixed policy such that the violation problem for this
policy is NP-hard.

Proof. To show NP-hardness, we use a reduction from the well-known NP-
complete problem 3SAT [1]. Let C = c1 ∧ . . . ∧ cm be an instance of 3SAT,
and P = {p1, . . . , pn} the set of propositional variables occurring in C. Every
3-clause ci in C is of the form ci = li,1 ∨ li,2 ∨ li,3, where the li,j are literals, i.e.,
propositional variables or negated propositional variables. In the correspond-
ing violation problem, we use the elements of V := {Pi | pi ∈ P} as trace
variables, and as alphabet we take Σ := {#,¬,∨,∧,>,⊥}. The positive lit-
eral pi is encoded as the trace pattern #Pi# and the negative literal ¬pi as
¬#Pi#. For a given literal l, we denote its encoding as a trace pattern by ι(l).
3-Clauses are encoded as “disjunctions” of the encodings of their literals, i.e.,
ci = li,1∨ li,2∨ li,3 is encoded as ι(ci) = ι(li,1)∨ι(li,2)∨ι(li,3), and 3SAT-problems
are encoded as “conjunctions” of their 3-clauses, i.e., if C = c1 ∧ . . . ∧ cm, then
ι(C) = ι(c1)∧ . . .∧ι(cm).

Our fixed policy describes all situations that can make a 3-clause true. To be
more precise, consider ι(c) = ι(l1)∨ι(l2)∨ι(l3) for a 3-clause c = l1 ∨ l2 ∨ l3. If
we replace the trace variables in c by either > or ⊥, then we get a trace of the
form w1∨w2∨w3 where each wi belongs to the set

K := {#>#, #⊥#, ¬#>#, ¬#⊥#}.
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Intuitively, replacing the trace variable Pi by > (⊥) corresponds to replacing
the propositional variable pi by true (false). Thus, a substitution σ that replaces
trace variables by > or ⊥ corresponds to a propositional valuation vσ. The
valuation vσ makes the 3-clause c true iff σ̂(ι(c)) = w1∨w2∨w3 is such that
there is an i, 1 ≤ i ≤ 3, with wi ∈ {#>#,¬#⊥#}. For this reason, we define

T := {w1∨w2∨w3 | {w1, w2, w3} ⊆ K and there is an i, 1 ≤ i ≤ 3, with
wi ∈ {#>#,¬#⊥#}}.

To make a conjunction of 3-clauses true, we must make every conjunct true.
Consequently, we define our fixed policy L as

L3SAT := (T∧)∗T.

Since T is a finite language, L3SAT is obviously a regular language. NP-hardness
of the violation problem for L3SAT is an immediate consequence of the following
claim.

Claim For a given 3SAT problem C the following are equivalent:

1. C is satisfiable.
2. ι(C) . L3SAT .

To show “1 → 2,” assume that the valuation v satisfies C. Consider the
corresponding substitution σv that replaces Pi by > (⊥) if v(pi) is true (false).
Then it is easy to see that σ̂v(ι(C)) ∈ L3SAT .

Conversely, to show “2 → 1,” assume that σ is a substitution such that
σ̂(ι(C)) ∈ L3SAT . It is easy to see that the definitions of ι(C) and L3SAT then
ensure that σ replaces trace variables by > or ⊥, and that the valuation vσ

corresponding to σ satisfies C. ut

5 Conclusion and future work

In this paper, we have assumed that a regular policy L describes situations that
are problematic, and thus should be avoided. This motivated our definition of
the violation problem, which asks whether a given trace pattern u potentially
violates a given policy L, i.e., whether there is a substitution σ with σ̂(u) ∈ L.
We have seen that the complexity of the violation problem depends on whether
trace patterns are linear or not, and on whether the policy is assumed to be fixed
or not.

Alternatively, one could also assume that a regular policy L describes all the
admissible situations. In this case, we want to know whether u always adheres
to the policy L, i.e., whether σ(u) ∈ L holds for all substitutions σ. Let us write
u |= L to denote that this is the case. Obviously, we have u |= L iff not u . Σ∗\L,
which shows that the two problems can be reduced to each other. However,
this reduction is not polynomial. In fact, there cannot be a polynomial time
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reduction between the two problems since the adherence problem is intractable
even for linear trace pattern, for which the violation problem is tractable. To
see this, consider the (linear) trace pattern X and an arbitrary regular language
L over the alphabet Σ. Obviously, we have X |= L iff L = Σ∗. The problem
of deciding whether a regular language (given by a regular expression or a non-
deterministic finite automaton) is the universal language Σ∗ or not is PSpace-
complete [1]. Consequently, the adherence problem is PSpace-hard even for linear
trace patterns. However, the exact complexity of the problem (for linear and
non-linear trace patterns) is still open.
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Abstract. The Description Logic EL has recently drawn considerable
attention since, on the one hand, important inference problems such as
the subsumption problem are polynomial. On the other hand, EL is used
to define large biomedical ontologies. Unification in Description Logics
has been proposed as a novel inference service that can, for example,
be used to detect redundancies in DL-based ontologies. We show that,
w.r.t. the unification type, EL is less well-behaved than for the standard
inference problem subsumption: it is of type zero, which in particular
implies that there are unification problems that have no finite complete
set of unifiers.

1 Introduction

Description logics (DLs) [6] are a successful family of logic-based knowledge rep-
resentation formalisms, which can be used to represent the conceptual knowledge
of an application domain in a structured and formally well-understood way. They
are employed in various application domains, such as natural language process-
ing, configuration, databases, and biomedical ontologies, but their most notable
success so far is the adoption of the DL-based language OWL [15] as standard
ontology language for the semantic web.

Using a DL, the important notions of the domain can be described by concept
terms, i.e., expressions that are built from concept names (unary predicates) and
role names (binary predicates) using concept constructors. The expressivity of
a particular DL is determined by which concept constructors are available in it.
From a semantic point of view, concept names and concept terms represent sets
of individuals, whereas roles represent binary relations between individuals. For
example, using the concept name Woman, and the role name child, the concept
of all women having a daughter can be represented by the concept term

Woman u ∃child.Woman,

and the concept of all women having only daughters by

Woman u ∀child.Woman.

Knowledge representation systems based on Description Logics provide their
users with various inference services that allow them to deduce implicit knowl-
edge from the explicitly represented knowledge. For instance, the subsumption
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algorithm allows to determine subconcept-superconcept relationships. For exam-
ple, the concept term Woman subsumes the concept term Womanu∃child.Woman
since all instances of the second term are also instances of the first term, i.e., the
second term is always interpreted as a subset of the first term. With the help of
the subsumption algorithm, a newly introduced concept term can automatically
be placed at the correct position in the hierarchy of the already existing concept
terms.

Two concept terms are equivalent if they subsume each other, i.e., if they
always represent the same set of individuals. For example, the terms Woman u
∀child.Woman and (∀child.Woman)uWoman are equivalent since u is interpreted
as set intersection, which is obviously commutative. The equivalence test can, for
example, be used to find out whether a concept term representing a particular
notion has already been introduced, thus avoiding multiple introduction of the
same concept into the concept hierarchy. This inference capability is very im-
portant if the knowledge base containing the concept terms is very large, evolves
during a long time period, and is extended and maintained by several knowledge
engineers. However, testing for equivalence of concepts is not always sufficient to
find out whether, for a given concept term, there already exists another concept
term in the knowledge base describing the same notion. For example, assume
that one knowledge engineer has defined the concept of all women having a
daughter by the concept term

Woman u ∃child.Woman.

A second knowledge engineer might represent this notion in a somewhat more
fine-grained way, e.g., by using the term Female u Human in place of Woman.
The concept terms Woman u ∃child.Woman and

Female u Human u ∃child.(Female u Human)

are not equivalent, but they are meant to represent the same concept. The
two terms can obviously be made equivalent by substituting the concept name
Woman in the first term by the concept term Female u Human. This leads us to
unification of concept terms, i.e., the question whether two concept terms can
be made equivalent by applying an appropriate substitution, where a substitu-
tion replaces (some of the) concept names by concept terms. Of course, it is
not necessarily the case that unifiable concept terms are meant to represent the
same notion. A unifiability test can, however, suggest to the knowledge engineer
possible candidate terms.

Unification in DLs was first considered in [10, 11] for a DL called FL0,
which has the concept constructors conjunction (u), value restriction (∀r.C),
and the top concept (>). It was shown that unification in FL0 is decidable and
ExpTime-complete, i.e., given an FL0-unification problem, we can effectively
decide whether it has a solution or not, but in the worst-case, any such decision
procedure needs exponential time. This result was extended in [8] to a more
expressive DL, which additional has the role constructor transitive closure. In-
terestingly, the unification type of FL0 had been determined almost a decade
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earlier in [2]. In fact, as shown in [10, 11], unification in FL0 corresponds to
unification modulo the equational theory of idempotent Abelian monoids with
several homomorphisms. In [2] it was shown that, already for a single homomor-
phism, unification modulo this theory has unification type zero, i.e., there are
unification problems for this theory that do not have a minimal complete set of
unifiers. In particular, such unification problems cannot have a finite complete
set of unifiers.

In this paper, we consider unification in the DL EL. The EL-family of de-
scription logics (DLs) is a family of inexpressive DLs whose main distinguishing
feature is that they provide their users with existential restrictions (∃r.C) rather
than value restrictions (∀r.C) as the main concept constructor involving roles.
The core language of this family is EL, which has the top concept, conjunction,
and existential restrictions as concept constructors. This family has recently
drawn considerable attention since, on the one hand, the subsumption problem
stays tractable (i.e., decidable in polynomial time) in situations where FL0, the
corresponding DL with value restrictions, becomes intractable: subsumption be-
tween concept terms is tractable for both FL0 and EL, but allowing the use
of concept definitions or even more expressive terminological formalisms makes
FL0 intractable [3, 16, 5], whereas it leaves EL tractable [4, 14, 5]. On the other
hand, although of limited expressive power, EL is nevertheless used in applica-
tions, e.g., to define biomedical ontologies. For example, both the large medical
ontology Snomed ct [20] and the Gene Ontology [1] can be expressed in EL,
and the same is true for large parts of the medical ontology Galen [18].

Unification in EL has, to the best of our knowledge, not been considered
before, but matching (where one side of the equation(s) to be solved does not
contain variables) has been investigated in [7, 17]. In particular, it was shown in
[17] that the decision problem, i.e., the problem of deciding whether a given EL-
matching problem has a matcher or not, is NP-complete. Interestingly, FL0 be-
haves better w.r.t. matching than EL: for FL0, the decision problem is tractable
[9]. In this paper, we show that, w.r.t. the unification type, FL0 and EL behave
the same: just as FL0, the DL EL has unification type zero.

In the next section, we define the DL EL and unification in EL more formally.
In Section 3, we recall the characterisation of equivalence in EL from [17], and in
Section 4 we use this to show that unification in EL has type zero. In Section 5 we
point out that this result implies that unification modulo the equational theory
of semilattices with monotone operators is of unification type zero.

More information about Description Logics can be found in [6], and about
unification theory in [12, 13].

2 Unification in EL

First, we define the syntax and semantics of EL-concept terms as well as the
subsumption and the equivalence relation on these terms.

Starting with a set Ncon of concept names and a set Nrole of role names,
EL-concept terms are built using the concept constructors top concept (>),
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conjunction (u), and existential restriction (∃r.C). The semantics of EL is defined
in the usual way, using the notion of an interpretation I = (DI , ·I), which
consists of a nonempty domain DI and an interpretation function ·I that assigns
binary relations on DI to role names and subsets of DI to concept terms, as
shown in the semantics column of Table 1.

Name Syntax Semantics

concept name A AI ⊆ DI

role name r rI ⊆ DI ×DI

top-concept > >I = DI

conjunction C uD (C uD)I = CI ∩DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
subsumption C v D CI ⊆ DI

equivalence C ≡ D CI = DI

Table 1. Syntax and semantics of EL

The concept term C is subsumed by the concept term D (written C v D)
iff CI ⊆ DI holds for all interpretations I. We say that C is equivalent to
D (written C ≡ D) iff C v D and D v C, i.e., iff CI = DI holds for all
interpretations I.

In order to define unification of concept terms, we must first introduce the
notion of a substitution operating on concept terms. To this purposes, we parti-
tion the set of concepts names into a set Nv of concept variables (which may be
replaced by substitutions) and a set Nc of concept constants (which must not
be replaced by substitutions). Intuitively, Nv are the concept names that have
possibly been given another name or been specified in more detail in another
concept term describing the same notion. The elements of Nc are the ones of
which it is assumed that the same name is used by all knowledge engineers (e.g.,
standardised names in a certain domain).

A substitution σ is a mapping from Nv into the set of all EL-concept terms.
This mapping is extended to concept terms in the obvious way, i.e.,

– σ(A) := A for all A ∈ Nc,
– σ(>) := >,
– σ(C uD) := σ(C) u σ(D), and
– σ(∃R.C) := ∃R.σ(C).

Definition 1. An EL-unification problem is of the form C ≡? D, where C,D
are EL-concept terms. The substitution σ is a unifier (or solution) of this problem
iff σ(C) ≡ σ(D). In this case, the problem is called solvable, and the concept
terms C and D are called unifiable.

As usual, unifiers can be compared using the instantiation preorder ≤•. Let
C ≡? D be an EL-unification problem, V the set of variables occurring in C,D,
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and σ, θ two unifiers of this problem. We define

σ ≤• θ iff there is a substitution λ such that θ(X) ≡ λ(σ(X)) for all X ∈ V.

If σ ≤• θ, then we say that θ is an instance of σ.

Definition 2. Let C ≡? D be an EL-unification problem. The set of substi-
tutions M is called a complete set of unifiers for C ≡? D iff it satisfies the
following two properties:

1. every element of M is a unifier of C ≡? D;
2. if θ is a unifier of C ≡? D, then there exists a unifier σ ∈ M such that

σ ≤• θ.

The set M is called a minimal complete set of unifiers for C ≡? D iff it addi-
tionally satisfies

3. if σ, θ ∈ M , then σ ≤• θ implies σ = θ.

The unification type of a given unification problem is determined by the
existence and cardinality of such a minimal complete set.

Definition 3. Let C ≡? D be an EL-unification problem. This problem has
type unitary (finitary, infinitary) iff it has a minimal complete set of unifiers of
cardinality 1 (finite cardinality, infinite cardinality). If C ≡? D does not have a
minimal complete set of unifiers, then it is of type zero.

Note that the set of all unifiers of a given EL-unification problem is always a
complete set of unifiers. However, this set is usually infinite and redundant (in
the sense that some unifiers are instances of others). For a unitary or finitary
EL-unification problem, all unifiers can be represented by a finite complete set
of unifiers. For problems of type infinitary or zero, this is no longer possible.
In fact, if a problem has a finite complete set of unifiers M , then it also has
a finite minimal complete set of unifiers, which can be obtained by iteratively
removing redundant elements from M , i.e., by removing the unifier θ ∈ M if it is
an instance of another unifier in M . For an infinite complete set of unifiers, this
approach of removing redundant unifiers may be infinite, and the set reached
in the limit need no longer be complete. This is what happens for problems of
type zero. The difference between infinitary and type zero is that a unification
problem of type zero cannot even have a non-redundant complete set of unifiers,
i.e., every complete set of unifiers must contain different unifiers σ, θ such that
σ ≤• θ.

When we say that EL has unification type zero, we mean that there exists
an EL-unification problem that has type zero. Before we can prove that this is
indeed the case, we must first have a closer look at equivalence in EL.
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3 Equivalence in EL

In order to characterise equivalence of EL-concept terms, the notion of a reduced
EL-concept term is introduced in [17]. A given EL-concept term can be trans-
formed into an equivalent reduced term by applying the following rules modulo
associativity and commutativity of conjunction:

C u > → C for all EL-concept terms C

A uA → A for all concept names A ∈ Ncon

∃r.C u ∃r.D → ∃r.C for all EL-concept terms C,D with C v D

Obviously, these rules are equivalence preserving. We say that the EL-concept
term C is reduced if none of the above rules is applicable to it (modulo associa-
tivity and commutativity of u). The EL-concept term D is a reduced form of C
if D is reduced and can be obtained from C by applying the above rules (modulo
associativity and commutativity of u). The following theorem is shown in [17]
(see Theorem 6.3.1 on page 181).

Theorem 1. Let C,D be reduced EL-concept terms. Then C ≡ D iff C is iden-
tical to D up to associativity and commutativity of u.

As an easy consequence of this theorem, we obtain:

Corollary 1. Let C,D be EL-concept terms, and Ĉ, D̂ reduced forms of C,D,
respectively. Then C ≡ D iff Ĉ is identical to D̂ up to associativity and commu-
tativity of u.

The following two lemmas, which are easy consequences of this corollary, will
be used in our proof that EL has unification type zero.

Lemma 1. Assume that C,D are reduced EL-concept terms such that ∃r.D v
C. Then C is either >, or of the form C = ∃r.C1 u . . . u ∃r.Cn where

– n ≥ 1;
– C1, . . . , Cn are reduced and pairwise incomparable w.r.t. subsumption;
– D v C1, . . . , D v Cn.

Proof. We have ∃r.D v C iff C u ∃r.D ≡ ∃r.D. Since ∃r.D is reduced, any re-
duced form of Cu∃r.D must be identical (up to associativity and commutativity
of u) to ∃r.D. If C 6= >, then the only rule that can be applied to reduce Cu∃r.D
is the third one. It is easy to see that we can only obtain ∃r.D by applying this
rule if C is of the form C = ∃r.C1 u . . . u ∃r.Cn where D v C1, . . . , D v Cn.
Since C was assumed to be reduced, the terms C1, . . . , Cn must also be reduced
and pairwise incomparable w.r.t. subsumption. ut

Conversely, we also have:

Lemma 2. If C,D are EL-concept terms such that C = ∃r.C1u . . .u∃r.Cn and
D v C1, . . . , D v Cn, then ∃r.D v C.

Proof. Assume that C,D satisfy the prerequisites of the lemma. Then it is easy
to see that ∃r.D is a reduced form of C u ∃r.D, and thus C u ∃r.D ≡ ∃r.D. ut

30



4 An EL-unification problem of type zero

To show that EL has unification type zero, we must exhibit an EL-unification
problem that has this type.

Theorem 2. Let X, Y be variables. The EL-unification problem X u ∃r.Y ≡
∃r.Y has unification type zero.

Proof. It is enough to show that any complete set of unifiers for this problem
is redundant, i.e., contains two different unifiers that are comparable w.r.t. the
instantiation preorder. Thus, let M be a complete set of unifiers for X u∃r.Y ≡
∃r.Y .

First, note that M must contain a unifier that maps X to an EL-concept
term not equivalent to > or ∃r.>. In fact, consider a substitution τ such that
τ(X) = ∃r.A and τ(Y ) = A. Obviously, τ is a unifier of X u∃r.Y ≡ ∃r.Y . Thus,
M must contain a unifier σ such that σ ≤• τ . In particular, this means that there
is a substitution λ such that ∃r.A = τ(X) ≡ λ(σ(X)). Obviously, σ(X) ≡ >
(σ(X) ≡ ∃r.>) would imply λ(σ(X)) ≡ > (λ(σ(X)) ≡ ∃r.>), and thus ∃r.A ≡ >
(∃r.A ≡ ∃r.>), which is, however, not the case.

Thus, let σ ∈ M be such that σ(X) 6≡ > and σ(X) 6≡ ∃r.>. Without loss of
generality, we assume that C := σ(X) and D := σ(Y ) are reduced. Since σ is a
unifier of X u ∃r.Y ≡ ∃r.Y , we have ∃r.D v C. Consequently, Lemma 1 yields
that C is of the form C = ∃r.C1u. . .u∃r.Cn where n ≥ 1, C1, . . . , Cn are reduced
and pairwise incomparable w.r.t. subsumption, and D v C1, . . . , D v Cn.

We use σ to construct a new unifier σ̂ as follows:

σ̂(X) := ∃r.C1 u . . . u ∃r.Cn u ∃r.Z
σ̂(Y ) := D u Z

where Z is a new variable (i.e., one not occurring in C,D). Lemma 2 implies
that σ̂ is indeed a unifier of X u ∃r.Y ≡ ∃r.Y .

Next, we show that σ̂ ≤• σ. To this purpose, we consider the substitution λ
that maps Z to C1, and does not change any of the other variables. Then we
have λ(σ̂(X)) = ∃r.C1 u . . . u ∃r.Cn u ∃r.C1 ≡ ∃r.C1 u . . . u ∃r.Cn = σ(X) and
λ(σ̂(Y )) = D u C1 ≡ D = σ(Y ). Note that the second equivalence holds since
we have D v C1.

Since M is complete, there exists a unifier θ ∈ M such that θ ≤• σ̂. Tran-
sitivity of the relation ≤• thus yields θ ≤• σ. Since σ and θ both belong to M ,
we have completed the proof of the theorem once we have shown that σ 6= θ.
Assume to the contrary that σ = θ. Then we have σ ≤• σ̂, and thus there exists
a substitution µ such that µ(σ(X)) ≡ σ̂(X), i.e.,

∃r.µ(C1) u . . . u ∃r.µ(Cn) ≡ ∃r.C1 u . . . u ∃r.Cn u ∃r.Z. (1)

Recall that the concept terms C1, . . . , Cn are reduced and pairwise incomparable
w.r.t. subsumption. In addition, since σ(X) = ∃r.C1u . . .u∃r.Cn is reduced and
not equivalent to ∃r.>, none of the concept terms C1, . . . , Cn can be equivalent

31



to >. Finally, Z is a concept name that does not occur in C1, . . . , Cn. All this
implies that ∃r.C1 u . . . u ∃r.Cn u ∃r.Z is reduced. Obviously, any reduced form
for ∃r.µ(C1)u . . .u∃r.µ(Cn) is a conjunction of at most n existential restrictions.
Thus, Corollary 1 shows that the above equivalence (1) actually cannot hold.

To sum up, we have shown that M contains two distinct unifiers σ, θ such that
θ ≤• σ. Since M was an arbitrary complete set of unifiers for X u ∃r.Y ≡ ∃r.Y ,
this shows that this unification problem cannot have a minimal complete set of
unifiers. ut

Note that, in this proof, the availability of > in EL was not needed.1 For this
reason, the result still holds if, instead of EL, we consider its sublanguage that
has only conjunction and existential restriction as concept constructor.

5 Unification in semilattices with monotone operators

Of course, unification types were originally not introduced for Description Logics,
but for equational theories. In this section, we show that the above result for
unification in EL can actually be viewed as a result for an equational theory.

As shown in [19], the equivalence problem for EL-concept terms corresponds
to the word problem for the equational theory of semilattices with monotone op-
erators. In order to define this theory, we consider a signature ΣSLmO consisting
of a binary function symbol ∧, a constant symbol 1, and finitely many unary
function symbols f1, . . . , fn. Terms can then be built using these symbols and
additional variable symbols and free constant symbols.

Definition 4. The equational theory of semilattices with monotone operators
is defined by the following identities:

SLmO :={x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∧ y = y ∧ x, x ∧ x = x} ∪

{fi(x ∧ y) ∧ fi(y) = fi(x ∧ y) | 1 ≤ i ≤ n}

A given EL-concept term C using only roles r1, . . . , rn can be translated into
a term tC over the signature ΣSLmO by replacing each concept constant A by
a corresponding free constants a, each concept variable X by a corresponding
variable x, > by 1, u by ∧, and ∃ri by fi. For example, C = A u ∃r3.(X u B)
is translated into tC = a ∧ f3(x ∧ b). Conversely, any term over the signature
ΣSLmO can be translated back into an EL-concept term.

Lemma 3. Let C,D be EL-concept term using only roles r1, . . . , rn. Then C ≡
D iff tC =SLmO tD.

As an immediate consequence of this lemma, we have that unification in the
DL EL corresponds to unification modulo the equational theory SLmO . Thus,
Theorem 2 implies that SLmO has unification type zero.
1 The only place where we have said anything about > was when we excluded that

σ(X) is equivalent to > or ∃r.>.
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Corollary 2. The equational theory of semilattices with monotone operators has
unification type zero.

Since the unification problem introduced in Theorem 2 contains only one role
r, this is already true in the presence of a single monotone operator.

6 Future work

In this paper we have determined the unification type of EL. Currently, we
are investigating the decidability issue, i.e., given an EL-unification problem,
is it decidable whether this problem has a unifier or not. We conjecture that
this problem is decidable (more precisely, NP-complete); however, the proofs of
completeness and termination for the algorithm(s) that we have devised so far
still have some “holes.”
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7. Franz Baader and Ralf Küsters. Matching in description logics with existential re-
strictions. In Proc. of the 7th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’2000), pages 261–272, 2000.
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17. Ralf Küsters. Non-standard Inferences in Description Logics, volume 2100 of Lec-
ture Notes in Artificial Intelligence. Springer-Verlag, 2001.

18. Alan Rector and Ian Horrocks. Experience building a large, re-usable medical
ontology using a description logic with transitivity and concept inclusions. In
Proceedings of the 14th National Conference on Artificial Intelligence (AAAI’97),
Menlo Park, California, 1997. AAAI Press.

19. Viorica Sofronie-Stokkermans. Locality and subsumption testing in EL and some
of its extensions. In Proc. of the 2008 Description Logic Workshop (DL 2008).
CEUR Electronic Workshop Proceedings, volumne 353, 2008.

20. Kent Spackman. Managing clinical terminology hierarchies using algorithmic calcu-
lation. Journal of the American Medical Informatics Association, Fall Symposium
Special Issue, 2000.

34



Equational Unification by Variant Narrowing
(Extended Abstract)
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Abstract. Narrowing is a well-known complete procedure for equational
E-unification when E can be decomposed as a union E = ∆ ] B with
B a set of axioms for which a finitary unification algorithm exists, and
∆ a set of confluent, terminating, and B-coherent rewrite rules. How-
ever, when B 6= ∅, effective narrowing strategies such as basic narrowing
easily fail to be complete and cannot be used. This poses two challenges
to narrowing-based equational unification: (i) finding effective narrowing
strategies that are complete modulo B under mild assumptions on B,
and (ii) finding sufficient conditions under which such narrowing strate-
gies yield finitary E-unification algorithms. Inspired by Comon and De-
laune’s notion of E-variant for a term, we propose a new narrowing
strategy called variant narrowing that has a search space potentially
much smaller than full narrowing, is complete, and yields a finitary E-
unification algorithm when E has the finite variant property.

1 Introduction

Equational unification is the solving of existentially quantified problems ∃x t =E

t′ modulo an equational theory E. If the equations E are convergent, it is
well-known that narrowing provides a complete unification procedure for E-
unification [4]. This result extends to narrowing modulo a set B of equational
axioms. That is, if E = ∆ ] B, where ∆ is a set of oriented equations that are
convergent and coherent modulo B, then narrowing with ∆ modulo B is also a
complete E-unification procedure [5]. In practice, however, full narrowing, i.e.,
considering all narrowing sequences, can be highly inefficient. This has led to
the search for complete narrowing strategies that have a much smaller search
space; and to conditions under which narrowing terminates, so that a finitary
unification algorithm can be obtained. Hullot’s basic narrowing [4] is one such
strategy, which is complete (for normalized substitutions, see [4], though it does
also produce non-normalized substitutions) and terminates under suitable condi-
tions. The problem, however, is that basic narrowing is complete for B = ∅, but
is incomplete for a general set B of axioms, and in particular for associativity-
commutativity (AC) (see [8,1]).

In [3] we have addressed the problem of finding complete narrowing proce-
dures modulo B, under minimal assumptions on B, which have a much smaller
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search space than full narrowing, and for which finitary unification conditions
can be given. Specifically, inspired by the notion of E-variant of a term due
to Comon and Delaune [1], we have proposed a new narrowing method called
variant narrowing with the following properties: (i) it only uses substitutions in
normal form modulo B; (ii) it is complete under very general assumptions on B
and ∆ (and avoids many wasteful narrowing sequences that would be created by
full narrowing); and (iii) if ∆ has the finite variant property modulo B, it can
be used to both compute all the finite variants of a term in a very space-efficient
way, and to obtain a finitary E-unification algorithm.

Indeed, when ∆ has the finite variant property modulo B, we have showed
in [3] how variant narrowing can be specialized into two terminating algorithms,
one for computing the finite set of variants of any term, and another optimized
one for providing a finitary E-unification algorithm that computes a complete
and minimal set of E-unifiers. Moreover, in [2] we have developed checkable
conditions for a theory to have the finite variant property.

We assume some knowledge on term rewriting, narrowing and rewriting
logic [7,6]. We adopt an order-sorted, typed setting, and assume throughout
that the rules ∆ are confluent, terminating and sort decreasing modulo regular
axioms B as detailed in [3]. We do not explicitly mention such conditions in
definitions and theorems.

2 Variants

We illustrate the major points with the following running example.

Example 1. Let us consider the following equational theory for the exclusive or
operator and the cancellation equations for public encryption/decryption. The
exclusive or symbol ⊕ has associative and commutative (AC) properties with
0 as its unit. The symbol pk is used for public key encryption and the symbol
sk for private key encryption. The equational theory (Σ,E) is decomposed as a
rewrite theory (Σ, B,∆), with B the AC axioms for ⊕ and ∆ the rules below.
It has been shown to satisfy the finite variant property in [2].

X ⊕ 0 → X X ⊕X ⊕ Y → Y pk(K, sk(K, M)) → M
X ⊕X → 0 sk(K, pk(K, M)) → M

Definition 1 (Variants). [1] Given a term t and an order-sorted equational
theory E, we say that (t′, θ) is an E-variant of t if tθ =E t′, where Dom(θ) ⊆
Var(t) and Ran(θ) ∩Var(t) = ∅.

Definition 2 (Minimal and complete set of variants). [1] Let (Σ, B,∆)
be a decomposition of an equational theory (Σ,E). A minimal and complete
set of E-variants (up to renaming) of a term t, denoted (in the case it is finite)
FV∆,B(t), is a set S of E-variants of t such that, for each substitution σ, there is
a variant (t′, ρ) ∈ S and a substitution θ such that: (i) t′ is ∆, B-irreducible, (ii)
(tσ)↓∆,B =B t′θ, (iii) (σ↓∆,B)|Var(t) =B (ρθ)|Var(t), and (iv) (t′, ρ) is minimal,
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i.e., there is no (t′′, ρ′) ∈ S and τ such that ρ|Var(t) =B (ρ′τ)|Var(t) and t′ =B

t′′τ .

The finite variant property is integral to our approach. Checkable conditions
have been developed in [2]. Next we present a result that allows computation of
the set of finite variants of a term by narrowing.

Proposition 1 (Computing the Finite Variants I). [3] Let (Σ,B,∆) be
a finite variant decomposition of an order-sorted equational theory (Σ,E). Let
t ∈ TΣ(X ) and #∆,B(t) = n (a bound on the number of rewrite steps necessary to
reach a normal-form from tσ independent of σ). Then, (s, σ) ∈ FV∆,B(t) if and
only if there is a narrowing derivation t

σ
 ≤n

∆,B s such that s is →∆,B-irreducible,
σ is →∆,B-normalized, and there are no term s′ and →∆,B-normalized substitu-

tions σ′, τ such that t
σ′

 ≤n
∆,B s′, (σ′τ)|Var(t) =B σ|Var(t), and s =B s′τ .

Example 2. Let us use the theory given in Example 1. For s=X⊕sk(K, pk(K, Y ))
we get the following seven narrowing sequences that will make up a minimal and
complete set of E-variants: (i) s

id
 ∗

∆,B X ⊕ Y , (ii) s ∗
{X 7→0,Y 7→Z},∆,B Z, (iii) s

 ∗
{X 7→Z,Y 7→0},∆,B Z, (iv) s ∗

{X 7→Z⊕U,Y 7→U},∆,B Z, (v) s ∗
{X 7→U,Y 7→Z⊕U},∆,B Z,

(vi) s ∗
{X 7→U,Y 7→U},∆,B 0, and (vii) s ∗

{X 7→U⊕Z1,Y 7→U⊕Z2},∆,B Z1 ⊕ Z2. There-
fore (X ⊕ Y, id), (Z, {X 7→ 0, Y 7→ Z}), (Z, {X 7→ Z, Y 7→ 0}), (Z, {X 7→
Z ⊕ U, Y 7→ U}), (Z, {X 7→ U, Y 7→ Z ⊕ U}), (0, {X 7→ U, Y 7→ U}), and (Z1 ⊕
Z2, {X 7→ U ⊕Z1, Y 7→ U ⊕Z2}) are the E-variants; indeed they are a minimal
set. The alternative narrowing sequence (viii) s ∗

{X 7→U,Y 7→U⊕Z1⊕Z2},∆,B Z1 ⊕ Z2

is an instance of (v), simply by considering the substitution {Z 7→ Z1 ⊕ Z2}.

3 Variant Narrowing

Let us first motivate why an alternative narrowing strategy is necessary for con-
fluent and terminating rewrite theories with rules ∆ modulo axioms B. Applying
narrowing  ∆,B to perform (∆ ]B)-unification without any restriction is very
wasteful, because as soon as a rewrite step →∆,B is enabled in a term that has
also narrowing steps ∆,B , that rewrite step should be taken before any further
narrowing steps are applied, thanks to confluence modulo B. This idea is con-
sistent with the implementation of rewriting logic [9] and, therefore, the relation
→!

∆,B ; ∆,B makes sense as an optimization of  ∆,B . However, this is still a
naive approach, since a rewrite step and a narrowing step satisfy a more general
property which is the reason for being able to take the rewrite step and avoiding
the narrowing step. Namely, if two narrowing steps t

σ1 ∆,B t1 and t
σ2 ∆,B t2 are

possible and we have that σ1 ≤B σ2 (i.e., σ1 is more general than σ2), then it is
enough to take only the narrowing step using σ1.

Definition 3 (Equivalence classes for narrowing steps). [3] Let R =
(Σ,B,∆) be an order-sorted rewrite theory. Let us consider two narrowing steps
α1 : t

σ1 ∆,B s1 and α2 : t
σ2 ∆,B s2. We write α1 �B α2 if σ1|Var(t) ≤B σ2|Var(t)
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and α1 ≺B α2 if σ1|Var(t) <B σ2|Var(t) (i.e., σ1 is strictly more general than
σ2). We write α1 'B α2 if σ1|Var(t) 'B σ2|Var(t). The relation α1 'B α2 be-
tween two narrowing steps from t defines a set of equivalence classes between
such narrowing steps. In what follows we will be interested in choosing a unique
representation α ∈ [α]'B

in each equivalence class of narrowing steps from t.
Therefore, α will always denote a chosen unique representative α ∈ [α]'B

.

Definition 4 (Variant Narrowing). [3] Let R = (Σ, B,∆) be an order-
sorted rewrite theory. We define t

p,σ
 ∆,B s as α : t

p,σ
 ∆,B s such that σ is ∆, B-

normalized if σ|Var(t) is not a renaming, α is minimal w.r.t. the order �B, and
α is a chosen unique representative of its 'B-equivalence class.

Note that the relation →!
∆,B ; ∆,B is (appropriately) simulated by ∆,B , since

in the relation  ∆,B rewriting steps are always given priority over narrowing
steps. The normalization with our variant narrowing is unique as shown by the
following result.

Lemma 1 (Normalization of Variant Narrowing). [3] Let R = (Σ,B,∆)
be an order-sorted rewrite theory. Let t ∈ TΣ(X ). If t is not ∆, B-irreducible,
then, relative to the unique choice of α ∈ [α]'B

in Definition 3, there is a unique
 ∆,B-narrowing sequence from t such that t

id
 ∗

∆,B t↓∆,B.

The following result ensures that variant narrowing is complete.

Theorem 1 (Completeness of Variant Narrowing). [3] Let R = (Σ,B,∆)
be an order-sorted rewrite theory. If t

σ
 ∗

∆,B tσ↓∆,B with σ ∆,B-normalized, and

there are no substitutions ρ, ρ′ such that t
ρ
 ∗

∆,B tρ↓∆,B, tσ↓∆,B =B (tρ↓∆,B)ρ′,
σ|Var(t) =B (ρρ′)|Var(t), and ρ′ 6= id, then t

σ
 ∗

∆,B tσ↓∆,B.

This result allows more efficient computation of the set of finite variants,
based on variant narrowing.

Theorem 2 (Computing the Finite Variants II). [3] Let (∆, B) be a finite
variant decomposition of an order-sorted equational theory (Σ,E). Let t ∈ TΣ(X )
and #∆,B(t) = n Then (s, σ) ∈ FV∆,B(t) if and only if there is a variant
narrowing derivation t

σ
 ≤n

∆,B s such that s is →∆,B-irreducible and σ is →∆,B-
normalized.

4 Equational Unification

Our main point is that we can now compute unifiers modulo E, with (Σ,E)
decomposed as (Σ,B,∆), by computing E-variants and then solving the simpler
unification problem modulo B on the variants.

Theorem 3 (Finite Variant unification procedure). [3] Let R = (Σ, B,∆)
be an order-sorted rewrite theory that has the finite variant property. To ob-
tain the finitary and complete set of ∆ ] B-unifiers of two terms t and t′
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we (i) compute their E-variants, say FV∆]B(t) = {(t1, σ1), . . . , (tn, σn)} and
FV∆]B(t′) = {(t′1, σ′1), . . . , (t′m, σ′m)}, and then (ii) try B-unification on each
pair ti, t′j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then, θ ∈ CSU∆]B(t = t′) if and
only if there are 1 ≤ i ≤ n, 1 ≤ j ≤ m and two substitutions ρ, ρ′ such that
ρ ∈ (σi∩B σ′j), ρ′ ∈ CSUB(ti = t′j), and θ =B ρρ′; where the meet σ∩B σ′ of two
substitutions σ, σ′ is the set of most general substitutions τ such that there are
minimal ρ and ρ′ such that σρ =B σ′ρ′, and τ = σρ. The set CSU∆]B(t = t′) of
unifiers is minimal if whenever θ is non-normalized or has an alternative, more
general one, we discard it.

Example 3. To bring our running exclusive or and encryption example to conclu-
sion, let us compute the unifiers of two terms by the method given in Theorem 3.
For the term s = X⊕sk(K, pk(K, Y )) we have (X⊕Y, id), (Z, {X 7→ 0, Y 7→ Z}),
(Z, {X 7→ Z, Y 7→ 0}), (Z, {X 7→ Z ⊕ U, Y 7→ U}), (Z, {X 7→ U, Y 7→ Z ⊕ U}),
(0, {X 7→ U, Y 7→ U}), and (Z1⊕Z2, {X 7→ U ⊕Z1, Y 7→ U ⊕Z2}) as E-variants
as shown in Example 2. Considering s′ = a ⊕ b with a, b constants, we have
that (a⊕ b, id) is a minimal and complete set of E-variants for s′. Then the E-
unification question of s =E s′ can be answered by considering the following com-
bination of E-variants. First, 0 =B a⊕b has no solution. Second, X⊕Y =B a⊕b
has two solutions {X 7→ a, Y 7→ b} and {X 7→ b, Y 7→ a}. Third, Z =B a ⊕ b
has only one solution {Z 7→ a ⊕ b} so we get four solutions by combining it
with the one in the variants, namely {X 7→ 0, Y 7→ a⊕ b}, {X 7→ a⊕ b, Y 7→ 0},
{X 7→ a⊕b⊕U, Y 7→ U}, and {X 7→ U, Y 7→ a⊕b⊕U}. Fourth, Z1⊕Z2 =B a⊕b
has the two solutions {Z1 7→ a, Z2 7→ b} and {Z1 7→ b, Z2 7→ a} and by combi-
nation we get {X 7→ U ⊕ a, Y 7→ U ⊕ b}) and {X 7→ U ⊕ b, Y 7→ U ⊕ a}).
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Abstract We present a new framework for the representation and res-
olution of first-order unification problems and their abstract syntax in
a variable-free relational formalism which is a variant of Tarski-Givant
relational algebra and Freyd’s allegories restricted to the fragment nec-
essary to compile and execute logic programs. A decision procedure for
validity of relational terms is developed, which corresponds to solving
the original unification problem. The decision procedure is presented as
a conditional relational-term rewriting system. A more efficient version
can be obtained by tailoring certain rewriting mechanisms. There are
advantages over classical unification approaches. First, inconvenient and
underspecified meta-logical procedures (name clashes, substitution, etc)
are captured algebraically within the framework. Second, interesting al-
gebraic properties usually living in the meta-level spring up. Third, other
unification problems are seamlessly accommodated, for instance, unifi-
cation for terms with a variable-restriction operator.

1 Introduction

Tarski and Givant [27] observe that binary relations equipped with projection
operators faithfully capture all of classical first-order logic. Freyd and Scedrov
[12] show that so-called tabular allegories satisfying certain conditions faithfully
capture all of higher-order intuitionistic logic. Both of these formalisms effec-
tively eliminate logical variables in different ways and can provide an algebraic
semantics to logic programming. A restricted variant of these calculi [4,18] has
been used as an alternative means of logic-program transformation and execu-
tion by direct rewriting of relational, variable-free representations. The variant is
restricted to carve out an efficient executable fragment. The relational represen-
tation provides a new abstract syntax for logic programs and a formal treatment
of logic variables and unification, where expensive meta-logical procedures (name

? Work supported by CAM grants 3060/2006 (European Social Fund),
S-0505/TIC/0407 (PROMESAS), and MEC grant TIN2006-15660-C02-02 (DE-
SAFIOS).
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clashes, substitution, etc) are now captured by explicit algebraic manipulation
of relations.

However, in the aforementioned work unification is incorporated metalogi-
cally as a black box via intersection of relational terms, with execution details
left unspecified. It is only shown that unification is sound with respect to the
chosen representation. In this paper we present a unification algorithm that acts
directly on the representation via rewriting. There are advantages over classical
unification approaches. First, interesting algebraic properties usually living in
the meta-level spring up. Second, other unification problems are seamlessly ac-
commodated because the relational framework can host the whole set of formulas
and theories over the Herbrand universe and therefore making small additions
is easy and non-disruptive. For example, we can incorporate existential quan-
tification inside equality formulas which gives rises to unification between terms
with a variable restriction operator ν that allows us to formalise renaming apart.
To help the reader understand our algorithm we shall draw analogies with the
classic non-deterministic one described in [22] and referred to here as ND. This
algorithm uses multisets of equations but an efficient, deterministic version with
complexity O(n log n) is possible. We believe that, with minimal modifications
(tailoring the rewriting mechanism), an efficient version of our algorithm with
similar complexity is possible.

The structure of the paper is as follows. Section 2 contains a summary of
the relational translation of Herbrand terms and the unification problem. Sec-
tion 3 defines the concept of solved form. Section 4 formally defines and valides
our decision procedure and compares it with a classical unification algorithm.
Section 5 contains the restriction example. Section 6 discusses related work and
Sect. 7 concludes and discusses future work.

2 Term Encoding in Relational Algebra

2.1 Relational Signature and Theories

Logic programs are represented in [4] as relations in two relational theories,
namely, Distributive Relational Algebra (DRA, Fig. 1) and RelΣ (Fig. 2), the
latter a specialised theory which depends on the signature Σ of the logic program
and captures algebraically Clark’s Equality Theory [19], the domain closure ax-
iom (shown in the last line: every term is either a constant or an application of
some term former to terms), the occurs check (fifth line: no proper subterm of
a term may be equal to the whole term), and open sequences of terms (second
line: formalizes projection operations, sixth line: rules out the use of open se-
quences in term forming operations). The equation RS ∩T ⊆ (R∩TS◦)S is the
modular law (recall X ⊆ Y means X ∩ Y = X). The fixed point equation (fp)
of DRA is irrelevant here and has been included only for completeness. The
following paragraphs provide more detail and assume a permutative convention
of symbols, i.e., f, g are different and so are i, j, etc. The first-order signature of
a logic program Σ = 〈CΣ ,FΣ〉 is given by CΣ , the set of constant symbols, and
FΣ , the set of term formers or functors. Function α : FΣ → N returns the arity
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R ∩R = R R ∩ S = S ∩R R ∩ (S ∩ T ) = (R ∩ S) ∩ T
R id = R R0 = 0 0 ⊆ R ⊆ 1

R ∪R = R R ∪ S = S ∪R R ∪ (S ∪ T ) = (R ∪ S) ∪ T
R ∪ (S ∩R) = R = (R ∪ S) ∩R

R(S ∪ T ) = RS ∪RT (S ∪ T )R = SR ∪ TR
R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T )

(R ∪ S)◦ = R◦ ∪ S◦ (R ∩ S)◦ = S◦ ∩R◦

R◦◦ = R (RS)◦ = S◦R◦

R(S ∩ T ) ⊆ RS ∩RT RS ∩ T ⊆ (R ∩ TS◦)S
id ∪ di = 1 id ∩ di = 0 fpx.E(x) = E(fpx.E(x))

T ∩RS = R(R◦T ∩ S) ∩ T

Figure 1: The equational theory DRA.

1(a, a)1 = 1 (a, a)R(a, a) = (a, a) ∩R (a, a) ⊆ id
hd(hd)◦ ∩ tl(tl)◦ ⊆ id (hd)◦hd = (tl)◦tl = id (hd)◦tl = 1

idf
def
=

T
1≤i≤n fni (fni )◦ ⊆ id (fnj )◦fni = 1 (i 6= j)

(fni )◦fni = id (fni )◦gmj = 0
(f1)

n1
i1

(f2)
n2
i2
· · · (fk)nk

ik
∩ id = 0

hd◦fni = 0 = tl◦fni fni hd = 0 = fni tl hd ∩ id = 0 = tl ∩ id
id =

S
{(a, a) : a ∈ CΣ} ∪

S
{idf : f ∈ FΣ}

Figure 2: The equational theory RelΣ.

of its functor argument. The set of logic-program variables is X and xi ∈ X .
We write TΣ(X ) for the set of open terms over Σ. The set of open sequences
T +
Σ (X ) over TΣ is defined with the addition to the signature of a right-associative

list-cons-like operator. We write [t1, [t2, . . . , [tn,x]]], or alternatively [t1, . . . , tn]x
with abbreviation tx, for an open sequence of t1, . . . , tn terms where x is a vari-
able standing for an arbitrary open sequence. Thus, the open sequence [t1, t2]x
denotes all term sequences beginning with t1, followed by t2, and followed by an
arbitrary term sequence.

The relational language R is built from a countable set of relation variables
R,S, T, . . . ∈ Rvar (not to be confused with first-order logic-variables), a set of
relational constants RΣ build from Σ, and a fixed set of relational constants and
operators detailed below. Let us begin with RΣ . Each constant a ∈ CΣ defines
a constant (a, a) ∈ RΣ . The set-theoretic interpretation is a singleton relation,
that is, J(a, a)K = {(a, a)}. Each functor f ∈ FΣ of arity n defines n constants
fn1 , . . . , f

n
n in RΣ . Their set-theoretic interpretation is the relation of the term

former with its ith argument, that is, Jfni K = {(f(. . . , ti, . . . ), ti) | ti ∈ TΣ}.
Summarising:

RΣ = {fni | f ∈ FΣ , α(f) = n, 1 ≤ i ≤ n} ∪ {(a, a) | a ∈ CΣ}
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The full relational language R is given by the following grammar:

Ratom ::= Rvar | RΣ | id | di | 1 | 0 | hd | tl
R ::= Ratom | R◦ | R ∪ R | R ∩ R | RR | fp Rvar . R

The constants 1,0, id , di respectively denote universal relation, empty relation,
identity relation, and identity’s complement. Operators ∪ and ∩ represent union
and intersection whereas juxtaposition RR represents relation composition. R◦ is
the converse of R, i.e., the relation obtained by swapping domain and codomain.
Set-theoretically,R’s domain is {x|(x,_) ∈ R} and its codomain is {x|(_, x) ∈ R}.
The constants hd and tl denote the relation of an open sequence with its head
and tail. Using the notation Rk as shorthand for R composed with itself k times,
we define the ith projection relation Pi = tl(i−1)hd, where i ≥ 1, and the ith
partial projection relation Qi =

⋂
j 6=i Pj(Pj)

◦.

2.2 Translation and Unification

Every first-order formula over H (the Herbrand universe over Σ with equality)
that is built from conjunction and existential quantification can be represented
with a relation expression. We refer the reader to [18] for full details.

The translation K from terms t ∈ TΣ(X ) to terms in R is define in a way
that every ground instance of t is in JK(t)K. We also define the set of relational
terms in K’s image inductively and call them U-terms. The most general unifier
of two terms t1, t2 ∈ TΣ(X ) is then represented by K(t1) ∩K(t2).

Definition 1. K : TΣ(X )→ R is defined by induction on TΣ(X ) terms:

K(a) = (a, a)1
K(xi) = (Pi)◦

K(f(t1, . . . , tn)) =
⋂
i≤n

fni K(ti)

For example, K(f(x1, g(a, x2))) yields f2
1P
◦
1 ∩ f2

2 (g2
1(a, a)1 ∩ g2

2P
◦
2 ).

Lemma 1. For all terms t1, t2 in TΣ(X ) with variables x1, . . . , xn and an arbi-
trary open sequence u:

(t1σ, [a1, . . . , an]u) ∈ JK(t1) ∩K(t2)K iff H |= t1σ = t2σ

for all grounding substitutions σ = a1, . . . , an/x1, . . . , xn.

This result is proved in [18]. In words, given an open term t all pairs relating
ground instances of t with grounding elements a1, . . . , an belong to JK(t)K.

Definition 2 (U-terms). The set of U-terms (relational terms in K’s image)
is defined inductively:

– 0 ∈ U, (a, a)1 ∈ U for every (a, a) ∈ RΣ, and P ◦i ∈ U for every i ∈ N.
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– If R ∈ U then fni R ∈ U for every fni ∈ RΣ.
– If R1, . . . , Rn ∈ U then R1 ∩ · · · ∩Rn ∈ U.

The unification problem in this relational setting is to decide, given terms t1, t2 ∈
TΣ(X ), whether JK(t1) ∩K(t2)K = ∅, more precisely:

JK(t1) ∩K(t2)K =

{
JK(t1σ)K where σ = mgu(t1, t2) if exists
∅ otherwise

(1)

3 Solved Forms for U-Terms

It is standard practice in decision problems to use a solved form which has a
trivial decision procedure. The decision problem is then reduced to developing a
method for producing solved forms [5]. At the core of our decision procedure is
the theory RelΣ, for it provides a strong enough axiomatization of the original
underlying algebra of finite trees.

Given the term T = R ∩ S, we informally say that R is constrained by S in
T and vice versa. We also say that R is obtained from R ∩ S by dropping the
constraint S.

Definition 3 (P-constraint completeness). A term R is P-constraint com-
plete or Ξ(R) iff for all subterms t1 and t2 of R of the form:

t1 = P ◦i ∩R1 ∩ · · · ∩Rm
t2 = P ◦j ∩ S1 ∩ · · · ∩ Sn

if i = j then the equality t1 = t2 holds modulo ∩-commutativity.

This formally captures the notion that every P ◦i appearing in a term must have
the same set of constraints. Some examples of P-constraint-complete terms are:
P ◦1 ∩ P ◦2 , f2

1 (P ◦1 ∩ R) ∩ g2
1(R ∩ P ◦1 ) and f2

1 (P ◦1 ∩ R) ∩ g2
1(S ∩ P ◦2 ). Some non-P-

constraint-complete terms are: P ◦1 ∩ f1
1P
◦
1 and f2

1 (P ◦1 ∩R) ∩ g2
1(S ∩ P ◦1 ).

Definition 4 (Indexed P-constraint completeness). A term R is P-constraint
complete on i or Ξi(R) iff for all subterms t1, t2 of R of the form:

t1 = P ◦j ∩R1 ∩ · · · ∩Rm
t2 = P ◦k ∩ S1 ∩ · · · ∩ Sn

if i = j = k then the equality t1 = t2 holds modulo ∩-commutativity.

Definition 5 (Solved form). U-terms in solved form are inductively defined
for all a, i, j, f, g as:

R for R ∈ {(a, a)1, P ◦i ,0}
R ∩ S for R,S ∈ {(a, a)1, P ◦i }

(a, a)1 ∩ f ji R
fni R if R in solved form.
P ◦i ∩ fnj R if R in solved form.
fmi R ∩ gnj S if f 6= g.
fni R ∩ fnj S if R,S in solved form and Ξ(R ∩ S).
R1 ∩ · · · ∩ Rn if every pair Ri ∩Rj , i 6= j in solved form.
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If a term t is in solved form we say solved(t).

Definition 6 (Unsolved form). Unsolved forms are logical negations of solved
forms, that is, unsolved(t) = ¬solved(t).

fni R if R not in solved form.
P ◦i ∩ fnj R if R not in solved form.
fni R ∩ fni S
fni R ∩ fnj S if ¬Ξ(R ∩ S) or any of R,S not in solved form.
R1 ∩ · · · ∩ Rn if Ri ∩Rj not in solved form for some i, j, i 6= j.

Lemma 2. Let US = {x ∈ U | solved(x)} and UN = {x ∈ U | ¬solved(x)}.
By definition, US and UN partition U.

The decision procedure for solved forms is an exhaustive check for incompatible
intersections.

Lemma 3 (Validity of solved forms). For any term t ∈ US, we can always
decide whether t = 0 or, what is the same, whether JtK = ∅.

Proof. By cases on t:

– R and R ∩ S for R,S ∈ {(a, a)1, P ◦i }: Follows directly by term semantics.
– (a, a)1 ∩ f ji R: Always 0, because the relation domains are disjoint.
– fni R: We check R for validity.
– P ◦i ∩ fnj R: We check R for validity.
– fmi R ∩ gnj S: Always 0, because relation domains are disjoint (f 6= g).
– fni R∩ fnj S: We check R and S for validity. This check is enough because no

term fni R∩fni S is in solved form. Consequently, the domain of the resulting
relations is known. Given that Ξ(R∩S) holds, the codomain is also known,
as every projection P ◦i into the codomain shares the same set of constraints,
so validity of the codomain is effectively reduced to validity of constraints.

– R1∩· · ·∩Rn: Every pair Ri∩Rj with i 6= j is in solved form, thus the term’s
validity depends on the pairs’ validity.

4 The Decision Procedure

This section defines a decision procedure for computing normal forms of U-terms.
The core of the procedure consists of two term rewriting systems whose effect can
be explained by analogy with the classic non-deterministic algorithm (ND) [22].
The first rewriting system (system →L defined in Sec. 4.2) performs what we
call left-factoring, analogous to generation of new equations from a common
root term in ND, which is now algebraically understood as the distribution of
composition over intersection. The following diagram illustrates (E stands for a
multiset of equations):

{f(t1, ..., tn) = f(u1, ..., un), E} ⇒ {t1 = u1, ..., tn = un, E}
fni R ∩ fni S →L fni (R ∩ S)
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The other step in ND, equation elimination, is now algebraically understood as
constraint propagation (system →R defined Sec. 4.4):

{x = t, E} ⇒ {E [t/x]} when x 6∈ t
F (Pi ∩R) ∩G(Pi ∩ S)→R F (Pi ∩R ∩ S) ∩G(Pi ∩ S ∩R)

System →R is conditional on what we call functorial compatibility, a novel way
of performing occurs checks which was motivated by RelΣ’s axiom fni ∩ id = 0.
The two rewriting systems are carefully composed with the help of a constraint-
propagation one (system →S defined in Sect. 4.3) to guarantee termination.

4.1 Rewriting Preliminaries

The representation of U-terms in our rewriting systems is given by the following
term-forming operations: c : CΣ → U, t : (FΣ × N × N) → U, P : N → U, � :
(U1 × · · · ×Un) → U, and ∩ : (U1 × · · · ×Un) → U, with n ≥ 2 and n-ary
� and ∩. In addition to the above ground representation, we define patterns of
U-terms in a standard way using a set of variables. Let i, j, k etc, range over N.
Let a, b, c etc, range over CΣ . Let f, g, h etc, range over FΣ . Let R,S, T etc, range
over U-terms. We write (a, a)1 for c(a), write f ji for t(f, i, j), write P ◦i for P(i),
write R1 . . . Rn for �(R1, . . . , Rn), and write R1 ∩ · · · ∩Rn for ∩(R1, . . . , Rn).

Rewrite rules are of the form ρ : l→ r with ρ the rule’s name, l and r patterns,
and l not a variable. Conditional rewrite rules are of the form ρ : l → r ⇐ C
belonging to type III CTRS [16] (see Def. 9). We write→! for the normalization
relation derived from a terminating and confluent (convergent) relation →. We
write ◦ for composition of rewriting relations. We use ≡ for syntactic identity
(modulo AC).

We use A and AC rewriting for � and ∩. More precisely, we define the
equational theories A� = {R(ST ) = (RS)T} and AC∩ = {R ∩ (S ∩ T ) =
(T ∩ S) ∩ T, R ∩ S = S ∩ R}. The AC rewriting used is described in [8,
p577–581]: associative term formers are flattened and rewrite rules are extended
with dummy variables to take into account the arity of term-forming operations.
Matching efficiency can be improved by using ordered rewriting.

A rewrite rule ρ : l → r matches a term t iff lσ = t modulo A� and AC∩.
We allow subterm matching: if there exists a position p such that lσ = t|p
(modulo previous AC), then t reduces to t[rσ]|p. When matching succeeds, t
rewrites to rσ. Importantly, we also allow matching over functorial variables
which are compositions of fni terms. We use F,G,H etc, for functorial vari-
ables. The expression length(F ) delivers the length of functorial variable F .
For example, the term r21s

2
2((a, a)1 ∩ (b, b)1 ∩ t11P ◦1 ) matches F (R ∩ GS) with

σ = {F 7→ r21s
2
2, R 7→ (a, a)1 ∩ (b, b)1, G 7→ t11, S 7→ P ◦1 }. Matching over

functorial variables is a sort of specialized list-matching.

4.2 Left-Factoring Rewriting System

Definition 7. The rewriting system L consists of the rewrite rule:

fni R ∩ fni S →L fni (R ∩ S)
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Lemma 4. L is sound.

Proof. Soundness is a consequence of the following equation:

RS ∩RT = R(S ∩ T ) (2)

which holds in DRA when R is functional, and every fni is:

R(S ∩ T ) ⊇[by modular law] R(S ∩R◦RT ) ⊇[by R◦R ⊆ id] RS ∩RT

Conversely, RS ∩RT ⊇ R(S ∩ T ) by DRA.

Lemma 5. L is terminating and confluent.

Proof. To prove termination it suffices to give a lexicographic path ordering on
terms [7]. The ordering is ∩ � �. The system has no critical pairs, so it is locally
confluent, local confluence plus termination implies confluence [17].

4.3 Split-Rewriting System

Definition 8. The rewriting system S consists of the rewrite rule:

F (R ∩G(P ◦i ∩ S))→S FR ∩ FG(P ◦i ∩ S)

Lemma 6. S is sound, terminating and confluent.

Proof. Soundness and closure properties are immediate from (2). Termination
is proven giving the lexicographic path ordering � � ∩ and confluence follows
from the fact that →Si

is terminating and locally confluent.

We will also use a parametrized version of S, written Si where i is fixed.

4.4 Constraint-Propagation Rewriting System

This purpose of this system is to propagate constraints over P ◦i terms. Constraint
propagation has two main technical difficulties, namely occurs check, which in
our setting might lead to infinite rewriting, and propagation of constraints before
checking for term clashes. Both problems can be dealt with using a decidable
notion of functorial compatibility:

Definition 9. The convergent rewriting relation →∆ is defined as:

(fni )◦fni →∆ id (fni )◦gmj →∆ 0 (fni )◦fnj →∆ 1 idfni →∆ fni

(fni )◦1→∆ 1 1fni →∆ 1 (fni )◦0→∆ 0 0fni →∆ 0

Definition 10 (Functorial delta). Given functorials F and G, we define ∆(F,G)
as follows:

∆(F,G) = S, F ◦G→!
∆ S if length(G) ≥ length(F )

∆(F,G) = S, G◦F →!
∆ S if length(G) < length(F )
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Lemma 7.

∆(F,G) =


0 if JF ∩GK = ∅
id if F ≡ G.
S if G ≡ FS and ∆(F,G) = id
1 otherwise.

Proof. By induction on functorial terms.

Definition 11 (Syntactic difference). The syntactic difference Θ(R1 ∩ · · · ∩
Rm, S1 ∩ · · · ∩ Sn) between two arbitrary-length intersection of terms is defined
as the term

⋂
i∈D Si, such that i ∈ D iff there is no term Rj such that Si ≡ Rj.

Lemma 8. R ∩Θ(R,S) ≡ S ∩Θ(S,R)

Proof. By induction on the length of R.

Definition 12. The rewriting system R consists of the rewrite rules:

R0 : P ◦i ∩ F (P ◦i ∩ S)→R 0
R1 : F (P ◦i ∩R) ∩G(P ◦i ∩ S)→R 0 ⇐ ∆(F,G) = 0 ∨∆(F,G) = fni . . . g

m
j

R2 : F (P ◦i ∩R) ∩G(P ◦i ∩ S)→R F (P ◦i ∩R ∩Θ(R,S)) ∩G(P ◦i ∩ S ∩Θ(S,R))
⇐ (Θ(R,S) 6= {} ∨Θ(S,R) 6= {}) ∧ (∆(F,G) = 1 ∨∆(F,G) = id)

Notice Θ helps us deal conveniently with the equivalence of terms R ∩ S and
S∩R. We will also use a parametrized version of R, written Ri, where i is fixed.
Lemma 9. R is sound.

Proof. R0 is sound beacuse every term matching the left hand side can be fac-
tored into a term of the form id ∩fni · · · gmj using RP ◦i ∩SP ◦i = (R∩S)P ◦i which
is a version of Eq. (3) below. R1 is sound for two reasons:

1. If∆(F,G) = 0 then F and G are incompatible and the left hand side rewrites
to 0 by left-factoring.

2. If ∆(F,G) = fni · · · gmj then there is a common prefix F ′ of F and G such
that F ∩ G = F ′(id ∩ fni · · · gmj ) and the right-hand-side rewrites to 0 by
RelΣ’s occurs-check axiom.

That R2 is sound follows from the equation:

F (P ◦i ∩R) ∩GP ◦i = F (P ◦i ∩R) ∩G(P ◦i ∩R) (3)

Recall that a relation is injective when RR◦ ⊆ id . Recall Lemma 4 which states
that RT ∩ ST = (R ∩ S)T for T injective. Using these facts we prove the ⊆
direction:

F (P ◦i ∩R) ∩GP ◦i =[left+right factoring] (F ∩G)P ◦i ∩ FR ⊆[modular law]
(F ∩G)((F ◦ ∩G◦)FR ∩ P ◦i ) ⊆[by (F◦ ∩G◦)F ⊆ F◦F = id] (F ∩G)(R ∩ P ◦i )
=[injectivity of (R ∩ P◦

i )] F (R ∩ P ◦i ) ∩G(R ∩ P ◦i )

The ⊇ direction is easier:

F (P ◦i ∩R) ∩GP ◦i ⊇[monotonicity of ∩] F (P ◦i ∩R) ∩G(P ◦i ∩R)
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The following example illustrates why the compatibility check is needed to ensure
termination. Take the term P ◦1 ∩ f1

1 (P ◦1 ∩ R). If we propagate restrictions by
orienting (3) we get an infinite rewrite: P ◦1 ∩ f1

1 (P ◦1 ∩ R) → P ◦1 ∩ f1
1 (R ∩ P ◦1 ∩

f1
1 (P ◦1 ∩R))→ P ◦1 ∩ f1

1 (R ∩ P ◦1 ∩ f1
1 (P ◦1 ∩R ∩ f1

1 (P ◦1 ∩R))) . . .

Lemma 10. R terminates.

Proof. Rules R0 and R1 rewrite to 0. For rule R2 we define a well-founded order
that contains the relation induced by R2:

Definition 13. Let �C be the order relation:

F (P ◦i ∩R) ∩G(P ◦i ∩ S) �C F (P ◦i ∩R ∩Θ(R,S)) ∩G(P ◦i ∩ S ∩Θ(S,R))

where Θ(R,S) 6= {} and Θ(S,R) 6= {}.

Lemma 11. �C is well-founded.

Proof. Suppose �C is not well-founded. There exists an infinite chain with link
F (P ◦i ∩R ∩Θ(R,S)) ∩G(P ◦i ∩ S ∩Θ(S,R)) �C F (P ◦i ∩R ∩Θ(R,S) ∩Θ(R ∩
Θ(R,S), S∩Θ(S,R))) in which Θ(R∩Θ(R,S), S∩Θ(S,R)) 6= {}. By Lemma 8,
R ∩Θ(R,S) = S ∩Θ(S,R), therefore Θ(T, T ) 6= {} which is a contradiction.

Lemma 12. R is confluent (modulo commutativity).

Proof. We give the same lexicographic path ordering as Lemma 5 and R has no
overlapping rules.

4.5 The Algorithm

Unfortunately, a naïve application of the previous rewriting rules does not neces-
sarily reach a solved form. Take for example the term r21(P

◦
1 ∩s11(P ◦2 ∩ (a, a)1))∩

r22(P
◦
2 ∩ s11(P ◦1 ∩ (b, b)1)). If we apply the rewriting strategy →!

S ◦ →!
R ◦ →!

L we
do not reach a solved form because →!

S destroys constraints over P ◦1 , impeding
the constraint propagation step to work properly. One solution is to complete
the constraints for each P ◦i one at a time.

Lemma 13. Given a rewriting t→!
Si
t′, every P ◦i in t′ occurs at top level, i.e.,

t′ has the form:

P ◦i ∩ F (P ◦i ∩R) ∩ · · · ∩G(P ◦i ∩ S) ∩ . . .

Proof. If the P ◦i term occurs deeper in the term, t′ has the form:

F (R ∩G(S ∩ · · ·H(P ◦i ∩ T ))) ∩ . . .

which is not a normal form for →!
Si
.

Definition 14 (Individual constraint propagation). The rewrite relation
→Ui parametrized on i is defined as:

→!
L ◦ →!

Si
◦ →!

Ri
◦ →!

L
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dep(R ∩ S) = dep(R) ∪ dep(S) dep′(P ◦j ) = {j}
dep(fni R) = dep′(R) dep′(R ∩ S) = dep′(R) ∪ dep′(S)

dep′(fni R) = dep′(R)

Figure 3: Definition of dep : U→ P(N)

Lemma 14. Ξi(t′) holds for every term t and reduction t→Ui t
′.

Proof. Assume a term t exists such that t→Ui
t′ and ¬Ξi(t′). There are subterms

of t′ of the form P ◦i ∩ R and P ◦i ∩ S, with Θ(R,S) 6= {} or Θ(S,R) 6= {}. Let
t →!

L u, then no subterm of the form FR ∩ FS exists in u. Let u →!
Si
v, then

every P ◦i in v is of the form described in Lemma 13. Let v →!
Ri

w, then Ξi(w)
because w is a normal form of →Ri and P ◦i ∩R and P ◦i ∩ S with Θ(R,S) 6= {}
and Θ(S,R) 6= {} cannot occur at the top-level, and every P ◦i is at the top level.
Let finally w →!

L t
′. For →!

L to break P-constraint completeness, w must have a
term of the form FP ◦i ∩FR such that after→!

L, R becomes a new constraint on
P ◦i . However this cannot happen, for u had no such terms and v had only terms
of the form F (Pi ∩R)◦ ∩ FG(P ◦i ∩R), which are rewritten to 0 by R1.

Lemma 15. Given t such that Ξi(t) holds then t→!
Si
t′ and Ξi(t′).

Proof. Follows from →Si
rules because if Ξ(t) then no term of the form F (P ◦i ∩

GR) with P ◦i in R can occur in t. Such occurrence is the necessary condition for
→!
Si

to destroy P-constraint completeness.

Lemma 16. Given t such that Ξi(t) holds then t→!
Ri

t.

Proof. Follows from the definition of →Ri
.

Lemma 17. →Ui
reaches a fixpoint, in other words, given a term t then t→Ui

t′ →Ui
t′′ and t′ = t′′.

Proof. Ξi(t′) holds by Lemma 14. In the second →Ui step, t′ →!
L t
′ holds. By

Lemma 15, t′ →!
Si
u and Ξi(u). By Lemma 16, we have u→!

Ri
u. Finally, we need

to prove t′ →!
Si
u→!

L t
′. This is proven by the fact that →!

L undoes everything
→!
Si

does on already factorized terms, which is the case of t′. Given rewriting
rules F (R∩G(P ◦i ∩S))→Si

FR∩FG(P ◦i ∩S) and FT ∩FU →L F (T ∩U), their
composition happens with substitution {T 7→ R, U 7→ G(P ◦i ∩ S)}, resulting in
the rewriting rule F (R ∩ G(P ◦i ∩ S)) →L◦Si

F (R ∩ G(P ◦i ∩ S)) which is the
identity.
Definition 15 (Solved form algorithm). Given a term t ∈ U, containing
P ◦i terms with i ∈ {1 . . . n} and n ≥ 1, we define the rewriting relation →Un as
→U1 ◦ · · · ◦ →Un , that is:

→!
L ◦ →!

S1 ◦ →
!
R1
◦ →!

L ◦ →!
S2 ◦ →

!
R2
◦ →!

L ◦ · · · ◦ →!
Sn
◦ →!

Rn
◦ →!

L

For n = 0, there are no P ◦i in t and we define →U0 as →!
L.
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Definition 16 (P-dependency). Given a term P ◦i ∩ R, we say i P-depends
on j if j ∈ dep(R) where dep : U→ P(N) is defined in Fig. 3. We can build the
P-dependency for a term t taking all its subterms in the form P ◦i ∩R.

Lemma 18 (Constraint destruction). Given Ξj(t), t→Ui t
′ can make ¬Ξj(t′)

iff j P-depends on i and i 6= j.

Proof. The only way→Ui can add a new constraint to a P ◦j by constraint propa-
gation is if the term is in the form P ◦j ∩FR and P ◦i occurs in R which is precisely
the definition of P-dependency.

Lemma 19 (Occurs check). If i P-depends on i in a term t then t→Ui
0.

Proof. Such P-dependency means P ◦i ∩FR and P ◦i occurs in R which gets rewrit-
ten to 0 by →!

Ri
.

Lemma 20. There is a finite k such that t→k
Un

t′ and Ξ(t′).

Proof. The case n = 0 follows from Lemma 5 with k = 1. The case n = 1 follows
from Lemma 17 with k = 1. In the case n > 1, for a step u →Ui

u′ then Ξi(u′)
by Lemma 14. However, by Lemma 18 such a step can make ¬Ξj(u′) hold iff j
P-depends on i. Suppose the P-dependency graph of t is acyclic. Then there is a
set of terminal edges E such that forall l ∈ E, Ξl holds after →Ul

and no other
step →Ui

can make Ξl false, for they depend on no j. Once the term is Ξl for
every l ∈ E, E can be removed from the graph. The process can be repeated
with the new set E′ of terminal edges a finite number of times, for the graph is
acyclic and the number of edges is finite. Finally if the P-dependency graph of
the original term is cyclic, then by Lemma 19 the term would get rewritten to 0
in the→Ui iteration corresponding to any i on the cycle. Thus when the process
ends, Ξl(t′) for all l ∈ {1 . . . n} which is equivalent to Ξ(t′).

Lemma 21. →Un
reaches a fixpoint.

Proof. The proof is similar to the one in Lemma 17, but using Lemma 20, for
once Ξ(t) holds, →Un

application does not modify t.

Lemma 22. The fixpoint for →Un
is in solved form.

Proof. We check by induction that no unsolved term can be a fixpoint:

– P ◦i ∩ fnj R, if P ◦i /∈ R and R not in solved form: If R is in unsolved form then
one of the cases below applies. Otherwise, if P ◦i is a subterm of R when→!

Ri

fires, it rewrites to 0.
– fni R ∩ fni S: Terms of this form match the left side of →L.
– fni R∩fnj S, if ¬Ξ(R∩S) or any ofR,S are unsolved form: It either contradicts

Lemma 21 or one of these cases apply.
– R1 ∩ · · · ∩ Rn, if some pair Ri ∩ Rj , i 6= j is in unsolved form: If the pair
Ri, Rj is in unsolved form one of the cases above apply.
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Definition 17 (Relational unification). We define the relation between U-
terms with maximum index n, denoted t →{UNIF,n} t′, as follows: If t →!

Un
s

and s is not valid then t′ = 0; otherwise, t′ = s.

Theorem 1. Terms t1, t2 with n different variables are not unifiable iff K(t1)∩
K(t2)→{UNIF,n} 0.

Proof. By Lemma 22 we know that →!
Un

brings any U-term to solved form. As
we have a complete decision procedure for solved terms by Lemma 3, we can
decide if K(t1) ∩K(t2) is 0, which means by Eq. 1 that t1, t2 are not unifiable.

Definition 18 (Relational unifiers). We say a term t in solved form has a
unifier R for i if P ◦i ∩R is a subterm of t.

For example, suppose we have the term P ◦1 ∩ (a, a)1∩P ◦2 . This means in TΣ(X )
that x1 = x2 = a.

5 Extending the Framework

Our framework can be seamlessly extended in order to formalize and decide other
notions of unification. For instance, a common unification pattern found in logic
programming is unification among renamed apart terms. Consider a restriction
operator ν such that νx1.t = x1 is equivalent to tσ = x1, where σ is a renaming
apart of x1, and νx1.t = x1 is equivalent to t = x1 iff x1 does not occur in t.

This variable-restriction concept can be faithfully represented in our frame-
work using the partial projection relation Qi, which relates an open sequence
with the ones where the ith element may be any term. (In [18]Qi is understood as
an existential quantifier.) Our framework is modified as follows. First, extend K
with case K(νxi.t) = K(t)Qi. In words, the ith position of K(νxi.t)’s codomain
is free, whereas forK(t) it contains the set of possible groundings for xi. The new
definition of K extends U, so a new decision procedure is needed. It is defined in
modular fashion by adding a new rewriting subsystem for Qi elimination. Some
rules of this system are PjQi → Pj and (fni Pj ∩ R)Qi → fni PjQi ∩ RQi. The
full set of rules is much more conveniently expressed by using the framework
outlined in Sec. 7 and is not presented here.

6 Related Work

Unification was first proposed in [24] and axiomatized in [20,21]. The most
remarkable classical algorithms for first-order unification are surveyed in [1],
such as [22,23] which define fast and well-understood algorithms targeted to
implementors using imperative languages. Other interesting approaches to uni-
fication include categorical views [13,26], unification for lambda terms [15,10]
and a remarkable one [9], which studies unification in the typed combinatorial
paradigm [6]. Nominal unification [28] is an alternative approach to meta-theory
formalization that uses nominal logic. C-expressions [3,2] also provide a combi-
natorial unification algorithm, based on applicative terms instead of relations.
Unification using explicit substitutions is handled in the higher-order case in [11].
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7 Conclusions and Future Work

We have presented an algorithm for first-order unification using rewriting in
variable-free relational algebra. The simple systems →L and →R suffice to de-
cide unification for occurs-check-free pairs of terms. Function ∆ and the split-
rewriting system are introduced to deal with occurs check at the expense of losing
simplicity. We can regain simplicity by using a more powerful notion of rewriting
and matching, obtaining as a result an efficient decision procedure largely in the
spirit of [22]. Furthermore, a dual right-factoring version of the algorithm exists
where constraints are accumulated over fni terms and factorization happens for
P ◦i terms, using FP ◦i ∩GP ◦i = (F ∩G)P ◦i . We plan to relate this kind of duality
with other duality/symmetry notions such as deep inference [14].

In the relational world we have no variables and no substitution notion.
This raises an interesting paradox: the heart of unification is the computation
of a substitution acting on variables. How can we unify in such a setting? The
answer is that substitution gets replaced by constraint propagation and occurs
check translates to functorial compatibility in such a way that pure (conditional)
rewriting is enough!

Some mathematical advantages of performing unification in the relational
setting are those of the abstract syntax program: to reflect algebraically all the
issues that most algorithms have to handle at the meta-level, such as contexts,
multi-equations, and substitution in order to make them as declarative as the
object language. Performing unification module additional theories is possible
in our framework, as we have shown in Sec. 5. Representation of the unification
problem itself is usually straightforward, whereas building a decision procedure
for it will depend on the added theory. See [18] on how to represent disunification
problems with relations.
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Abstract. Pattern matching with membership constraints for hedge
and context variables is a desirable capability for the analysis and decom-
position of structures that can be presented as hedges in an algebra with
flexible arity function symbols. We distinguish two kinds of patterns:
for hedges and for contexts, i.e., sequences of terms with one or more
occurrences of a placeholder for a nonempty hedge. Our patterns are
a generalization of regular expressions where, besides regular operators
we also employ hedge variables and context variables whose admissible
bindings are subjected to membership constraints.
We propose a matching algorithm that is sound and complete under some
reasonable restrictions on the structure of the matching problem.

1 Introduction

Regular expression patterns are a useful capability for the analysis and decom-
position of structured and semistructured data. They were first introduced in
traditional string manipulation languages such as Perl [11], and Unix tools such
as sed and awk. The use of this mechanism in the analysis and decomposition of
tree-like data structures is a more recent development, witnessed by languages
for XML processing such as XDuce [4, 5], CDuce [1] and XQuery [10], languages
for technical computing and symbolic computation such as Mathematica [12],
etc.

Regular hedge expression patterns were proposed by Hosoya [4, 5] as an exten-
sion of ML-style patterns, and introduced in XDuce to support data extraction
on sequences of terms (a.k.a. hedges). In essence, such a pattern is an regular
hedge expression with variable-annotated subexpressions, such that: (1) all vari-
able annotations are distinct; and (2) no variable annotations are allowed below
a repetition operator. Names can be defined for name-free regular expression pat-
terns (a.k.a. regular expression types) and stored in a global environment. This
mechanism enables mutually recursive definitions of regular expression types.
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We can view matching a sequence of ground terms against a regular expres-
sion pattern as solving a system of equations, definitions, and membership con-
straints. For example, matching a ground hedge v against g(x ∈ h(y ∈ g(N a∗)))
where N is recursively defined by N = h(N N)+b amounts to solving the following
system of equations, definitions and membership constraints:

{g(x) = v, x ∈ h(y), y ∈ g(N a∗), N = h(N N) + b}

with constrained hedge variables x, y. For regular hedge extension patterns, the
system of constraints is of the form 〈E | E〉 where (1) E is a set of equations of
the form ω = v with ω a regular expression type that may have hedge variables
and type names as subexpressions3, (2) E is a set of pattern definitions of the
form N = ω, or membership constraints of the form x ∈ τ with τ is regular
expression type, such that every hedge variable occurs at most once in E .

In this paper we generalize in several ways the constrained equational logic
to enable more expressive patterns for the analysis and decomposition of hedges:

1. We extend the constraint logic with a special kind of second order variables,
called context variables.

2. Membership constraints can be specified for both hedge variables and for
context variables.

3. We allow variables under the repetition operator ∗.
4. We drop the restriction of having types as right-hand sides of membership

constraints, and allow patterns instead. A new class of patterns, called regular
context patterns, is introduced for the spefication of membership constraints
for context variables.

5. We allow multiple occurrences of variables in patterns.

Our constraint logic bears some similarity to the order-sorted equational logic
proposed by Comon [2, 3], but there are notable differences: (1) Comon’s equa-
tions are between terms, whereas we can have equations between hedges; (2)
Comon’s membership constraints require regular types instead of patterns; (3)
Comon’s context variables denote terms with one hole placeholder for term,
whereas our context variables denote hedges with at least one hole placeholder
for hedges. These generalizations are reasonable, since we consider only match-
ing problems, whereas Comon considers unification problems, where the right
hand sides of equations are not necessarily ground expressions.

The matching algorithm described here is a further development of our former
matching algorithms with regular constraints [6, 7]:

– Single-hole contexts have been generalized to multi-hole contexts,
– We introduced pattern names, to avoid the usage of intricate regular expres-

sions for context composition and compositional iteration.

The paper is organized as follows. Section 2 describes our framework: hedges,
contexts, patterns, membership constraints, and matching problems. In Sect. 3
3 However, variables are not allowed under the repetition operator ∗.
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we present a transformation system M as the underlying computational model
of a matching procedure, and prove that it is sound, terminating and complete.
Section 4 concludes and draws directions of future work.

2 Preliminaries

In general, if A is a set, then we write A? for the monoid of strings of elements of
A with neutral element ε. We use space as both the “cons” operation for adding
an element to either end of a string and as the “append” operation on strings.
For example, if h1 is the string a1 a2 a3, and h2 is the string a4 a5, then a h1

denotes the string a a1 a2 a3, while h1 a denotes the string a1 a2 a3 a and h1 h2

denotes the string a1 a2 a3 a4 a5. (There is no confusion of using space for both
“cons” and “append” operations, as long as we do not need to talk about strings
of strings.) Also, we write A]B for the union of two disjoint sets A and B, and
|A| for the number of elements of a finite set A.

We assume the existence of three mutually disjoint sets of symbols:

1. a nonempty set F of function symbols, denoted by f, g, a, b, possibly sub-
scripted,

2. a countably infinite set Vh of hedge variables, denoted by x, y, z, possibly
subscripted,

3. a countably infinite set Vc of context variables, denoted by C, possibly sub-
scripted. We define V := Vh ] Vc, and call its elements variables,

and the hole symbol • 6∈ F ∪V. Given X ⊆ V, we define the syntactic categories
HE(F ,X ) of hedge elements,H(F ,X ) := HE(F ,X )? of hedges, andHs(F ,X ) :=
H(F ,X ) \ V?h of strict hedges with variables from X as follows:

e ::= x | f(h) | C(p) hedge elements
h ∈ HE(F ,X )? hedges
p ∈ HE(F ,X )? \ V?h strict hedges

where C ∈ X ∩Vc, and x ∈ X ∩Vh. Thus, a hedge is a string of hedge elements,
and a strict hedge is a hedge which is not a string of hedge variables. For exam-
ple, ε and x y z are hedges, whereas C(f(ε)) and x f(g(ε)) are strict hedges. An
expression f(h) is called a term, and C(p) is a flex hedge. A term f(ε) is abbre-
viated by f . A value is a hedge without occurrences of variables, i.e., an element
of H(F , ∅). We denote values by v. Any value v is of the form f1(v1) . . . fn(vn)
with n ≥ 0, fi ∈ F and vi ∈ H(F , ∅) (1 ≤ i ≤ n). The size of v, denoted by |v|,
is defined recursively by |v| := n+

∑n
i=1 |vi|, where v = f1(v1) . . . fn(vn).

A context c ∈ C(F ,X ) is the result of replacing with • one or more hedge
sub-elements of a hedge. A context element is either • or f(c) or C(c). For
example, h = x y C(a) is a strict hedge; • • C(a) and x y C(•) are contexts
obtainable from h by replacing certain sub-elements with •; and f(h) and f(h h)
are terms. We abbreviateH(F ,V), C(F ,V),H(F , ∅) and C(F , ∅) byH, C,H0 and
C0 respectively. From now on we assume that h stands for hedge, c for context,
and t for term.

We consider two main operations with contexts:
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1. If c, c1 ∈ C(F ,X ) and h ∈ H(F ,X ), then c[h] is the hedge obtained by
replacing all occurrences of • in c with h, and c[c1] is the context obtained
by replacing all occurrences of • in c with c1. This operation views c as a
mapping λ • .c from H(F ,X ) to H(F ,X ).

2. If c, c1, . . . , cn ∈ C(F ,X ), h1, . . . , hn ∈ H(F ,X ) and c has n hole occur-
rences, then c〈h1, . . . , hn〉 is the hedge obtained by replacing holes of c with
h1, . . . , hn, and c〈c1, . . . , cn〉 is the context obtained by replacing the holes
of c with c1, . . . , cn. The replacement is performed in the order of a left-
most innermost traversal of c. This operation views c as a linear mapping
λ •1 . . . •n .c〈•1, . . . , •n〉 from H(F ,X )n to H(F ,X ).

A substitution is a mapping θ : V → H∪ C that maps hedge variables to hedges
and context variables to contexts, such that its domain dom(θ) := {x ∈ Vh |
θ(x) 6= x} ∪ {C ∈ Vc | θ(C) 6= C(•)} is a finite set. As usual, we represent a
substitution θ as the set {X 7→ θ(X) | X ∈ dom(θ)}. Two substitutions θ1 and θ2
are compatible, notation θ1 ∼ θ2, if θ1(X) = θ2(X) for allX ∈ dom(θ1)∩dom(θ2).
Sometimes, we will make use of the notation θ|V for the restriction of θ to
dom(θ) ∩ V , and θ|−V for the restriction of θ to dom(θ) \ V .

If e is a hedge element or context element, then the instantiation of u ∈ H∪C
with a substitution θ, denoted by uθ, is defined by structural induction as follows:

εθ = ε •θ = • xθ = θ(x)
f(u)θ = f(uθ) (e u)θ = (eθ) (uθ) C(u)θ = θ(C)[uθ]

If θ1 and θ2 are substitutions, then θ1θ2 is the mapping defined by

– θ1θ2(X) = (Xθ1)θ2 for all X ∈ V, and
– dom(θ1θ2) = {x ∈ Vh | (xθ1)θ2 6= x} ∪ {C ∈ Vc | (Cθ1)θ2 6= C(•)}.

Note that hθ ∈ H and cθ ∈ C whenever h ∈ H and c ∈ C. Therefore, the
composition of substitutions is a substitution too.

As usual, we write vars(E) for the set of variables that occur in a syntactic
expression E, and say that E is ground if vars(E) = ∅. A substitution θ is ground
if θ(X) is ground for all X ∈ dom(θ). The substitution with empty domain is
denoted by ε, and is called empty substitution. If A is set of hedges or contexts,
then we define Aθ := {eθ | e ∈ A}. Also, if c ∈ C, H is a set of hedges, and
C,C1, C2 are sets of contexts, then we consider the following operations:

c.H := {c[h] | h ∈ H}, C.H := {c[h] | c ∈ C, h ∈ H},
C1.C2 := {c1[c2] | c1 ∈ C1, c2 ∈ C2},
H∗ :=

⋃∞
n=0Hn where H0 := {ε} and Hn+1 := Hn ∪ {h h′ | h ∈ H,h′ ∈ Hn},

C+ :=
⋃∞
n=1 C(n) where C(1) := C and C(n+1) := C(n)∪{c c′ | c ∈ C, c′ ∈ C(n)}.

2.1 Patterns, Pattern Definitions, and Membership Constraints

We distinguish three kinds of patterns: hedge patterns, strict hedge patterns,
and context patterns. Patterns can be given names by pattern definitions and
can contain variables subjected to membership constraints.
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We assume two countably infinite sets of names: Nh for hedge patterns and
Nc for context patterns, such that Nh ∩Nc = ∅, and assume that H ranges over
Nh and C ranges over Nc. We distinguish 3 classes of patterns: for hedges, for
strict hedges, and for contexts. They are built from hedge pattern elements and
from context pattern elements as shown below, where HPE is the set of hedge
pattern elements, HPEs is the set of strict hedge pattern elements, and CPE is
the set of context pattern elements.

π ::= ω | χ patterns
ω ∈ HPE? hedge patterns
ω ∈ HPE?HPEsHPE? strict hedge patterns
χ ∈ HPE?CPE(CPE ∪ HPE)? context patterns
o ::= | | f(ω) | (̃ω) | C(ω) | C(ω) | ω + ω strict hedge pattern elements
ν ::= o | x | | ω + ω | ω∗ | H hedge pattern elements
ξ ::= • | f(χ) | (̃χ) | C(χ) | C(χ) | χ+ | χ+ χ context pattern elements

We write HP for the set of hedge patterns, HPs for the set of strict hedge
patterns, and CP for the set of context patterns. Note thatH ⊂ HP and C ⊂ CP.
If χ, χ1 ∈ CP and ω ∈ HP then χ[χ1] is the context pattern produced by
replacing • with χ1 in χ, and χ[ω] is the hedge pattern produced by replacing •
with ω in χ. Similarly, the notion of substitution can be extended to a mapping
θ on V ∪ HP ∪ CP such that θ(x) ∈ HP for all x ∈ Vh and θ(C) ∈ CP for all
C ∈ CP; and substitution instantiation can be extended to patterns as follows:

– πθ = π if π ∈ Nh ∪ {ε, , , , •}, xθ = θ(x),
– (π1 π2)θ = (π1θ) (π2θ), (π1 + π2)θ = (π1θ) + (π2θ),
– q(π)θ = q(πθ) if q ∈ {̃ } ∪ F ∪ Nc, C(π)θ = c[πθ] if C ∈ Vc and c = θ(C),
– ω*θ = ωθ*, χ+θ = χθ+.

Our kinds of patterns are preserved by substitution instantiation: If θ is a substi-
tution,A ∈ {HP,HPs, CP} and π ∈ A, then πθ ∈ A. If χ ∈ CP,A ∈ {HPs, CP}
and π ∈ A, then χ[π] denotes the pattern obtained by replacing all holes of c
with π. Note that χ[π] ∈ A.

Pattern definitions provide names for patterns. They are of the form N = π,
subject to the following restrictions: (1) π ∈ HP if N ∈ Nh, and π ∈ CP if
N ∈ Nc; (2) if N ′ ∈ Nh ∪ Nc occurs in π, then it is either below a symbol
f ∈ F ∪ {̃ }, or after a strict hedge pattern element or context pattern element.
These restrictions ensure a tight correspondence with name-free tree patterns:
they allow to read off a (possibly infinite) name-free tree pattern as the (possibly
infinite) unfolding of a given name.

Membership constraints introduce constraints for the possible bindings of
variables. They are of the form (X in π, φ) with φ ∈ {0, 1} and X is a hedge
(resp. context) variable if π is a hedge (resp. context) pattern.

We store pattern definitions and membership constraints in a set E , which we
call environment. We write vars(E) for the set of variables with occurrences in E ,
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dvars(E) for the set of variables constrained in E , defs(E) for the set of pattern
definitions in E , and ns(E) for the set of names defined in E . The dependency
graph of E is the graph DG(E) with set of nodes vars(E)∪ns(E) and with an arc
from Z1 to Z2 iff Z2 occurs in the definition or membership constraint of Z1.

Environments are required to satisfy the following conditions: (a) DG(E) has
no cycles through a variable of E , (b) every name of ns(E) is defined exactly
once in E ; and (c) every variable of vars(E) is constrained at most once in E . E
is total if vars(E) = dvars(E). Restriction (a) is a form of variable occur check
test on patterns, while restrictions (b) and (c) allow to regard E as a function on
dom(E) := dvars(E)∪ns(E) that yields tuples defined as follows: E(X) := 〈π, φ〉
if (X inπ, φ) ∈ E ; and E(N) := 〈π〉 if N = π ∈ E . We write Ei(Z) for the i-th
component of E(Z), rvarsE(Z) for the variables reachable from Z in DG(E), and
vRng(E) :=

⋃
Z∈dom(E) vars(E1(Z)).

If E is an environment and θ is a substitution, then the instantiation of E
with θ is the set Eθ := {N = πθ | (N = π) ∈ E} ∪ {(X in πθ, φ) | X 6∈ dom(θ)
and (X in π, φ) ∈ E}. Note that environments are not invariant under substitu-
tion instantiation. However, if

⋃
X∈dom(θ) vars(θ(X)) ∩ vars(E) = ∅, then Eθ is

an environment. In particular, ground instantiations of environments are envi-
ronments.

Matching relations. Hedge patterns can match hedge values, and context
patterns can match context values. The matching relation v ∈E π  σ (resp.
c ∈ π  σ) assumes that E is a total environment and vars(π) ⊆ vars(E), and
asserts that v ∈ H0 (resp. c ∈ C0) is matched by pattern π in environment E
with matching substitution σ. The matching relation is the least relation closed
under the inference rules of Fig. 1. The rules which make use of unions of sub-
stitutions are applicable only if those substitutions are pairwise compatible. We
write v ∈E ω (resp. c∈E χ) if v ∈E ω  σ (resp. c∈E χ  σ) for some σ, and
v 6∈E ω (resp. c 6∈E χ) otherwise.

A ground substitution σ is solution of a total environment E , notation σ ∈
Sol(E), if vars(E) ⊆ dom(σ) and

1. Xσ ∈E E1(X) θ and σ ∼ θ holds for all X ∈ vars(E); and
2. for all H ∈ ns(E) ∩ Nh (resp. C ∈ ns(E) ∩ Nc) there exists v ∈ H0 (resp.
c ∈ C0) such that v ∈Eσ H (resp. c∈Eσ C(•)).

E is consistent if it has a solution. We have the following remarkable result:

Lemma 1. Consistency of a total environment is decidable.

The declarative characterization of matching given in Fig. 1 does not provide
an algorithm for the computation of matchers. The main reason for this is the
existence of infinite matching derivations when matching against a pattern ω∗
and ω matches ε. (See Example 1.)
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ε∈E ε {}
[v 6= ε]

v ∈E  {} v ∈E  {}
v ∈E{x 7→v} E1(x) σ [v 6= ε if E2(x) = 1]

v ∈E x σ ∪ {x 7→ v}
v ∈E E1(H) σ

v ∈E H σ

v1 ∈E ν  σ1 v2 ∈E ω  σ2

v1 v2 ∈E ν ω  σ1 ∪ σ2

v ∈E ω  σ [q ∈ {f, }̃]
f(v)∈E q(ω) σ

c∈E E1(C) σ0 v1 ∈E ω  σ1 . . . vn ∈E ω  σn [(c 6= • if E2(C) = 1) ∧ ∀i.(vi 6= ε)]

c〈v1, . . . , vn〉 ∈E C(ω) 
Sn

i=0 σi ∪ {C 7→ c}
c∈E E1(C) σ0 v1 ∈E ω  σ1 . . . vn ∈E ω  σn [∀i.(vi 6= ε)]

c〈v1, . . . , vn〉 ∈E C(ω) 
Sn

i=0 σi f(v)∈E  σ

v ∈E ωi  σ [1 ≤ i ≤ 2]

v ∈E ω1 + ω2  σ ε∈E ω∗ {}
v1 ∈E ω  σ1 v2 ∈E ω∗ σ2

v1 v2 ∈E ω∗ σ1 ∪ σ2

•∈E • {}
v ∈E ν  σ1 c∈E χ σ2

v c∈E ν χ σ1 ∪ σ2

c∈E ξ  σ1 v ∈E ω  σ2

c v ∈E ξ ω  σ1 ∪ σ2

c1 ∈E ξ  σ1 c2 ∈E χ σ2

c1 c2 ∈E ξ χ σ1 ∪ σ2

c∈E χ σ [q ∈ {f, }̃]
f(c)∈E q(χ) σ

c∈E χi  σ [1 ≤ i ≤ 2]

c∈E χ1 + χ2  σ

c∈E E1(C) σ0 c1 ∈E χ σ1 . . . cn ∈E χ σn [c 6= • if E2(C) = 1]

c〈c1, . . . , cn〉 ∈E C(χ) 
Sn

i=0 σi ∪ {C 7→ c}
c∈E E1(C) σ0 c1 ∈E χ σ1 . . . cn ∈E χ σn

c〈c1, . . . , cn〉 ∈E C(χ) 
Sn

i=0 σi

c∈E χ
c∈E χ+

c1 ∈E χ σ1 c2 ∈E χ+ σ2

c1 c2 ∈E χ+ σ1 ∪ σ2

Fig. 1. Inference rules for matching

Example 1. The formula ε∈∅ ε∗ has an infinite matching derivation:

ε∈∅ ε {}
...

ε∈∅ ε∗ σ

ε∈∅ ε∗ σ

Note that this kind of infinite matching derivation can not be avoided by impos-
ing restrictions on the structure of the environment. ut

It is desirable to identify an algorithmic characterization of the matching rela-
tion. More precisely, we want to identify a terminating procedure that, for any
given environment E , pattern π and u ∈ H0 ∪ C0 such that vars(π) ∪ ns(π) ⊆
dom(E), computes all substitutions σ such that the relation u∈E π  σ holds.
Also, the algorithm should abandon as soon as possible the computation of
“blind” matchings that compute incompatible (partial) matching substitutions.

We address this problem by solving a more general class of problems: match-
ing problems.
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2.2 Matching Problems

A matching equation is a pair ω � v with ω a hedge pattern and v a value. A
matching problem is a system 〈Φ | E〉 where Φ is a comma-separated sequence of
matching equations, and E is a total environment such that vars(Φ) ∪ ns(Φ) ⊆
dom(E). A substitution σ is a solution (or matcher) of a matching problem
P = 〈ω1 � v1, . . . , ωn � vn | E〉 if σ ∈ Sol(E), vi ∈E ωi  σi and σi ∼ σ for
1 ≤ i ≤ n. We write Sol(P ) for the set of solutions of a matching problem P ,
vars(P ) for the set of variables with occurrences in P , and �E instead of 〈 | E〉.

In this paper we identify an algorithm to solve this kind of matching prob-
lems. We define the mapping szE : HP ∪ CP → N by

– szE(•) = szE(ε) = szE( ) = szE( ) = szE( ) := 1,
– szE(π1 + π2) := 1 + szE(π1) + szE(π2),
– szE(χ π) := szE(χ) + 1,

– szE(ω π) :=
{

szE(ω) + 1 if ω ∈ HPs, or ω = x ∈ Vh and E2(x) = 1,
szE(ω) + szE(π) + 1 otherwise

– szE(q(π)) := 1 if q ∈ F ∪ {̃ },
– szE(x) := szE(E1(x)) + 1,
– szE(C(π)) := szE(E1(C)[π]) + 1,
– szE(H) := szE(E1(H)) + 1, szE(C(π)) := szE(E1(C)[π]) + 1,
– szE(ω*) := szE(ω) + 1, and szE(χ+) := szE(χ) + 1.

This mapping is well defined under our restrictions on pattern definitions and en-
vironments. We call szE(π) the size of π in E . This function will be instrumental
in proving termination of our procedure for solving the matching problems.

Standard forms. A matching problem P is in standard form (Smp for short)
if it is of the form 〈ω1 � v1, . . . , ωm � vm | E〉 such that

– Every ωi is of the form e1 . . . eni
with ej ∈ Vs ∪ { } ∪ {C( ) | C ∈ Vc} for

all 1 ≤ j < ni, and eni
∈ Vs ∪ { },

– ω1 . . . ωm is a linear pattern with vars(ω1 . . . ωm) ∩ vRng(E) = ∅, and
– and do not occur in E .

To every matching problem P = 〈ω1 � v1, . . . , ωm � vm | E〉 we associate an
Smp tr(P ) = 〈x1 � v1, . . . , xm � vm | E ′ ∪

⋃m
i=1{(xi in ωi, 0)}〉 where the hedge

variables x1, . . . , xm are distinct and fresh, and E ′ is obtained from E by replacing
with ∗, and with ∗. Note that Sol(P ) = {θ|−{x1,...,xm} | θ ∈ Sol(tr(P )}}.

Therefore, for solving matching problems it is sufficient to be able to solve Smps.

3 The Matching Algorithm

In Subsection 3.1 we present a transformation system M consisting of rules of
the form 〈P | L〉 ⇒σ 〈P ′ | L′〉 where P and P ′ are Smps, σ is a substitution, and
L,L′ are lists of values. To solve an Smp P0, we search for all derivations

〈P0 | [ ]〉 ⇒σ1 〈P1 | L1〉 ⇒σ2 . . .⇒σn 〈Pn = �E | Ln〉,
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which we abbreviate by 〈P0 | [ ]〉 ⇒n
σ 〈Pn | Ln〉, or simply 〈P0 | [ ]〉 ⇒∗σ 〈Pn | Ln〉,

where [ ] is the empty list and σ is the substitution σ1 · · ·σn. If n > 0 then we
may also write 〈P0 | [ ]〉 ⇒+

σ 〈Pn | Ln〉. Also, we write Ans(P0) for the set of
substitutions {σθ|vars(P0) | 〈P0 | [ ]〉 ⇒∗σ 〈�E | L〉 and θ ∈ Sol(E)}, and call the
elements of Ans(P0) computed answers.

In Sect. 3.2 we indicate the main properties of M. First, we prove that this
matching procedure is terminating. We do this by indicating a terminating order
� on Smp-s such that P � P ′ whenever 〈P | L〉 ⇒+

σ 〈P ′ | L′〉. Next, we show
that M is sound and complete, and thus Ans(P ) = {θ|vars(P ) | θ ∈ Sol(P )}.

3.1 System M

System M consists of 22 transformation rules:

(t) Trivial.
〈〈ε� ε, Φ | E〉 | L〉 ⇒ε 〈〈Φ | E〉 | L〉.

(hve1) Hedge variable elimination 1.
〈〈xω � v, Φ | {(x in ω1, 0)} ] E〉 | L〉 ⇒σ={x 7→ε} 〈〈ω � v, Φ | Eσ〉 | L〉
where ω1 = ε or ω1 = ω2∗.

(hve2) Hedge variable elimination 2.
〈〈xω � f(v1) v2, Φ | {(x in , φ)} ] E〉 | L〉 ⇒σ={x7→f(v1)} 〈〈ω � v2, Φ | Eσ〉 | L〉.

(hve3) Hedge variable elimination 3.
〈〈x ω � v, Φ | E〉 | L〉 ⇒ε

〈〈xω � v, Φ | {(x in E1(y),max{E2(x), E2(y)})} ∪ E|−{x}〉 | L〉
if E1(x) = y ∈ Vh.

(hvi1) Hedge variable imitation 1.
〈〈x ω � f(v1) v2, Φ | E〉 | L〉 ⇒σ={x 7→f(y)}

〈〈y � v1, ω � v2, Φ | E|−{x}σ ∪ {(y in ω1, 0)}〉 | L〉
where E1(x) = q(ω1) with q ∈ {f, }̃, and y ∈ Vh is fresh.

(hvi2) Hedge variable imitation 2.
〈〈xω � v, Φ | E〉 | L〉 ⇒σ={x7→x1 x2}

〈〈x1 x2 ω � v, Φ | E|−{x}σ ∪ {(x1 in ν, φ1), (x2 in ω1, φ2)}〉 | L〉
where E1(x) = ν ω1, x1, x2 ∈ Vh are fresh and φ1, φ2 ∈ {0, 1} such that
φ1 + φ2 = E2(x).

(hne1) Name elimination for hedge pattern name.
〈〈x ω � v, Φ | E〉 | L〉 ⇒ε 〈〈x ω � v, Φ | {(x in E1(N), E2(x))} ∪ E|−{x}〉 | L〉
if E1(x) = N.

(hne2) Name elimination for compositional constraint of hedge variable.
〈〈x ω � v, Φ | E〉 | L〉 ⇒ε 〈〈x ω � v, Φ | {(x in χ[ω], E2(x))} ∪ E|−{x}〉 | L〉
if E1(x) = C(ω) and E1(C) = χ.

(hvf1) Flex constraint 1 of hedge variable.
〈〈x ω � v, Φ | {(x in C(ω), φ)} ] E〉 | L〉 ⇒σ1∪σ2

〈〈x1 � v1, . . . , xn � vn, ω � vn+1, Φ | E ′σ2 ∪
⋃n
i=1{(xi in ωσ1, 0)}〉 | L〉

if v 6= ε, 〈〈C( ) � v | E〉 | [ ]〉 ⇒+
σ1
〈�E′ | [v1, . . . , vn, vn+1]〉, σ1(C) 6= •,

and σ2 = {x 7→ σ1(C)〈x1 . . . xn〉} with x1, . . . , xn ∈ Vh fresh.
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(hvf2) Flex constraint 2 of hedge variable.
〈〈xω � v, Φ | {(x in C(ω), φ)} ] E〉 | L〉 ⇒σ

〈〈xω � v, Φ | E ′ ∪ {(x in ωσ, 0)}〉 | L〉
if v 6= ε, 〈〈C( ) � v | E〉 | [ ]〉 ⇒+

σ 〈�E′ | L〉, and σ(C) = •.
(hvr) Repetition constraint of hedge variable.
〈〈x ω � v, Φ | E〉 | L〉 ⇒σ={x 7→x1 x2}
〈〈x1 x2 ω � v, Φ | E|−{x}σ ∪ {(x1 in ω1, 1), (x2 in ω1*, 0)}〉 | L〉

where E1(x) = ω1*, v 6= ε, and x1, x2 ∈ Vh are fresh.
(cve) Context variable elimination.
〈〈C( )ω � v, Φ | {(C in •, 0)} ] E〉 | L〉 ⇒σ={C 7→•} 〈〈 ω � v, Φ | Eσ〉 | L〉.

(cvi1) Context variable imitation 1.
〈〈C( )ω � f(v1) v2, Φ | {(C in q(χ), φ)} ] E〉 | L〉 ⇒σ={C 7→f(C1(•))}

〈〈C1( )� v1, ω � v2, Φ | {(C1 in χ, 0)} ∪ Eσ〉 | L〉
if q ∈ {f, }̃ and C1 ∈ Vc is fresh.

(cvi2) Context variable imitation 2.
〈〈C( )ω � v, Φ | {(C in ξ χ, φ)} ] E〉 | L〉 ⇒σ={C 7→C1(•)C2(•)}
〈〈C1( )C2( )ω � v, Φ | {(C1 in ξ, 0), (C2 in χ, 0)} ∪ Eσ〉 | L〉

where v 6= ε, and C1, C2 ∈ Vc are fresh.
(cvi3) Context variable imitation 3.
〈〈C( ) ω � v, Φ | {(C in ξ ω1, φ)} ] E〉 | L〉 ⇒σ={C 7→C1(•) x}

〈〈C1( ) x ω � v, Φ | {(C1 in ξ, φ1), (x in ω1, φ2)} ∪ Eσ〉 | L〉
〈〈C( ) ω � v, Φ | {(C in ν χ, φ)} ] E〉 | L〉 ⇒σ={C 7→xC1(•)}

〈x C1( ) ω � v, Φ | {(C1 in χ, φ1), (x in ν, φ2)} ∪ Eσ〉 | L〉
where v 6= ε, C1 and x are fresh, and φ1, φ2 ∈ {0, 1} such that φ1 + φ2 = φ.

(cne) Name elimination for compositional constraint of context variable.
〈〈C( ) ω � v, Φ | E〉 | L〉 ⇒ε

〈〈C( ) ω � v, Φ | {(C in χ1[χ], E2(C))} ∪ E|−{C}〉 | L〉
if E1(C) = C(χ) and E1(C) = χ1.

(cvf1) Flex constraint 1 of context variable.
〈〈C( ) ω � v, Φ | {(C in C0(χ), φ)} ] E〉 | L〉 ⇒σ1∪σ2

〈〈C1( )� v1, . . . , Cn( )� vn, ω � vn+1, Φ | E ′σ2∪⋃n
i=1{(Ci in χσ1, 0)}〉 | L〉

if v 6= ε, 〈〈C0( ) � v | E〉|[ ]〉 ⇒+
σ1
〈�E′ | [v1, . . . , vn, vn+1]〉, σ1(C0) 6= •,

and σ2 =
{
C 7→ σ(C0)〈C1(•) . . . Cn(•)〉

}
with C1, . . . , Cn fresh.

(cvf2) Flex constraint 2 of context variable.
〈〈C( )ω � v, Φ | {C in (C0(χ), φ)} ] E〉 | L〉 ⇒σ

〈〈C( ) ω � v, Φ | E ′ ∪ {(C0 in χσ, φ)}〉 | L〉
if v 6= ε, 〈〈C0( ) � v | E〉|[ ]〉 ⇒+

σ 〈�E′ | L〉, and σ(C0) = •.
(cvr1) Repetition constraint 1 of context variable.
〈〈C( ) ω � v, Φ | {C in (χ+, φ)} ] E〉 | L〉 ⇒ε

〈〈C( ) ω � v, Φ | {(C in χ, φ)} ∪ E〉 | L〉
(cvr2) Repetition constraint 2 of context variable.
〈〈C( ) ω � v, Φ | {C in (χ+, φ)} ] E〉 | L〉 ⇒σ={C 7→C1(•)C2(•)}

〈〈C1( ) C2( ) ω � v, Φ | {(C1 in χ, 0), (C2 in χ+, 0)} ∪ Eσ〉 | L〉
where C1, C2 ∈ Vc are fresh.

T
e
x
t
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(any0) Elimination of hedge wildcard.
〈〈 � v, Φ | E〉 | L〉 ⇒ε 〈〈Φ | E〉 | L:v〉

(any1) Elimination of strict hedge wildcard.
〈〈 ω � v1 v2, Φ | E〉 | L〉 ⇒ε 〈〈ω � v2, Φ | E〉 | L:v1〉
where v1 6= ε.

3.2 Main properties

An easy proof by case distinction on the inference step shows that:

– If P is an Smp and 〈P | L〉 ⇒σ 〈P ′ | L′〉 then P ′ is an Smp.
– If 〈〈Φ | E〉 | L〉 ⇒∗σ 〈〈Φ′ | E ′〉 | L′〉 then defs(E ′) = defs(Eσ).

In the sequel we show thatM is terminating, i.e., there are no infinite deriva-
tions of Smps. We start with some useful auxiliary notions.

Let P = 〈ω1 � v1, . . . , ωm � vm | E〉 be an Smp. Then ω1 . . . ωm is a linear
pattern of the form e1 . . . en with ei ∈ Vh ∪ { , } ∪ {C( ) | C ∈ Vc}. In this
case, we define

– idx(P ) := min({n}∪{k | (ek = ) ∨ (ek = x ∧ (x in ω, 1) ∈ E) ∨ (ek = C( ))})
– the pattern size of P is the multiset

sz (P ) := {szE(ei) | 1 ≤ i ≤ idx(P ) ∧ ei ∈ Vh ∪ { }}d
{szE(C) | 1 ≤ i ≤ idx(P ) ∧ ei = C( )}

where d stands for multiset union, and szE(π) is as defined on page 8. We define

1. m1(P ) := the multiset {|vi| | 1 ≤ i ≤ m ∧ vi 6= ε}.
2. m2(P ) := sz (P ),
3. m3(P ) := number of occurrences of in ω1 . . . ωm, and
4. m4(P ) := m.

We define a partial order � on the states of the transformation system M as
follows: 〈P | L〉 � 〈P ′ | L′〉 iff P �lex

1,2,3,4 P
′ where �lex

1,2,3,4 is the lexicographic
combination of the orderings induced by m1,m2,m3,m4 on Smps. Since � is a
lexicographic combination of terminating orders, � is terminating too.

Theorem 1. If 〈P | L〉 ⇒n
θ 〈P ′ | L′〉 with n > 0 then P � P ′.

Proof. By induction on the lexicographic ordering on 〈m(P ), n〉.
Obviously, it is enough to prove that if 〈P | L〉 ⇒σ 〈P ′ | L′〉 then P � P ′.

We proceed by case distinction on the rule used in the transformation step. The
following table indicates what happens when the transformation rule is not from
{hvf1, hvf2, cvf1, cvf2}.

transformation rule m1 m2 m3 m4

hve2,hvi1,cvi1,any1 P >1 P
′

cve,hve1,hve3,hvi2, P ≥1 P
′ P >2 P

′

hne1,hne2,hvr,cvi2,cvi3,
cne,cvr1,cvr2
any0 P ≥1 P

′ P =2 P
′ P >3 P

′

t P =1 P
′ P =2 P

′ P =3 P
′ P >4 P

′
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If the transformation rule is hvf1 or hvf2 then P is of the form

〈x ω � v, Φ | {x in (C(ω1), φ)} ] E〉.

Since 〈C( ) � v | E〉 ≺ P , we can apply the induction hypothesis to conclude
the non-existence of infinite derivations starting from 〈C( ) � v | E〉.

If σ(C) 6= • then the transformation rule is hvf1 and n > 1. Moreover,∑n+1
i=1 |vi| ≤ |v|, and since |vj | > 0 for all 1 ≤ j ≤ n, we conclude that m1(P ) >

m1(P ′) and thus P � P ′. If σ(C) = • then the transformation rule is hvf2
and n = 1. It is not hard to conclude that in this case σ(X) ∈ {•, ε} for all
X ∈ dom(σ), and then m1(P ) = m1(P ′) and m2(P ) > m2(P ′).

If the transformation rule is cvf1 or cvf2 then P is of the form

〈C( ) ω � v, Φ | {C in (C0(χ), φ)} ] E〉.

Since 〈C0( ) � v | E〉 ≺ P , we can apply the induction hypothesis and con-
clude the non-existence of infinite derivations starting from 〈C0( ) � v | E〉.

If σ(C) 6= • then the transformation rule is cvf1 and n > 1. Moreover,∑n+1
i=1 |vi| ≤ |v|, and since |vj | > 0 for all 1 ≤ j ≤ n, we learn that m1(P ) >

m1(P ′) and thus P � P ′. If σ(C) = • then the transformation rule is cvf2
and n = 1. It is not hard to conclude that in this case σ(X) ∈ {•, ε} for all
X ∈ dom(σ), and then m1(P ) = m1(P ′) and m2(P ) > m2(P ′). ut

Soundness, i.e, the fact that Ans(P ) ⊆ Sol(P ) for any Smp P , is an immediate
corollary of the following theorem, which can be proved by induction on the
lexicographic ordering on 〈m1(P ),m2(P ),m3(P ),m4(P ), n〉.

Theorem 2. If 〈P | L〉 ⇒n
θ 〈P ′ | L′〉 and θ′ ∈ Sol(P ′) then θθ′ ∈ Sol(P ). ut

Finally, we note thatM is complete too, i.e., that {θ|vars(P ) | θ ∈ Sol(P )} ⊆
Ans(P ) for any Smp P . This is a consequence of Theorem 2 and of the following
lemma.

Lemma 2. If L is a list of values, P is an Smp with non-empty equational part,
and θ ∈ Sol(P ) then there exists a reduction step 〈P | L〉 ⇒σ 〈P ′ | L′〉 such that
θ = σθ′ [dom(θ)] for some θ′ ∈ Sol(P ′). ut

4 Conclusion and Future Work

We have proposed a class of matching problems with regular patterns with vari-
ables for hedges and contexts, and membership constraints to restrict the admis-
sible bindings of variables by matching. We have identified a sound and complete
calculus to solve this kind of matching problems. The calculus is presented as
a collection of 22 transformation rules that are used to compute all maximal
derivations 〈P | [ ]〉 ⇒σ1 . . . ⇒σn

〈�E | [ ]〉, abbreviated 〈P | [ ]〉 ⇒∗σ 〈�E | [ ]〉,
where σ = σ1 . . . σn and �E is a Smp without equations. We proved that
Sol(P ) = {θθ′|vars(P ) | 〈P | [ ]〉 ⇒∗θ 〈�E | [ ]〉 ∧ θ′ ∈ Sol(E)}, and that the sat-
isfiability of �E is decidable. Thus, we can regard our calculus as a kind of
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preunification algorithm, because it does not attempt to solve the residual set
of membership constraints, whose satisfiability is decidable.

The matching calculus is inherently nondeterministic, since our matching
problems can have more than one solution. It is also the case that our calculus
may compute some solutions more than once. The culprits for this redundancy
are the definitions of rules hvi2, and cvi3 when the flag of the outermost variable
of the leftmost equation is φ = 1. In this case, both hvi2 and cvi3 have the choice
to proceed either with (a) φ1 = 1, φ2 = 0, or (b) φ1 = 0, φ2 = 1. Unfortunately,
these choices are not disjoint, i.e., they may yield same solution. This redundancy
can be avoided if we collapse these two subcases of hvi2 and cvi3 into one case
where φ1 = 0 and the value of flag φ2 is established only after we compute the
binding v1 of the variable corresponding to flag φ1: If v1 ∈ {ε, •} then φ2 should
be 1, otherwise it should be 0. We illustrate how this strategy works by replacing
hvi2 with

(hvi’2) hedge variable imitation 2.
〈〈xω � v, Φ | E〉 | L〉 ⇒σ={x7→x1 x2} 〈〈x1 x2 ω � v, Φ |

{x1 in (ν, 0), x2 in (ω1, 1− valueE2(x)(x1))} ∪ E|−{x}σ〉 | L〉
where E1(x) = ν ω1, x1, x2 ∈ Vh are fresh,

and defining valuek(v) =
{

0 if k = 1 and v = ε,
1 otherwise.

As future work, we intend to integrate the pattern matching constructs and
the algorithm described here with the programming language ρLog [8, 9].
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A tractable logic of types

Allan Ramsay
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Abstract. Numerous approaches to managing sort hierarchies have
been proposed. Some are tractable but have limited expressive power
(e.g. encoding sorts as bit strings [Fall, 1990]), others have considerable
expressive power but are potentially very complex (e.g. description logics
[Baader and Sattler, 2001]). The current paper proposes a logic of sorts
which allows reasoning over semi-partitioned type lattices, so is more ex-
pressive than simple type hierarchies; but whose worst case complexity
is linear in the size of the query, and hence is in general more tractable
than description logic.
The key step in implementing this logic is that we represent sorts as
paths through a lattice: in the simplest case, checking that two sorts
are compatible simply involves checking that the paths that make them
up unify. Managing negation is rather trickier, and requires us to plant
constraints that are invoked when, and only when, the relevant paths are
checked. This makes the algorithm more awkward, but does not increase
the (theoretical or practical) complexity of the process.

1 Introduction

Many tasks require you to assign types to entities, and then to see whether one
type is consistent with another or is subsumed by another. The work described
here was developed for use within a natural language system where it is useful to
be able to assign types to individuals and then to see whether those individuals
are suitable candidates for various semantic roles. This can be used for choosing
between different senses of a word, as in (1), or for choosing between prepositional
attachment sites, as in (2).

(1) a. John fired his secretary.
b. John fired a gun at his secretary.

(2) a. I cut the bread with the bread knife.
b. I cut the bread with the poppy seeds on the crust.

There are numerous other application areas where it is useful to be able to
reason about types. The discussion below will generally be illustrated by linguis-
tically motivated examples, because that is the context in which this work was
originally carried out, but the approach can be applied anywhere that reasoning
about types is useful.
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There are two crucial operations on types: are two types compatible, and
does one type subsume another? The complexity of computing these relations
depends on the way that type descriptions are specified. If, for instance, you
decide that types form a strictly partitioned hierarchy then you can encode an
individual type as a bit string, and you can compute compatibility and subsump-
tion by simple operations on bit strings. For large hierarchies you may have to
be clever about the encoding, but there are ways of computing compatibility and
subsumption in strictly partitioned hierarchies that are (time and space) linear
in the depth of the hierarchy. If, on the other hand, you decide to allow arbitrary
Boolean combinations of types then your logic of types becomes propositional
logic, which is NP-complete and hence is in principle intractable. That is not
to say that there are no efficient theorem provers for propositional logic, but
the potential requirement for large amounts of search means that in at least
some cases theorem provers for full propositional logic can take a long time. The
current paper introduces an intermediate level of expressivity, allowing type de-
scriptions to consist of conjunctions of positive and negative literals drawn from
entries in a semi-partitioned type lattice. This has considerably more expressive
power than a simple partitioned type hierarchy, but the time and space com-
plexity is linear in the depth of the hierarchy and the number of conjuncts in the
types being compared (note: not the number of types in the hierarchy). This is
in principle more tractable than propositional logic or description logic, which
are both NP-complete, and in practice is extremely fast. Furthermore operations
on types can easily be embedded within ordinary logic programs, so that it is
easy to combine efficient reasoning over types with the full power of Horn-clause
logic where that is required.

2 Semi-partitioned type lattices

The logic of types proposed here comes in two parts. The first involves specifying
a set of basic types as a semi-partitioned type lattice. Once you have this you
can then construct complex type descriptions by constructing conjunctions of
positive and negative literals over the set of basic types. The algorithms for
computing consistency and subsumption are defined for complex types.

2.1 Syntax

Basic types and constants: we use t, t1, t2, . . . as names of basic types, and
a, a1, a2, . . .. as constants.

Partitions: (i) if t, t1, . . . , tn are types then t >>> [t1, . . . , tn] says that the ti
are a partition of t, i.e. that they are a disjoint set of sets whose union is
t. (ii) if t, t1, . . . , tn are types then ¬t >>> [t1, . . . , tn] says that the ti are a
partition of the complement of t.

Subsets: (i) if t, t1, . . . , tn are types then t >> [t1, . . . , tn] says that each ti is
a subtype of t. In this case there is no expectation that ti and tj will be
incompatible if i and j are different, nor that they completely cover t. (ii) if
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t, t1, . . . , tn are types then ¬t >> [t1, . . . , tn] says that each ti is a subset of
the complement of t, so that t and ti are disjoint for all i.

A set of subset and partition specifications describes a semi-partitioned type
lattice. We get a type lattice rather than a hierarchy because a type may be
a child of more than one parent; and the lattice is semi-partitioned because
for some nodes the children form a partition and for others they do not. The
collection of subset and partition specifications defines an obvious partial order
on terms. We will write t1 <L t2 if t1 is below t2 in the order defined by L (if the
lattice in question is obvious we will just write t1 < t2). We will use this partial
order when talking about formulae: it is not part of language of types itself.

Once we have specified a set of types we can assign individuals to types and
we can construct complex types.

1. If t is a basic type then t and ¬t are types.
2. If t1 and t2 are types then so is t1&t2.
3. If a is an individual and t is a type, then (a ∈ t) is a formula whose intended

meaning is that t is of type t.

Note that we do not allow negations of arbitrary types: (¬t1&¬t2) is a well-
defined type, ¬(t1&t2) is not. The reason is that allowing negations of arbitrary
types introduces disjunction into the logic, and introducing disjunction intro-
duces choice, and hence complexity, into the algorithms for computing consis-
tency and subsumption. However, the use of partitions allows us to achieve very
much the same end. If the specification of the type lattice contains the entry
t3 >> [t1, t2] then ((a ∈ t1)or(a ∈ t2)) entails (a ∈ t3). Thus careful construction
of the type lattice allows us to specify disjunctive basic types. All that is banned
is the construction of disjunctive types in type assignment statements.

2.2 Semantics

The interpretation of this language is very simple. An interpretation I of a type
lattice consists of a set U of individuals and an assignment of members of U
to constants and subsets of U to types, where we will write I(x) to denote the
member or subset of U assigned to the term x. I is a model of a type lattice if
the following conditions hold:

1. I |= (a ∈ t) if I(a) ∈ I(t).
2. I(¬t) = U\I(t) for every type t.
3. I |= (t′ >> [. . . , t, . . .]) if I(t) ⊆ I(t′).
4. I |= (t >>> [. . . , ti, . . . , tj , . . .]) if I(ti) ⊆ I(t), I(tj) ⊆ I(t) and I(ti)∩I(tj) =

∅.

3 Consistency and subsumption

3.1 Simple positive partitioned trees

We will start by considering the simplest case, namely where the lattice is in
fact a fully partitioned tree with no negations, e.g. Fig. 1.
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concrete >> [living]
living >> [animal, plant, bacterium]
plant >> [fruit, vegetable, grass]
animal >> [bird, reptile, fish, insect, mammal]
mammal >> [cat, dog, ape]
ape >> [monkey, orangutang, human]
human >> [man, woman, child]

Fig. 1. Positive partitioned tree

For any type in this tree, we can construct a path up to the top node, for
instance the path from man to the top is man → human → ape → mammal →
animal → living. We represent such paths as Prolog open lists1, writing them in
reverse order and adding a truth value (yes or no) at each point. Thus the Pro-
log term representing this path is [living=yes, animal=yes, mammal=yes,

human=yes, man=yes | ]. We will refer to the Prolog term corresponding to
the type t as its descriptor, written d(t), and for an element of a path such
as living=yes we will refer to the left-hand side as the key and the right-hand
side as the value.

It is easy to see that two types t and t′ in a simple tree of this kind are
compatible (i.e. if I(t) ∩ I(t′) 6= ∅) iff the corresponding paths are unifiable: (i)
Suppose d(t) and d(t′) are unifiable. Then one of them must be an extension of
the other. Suppose wlog that d(t) is an extension of d(t′). Then there must be a
sequence of partitions t′ >> [. . . , t1, . . .], t2 >> [. . . , t3, . . .], . . . , tn >> [. . . , t, . . .],
in which case I(t) ⊆ I(t′), so if I(t) 6= ∅ then I(t) ∩ I(t′) 6= ∅. (ii) Suppose that
d(t) and d(t′) are not unifiable. Then there must be some point at which d(t)
contains ...,t0=yes,t1=yes,... and d(t′) contains ...,t0=yes,t2=yes,...,
where t1 and t2 are different. This will have arisen because the lattice contains
a partition t0 >> [. . . , t1, . . . , t2, . . .], where t is below t1 and t′ is below t2.
But I(t1) ∩ I(t2) = ∅, since t0 >> [. . . , t1, . . . , t2, . . .] is a partition, and thence
I(t) ∩ I(t′) = ∅ because I(t) ⊆ I(t1) and I(t′) ⊆ I(t2). We will write t1 ≈ t2 to
say that t1 and t2 are compatible.

3.2 Partitioned lattices

In the example in Fig. 1, there was only one type with no supertypes, namely
living. We can allow for multiple maximal elements if we insist that the top
item in a path has a non-variable key (though the value does not have to be
instantiated). Suppose, for instance, we extend Fig. 1 as in Fig. 2.

Fig. 2 has two new maximal elements, male and adult. There are therefore
three paths leading up from man, namely man → ape → mammal → animal →
living → concrete, man → male and man → adult.

1 From here on, we will use fixed width expressions to denote Prolog terms, fol-
lowing the usual Prolog conventions for lists and variables.
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concrete >> [living]
living >> [animal, plant, bacterium]
male >> [man]
animal >> [bird, reptile, fish, insect, mammal]
mammal >> [cat, dog, ape]
ape >> [monkey, orangutang, human]
adult >> [man, woman]
human >> [man, woman, child]

Fig. 2. Positive partitioned lattice

We represent each of these by a list as before, and we collect them together
into a single list orded by the key of the top item in the path, so that d(man) is
now as shown in Fig. 3.

[[adult=yes,man=yes|A],

[concrete=yes,living=yes,animal=yes,mammal=yes,ape=yes,human=yes,man=yes|B],

[male=yes,man=yes|C]]

Fig. 3. Descriptor from positive partitioned lattice

The maximal elements in such a lattice each define a tree, so a set of paths
drawn from a lattice actually correspond to points in a set of trees. Two sets of
paths are thus compatible if wherever there are two paths with the same starting
point they are pairwise compatible. If the sets of paths are ordered by the type
of the top item then looking for pairs with the same head can be done in time
proportional the sum of the lengths of the two lists (see Fig. 7). We can thus
check compatibility of two types t1 and t2 drawn from a lattice extremely fast
by comparing elements of d(t1) and d(t2) with matching heads, as above: the
fact that d(t1) and d(t2) makes the search for paths with matching heads linear.

3.3 Negation

We would like to be able to add negative types into our lattices–to add, for
instance, ¬male >> [woman] and ¬adult >> [child] to the lattice in Fig. 4.
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concrete >> [living]
living >> [animal, plant, bacterium]
male >> [man]
¬male >> [woman]

animal >> [bird, reptile, fish, insect, mammal]
mammal >> [cat, dog, ape]
ape >> [monkey, orangutang, human]
adult >> [man, woman]
¬adult >> [child]
human >> [man, woman, child]

Fig. 4. Lattice with partitions and negation

The obvious way to do this is to allow no instead of yes as a value where
required, as in the descriptor for woman in Fig. 5.

[[adult=yes,woman=yes|A],

[concrete=yes,living=yes,animal=yes,mammal=yes,ape=yes,human=yes,woman=yes|B],

[male=no,woman=yes|C]]

Fig. 5. Descriptor from partitioned lattice with negation

Then clearly woman 6≈ male, since d(woman) contains
[male=no,woman=yes| ] and d(male) contains [male=yes| ].

This simple extension to the basic approach is not quite sufficient. Con-
sider the type ¬man. This type will be compatible with any type that
does not have man=yes at position 5 in its path, i.e. it would be compat-
ible with [living=yes, animal=yes, mammal=yes, human=yes, cat=yes |

], or with [living=yes, animal=yes, fish=yes | ], or with [living=yes,

animal=yes, mammal=yes, human=yes, man=no | ]. We therefore set the
path for ¬man to be [ , , , , X=V | ] and we add the dynamic con-
straint when(nonvar(X), \+ (X=man, V=yes)). Dynamic constraints are acti-
vated when the condition part is satisfied, so this constraint will be executed
if we try to unify this list with a list containing at least five members. Thus
the path for ¬man will unify with the path for cat: unifying cat=yes with X=V

will trigger the constraint, with X=cat and V=yes, which will satisfy \+ (X=man,

V=yes)). Unifying it with the path for man will fail, because the constraint will
be triggered with X=man and V=yes, which will fail. It is important to note that
attaching dynamic constraints to variables in this way adds a small constant
time to the cost of unification, but it does not increase its complexity.

Note that the ability to define negated types lets us check whether t1 sub-
sumes another t2 by seeing whether t2 and ¬t1 are compatible so that there is
no need to define a separate algorithm for checking subsumption.
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3.4 Partitions and subsets

We finally allow specification of non-partitioned subsets as well as partitions.
The key issue here is that if t1 >>> [. . . , t0, . . .] specifies that t0 is a subset of
t1 and t1 is a member of some partition then t0 will also be governed by the
partition. When constructing descriptors for types that are subtypes of other
types, we have to be careful to include any partitions that involve the supertypes.
This can easily lead to having multiple paths with the same head. Suppose, for
instance, we change Fig. 4 to Fig. 6, where adult and male are subsets of living.

concrete >> [living]
living >> [animal, plant, bacterium]
living >>> [male, adult]

male >> [man]
¬male >> [woman]
animal >> [bird, reptile, fish, insect, mammal]
mammal >> [cat, dog, ape]
ape >> [monkey, orangutang, human]
adult >> [man, woman]
¬adult >> [child]
human >> [man, woman, child]

Fig. 6. Lattice with partitions, subsets, negation

Then d(male)=[[concrete=yes, living=yes| ], [male=yes| ]] and
d(human)=[[concrete=yes, living=yes, animal=yes, mammal=yes,

ape=yes, human=yes| ]]. So since man is covered by both male and human,
the description of man has to include two paths with the same head. Under these
circumstances we simply unify the relevant paths. Consider, for instance the
type living&¬human. d(living&¬human) is [[concrete=yes, living=yes,

, , , G= H| ]] with the constraint \+ ( G=human,\+ H=no) attached to
G.

The observation that we can deal with descriptors that contain multiple
paths with the same head by unifying them leads to a straightforward way
of handling conjunctive types. We simply weave them together, preserving the
order on paths, and where two paths have the same head we unify them,
so that d(cat&male), for instance, becomes [[concrete=yes, living=yes,

animal=yes, mammal=yes, cat=yes | ], [male=yes | ]]. We can do this
when we construct a type, but we can also do it on the fly as we discover new
facts about an individual during the course of other processing.

4 Complexity and performance

There are two issues to be considered here. How long does it take to construct
descriptors, and how long does it take to compare descriptors? Of these the
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second is more important, since type descriptors for basic positive and negative
types can be constructed at compile time if necessary (as happens with the T-box
element of a description logic). Nonetheless it is worth considering both cases.

4.1 Constructing descriptors

To construct a descriptor for a type, we have to find the partitions and subsets
that it is part of, and the partitions and subsets that these are part of, and . . . To
do this we first split a partition t >> [t1, . . . , tn] into a set of Prolog facts of
the form strictParent(t1, yes, t, yes), ...strictParent(tn, yes, t,

yes) (where yes would be replaced by no if t or ti were negated), and likewise
for subsets. Then the use of first argument indexing on Prolog facts means that
finding each parent of a type takes a roughly constant amount of time (around
10−5 seconds), so that finding all the paths leading up from a type takes a time
proportional to the number of types involved. The time taken for sorting the
paths leading up from a term is log2(N) where N is the number of paths, which
will not generally be very large. There is also a small cost for merging paths with
the same head, but this is essentially negligible (unification of two lists with N

members takes around N × 10−6 seconds). Thus constructing a type descriptor
can be done fairly quickly (around 10−4 seconds for d(man) with the lattice
in Fig. 6, and less for simpler types with the same lattice). The time increases
roughly linearly with the size of the descriptor, but is unaffected by the overall
size of the lattice. In particular, the overall size of the lattice is not a factor, so
there is no problem with having very large lattices.

4.2 Comparing descriptors

Comparing the descriptors for two types t1 and t2 involves essentially the same
algorithm as merging paths with the same head. The algorithm is as in Fig. 7.

At worst this involves max(length(d(t1)), length(d(t2)) path unifications,
where each unification is, as noted above, linear in the length of the path. For
the examples above this ranges between 2× 10−5 seconds (for comparing d(cat)
and d(dog)) and 5 × 10−5 seconds (for d(man) and d(¬male)). The time for
comparing descriptors depends solely on the size of the descriptors–the size of
the lattice from which they were derived is irrelevant.
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D1 = d(t1), D2 = d(t2)
until D1 == [] or D2 == []

P1 = hd(D1), P2 = hd(D2)
k1 = key(P1), k2 = key(P2)
if k1 == k2

if unify(P1, P2)
D1 = tl(D1), D2 = tl(D2)

else
return false

endif
elseif k1 < k2 % (lexicographic order)

D1 = tl(D1)
else

D2 = tl(D2)
endif

enduntil
return true

Fig. 7. Comparing type descriptors

5 Embedding in logic programs

The mechanisms described above can easily be incorporated into standard logic
programs. One obvious application is for adding semantic constraints to natural
language grammar. The example below illustrates the idea with a simple DCG.
We are currently exploiting it in a rather more substantial grammar (see [Ramsay
and Mansour, 2007] for details), but for clarity in the current context we will
use a very simple DCG for illustration.

s(V+[R=S | PRED]) ==> np(S0), vp(V+[R=S1| PRED]), S#S0:S1.

vp(V+[SUBJ, R=OBJ]) ==> vtrans(V+[SUBJ, R=ARG]), np(NP), OBJ#ARG:NP.

np(N) ==> det, nn(N).

nn(N) ==> noun(N).

nn(N) ==> adj(A), nn(X), N#A:X.

noun(X) ==> [man], X --- man.

noun(X) ==> [cat], X --- cat.

noun(X) ==> [book], X --- book.

adj(X) ==> [stupid], X --- stupid.

det ==> [the].

det ==> [a].

vtrans(write+[agent=A, object=O]) ==> [wrote], A --- clever, O --- ~living.

Fig. 8. Clever people write books

The s, vp and np rules in this grammar are entirely orthodox apart from the
fact that the structures that get returned from the s and vp are built by combin-
ing the information associated with the NPs that are the subject and object
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of the verb with the constraints on what that verb will accept as arguments. So
if we parse ‘the man wrote a book’ we obtain the structure in Fig. 5.

write

+ [agent=[[age=yes,adult=yes],

[concrete=yes,living=yes,animal=yes,mammal=yes,

ape=yes,human=yes,man=yes],

[male=yes],

[sentient=yes,intelligent=yes,clever=yes]],

object=[[book=yes],[concrete=yes,artefact=yes]]]

Fig. 9. ‘The man wrote a book’

The information associated with the object in this analysis comes directly
from the fact that the thing being written is a book. The information asso-
ciated with the agent, on the other hand, is obtained by combining the fact
that the subject is a man and the constraint that only clever things can write
books. If we had said ‘the stupid man wrote a book’ then the description of
‘the stupid man’ would include the path [sentient=yes, intelligent=yes,

stupid=yes], which would clash with the requirement that the agent of a
writing event should be compatible with [sentient=yes, intelligent=yes,

clever=yes]. ‘the cat wrote a book’ and ‘the man wrote a cat’ would similarly
be rejected, because the description of cats says that they are not intelligent (so
a cat cannot be the agent of a writing event) but they are living (and hence a
cat cannot be the object of such an event).

This is, of course, a very simple example, but putting selection restrictions
on the entities that can play specified roles with respect to a given verb is well-
known application of this kind of logic. There are numerous well-documented
problems with straightforward application of this idea (e.g. the fact that you do
not want to block the analysis of ‘Don’t be silly, of course he didn’t write a cat’),
but these can be overcome by imposing penalties on analyses that violate the
constraints rather than blocking them outright.

We can make this more subtle by introducing a measure of just how badly a
constraint is violated, by measuring the point at which two paths clash, so that
chimpanzees and orang-utangs are more similar than chimpanzees and cats. We
could thus take the reciprocal of the point at which two paths clashed as the
degree of mismatch. This introduces two new costs. (i) There is a small extra
constant factor involved in keeping a depth counter as we walk along a pair of
paths. The cost of this is trivial, and can just about be discounted. (ii) If we
are just trying to see whether two descriptors match, we can quit as soon as
the first mismatch is found. If we want to calculate the degree of mismatch, we
have to inspect every path, since there may be multiple clashes (suppose, for
instance, we wanted to compare chimpanzee+male and orang utang+female).
The number of paths to be compared is thus potentially greater.

These costs are fairly small, so in cases where we want to see how badly some
constraint is violated they are probably worth paying. More significantly, while
it is reasonable to suppose that the depth at which the first clash appears on a
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single path is a reliable indication of the degree of difference, it is hard to be sure
that different paths are equally weighted. Consider for instance the descriptors
for man, woman and event (Fig. 5).

man=[[age=yes, adult=yes],

[concrete=yes,living=yes,animal=yes,mammal=yes,ape=yes,

human=yes,man=yes],

[edible=no],

[male=yes],

[sentient=yes, intelligent=yes]]

woman=[[age=yes, adult=yes],

[concrete=yes,living=yes,animal=yes,mammal=yes,ape=yes,

human=yes,woman=yes],

[edible=no],

[male=no],

[sentient=yes, intelligent=yes]]

event=[[concrete=no, temporal=yes, interval=yes, event=yes]]

Fig. 10. man, woman, event

Intuitively, man and woman ought to be more similar than man and event.
By the measure proposed above, the the difference between the descriptors
for man and woman would be 1.14 (0.14 for the clash at level 7 between the
paths starting with concrete and ending with man/woman, and 1 for the paths
starting with male=yes and male=no respectively), whereas the score for man

and event is 1.0, for the single clash at the head of the paths headed by
concrete=yes/concrete=no.

This is clearly wrong. Part of the problem lies with the fact that we are
ignoring the paths on which the descriptors for man and woman agree. We could
compensate for this by having a positive score for paths where entries agree as
well as a negative one for paths where they clash. The problem here would be
coming up with an appropriate weighting for agreements versus disagreements.
This is compounded by the fact that some paths are inherently more significant
than others. It seems reasonable to suppose that the difference between male and
female entities is less than the difference between concrete and abstract ones,
but it is very hard to see how you weigh this difference. Are abstract entities
twice as different from concrete ones as males are from females? Three times?
Eighty four times?

It seems, then, that the degree of similarity/dissimilarity between two de-
scriptors can be calculated at very little extra cost once you have decided on
how to assign values to different paths; and that using a penalty score based
on the depth of mismatch on a single path will provide a coherent measure, in
that two entities that clash at say level 5 on a given path (e.g. chimpanzee and
cat) can be reasonably assumed to be more different than two entities that clash
at level 6 on the same path (chimpanzee and orang-utang). Devising a measure
which can compare mismatches on different paths, or which can counterbalance
mismatches on one path with matches on another, is fraught with the problems
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that bedevil all attempts to introduce numerical truth values [Voorbraak, 1991,
Epstein, 1990, Gabbay, 1996]. Incorporating such a scoring scheme can be done
easily, and at very little cost.

Choosing one is beyond the scope of the current paper. The example discussed
above was introduced to show we can take a fairly orthodox technique and make
it substantially more effective by incorporating a powerful logic of types at very
little cost. Of course the simple DCG-style grammar used for this example pro-
vides a very simplistic account of natural language grammar. Nonetheless, the
way that we incorporated semantic constraints into this simple grammar can be
carried over into more sophisticated formalisms, and we are currently exploit-
ing it in the framework described in [Ramsay, 1999, Ramsay and Seville, 2000],
particularly lexical disambiguation in Arabic where written surface forms are
highly ambiguous [Ramsay and Mansour, 2007]. Any such use of semantic con-
straints in parsing should be regarded as a preliminary filter, to be used largely
to prioritise potential analyses rather than to rule them in or out, and should
always be followed by more detailed reasoning about potential interpretations
[Hirst, 1987, Asher and Lascarides, 1995, Wedekind, 1996]. Treated in this way,
constraints on the kind of entities that can enter into syntactic relations (argu-
ments for verbs and figure-ground pairs for prepositions are typical candidates)
can be extremely useful.

6 Conclusions

The logic of sorts described above has considerable expressive power. Allowing
partitions as well as superset relations, and allowing the terms used for express-
ing relations to include negation, makes the logic substantially more expressive
than type logics which can be easily encoded as trees or bit-strings [Aı̈t-Kaci
et al., 1989, Fall, 1990]). For most logics of greater expressive power, e.g. de-
scription logics and propositional logic, checking consistency and subsumption
relations between type descriptors are NP-complete. The logic described here
strikes a balance between expressivity and complexity. The ability to allow mul-
tiple parents, to allow partitions when required, and to construct descriptors out
of conjunctions and negations of base level types, provides much more expressive
power than is available in simpler logics of types. The fact that consistency and
subsumption checking are linear in the size of the descriptors (not the size of
the lattice) in theory, and very fast in practice, means that we can work with
lattices with tens or even hundreds of thousands of nodes. As such, this logic
provides a practical alternative to description logics, where the theoretical com-
plexity implies that in at least some cases the cost of checking subsumption and
consistency may become prohibitive.
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Abstract

A unifier of two terms s and t is a substitution σ such that sσ = tσ
and for first-order terms there exists a most general unifier σ in the sense
that any other unifier δ can be composed from σ with some substitution
λ, i.e. δ = σ ◦ λ.

This notion can be generalised to E-unification, where E is an equa-
tional theory, =E is equality under E and σ is an E-unifier if sσ =E tσ.
Depending on the equational theory E, the set of most general unifiers
is always a singleton (as above), or it may have more than one, either
finitely or infinitely many unifiers and for some theories it may not even
exist, in which case we call the theory of type nullary.

String unification (or Löb’s problem, Markov’s problem, unification of
word equations or Makanin’s problem as it is often called in the literature)
is the E-unification problem, where E = {f(x, f(y, z)) = f(f(x, y), z), i.e.
unification under associativity or string unification once we drop the fs
and the brackets. It is well known that this problem is infinitary and
decidable.

Essential unifiers, as introduced by Hoche and Szabo, generalise the
notion of a most general unifier and have a dramatically pleasant effect
on the set of most general unifiers: the set of essential unifiers is often
much smaller than the set of most general unifiers. Essential unification
may even reduce an infinitary theory to an essentially finitary theory.
The most dramatic reduction known so far is obtained for idempotent
semigroups or bands as they are called in computer science: bands are
of type nullary, i.e. there exist two unifiable terms s and t, but the set
of most general unifiers is not enumerable. This is in stark contrast to
essential unification: the set of essential unifiers for bands always exists
and is finite.

82



We show in this paper that the early hope for a similar reduction of
unification under associativity is not justified: string unification is es-
sentially infinitary. But we give an enumeration algorithm for essential
unifiers. And beyond, this algorithm terminates when the considered
problem is finitary.

Keywords: E-unification, equational theory, essential unifiers, string unifica-
tion, unification of words, universal algebra, varieties.

1 Introduction

Unification is a well established concept in artificial intelligence, automated the-
orem proving, computational linguistics, universal algebra, in theoretical and
applied computer science, and e.g. semantics of programming languages. Sur-
veys of unification theory can be found in [18, 6, 7]. A survey of the related topic
of rewriting systems is presented in [9] and more recently in [12]. A standard
textbook is Franz Baader, Tobias Nipkow, Term Rewriting and All That [6].

Unification is a general concept to solve equational problems, which is es-
pecially embedded in a plurality of deduction and inference mechanisms. For
practical applications it is often crucial to have a finite or at least minimal repre-
sentation of all the solutions, i.e. a minimal complete set of unifiers from which
all other solutions (unifiers) can be derived.

For equational problems in the free algebra of terms (also known as syn-
tactic unification), there exists always a unique unifier for solvable unification
problems from which all other unifieres can be derived by instantiation. This
unique unifier is called the most general unifier, [14]. For equational algebras
however the situation is completely different: a minimal complete set of unifiers
is not always finite and it may not even exist, which was conjectured by Gordon
Plotkin in his seminal paper in 1972, [13]. Since then unification problems and
equational theories have been classified with respect to the cardinality of their
minimal complete set of unifiers. These results led to the development of general
approaches and algorithms, which can be applied to a whole class of theories.
This is the topic of universal unification, see e.g. [18].

More specifically, a unification problem s =?
E t for two given terms s and t

under an equational theory E is the problem to find a minimal and complete
set of unifiers µUΣE for s and t such that for every unifier σ ∈ µUΣE we have
sσ =E tσ. We say a unification problem is unitary if µUΣE is always a singleton,
it is finitary if µUΣE is finite for every s and t and it is infinitary if there are
terms s and t such that µUΣE is infinite. Unfortunately there are theories such
that two terms are unifiable,but the set µUΣE is not recursively enumerable.
In this case we call the problem nullary or of type zero.

It turned out that this well established view of unification theory changes
drastically if we redefine the notion of a most general unifier. Recall that a
unifier σ is most general if for any other unifier τ there exists a substitution λ
such that

τ = σ ◦ λ
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We generalise this notion and define an essential unifier σ if for any other unifier
τ there exist substitutions λ1 and λ2 such that

τ = λ1 ◦ σ ◦ λ2

where λ1 has to have certain properties to be defined below.
We say a unification problem is e-unitary (is e-finitary) if the set of essential

unifiers is always a singleton (is always finite). A unification problem is e-
infinitary (e-nullary) if there are two terms such that the set of essential unifiers
is infinite (is not recursive enumerable).

These notions were first introduced by Hoche and Szabo in [5] and it was
shown in their paper that the unification problem for idempotent semigroups
(bands) is e-finitary. Bands are well known since it was one of the early examples
to demonstrate Plotkin’s conjecture, that there exist nullary equational theories,
which was shown one and a half decades later by Manfred Schmidt-Schauss,[15].
Now the unification problem for bands is nullary in the traditional sense but it is
e-finitary in our sense: this is so far the most drastic reduction of the cardinality
of the set of most general unifiers to a set of essential unifiers.

The question is: can similar results be obtained for other theories as well
and a natural candidate for this kind of investigation is string unification. Why
is that?

In the 1950s A. A. Markov was interested in the solvability of word equa-
tions in free semigroups: he noted that every word equation over a two constant
alphabet can be translated into a set of diophantine equations. Using this trans-
lation he hoped to find a proof for the unsolvability of Hilbert’s tenth problem
by showing that the solvability of word equations is undecidable. This put the
problem firmly on the map and others joined in: see the volumes edited by M.
Lothaire and others on Combinatorics on Words [2]. The problem was finally
solved in the affirmative in the seminal work by G. S. Makanin. An excellent
exposition of Makanin’s algorithm (with several improvements) is presented by
Klaus Schulz [3] and by Volker Diekert (Chapter 12 in [2]).

Apart from its theoretical interest, the problem became more widely known,
because of its relevance in computer science, artificial intelligence and auto-
mated reasoning. As opposed to the above works on decidability which just
enumerate all solutions and make the decidability of the existence of a solution
their primary focus, we are interested in the latter works, inspired by automated
theorem proving, where the set µUΣ of the most general solutions is the focus
of attention.

The most common and simple example to show that string unification is
infinitary is the following

(1) xa = ax

with the set of most general unifiers

µUΣ = {{x 7→ a}, {x 7→ aa}, {x 7→ aaa}, . . .}.
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It is easy to show that indeed this is a solution set and it is not as immediate,but
still not too hard to show that there does not exist any other more general set of
unifiers µUΣ for this problem. Finally µUΣ is minimal, which again is obvious,
as there are no variables in the an and thus they do not yield to instantiation.
Hence in general

string unification is infinitary.

As we have said, this is a well known fact since the mid seventies and it
is probably the most often quoted example in any lecture or monograph on
unification theory.

A similar example
(2) xa = bx

is usually chosen to demonstrate that the naive string unification algorithm is
not a decision procedure: although it is obvious that the above example is not
unifiable, the actual algorithm would run forever.

However, problem (1) has a finite set (in fact an even e-unitary set) of
essential unifiers

eUΣ = {{x 7→ a}} = {σ1}
and any other unifier can be obtained with λ1 = {x 7→ an−1x}, n > 0 and
λ2 = ε. In other words, for any unifier σn = {x 7→ an}:

σn = λ1σ1λ2

= {x 7→ an−1x} ◦ σ1 ◦ ε
= {x 7→ an−1x} ◦ {x 7→ a} ◦ ε
= {x 7→ an}

where λ1 obeys a certain structural property, to be defined in the next section.
Once this observation had been made a few years ago, there was an intense

struggle to generalise this observation to any string unification problem and to
prove the conjecture

string unification is e-finitary.

As we shall show in this paper, this conjecture is false in general, albeit it
holds for certain subclasses of strings.

2 Basic Notions and Notation

Notation and basic definitions in unification theory are well known and have
found their way into many and diverse research areas, standard survey articles
are [18, 6, 7] and the monographs and textbooks on automated theorem proving
usually contain sections on unification. Most recent results are presented at the
Unification Workshop.1

1First workshop in Val d’Ajol in 1987 and since then annually. Since 1997, there is a
website UNIF’987, UNIF’98, UNIF’99 up to UNIF’05 in Japan and UNIF’06 at the FLOC
conference in Seattle.
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For the reader’s convenience we present some of the standard notation below,
followed by the definitions of our novel approach for essential unifiers.

2.1 Unification theory: common definitions

An alphabet F = (Fn)n∈N provides a vocabulary, where the function symbols
Fi, i ∈ N have the arity i. Function symbols with arity 0 are called constants. A
set X gives us a denumerable set of variable symbols, usually denoted as x, y, z
etc. and F and X constitute Σ, the signature of a term algebra.

The set of (first-order) terms TF,X over a signature Σ generated by the
variables X, is the smallest set containing the variables x ∈ X, and the terms
f(t1, . . . , tn), whenever f ∈ Fn is a function symbol of arity n and t1, . . . , tn ∈
TF,X are terms. The set of terms is a (free) term algebra.

The set of variable-free terms are called ground terms. The set of variables
occurring in a term t is denoted by Var(t) and the set of symbols of F occurring
in t is denoted by Sym(t). For a term t the set of sub-terms Sub(t) contains
t ∈ Sub(t) itself and is closed recursively by containing t1, . . . , tn ∈ Sub(t), if
f(t1, . . . , tn) ∈ Sub(t). For a set of terms T = {t1, t2, . . . , tn} the subterms are
defined by Sub(T ) = Sub(t1) ∪ . . . ∪ Sub(tn).

A substitution is the (unique) homomorphism in the term algebra gener-
ated by a mapping σ : X −→ TF,X from a finite set of variables to terms.
Substitutions are generally denoted by small Greek letters α, β, γ, σ etc. A sub-
stitution σ is represented explicitly as a function by a set of variable bindings
σ = {x1 7→ s1, . . . , xm 7→ sm}. The application of the substitution σ to a term
t, denoted tσ, is defined by induction on the structure of terms

tσ =
{
si if t = xi
f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn)

The substitution ε = {} with tε = t for all terms t in TF,X is called the
identity. A substitution σ = {x1 7→ s1, . . . , xm 7→ sm} has the domain

Dom(σ) := {x|xσ 6= x} = {x1, . . . , xm};

and the range is the set of terms

Ran(σ) :=
⋃

x∈Dom(σ)

{xσ} = {s1, . . . , sm};

The set of variables occurring in the range is VRan(σ) := Var(Ran(σ)) and
Var(σ) = Dom(σ) ∪VRan(σ); the restriction of a substitution σ to a set of
variables Y ⊆ X, denoted by σ|Y , is the substitution which is equal to the
identity everywhere except over Y ∩Dom(σ), where it is equal to σ.

Relations such as =,≥, . . . between substitutions sometimes hold only if
restricted to a certain set of variables V . A relation R which is restricted to V
is denoted as RV , and defined as σ RV τ ⇐⇒ σ|V R τ|V .

The composition of two substitutions σ and θ is written σ ◦ θ (emphases the
composition) or just σθ and is defined by tσθ = (tσ)θ.
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Two substitutions σ and θ are equal, denoted σ = θ iff xσ = xθ for every
variable x.

A term t is an instance of a term s denoted s ≤ t, if t = sσ for some
substitution σ, i.e.

s ≤ t⇔ ∃σ : sσ = t.

We also say s is more general or less specific than t. The relation ≤ is
a quasi-ordering on terms called the subsumption ordering, whose associated
equivalence relation and strict ordering are called subsumption equivalence and
strict subsumption, respectively.

The encompassment ordering or containment ordering [4] is defined as the
subterm ordering composed with the subsumption ordering, i.e. a subterm of t
is an instance of s

s v t ⇐⇒ ∃σ : sσ ∈ Sub(t).

Encompassment conveys the notion that s “appears“ in t with a context “above“
and a substitution “below“. We say t encompasses s or s is part of t.

A substitution θ is called more general than σ, denoted θ ≤ σ, if there exists
a λ such that σ = θλ, i.e.

θ ≤ σ ⇐⇒ ∃λ : θλ = σ.

The relation ≤ is a pre-order, called the instantiation ordering for substitutions.
An equation or identity s = t in a term algebra TF,X is a pair (s, t) of terms

and an algebra A satisfies the equation s = t if for every homomorphism

h : TF,X −→ A,

h(s) = h(t) that is, only if (s, t) is in the kernel of every homomorphism from
TF,X to A.

An equational theory is defined by a set of identities E ⊆ TF,X × TF,X . It
is the least congruence on the term algebra which is closed under substitution
and contains E, and will be denoted by =E . If s =E t we say s and t are
equal modulo E. The sets [s]E = {t|t =E s} are called congruence classes or
equivalence classes (modulo E).

Let E be an equational theory and Σ the signature of the underlying term
algebra. An E-unification problem (over Σ) is a finite set of equations

Γ = {s1 =?
E t1, . . . , sn =?

E tn}

between Σ-terms with variables in a (countably infinite) set of variables V .
An E-unifier of Γ is a substitution σ, such that

s1σ =E t1σ, . . . , snσ =E tnσ.

The set of all E-unifiers of Γ is denoted by UΣE(Γ) or if the signature Σ is
known from the context, we just write UE(Γ) or even U(Γ).

A complete set of E-unifiers of Γ is a set C of substitutions, such that
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(1) C ⊆ UΣE(Γ), i.e. each element of C is an E-unifier of Γ relative to a
signature Σ and

(2) for each θ ∈ UΣE(Γ) there exists σ ∈ C with σ ≤E θ.

The set µUΣE(Γ) is a minimal complete set of E-unifiers for Γ, if it is a complete
set, i.e. µUΣE ⊆ C, and every two distinct elements of µUΣE are incomparable,
i.e., σ ≤E σ′ implies σ =E σ′ for all σ, σ′ ∈ µUΣE . When a minimal complete
set of E-unifiers of a unification problem Γ exists, it is unique up to subsumption
equivalence.

The empty or unit substitution ε is a unifier in case s =E t are already equal.
Minimal complete sets of unifiers need not always exist, and if they do, they
might be singular, finite, or infinite. Since minimal complete sets of E-unifiers
are isomorphic whenever they exist, theories can be classified with respect to
their corresponding unification problem.

This leads naturally to the concept of a unification hierarchy which was first
introduced in Siekmann’s Ph.D. Thesis in 1975 [16], and further refined and
extended by himself and his students, see [18, 6, 7] for surveys.

A unification problem Γ is nullary, if Γ does not have a minimal complete
set of E-unifiers. The unification problem Γ is unitary, if it is not nullary and
the minimal complete set of E-unifiers is of cardinality less or equal to 1. The
unification problem Γ is finitary, if it is not nullary and the minimal complete
set of E-unifiers is of finite cardinality. The unification problem Γ is infinitary,
if it is not nullary and the minimal complete set of E-unifiers is of infinite
cardinality.

An equational theory E is unitary, if all unification problems are unitary.
An equational theory E is finitary, if all unification problems are finitary. An
equational theory E is infinitary, if there is at least an infinitary unification
problem and all unification problems have minimal complete sets of E-unifiers.
If there exists a unification problem Γ not having a minimal complete set of
E-unifiers, then the equational theory is nullary of type zero.

2.2 Additional Definitions: Essential Unifiers

Substitutions form a semigroup with respect to their composition. This fact
was used to define the instantiation order on unifiers from above, namely

σ ≤ τ ⇐⇒ ∃λ : σ ◦ λ = τ,

which led to the notion of a most general unifier.
As indicated above this concept does not generalise well on equational theo-
ries: the equational theory of associativity A = {x(yz) = (xy)z)}, i.e. the free
semigroup with the unification problem {ax =?

A xa} has the infinite set of most
general unifiers {{x 7→ an}|n ≥ 1}, as discussed in the introduction.
However, the essentially unifier in this set intuitively seems to be {x 7→ a}, be-
cause every most general unifier contains this unifier in a certain sense, namely:

{x 7→ an} = {x 7→ an−1x} ◦ {x 7→ a}.
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Now having in mind that substitutions form a semigroup, the dual of the
instantiation ordering, i.e. left-composition instead of right-composition seems
to change the infinitary problem into a finitary one if we redefine the order ≤
into ∃λ : σ = λτ, where σ = {x → a}. But this is not compatible with the
original notion of generality and it would not quite work in general.

Our solution to this dilemma is based on a lifting of the encompassment
order on terms to an encompassment order on substitutions. More specifically
we define a tripartition of a substitution i.e. an ordering concept which involves
both left composition and right composition:

σ � τ ⇐⇒ ∃α∃β : τ = ασβ.

And we say σ is part of τ and τ encompasses σ. This ordering concept,
called part ordering in the following, is the result of lifting the encompassment
order on terms and on substitutions, and it can be used to generate all unifiers
as well. A unifier like σ above will be called an essential unifier if there is no
left and right composition for σ and we shall now summarise the formalism to
define the concept of an essential unifier (see [5] for more details). We say a
substitution σ is part of a substitution τ , if and only if the domain of σ is a
subset of the domain of τ and there exist α and β that ”build up” σ into τ by
means of composition, i. e. τ = ασβ, and σ has actually ”contributed ” in this
decomposition of τ . The actual ”contribution” of σ is important, since otherwise
we would just end up again with the classical notion of a most general unifier.
Technically this can be captured by the requirements, that the domain of σ and
α are subsets of the domain of τ and whenever a variable x is in the domains
of σ and α, then it is a variable in the range of α.

As usual this part relationship is generalized to equational theories E by
considering all relationships modulo E, and we say: σ is a part-substitution of τ
modulo E. This lifts the encompassment relation on basic terms to substitutions.

Part ordering on substitutions �E is technically defined as follows:

Definition 2.1 (Part ordering of substitutions) For substitutions σ and τ
with V = Var(τ)

(1) σ is part of τ modulo E denoted as σ�E τ , if there are two substitutions
α and β with τ =V

E ασβ, where Dom(σ) ∪ Dom(α) ⊆ Dom(τ) and
Dom(σ)∩Dom(α) ⊆ VRang(α). In other words a substitution σ is part
of a substitution τ if there is an instance of σ, namely (σβ) which is a
contributing (right) factor of τ , i. e. τ = α(σβ).2

(2) σ is proper part of τ modulo E: σ �E τ , if σ �E τ where the above two
substitutions α and β with τ =V

E ασβ imply that αβ 6=E ι, where ι = ∅.

(3) σ and τ are part equivalent modulo E: σ ≡E τ by σ �E τ ∧ τ �E σ

(4) σ is not part of τ modulo E: σ 6 �Eτ by ¬(σ �E τ).
2Note the analogy to the encompassment order: ”a term s is part of term t if there is an

instance of s, namely (sσ), which is a subterm of t.”
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(5) σ and τ are part extrinsic modulo E: σ ./E τ by σ 6 �Eτ and τ 6 �Eσ.

Note that the contribution constraint assures that each term in the range
of σ actually contributes to τ . This makes sure that we do not have unneces-
sary components like x 7→ f(a) which are just absorbed, as illustrated by the
following example

τ = {x 7→ a, y 7→ b} = {x 7→ a}{x 7→ f(a)}{y 7→ b},

where {x 7→ f(a)} is obviously not a part of τ and absorbed by {x 7→ a}. A
substitution is a proper part if each part decomposition implies that the framing
factors actually contribute something. As an illustration of the above definition
consider the following example:

τ = {x 7→ f(g(z), h(z)), y 7→ g(z), z 7→ j(x), v 7→ k(y, z)}

has a part σ = {y 7→ g(z), z 7→ j(y)}, since there is a left factor α = {x 7→
f(y, u)} and a right factor β = {u 7→ h(z), y 7→ x, v 7→ k(y, z)}. Obviously σ
is a part of τ , since it contributes with y 7→ g(z) to α and it even contributes
directly with z 7→ j(y) to τ , since z is not in the domain of α. Finally β
completes the decomposition.

Proposition 2.2 The part substitution ordering is indeed a pre-order, i.e. re-
flexive and transitive.

The concept of an essential unifier can now easily be defined as:

Definition 2.3 A unifier is essential if and only if it is minimal with respect
to the part ordering, i.e. An essential e-unifier has no E-unifying part-
substitution.

The set of essential unifiers is indeed a generating set for all unifiers just as
the traditional set of most general unifiers. This can be shown with the existence
of a corresponding closure operator. A set of unifiers C(Γ) is e-complete if for
each unifier σ there exists a unifier τ in C which is part of σ. A complete set
of unifiers C(Γ) is e-minimal if any two distinct elements are not part of each
other. Such a set is denoted as eUΣE(Γ) This set exists and is unique, because
if there exist two complete sets of essential unifiers eUΣ1

E and eUΣ2
E with τ in

eUΣ1
E\eUΣ2

E and σ in eUΣ2
E\eUΣ1

E then since eUΣ1
E is complete, there exist

the substitutions α and β for τ such that σ =V
E ατβ. Since eUΣ2

E is a set of
essentials it follows σ =E τ , contradicting the assumption.

Lemma 2.4 Let E be an equational theory and Γ a unification problem. Then
the set of essential unifiers eUΣE(Γ) is a generating set for the set of all unifiers
UΣE(Γ).

A proof can be found in [5].

Lemma 2.5 eUΣE(Γ) ⊆ µUΣE(Γ)

The interesting observation is that the above subset of essential unifiers can be
extremely small in comparison to its superset, as we shall see in the following.
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3 Essential String Unification

We are interested now in the A-unification problem, i.e. unification in the free
semigroup, where

A = {f(x, f(y, z)) = f(f(x, y), z)}

and the set of terms are built up as usual over constants, variables, but only
one function symbol f . In this case, we can just drop the fs and brackets and
write strings (or words) over the alphabet of constants and variables. A set of
string equations will be denoted as Γ = {u1 = v1, . . . , un = vn} and Var(Γ)
is the set of free variable symbols occurring in ui and vi. Let V = Var(Γ),
then a (string-) unifier σ : V 7→ Σ∗ is a solution for Γ if uiσ = viσ, 1 ≤ i ≤ n.
The set of all unifiers is denoted as U(Γ). A unifier σ is ground if its range
contains only constants and no variables. Now let us look at a few motivating
examples, which show that indeed an infinite set of most general unifiers µUΣ
collapses to a finite set of essential unifiers eUΣ, supporting the hypothesis that
the infinitary string unification problem is essentially finitary (which is false in
general, as we shall see below).

Our first example is the well known string unification problem mentioned in
the introduction:

ax =? xa with σn = {x 7→ an}, n > 0

has infinitely many most general unifiers, but there is just one e-unifier σ0 =
{x 7→ a} because of

σn = {x 7→ an−1x} ◦ σ0.

The next example has two variables3

xy =? yx

and has infinitely many most general unifiers

σi,j = {x 7→ zi, y 7→ zj}, i, j > 0, where i and j are relative prime,

but it has only one e–unifier σ0 = {x 7→ z, y 7→ z} because of

σi,j = {x 7→ zi−1x, y 7→ zj−1y} ◦ σ0

Our next example is taken from J. Karhumäki Combinatorics of Words. The
system {

xaba =? baby
abax =? ybab

}
3see http://www.math.uwaterloo.ca/~snburris/htdocs/scav/e_unif/e_unif.html, ex-

ample 15
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has infinitely many most general unifiers

σn = {x 7→ b(ab)n, y 7→ (ab)na}, n ≥ 0

But it has only one e-unifier, namely σ0 because of

σn = {x 7→ x(ab)n, y 7→ (ab)ny} ◦ σ0.

Exploiting the analogy between the first and the second example above, we
can easily construct the following example (and many more in this spirit): But
the unification problem

xxyyxx =? yyxyxyy

has only one most general unifiers

σn = {x 7→ z3, y 7→ z2},

and this is the only e–unifier.
The fifth example is taken from J. Karhumäki as well:

axxby =? xaybx

has infinitely many most general unifiers

σi,j = {x 7→ ai, y 7→ (aib)jai}, i ≥ 1, j ≥ 0

but it has only one e-unifier σ1,0 = {x 7→ a, y 7→ a} which is essential because
of

σi,j = {x 7→ yai−1, y 7→ (aib)jxai−1} ◦ σ1,0

The final example is a bit more elaborate but still in the same spirit.

zaxzbzy =? yyzbzaz

has infinitely many most general unifiers

σn = {x 7→ b2na, y 7→ bnabn, z 7→ bn}, n > 0

but it has only one e-unifier, namely σ1 = {x 7→ bba, y 7→ bab, z 7→ b} because
of

σn = {x 7→ b2n−2x, y 7→ bn−1ybn−1, z 7→ bn−1z} ◦ σ1

3.1 String Unification with at most one variable is e-unitary

So let us assume our unification problem

Γ = {u1 =? v1, . . . , un =? vn}

over the signature Σ consists of at most one variable, but arbitrary many con-
stants. Without loss of generality, each arbritrary set of string equations is
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equivalent to a single string equation preserving the solutions. For example
Diekert used the following construction

{u1a . . . unau1b . . . unb =? v1a . . . vnav1b . . . vnb}

where a and b are distinct constants. The two equational problems have the
same solutions.

Let Γ = {u0xu1...xun = v0xv1...xvm}, ui, vi are ground strings, x in Σ =
X ∪ F and V = Var(Γ) = {x}. The following facts are well known.

1. The equation in Γ can be reduced to the form u0xu1...xun = xv1...xvm,
where u0 is not the empty string and either un is nonempty and vm is
empty or vice versa. This form implies also that any unifier is a prefix of
the string uk0 .

2. if m 6= n there is at most one unifier.

3. If m = n = 1, i.e. Γ = {u0x = xv1}, and the unifiers are of the form:
x 7→ (pq)ip, i ≥ 0, where pq is primitive. Note: A word is primitive if it is
not the power of some other word, i.e. it cannot be represented as uvnw,
for some words u, v, w and n > 1.

4. Considering m = n > 1 the unifiers are of the form: x 7→ (pq)i+1p, i ≥ 0,
where pq is primitive.

5. For a given Γ there exist at most one infinite solution of the form: σi =
{x 7→ (pq)i+1p}, i ≥ 0.

6. Unifiers of string equations with at most one variable are ground substi-
tutions. We were not able to find a publication with a proof. We show
this result below.

These results are now used to show that string unification with only one
variable is e-unitary. The first step is to prove that all unifiers are ground
substitutions. The second step is to prove that all unifiers share an essential
unifier.

Proposition 3.1 Let Γ = {u0xu1...xun = xv1...xvn} be a string equation with
at most one variable x and U(Γ) = {x 7→ (pq)i+1p}, i ≥ 0. Then Var(pq) is
empty, i.e. all unifiers are ground substitutions.

Proof.

1. Suppose p contains a variable z, i.e. p = p1zp2 where p1 is ground. Ap-
plying the unifier x 7→ (pq)i+1p yields

u0(pq)i+1pu1 . . . = (pq)i+1pv1 . . . = u0(p1zp2q)i+1pu1 . . . = (p1zp2q)i+1pv1 . . .

Consider the prefixes u0p1 . . . = p1z . . . Since |u0p1| ≥ |p1z| and u0 is
nonempty, z must be a symbol in u0p1, which is impossible.
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2. Suppose q contains a variable z, i.e. q = q1zq2 where q1 is ground. Apply-
ing a unifier x 7→ (pq)i+1p yields

u0(pq)i+1pu1 . . . = (pq)i+1pv1 . . . = u0(pq1zq2)i+1pu1 . . . = (pq1zq2)i+1pv1

Consider the prefixes u0pq1 . . . = pq1z . . .. Since |u0pq1| ≥ |pq1z| and u0

is nonempty, z must be a symbol in q1 which is impossible.

Hence Var(pq) is empty. �

Theorem 3.2 String unification with one variable is e-unitary.

Proof. Without loss of generality, let Γ = {u0xu1...xun = xv1...xvn} be a
string unification problem in one variable x and

U(Γ) = {{x 7→ (pq)i+1p} : i ≥ 0}.

Then there are the following decompositions, where V ={x}

1. In case of n = 1 and p is empty then

{x 7→ (pq)ip} =V {x 7→ (pq)ix} ◦ {x 7→ p} ◦ ε
if p is nonempty then
{x 7→ qi} =V {x 7→ qi−1x} ◦ {x 7→ q}

either {x 7→ p} or {x 7→ q} are essential unifiers.

2. In case of n > 1 and p is empty then

{x 7→ (pq)i+1p} =V {x 7→ (pq)ix} ◦ {x 7→ pqp}
or p is nonempty then
{x 7→ qi+1} =V {x 7→ qix} ◦ {x 7→ q}

either {x 7→ pqp} or {x 7→ q} are essential unifiers.

Hence the unification problem is e-unitary. �

3.2 String unification is e-infinitary

String unification with at most one variable in the signature Σ is e-finitary as
we have seen above and surely there are many more special cases of signature
restrictions, where the set of e-unifiers is always finite. Special cases of this
nature have been investigated extensively for the solvability problem of words4.

Theorem 3.3 String unification with more than one variable is e-infinitary
4Google scholar finds 70,300 entries in 0.13 sec for “word equation” (not all of which is

relevant) and several 100,000 more entries if you are patient enough to continue the search
and to filter gold from garbage.
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Proof. For Γ = {xby = ayayb} the set of essential unifiers is

eU(Γ) = {{x 7→ abna, y 7→ bn} : n > 0}

Correctness
Any substitution σn = {x 7→ abna, y 7→ bn} is a unifier since (xby)σn =
abnabbn = abnabn+1 = (ayayb)σn.

Completeness
We show that any unifier is of the form {x 7→ abna, y 7→ bn}. Now considering
some unifier {x 7→ u, y 7→ v}. Since Γ = {xby = ayayb}, u = au′ and v = v′bk,
k > 1. Applying the unifier in xby = ayayb yields au′bv′bk = av′bkav′bkb. Since
v′ can not contain any a v′ = bi. Hence the unifier is now σ = {x 7→ au′, y 7→ bj},
where j = i+ k. Thus Γσ = {au′bbj = abjabjb} , xbbj = abiabib, and x = abja.

Essential
We show that the set {{x 7→ abna, y 7→ bn} : n > 0} is e-minimal. So take any
pair of different unifiers {x 7→ abma, y 7→ bm} and {x 7→ abna, y 7→ bn} and we
show that they are incomparable with respect to the part ordering. Suppose
m < n, then |abna| > |abma| > |bm|, therefore {x 7→ abma, y 7→ bm} 6= α{x 7→
abn y 7→ bn}β. Now the other way round; the longer unifier could contain
the shorter, but then there exists a decomposition {x 7→ abna, y 7→ bn} =
α{x 7→ abma, y 7→ bm}β where w.l.o.g. α = {x 7→ u, y 7→ v}. Since y 7→ bn it
follows v ∈ {b, y}∗, because the longer unifier maps y to bn. Now let‘s look at
x 7→ abna contains only two times the letter a, u = u1xu2 with u1, u2 ∈ {a, b}∗
or u ∈ {a, b}∗. In the latter case x occurs not in the range of α, and x is in the
domain of {x 7→ abna, y 7→ bn}. Thus, in this case {x 7→ abma, y 7→ bm} is not a
part of {x 7→ abna, y 7→ bn}. In the case of u = u1xu2 = abna with x 7→ abma,
it follows that u1 and u2 are empty, contradicting abna 6= abma. �

3.3 A General A-Theorem

Let E be a set of equational axioms containing the associativity axiom of a
binary operator ∗, i.e. A = {x ∗ (y ∗ z) = (x ∗ y) ∗ z} and E = A∪R, where R is
some set of equations. We call the theory modulo E A-separate, if any equation
in R can not be applied to a pure string x1 ∗ x2 ∗ · · · ∗ xn, where the brackets
are suppressed.

For instance consider distributivity (which is an infinitary unification theory,
see [19]

D = {x ∗ (y + z) = (x ∗ y) + (x ∗ z), (x+ y) ∗ z = (x ∗ z) + (y ∗ z)},

then the theory of E = A∪D is A-separate. To see this, note that no equation
of D can be applied to a string of x1 ∗ x2 ∗ · · · ∗ xn, simply because there are no
sums involving the plus sign +, but each equation in D has the sum symbol +
on its left and on its right side.

Formally, E = A ∪ R is A-separate, if for all elements u of the A-theory
u =R v implies u = v.
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Theorem 3.4 All A-separate E-theories are e-infinitary

Proof. Reconsider the unification problem of section 3.2 above. It has in the
associative sub-algebra infinitely many e-unifiers. Each of the elements of the
range of the essential unifiers is not affected by the remaining equational axioms
in R = E\A, since E is A-separate. Hence each A-separate theory is e-infinitary.
As noted above the theory A ∪D is A-separate. �

Corollary 3.5 The theory A ∪D is e-infinitary.

4 Idempotent semigroups are e-finitary

The following theory of idempotent Semigroups or Bands defined by

AI = {f(x, f(y, z)) = f(f(x, y), z), f(x, x) = x}

demonstrates another interesting applicability of essential unifiers. This theory
is not A-separate. This theory is nullary with respect to the instantiation order,
since there are solvable AI-unification problems which do not posses a minimal
complete set of AI-unifiers with respect to the instantiation ordering [1, 15].

However, with respect to the part ordering �E this well-known situation
changes completely as this theory is essentially finitary. Associativity and idem-
potency constitute the algebra of idempotent strings and it was shown in [5]
that:

Theorem 4.1 The theory AI is not nullary with respect to essential unifiers

Proposition 4.2 AI is not unitary with respect to essential unifiers.

And finally the most striking result:

Theorem 4.3 The theory AI is finitary with respect to essential unifiers.

5 A derivation system for A–Unification

Let Σ be the set of symbols (alphabet) and let X be the set of variables. Let u,
v, w be strings, i.e. elements of the free monoid (X ∪Σ)∗. Let Γ = {u =? v} be
a A-unification problem. A solution σ is a substitution, such that the equality
uσ = vσ is valid, denoted by σ |= u = v.

Let Λ be the homomorphism between the strings of the free monoid (X∪Σ)∗

into PΣ(X), where P(X) are the polynomials in X, that is defined by

Λ : x 7→
{
x for x ∈ V ar(Γ)
1 otherwise and Λ(uv) = Λ(u) + Λ(v).

Extend the notation for unification problems Γ = {u =? v} by

Λ(Γ) = {Λ(u) =?
P Λ(v)}}

96



mapping a string unification problem to a system of linear equations, where P
is the set of Peano axioms; and for substitutions σ = {x1 7→ u1, . . . , xn 7→ un}
to

Λ(σ) = σΛ = {x1 7→ Λ(u1), . . . , xn 7→ Λ(un)}.
Since substitutions are in the following assumed to consists only of free variables,
the image is a vector of lengths σΛ = {x1 7→ |u1|, . . . , xn 7→ |un|}.

For instance let Σ be the alphabet {a, b} and Γ = {xby =? ayayb}. Then

Λ(Γ) = {x+ 1 + y =? 1 + y + 1 + y + 1} = {x =? y + 2}.

For the unifier σ = {x 7→ abba, y 7→ bb},

Λ(σ) = {x 7→ 4, y 7→ 2},

which is obviously a solution of Λ(Γ).

Lemma 5.1 If σ is an A-unifier for Γ, then the linear diophantine equation
Λ(Γ) has an integer solution Λ(σ) : x 7→ Λ(σ(x)).

Proof. Follows from the homomorphism definition. �

Let σ = σ>σ⊥ be a leaf decomposition for a substitution σ, σ⊥(x) ∈ Σ∪X.
Define for a solution α : X 7→ N of a linear diophantine equation ∆, i.e. α |= ∆,
a substitution δα with δα(x) = x1 . . . xn, where n = α(x) and all xi are free
variables, i.e. not in V ar(σ).

Let Ψ be the reduction system of the following reduction rules

Truncation
[ulur =? ulvr, S]

[ur =? vr, S]
,

[ulur =? vlur, S]
[ul =? vl, S]

Generation
[Γ, S], α |= Λ(Γ),∃λ : X → Σ ∪X : δαλ ∈ eU(Γ)

[Γ, S ∪ {δαλ}]

Define A =⇒Ψ B if A
B in Ψ, and let =⇒∗Ψ be the transitive closure of =⇒Ψ.

Lemma 5.2 [Γ, ∅] =⇒∗Ψ [Γ′, S ∪ {σ}] iff σ |= Γ.

Proof. ”⇒” by definition of the Generation Rule. ”⇐” σ |= Γ implies Λ(σ) |=
Λ(Γ). Let Λ(σ) =: α . Thus the Generation Rule is applicable with σ = δαλ for
a λ. �

Define the ordering α ≤ β by
∑
x∈Dom(α) α(x) ≤

∑
x∈Dom(β) β(x).

Lemma 5.3 λ E σ implies Λ(λ) ≤ Λ(σ).

Proof. λ C σ implies that there exists α and β such that σ = αλβ. Thus
Λ(σ) = Λ(α) + Λ(λ) + Λ(β). Hence∑
x∈Dom(σ)

Λ(σ(x)) =
∑

x∈Dom(α)

Λ(α(x)) +
∑

x∈Dom(λ)

Λ(λ(x)) +
∑

x∈Dom(β)

Λ(β(x)).

Hence Λ(λ) ≤ Λ(σ). �
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Lemma 5.4 Let Γ = {u =? v} be an A-unification problem with α |= Λ(Γ),
such that there exists λ : X → Σ ∪X with δαλ |= Γ, then λ is unique.

Proof. Syntactic unification is unitary. Hence there exists a function uni that
maps a solution α of Λ(Γ) to a unifier uni(α) = δαλ. �

Lemma 5.5 Let Γ be an A-unification problem and α < β be two solutions of
Λ(Γ). If there exist the two unifiers uni(α) and uni(β), then uni(β) 6E uni(α).

Proof. Suppose the contrary uni(β) E uni(α). Note Λ(uni(β)) = β and
Λ(uni(α)) = α. That implies β ≤ α, a contradiction. �

A controlled algorithm for enumerating the essentials could look like

FOR ALL i ≥ 0 DO COMPUTE
S(i) = {α | α |= Λ(Γ),

∑
x∈Dom(α) α(x) = i} (* diophantine equation *)

U(i) = {uni(α) | α ∈ S(i)} (* real unifiers *)
E(i) = E ∪ {λ ∈ U(i) | ¬∃σ ∈ E : σ E λ} (* essential unifiers *)
EXIT WHEN P (E(i),Γ) = ∅
WHERE P (E,Γ) = {σ : X → Σ∗ | σ |= Γ ∧ ∀β ∈ E : β 6 �Aσ}

END FOR

Lemma 5.6 For a finite set E of substitutions and a finite equational problem
Γ modulo A the above predicate P (E,Γ) is decidable.

Proof.

P (E,Γ) = {σ : X → Σ∗ | σ |= Γ ∧ ∀β ∈ E¬∃α, γ : σ = αβγ}
= {σ : X → Σ∗ | σ |= Γ ∧ ∀β ∈ E : σ 6= αβγ}

To simplify the notation we assume without loss of generality that the sub-
stitutions might even erase variables, i.e., we consider homomorphisms in the
free monoid instead of homomorphisms in the free semi group. The case consid-
erations of the proof for semi groups is rather cumbersome but straight forward
by introducing equation variations where the variables that might be erased are
eliminated from the beginning.

Proposition 5.7 For a pair of substitutions β and σ there exists a set Γ of
equational systems with

σ = αβγ if and only if at least one equational system of Γ is solvable.

Proof. Consider the following simplifications: If there is a factorzation σ = αβγ
then without loss of generality there exists also a factorization σ = α′βγ′ where
the domain and the set of variables in the range of α′ are made disjoint by
renamings introducing free variables, i.e.

(Dom(α′) ∩ V Ran(α′)) \Dom(β) = ∅
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and for γ

Dom(γ′) ∩ V Ran(γ′) = ∅ and V Ran(γ′) ∩Dom(α′) = ∅

Let further without loss of generality

V Ran(α′) ∩Dom(γ′) = ∅ and Dom(γ′) ⊆ V Ran(β) = ∅

which can be reached by applying γ on α. Thus for σ = αβγ = α′βγ′ for each
x in the domain of σ the following equation is valid

σ(x) =


γ′(α′(x) = α′(x) x ∈ Dom(α′), Rα(x) = ∅
γ′(β(α′(x))) x ∈ Dom(α′), Rα(x) 6= ∅
γ′(β(x)) x /∈ Dom(α′), x ∈ Dom(β)
γ′(x) x /∈ Dom(α′), x /∈ Dom(β)

where Rα(x) = V ar(α′(x)) ∩Dom(β).
Define a family of equation systems under the hypothesis of a family of

Rα(x) ⊆ Dom(β), where x varies in Dom(σ), and a domain Dα = Dom(α) ⊆
Dom(σ). Thus all variations of hypotheses are defined by σ and β. Let the
equation system be

xβ =? β(xβ) xβ ∈ Dom(β) (1)
xσ =? uxσxβ

xβvxσxβ
xσ ∈ Dα, xβ ∈ R(xσ) (2)

xσ =? xβ xσ /∈ Dα (3)
xσ =? σ(xσ) xσ ∈ Dom(σ) (4)

⇒: σ = αβγ implies that there is a Γ ∈ Γ with a solution δ |= Γ: Consider Γ
with Dα = Dom(α) and for x ∈ Dom(σ) let Rα(x) = V ar(α(x))∩Dom(β). The
equation sub-system (1) and (4) are obviously solved by β and σ. Equational
sub-system (2) is solvable, since for every x ∈ Dom(σ) that is mapped by α
onto a string α(x) that contains a variable out of the domain of β, there are
bindings for a prefix and a suffix, that solve each equation in (2). (3) is also
solvable, since there exist a γ such that for each x ∈ Dom(σ) ∩ Dom(β) that
does not occur in Dom(α) it is shown by σ(x) = γ(β(x)) that the equation is
solvable.
⇐: If there is a δ |= Γ ∈ Γ, then there are α and γ with σ = αβγ: Suppose

Γ with Dα and Rα(x), x ∈ Dom(σ). Define α(x) = δ(uxσxβ
)xβδ(vxσxβ

) for
all x ∈ Dα. Define γ(x) = δ(x) for all x /∈ Dα. This corresponds to the
normalization considerations in the beginning of the proof of the proposition
and shows σ = αβγ. �

Proposition 5.8 For a finite set E of substitutions β there exists an equational
system Γ(E) with the property

σ |= Γ(E) if and only if there exists β ∈ E with σ = αβγ

Proof. This follows from the fact that the equational theory of semi groups is
boolean closed, i.e. a boolean combination of equation systems can be expressed
by a single equation system. �
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From the proposition follows that

P (E,Γ) = {σ : X → Σ∗ | σ |= Γ ∧ ∀β ∈ E : ¬σ = αβγ}
= {σ : X → Σ∗ | σ |= Γ ∧

∧
β∈E

¬σ |= Γ(β)}

For each equational problem Γ there exists a complementary equational problem
Γ with ¬(σ |= Γ) if and only if σ |= Γ. Hence it follows

P (E,Γ) = {σ : X → Σ∗ | σ |= Γ ∧
∨
β∈E

σ |= Γ(β)}

=
⋃
β∈E

{σ : X → Σ∗ | σ |= (Γ ∪ Γ(β))}

Thus the predicate P (E,Γ) = ∅ is reformulated as a finite set of string unifica-
tion problem which is known as being decidable. �

As a corollary from the above considerations we state

Theorem 5.9 The algorithm enumerates all essential unifiers for an A-unification
problem Γ and terminates if the set of essential unifiers is completed.

6 Conclusion

The results reported above come as a disappointment to some extent: while
the set of e-unifiers is considerably ‘smaller’ — albeit still infinite in general
— than the set of most general unifiers for a string unification problem, the
anticipated collapse of the infinitary theory to an e-finitary theory did not hold
up to scrutiny.

This may not surprise those familiar with this problem, in spite of the sim-
plicity and immediate intuitiveness of the problem formulation (using strings)
the solvability as well as the unification problem turned out to be of exceptional
difficulty and complexity.

For practical purposes, e.g. as a unification component within an automated
theorem proving system, based on resolution or rewriting,there are two problem
left over

1. To find a unification algorithm which generates — as efficiently as possible
— the set of e-unifiers

2. To show how the reasoning machinery can be built upon e-unifiers instead
of most general unifiers.

We have a solution to both problems, however far from anything practically
useful: the unification algorithm is to resolution based theorem proving what
the addition-and-multiplication unit is to a general purpose computer — and
hence deserves the utmost effort in engineering, measured not in MiPs but in
LiPs (logical inferences per sec, i.e. in fact the number of unifications p.sec)
which was the hallmark of the fifth generation computer race in the 1980s.
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The theoretically inclined reader, familiar with unification theory, may for-
give us our lengthy motivational introduction and notational sections but un-
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unifier is still not as widely known as we would like, let alone fully appreciated as
a fundamentally new concept. The results and counterexamples in this paper,
however, make sense only in this particular context — hence the introduction.
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