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Abstract

In this thesis we present a method for verifying recursive functional programs. We define a Verification
Condition Generator (VCG) which covers the most frequent types of recursive programs (including
nested recursive and mutual recursive ones). These programs may operate on arbitrary domains. We
prove Soundness and Completeness of the VCG and this provides a warranty that any system based
on our results will be sound.

As a distinctive feature of our method, the verification conditions do not refer to a theoretical
model for program semantics or program execution, but only to the theory of the domain used in the
program. This is very important for the automatic verification, because any additional theory present
in the system would significantly increase the proving effort.

We introduce here the notion of Completeness of a VCG as a duality of Soundness. It is important
for the following two reasons: theoretically, it is the dual of Soundness and practically, it helps debug-
ging. Any counterexample for the failing verification condition will carry over to a counterexample
for the given program and specification. Moreover, the failing proof gives information about the place
of the bug.

Furthermore, we introduce a specialized strategy for termination. The termination problem is
reduced to the termination of a simplified version of the program. The conditions for the simplified
versions are identical for entire classes of functional programs, thus they are highly reusable.

The research presented in this thesis is performed in the frame of the Theorema system, a mathe-
matical computer assistant which aims at supporting the entire process of mathematical theory explo-
ration. Our results on verification conditions complement the Theorema capabilities for programming
and proving.
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Zusammenfassung

In dieser Dissertation stellen wir eine experimentelle Prototyp-Umgebung für die Definition und Veri-
fikation rekursiver funktionaler Programme vor. Wir definieren einen Verifikationsbedingungserzeuger
(VCG), welcher für die häufigsten Typen von Programmen ausreicht, die in beliebigen Bereichen ar-
beiten können (einschließlich Programmen mit geschachtelter oder wechselseitiger Rekursion). Wir
beweisen Korrektheit und Vollständigkeit des VCG, und das garantiert, daß jedes auf unseren Ergeb-
nissen beruhende System korrekt ist.

Ein besonderer Gesichtspunkt unserer Methode ist, daß sich die Verifikationsbedingungen nicht
auf ein bestimmtes theoretisches Modell für die Semantik oder Exekution eines Programmes beziehen,
sondern ausschließlich auf die Theorie des Bereichs, der im Programm verwendet wird. Das ist für
die automatische Verifikation sehr wichtig, da jede zusätzliche dem System innewohnende Theorie
den für den Beweis nötigen Aufwand beträchtlich erhöhen würde.

Wir führen hier den Begriff der Vollständigkeit eines VCG als Dual zur Korrektheit ein. Das ist
aus den folgenden beiden Gründen wichtig: theoretisch als das Dual zur Korrektheit, und praktisch als
eine Hilfe beim Finden und Korrigieren von Fehlern. Jedes Gegenbeispiel für eine fehlerhafte Veri-
fikationsbedingung führt zu einem Gegenbeispiel für das Programm und seine Spezifikation. Darüber
hinaus sind wir in der Lage, die genaue Stelle des Fehler festzustellen.

Weiters führen wir eine spezielle Strategie für Terminationsbeweise ein. Sie werden auf den
Nachweis von Eigenschaften vereinfachter Versionen zurückgeführt, welche ihrerseits neu verwendet
werden können, sodaß genaue Terminationsbeweise in vielen Fällen ausgelassen werden können.

Die Forschungsarbeit, die in dieser Dissertation präsentiert wird, wird im Rahmen des Theorema-
Systems durchgeführt, einem mathematischen Computer-Assistenten mit dem Ziel, den gesamten
Prozeß der Erforschung einer mathematischen Theorie zu unterstützen: die Erfindung mathematis-
cher Begriffe, Finden und Verifikation (Beweis) von Aussagen A über Begriffe, das Finden von Prob-
lemen, die mit Hilfe der Begriffe formuliert werden könnnen, Erfindung und Verifikation (Korrek-
theitsbeweis) von Algorithmen, sowie Abspeicherung und Wiederfinden von Formeln, die während
dieses Prozeßes gefunden und verifiziert wurden. Das System enthält eine Sammlung von allge-
meinen und speziellen Beweisern für verschiedene interessante Bereiche (z.B. den ganzen Zahlen,
Mengen, reellen Zahlen, Tupeln, usw.).
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Chapter 1

Introduction

The introduction at hand exceeds the standards of a thesis introduction, however, we want to make
the thesis readable and understandable for a bigger audience. Thus, in order to make the content
selfcontained, we chose a tutorial-like style. The introduction contains a brief presentation of matters
which are closely related to the topic of the thesis.

Although the beginning of program verification dates back to 1950-s, the level it has achieved so
far is not satisfactory. At the same time, the software production is rapidly growing, and in fact, only
very small part of that production goes trough (some kind of) verification (or validation) process. We
are convinced that in order to increase the quality of the software production, program verification,
and formal methods should play a bigger role during the process of software design and composition.

The thesis at hand is dedicated to the development of a relevant theory, which may serve the
practical need of proving program correctness in an automatic manner. Along with the theoretical
development, many practical examples are demonstrated. Readers who would not be interested on
reading the mathematical proofs of the theorems presented here may look at the main results and at
the examples.

Although the examples presented here appear to be relatively simple, they already demonstrate the
usefulness of our approach in the general case. We aim at extending these experiments to industrial-
scale examples, which are in fact not more complex from the mathematical point of view. Furthermore
we aim at improving the education of future software engineers by exposing them to successful ex-
amples of using formal methods (and in particular automated reasoning) for the verification and the
debugging of concrete programs.

The main literature sources we used during the preparation of this chapter are [46], [44], [2], [9],
[61], [58], and [65].

1.1 Specification and Verification

Program specification (or formal specification of a program) is the definition of what a program is
expected to do. Normally, it does not describe, and it should not, how the program is implemented.
The specification is usually provided by logical formulae describing a relationship between input and
output parameters. We will consider specifications which are pairs, containing a precondition (input
condition) and a postcondition (output condition).

1



2 CHAPTER 1. INTRODUCTION

Given such a specification, it is possible to use formal verification techniques to demonstrate that
a program is correct with respect to the specification.

A precondition (or input predicate) of a program is a condition that must always be true just prior
to the execution of that program. It is expressed by a predicate on the input of the program. If a
precondition is violated, the effect of the program becomes undefined and thus may or may not carry
out its intended work. For example: the factorial is only defined for integers greater than or equal to
zero. So a program that calculates the factorial of an input number would have preconditions that the
number be an integer and that it be greater than or equal to zero.

A postcondition (or output predicate) of a program is a condition that must always be true just
after the execution of that program. It is expressed by a predicate on the input and the output of the
program.

Remark: We do not consider here informal specifications, which are normally written as com-
ments between the lines of code.

Formal verification (from Latin: verus - true) is, in general, the act of proving mathematically the
correctness of a program with respect to a certain formal specification. Software testing, in contrast
to verification, cannot prove that a system does not contain any defects, neither that it has a certain
property, e.g., correctness with respect to a specification. Only the process of formal verification can
prove that a system does not have a certain defect or does have a certain property.

There are roughly two main approaches to formal verification: Model checking [19], which con-
sists of an exploration of the mathematical model—that is only possible for finite models; Program
verification—where our contribution falls—consists of using logical reasoning about the program,
usually with the help of a theorem prover [44].

Model checking is the process of checking whether a given structure is a model of a given logical
formula. The concept is general and applies to all kinds of logics and suitable structures. A simple
model-checking problem is testing whether a given formula in the propositional logic is satisfied by a
given structure.

The structure is usually given as a source code in a special-purpose language. Such a program
corresponds to a finite state machine, i.e., a directed graph consisting of nodes (or vertices) and edges.
A set of atomic propositions is associated with each node. The nodes represent states of a system, the
edges represent possible transitions which may alter the state, while the atomic propositions represent
the basic properties that hold at a point of execution.

Formally, the problem can be stated as follows: given a desired property, expressed as a temporal
logic formula p, and a structure M with initial state s, decide if

M, s |= p.

If M is finite, as it is in hardware, model checking reduces to a graph search.

Program verification, in contrast to model checking, may deal with infinitely many instances of
input objects and may provide a rigorous formal mathematical warranty that the desired specification
is obeyed.

The problem of verifying programs is usually split into two subproblems: generate verification
conditions which are sufficient for the program to be correct and prove the verification conditions,
within the theory of the domain for which the program is defined. In this thesis, we address mainly
the first of these subproblems, namely the generation of the verification conditions.
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1.2 Verification Condition Generator. Correctness and Completeness

A common approach to program verification is the axiomatic reasoning, which was initially developed
by Floyd [24] for the verifications of flowcharts. This method was then further developed by Hoare
[31] for dealing with while-programs and became known as Hoare Logic. The method provides a set
of logical rules allowing to reason about the correctness of computer programs with the methods of
mathematical logic.

The central feature of Hoare logic is the Hoare triple. It describes how the execution of a piece of
code changes the state of the computation. A Hoare triple is of the form:

{P} C {Q}, (1.1)

where P and Q are assertions (normally given by logical formulae) and C is a command, or a program.
In the literature, P is called the precondition and Q the postcondition. Hoare logic has axioms and
inference rules for all the constructs of simple imperative programming languages.

In order to reason about programs, one first translates the problem of a proving program property
into a problem of proving logical assertions, and then prove the assertions. A common way for making
such translation is by some verification condition generator—its name is self-explanatory.

A Verification Condition Generator (VCG) is a device—normally implemented by a program—
which takes a program, actually its source code, and the specification, and produces verification con-
ditions. These verification conditions do not contain any part of the program text, and are expressed
in a different language, namely they are logical formulae.

〈Program, Specification〉 −→
V CG

V erification Conditions (1.2)

Let us say, the program is F and the specification IF (input predicate), and OF (output predicate)
is provided. The verification conditions generated by VCG are: V C1, V C2, . . . , V Cn, that is:

〈F, 〈IF , OF 〉〉 −→
V CG

V C1 ∧ · · · ∧ V Cn. (1.3)

After having the verification conditions at hand, one has to prove them as logical formulae in the
theory of the domain on which the program is defined, e.g., integers, reals, etc. We denote this theory
by Th[DF ].

Normally, these conditions are given to an automatic or semi-automatic theorem prover. If all of
them hold, then the program is correct with respect to its specification. The latter statement we call
Soundness of the VCG, namely:

Given a program F and a specification IF (input condition), and OF (output condition), if the
verification conditions generated by the VCG hold as logical formulae, then the program F is correct
with respect to the specification 〈IF , OF 〉:

if Th[DF ] |= V C1 ∧ . . . ∧ V Cn then F is correct with respect to 〈IF , OF 〉.
(1.4)

It is clear that whenever one defines a VCG, the first task to be done is proving its soundness
statement—otherwise it would not be properly called: Verification Condition Generator.

Completing the notion of Soundness of a VCG, we introduce its dual—Completeness—which is
introduced by the author of this thesis in [40]. The respective Completeness statement of the VCG is :
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Given a program F and a specification IF (input condition), and OF (output condition), if the pro-
gram F is correct with respect to the specification 〈IF , OF 〉, then the verification conditions generated
by the VCG hold as logical formulae:

if F is correct with respect to 〈IF , OF 〉 then Th[DF ] |= V C1 ∧ . . . ∧ V Cn. (1.5)

The notion of Completeness of a VCG is important for the following two reasons: theoretically,
it is the dual of Soundness and practically, it helps debugging. Any counterexample for the failing
verification condition would carry over to a counterexample for the program and the specification,
and thus give a hint on “what is wrong”.

Indeed, most books about program verification present methods for verifying correct programs.
However, in practical situations, it is the failure which occurs more often until the program and the
specification are completely debugged.
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1.3 Partial and Total Correctness of a Program

A distinction is made between total correctness, which additionally requires that the program termi-
nates, and partial correctness, which simply requires that if an answer is returned (that is, the program
terminates) it will be correct.

For example, if we are successively searching through integers 1, 2, 3, . . . to see if we can find
an example of some phenomenon—say an odd perfect number—it is quite easy to write a partially
correct program (use integer factorization to check n as perfect or not). But to say this program is
totally correct would be to assert something currently not known in number theory.

The relation between partial and total correctness is informally given by:

Total Correctness = Partial Correctness + Termination.

We give the necessary formal definitions in what follows. Let us say, given the program F and the
specification IF (input predicate), and OF (output predicate). Henceforth, by ↓ we denote the predi-
cate expressing termination. We will write F [x] ↓ and say “F terminates on x”. Partial correctness of
F is expressed by the formula:

(∀x : IF [x]) (F [x] ↓ =⇒ OF [x, F [x]]). (1.6)

Termination of F is expressed by:

(∀x : IF [x]) F [x] ↓, (1.7)

and total correctness of F respectively:

(∀x : IF [x]) (F [x] ↓ ∧ OF [x, F [x]]). (1.8)

Logically, it is clear that partial correctness (1.6) and termination (3.9) imply total correctness
(1.8), and throughout this thesis we make use of this fact.

The following example of a powering program accomplished with an appropriate specification
illustrates the previous formulae. Let pow be the program:

pow[x, n] = If n = 0 then 1 else x ∗ pow[x, n− 1], (1.9)

which for any two numbers x and n, such that x ∈ R and n ∈ N, computes the number xn.
Now, the constraint that x ∈ R and n ∈ N forms the input condition, namely

(∀x, n) (Ipow[x, n] ⇐⇒ x ∈ R ∧ n ∈ N), (1.10)

and the desire that for such x and n the program pox[x, n] computes xn forms the output condition:

(∀x, n, y) (Opow[x, n, y] ⇐⇒ xn = y). (1.11)

The total correctness formula is now:

(∀x : x ∈ R)(∀n : n ∈ N) (pow[x, n] ↓ ∧ xn = pow[x, n]). (1.12)

Proving the correctness formula (1.12) in the theory of N and R is actually proving the total
correctness of the program (1.9) with respect to the specification (1.10), (1.11).



6 CHAPTER 1. INTRODUCTION

1.4 Imperative and Functional Programming

Programming languages are generally divided into two major groups, namely imperative and func-
tional ones. Although, “real” programming languages are often hybrids of both programming paradigms,
it is easier to split them and reason about them separately.

Imperative programming, in contrast to functional programming, is a programming paradigm that
describes computation as statements that change a program state. In much the same way as the
imperative mood in natural languages expresses commands to take action, imperative programs are a
sequence of commands for the computer to perform.

For a comprehensive overview on the recent achievements in verification of imperative program-
ming we refer to the work of Kovacs [38].

Functional programming is very different from imperative programming. The most significant
differences stem from the fact that functional programming avoids side effects, which are used in
imperative programming to implement the state. Pure functional programming does not allow side ef-
fects at all, thus it is easier to verify, optimize, and parallelize programs, and easier to write automated
tools to perform those tasks.

Functional programming is a programming paradigm that treats computation as the evaluation of
functions. It emphasizes the application of functions, in contrast with the imperative programming
style that emphasizes changes in state [33].

From logical point of view, functional programs are equivalent to conditional equalities, and,
therefore they are logical formulae.

Iteration (looping) in functional languages is usually accomplished via recursion. Recursive func-
tions invoke themselves, allowing an operation to be repeated.

The main focus of this thesis is the development of tools for verification of pure functional recur-
sive programs. Henceforth, “pure” and “functional” front of recursive programs, will be omitted in
order to simplify the presentation.
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1.5 Automatic Theorem Proving. The Theorema System

Automatic Theorem Proving, and more generally, Automated Reasoning is a border area of com-
puter science and mathematics dedicated to understanding different aspects of reasoning in a way that
allows the creation of software which makes computers to reason completely or nearly completely
automatically. Automatic theorem proving is, in particular, the proving of mathematical theorems by
an algorithm. In contrast to proof checking, where an existing proof for a theorem is certified valid,
automatic theorem provers generate the proofs themselves. A recent and relatively comprehensive
overview on that aria may be found in [64].

The research presented in this thesis is performed in the frame of the Theorema system [14], a
mathematical computer assistant which aims at supporting the entire process of mathematical theory
exploration: invention of mathematical concepts, invention and verification (proof) of propositions
about concepts, invention of problems formulated in terms of concepts, invention and verification
(proof of correctness) of algorithms, and storage and retrieval of the formulae invented and verified
during this process. The system includes a collection of general as well as specific provers for various
interesting domains (e. g. integers, sets, reals, tuples, etc.). More details about Theorema are available
at www.theorema.org. The papers [14], [15] are surveys, and point to earlier relevant papers.
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1.6 Related Research

There is a wealth of related work in program verification and a comprehensive overview on the topic
may evolve into PhD thesis itself. However, in the literature there are two main types of sources,
namely classical books and lecture notes, and, tools for proving program correctness automatically or
semiautomatically.

Proofs exposed in classical books (e.g., [44], [46]) are very comprehensive, however, their orien-
tation is theoretical rather than practical and mechanized. Verification there is normally a process in
which the reader is required to understand the concept and perform creativity.

Furthermore, in order to perform verification, one uses the model of computation, which signifi-
cantly increases the proving effort.

In contrast to classical books, computer aided verification is oriented towards verification of prac-
tical and popular types of programs, e.g., primitive recursive functions, mutual recursive functions,
etc. Performing creativity there is normally not required and the aim is to speed up the verification of
quantitative programs.

There are various tools for proving program correctness automatically or semiautomatically, and
this is where our contribution falls into. In what follows, we only name the most significant ap-
proaches.

In the PVS system [28] the approach is type theoretical and relies on exploration of certain sub-
typing properties. The realization is based on Church’s higher-order logic. The system is one of the
most accepted and popular tools for verification.

The HOL system [32], originally constructed by Gordon, is also based on generalization of
Church’s higher-order logic. It mainly deals with primitive recursive functions, however, there is
a very interesting work dedicated to transforming non-primitive recursive to primitive recursive func-
tions [63]. There are various versions of HOL—in [26] one may find how it evolved over the years.

The Coq system [4] is based on a framework called “Calculus of Inductive Constructions” that is
both a logic and a functional programming language. Coq has relatively big library with theories (e.g.,
N, Z, Q, lists, etc.) where the individual proofs of the verification conditions may be carried over [5].

The KeY system [3] is not a classical verification condition generator, but a theorem prover for
program logic. It is distinguished from most other deductive verification systems in that symbolic exe-
cution of programs, first-order reasoning, arithmetic simplification, external decision procedures, and
symbolic state simplification are interleaved. KeY is manly dedicated to support object-oriented mod-
els, where for loop- and recursion-free programs, symbolic execution is performed in an automated
manner.

The Sunrise system [62] contains embedding of an imperative language within the HOL theorem
prover. A very specific feature of the system is that its VCG is verified as sound, and that soundness
proof is checked by the HOL system. The programming language containing assignments, condition-
als, and while commands, and also mutually recursive procedures, however, all variables have the type
N.
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The ACL2 system [1] is, in our opinion, one of the most comprehensive systems for program
verification. It contains a programming language, an extensible theory in a first-order logic, and
a theorem prover. The language and implementation of ACL2 are built on Common Lisp. ACL2
is intended to be an industrial strength version of the Boyer-Moore theorem prover NQTHM [8],
however its logical basis remains the same.

Furthermore, in [49] it is shown how a theorem prover may be used directly on the operational
semantics to generate verification conditions. Thus no separate VCG is necessary, and the theorem
prover can be employed both to generate and to prove the verification conditions.

The main (and also very essential) difference of our approach is that we are able to formulate
conditions which are not only sufficient but also necessary in order for the program to be correct.

In contrast to other tools, which expose methods for verifying correct programs, we put special
emphasize on verifying incorrect programs.
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1.7 Main Contributions

The following are the new contributions:

• We define a Verification Condition Generator (VCG) which covers the most frequent types of
recursive programs (including nested recursive and mutual recursive ones). These programs
may operate on arbitrary domains. We prove Soundness and Completeness of the VCG and this
provides a warranty that any system based on our results will be sound.

• As a distinctive feature of our method, the verification conditions do not refer to a theoretical
model for program semantics or program execution, but only to the theory of the domain used
in the program. This is very important for the automatic verification, because any additional
theory present in the system would significantly increase the proving effort.

• We introduce here the notion of Completeness of a VCG as a duality of Soundness. It is im-
portant for the following two reasons: theoretically, it is the dual of Soundness and practically,
it helps debugging. Any counterexample for the failing verification condition will carry over
to a counterexample for the given program and specification. Moreover, the failing proof gives
information about the place of the bug.

• We introduce a specialized strategy for termination. The termination problem is reduced to the
termination of a simplified version of the program. The conditions for the simplified versions
are identical for entire classes of functional programs, thus they are highly reusable.

In order to be clear what our contributions are, throughout the thesis we use systematically the
following two forms:

• “we define”, “we formulate”, etc. – that is our contribution;

• “is defined”, “is formulated”, etc – that is taken from the literature.
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1.8 Organization of the thesis

In Chapter (2) we present (some part of) the theory of computability, more precisely fixpoint theory
of programs. The reader is not expected to be a specialist in order to follow the presentation.

In Chapter (3) we develop a theoretical framework whose results are then used for automatic
verification. We define there necessary and also sufficient conditions for a program to be totaly correct.
We then construct a VCG which generates these conditions.

In a series of theorems, we prove soundness and completeness of the respective verification con-
ditions. This implies that the truth of the verification conditions is necessary and sufficient to verify
the total correctness of the program under consideration.

At the end of Chapter (3), we present various examples and we discuss rigorously possible ap-
plications of our research in domains which seem to be a bit far from program verification, namely
Teaching Formal Methods to graduate students, and, Algorithm investigation for scientific computing.

We conclude with chapter (4).
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Chapter 2

Logical Basis: Fixpoint Theory of
Programs

This chapter is dedicated to the theoretical results we use throughout the thesis. We make a selection
and present here results from the theory of computability, more precisely fixpoint theory of programs,
which are well studied in the literature.

Following the fixpoint theory of programs, developed by D. Scott [23], we use the semantics of
programs defined as least fixpoints of recursive operators. In that context, we define properties of
programs and prove them by using the method of Scott induction [46].

Throughout this section we study (the most interesting) properties of computer science operators,
e.g., compact, effective and recursive ones. However, as we are going to observe here, the notion of
operator in the mathematical sense has very similar (even identical) meaning as the one in computer
science.

A comprehensive overview on the theory of computability (ours is not such) starts with defining
the programming paradigm (programming language), e.g., Turing Machines, Unbounded Register
Machines, µ-Recursive Functions etc. We do not specify here the programming language, because, as
it is well known, most of the programming paradigms have the same computing power. We assume
that our programs are defined in a language (arbitrary but fixed) with the computing power of Turing
Machines.

According to the Church-Turing thesis, any function which has an algorithm (or a program) is
computable. The Church-Turing thesis says that any real-world computation can be translated into an
equivalent computation involving a Turing machine.

Throughout this chapter, we follow the standard way of presenting results from the theory of com-
putability, namely, all the functions are defined over the naturals, that is, N is the universe. However,
this is not a restriction and the results apply to programs defined on other domains, e.g., reals, etc.
The idea is that computers may work only with countable sets, e.g. rationals, computable reals, lists,
etc., which themselves may be encoded by naturals.

For a comprehensive overview on such “lifting” we refer to [7] and [6].

The main literature sources we used during the preparation of this chapter are [61], [46] and [44].
Additionally, some notations are influenced by [57].

13
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2.1 Prerequisites

Reading this chapter requires some basic knowledge from the theory of computability. However, we
tried to keep the presentation such that it is maximally selfcontained.

Here we give a non-comprehensive list of common notions and notations which are used through-
out the whole thesis.

• Computable function.

Any function which has an algorithm (or a program) is computable. These functions are also
called partial recursive functions.

• Partial function.

In contrast to a total function, partial function is a function which may not be defined for some
arguments. For instance, division is a partial function of two arguments. A partial function,
however, is not necessarily computable.

• Programs and functions.

To any program P , there is an associated function f computed by the program, defined as
follows: for any x, if the program P terminates on x and computes y, then f [x] = y. If the
program P does not terminate on x, then f [x] is not defined. These functions are also called
partial recursive functions.

• Total function.

A total function is a function defined for all arguments. For instance, multiplication is a total
function of two arguments. A total function, however, is not necessarily computable.

• Recursive function.

Recursive functions are those which are both computable and total.

• Termination of a program.

In order to express the phenomenon of program termination and non-termination, the termina-
tion symbol ↓ is introduced. One says: “The program P terminates on x.” and write P [x] ↓.
Complementary, one says: “The function f is defined on x.” and write f [x] ↓.

For example, the nowhere defined function Ω is defined as ∀x ¬(Ω[x] ↓). Note that Ω is
computable function.

In order to simplify the presentation, we use one new symbol⊥, for expressing non-termination.
When we have P non-terminating on x, we write P [x] = ⊥, and respectively f [x] = ⊥ for
expressing that f is not defined on x. In fact, one may extend the standard domain (e.g. naturals)
by adding ⊥ and develop the theory of programs in that extended domain.

• Decidable (recursive, computable) set.

A set is called decidable if there is a program which terminates after a finite amount of time and
decides whether or not a given element belongs to the set or not. A set which is not decidable
is called undecidable.

Alternative names expressing the same notion are recursive set and computable set.
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• Semidecidable (recursively enumerable, semicomputable) set.

A set is called semidecidable if there is an algorithm which terminates after a finite amount of
time (and gives a positive answer) if a given element belongs to the set. When the element is
not in the set that algorithm may, in general, not terminate. A set which is not semidecidable is
called unsemidecidable.

Alternative names expressing the same notion are recursively enumerable set and semicom-
putable set.

Every decidable set is semidecidable, but it is not true that every semidecidable set is decidable.

A set is decidable if and only if it is semidecidable and its complement is also semidecidable.

Alternative names expressing the same notion are recursively enumerable set and semicom-
putable set.

• Domain of a function.

The domain of a function is the set of all inputs for which the function is defined. It is denoted
by dom[f ].

A set is semidecidable if and only if there exists a partial recursive function whose domain is
that set.

• Range of a function.

The range of a function is the set of all values that the function takes when the argument takes
values in the domain. It is denoted by range[f ].

The range of a computable function is semidecidable set.

• Graph of a function.

The graph of a function f is the set of all pairs x, y, where x ranges over the domain of f and
f [x] = y. It is denoted by graph[f ] or Gf .

Note that from logical point of view there is no difference between functions and their graphs.

The graph of a computable function is a semidecidable set.

If the graph of a function is a semidecidable set, then the function is computable.

• Restriction of a function.

The restriction of a function f to a set S, denoted by f ¹S , is the function which for any x,
x ∈ S, f ¹S [x] = f [x] and is not defined for arguments out of S.

• Gödel numbering.

A Gödel numbering is a function that assigns to each symbol and formula of some formal
language a unique natural number called its Gödel number. The concept was introduced by
Kurt Gödel for the proof of his incompleteness theorem.

In our case, Gödel numbering is interpreted as an encoding in which a number is assigned to
each program.

In more detail, for a fixed programming language, all the programs may be ordered in a list:

P0, P1, . . . Pk, . . . ,
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such that for any given program P , its Gödel number k may be computed, and, for any natural
number k, the corresponding program Pk may be effectively obtained.

• Enumeration of all the computable functions.

Based upon the idea of encoding programs, the same enumeration carries over to an enumer-
ation of computable functions. To each program Pk (taken from the list of all programs) is
associated a computable function ϕk. Hence the list:

ϕ0, ϕ1, . . . ϕk, . . . ,

contains all the computable functions.

Note that any computable function is associated to infinitely many programs, and hence any com-
putable function has infinitely many indexes.

This list of prerequisite is not (and cannot be) comprehensive—it briefly describes the basic no-
tions which could be expected in order to fully understand the proofs in this chapter.

2.2 Operators

We have seen many times the word operator in the context of computer science or mathematics texts.
In mathematics, operator is a function which operates on another function, namely it is a function
which acts on functions to produce other functions. In linear algebra an operator is a linear operator.
In analysis an operator may be a differential or integral operator.

In general, the term operator in computer programming languages has the same meaning as in
mathematics. This is particularly a case in functional programming languages, where an operator is
also a function.

For example, if-then-else is an operator. A common feature of them is that they perform transfor-
mations on programs, that is, transformations on computable functions.

The following example describes a typical recursive operator. Here we use Pascal as programming
language.

type nat = 0 .. maxint ; (2.1)

function G (function F : nat ; X : nat) : nat ;

var Y, I : nat;

begin

Y := 0;

for I := 0 to X do

Y := Y + F (I);

G := Y

end;
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From mathematical point of view, G is an operator, because it takes a function F as an argument
and returns again a function. On the other hand, G is a function (higher order) which is described by
the formula:

G[F ] = λX .
X∑

I=0

F [I] . (2.2)

Note that G is defined on arbitrary unary functions, not necessarily computable ones. In order to
be precise, we give here the definition of what we mean by operator.

Henceforth, by Fn we denote the set of all partial functions on n arguments, (n ≥ 1).

Definition 2.1. Any total function Γ from Fn to Fr is an operator. The pair (n, r) is the type of the
operator Γ .

In the example (2.1), G is an operator and its type is (1, 1). Another interesting feature of G
is its compactness, namely for a given function F , and argument X , for computing the new function
G[F ] applied to the argument X , that is, G[F ][X], we need to know only a finite part of F , namely the
values of F in the interval [0, . . . , X], but not the whole F . The behavior of F out of that interval does
not influence the result of G[F ][X]. Moreover, one may observe that all the operators in computer
science have a compact behavior, because (intuitively) if the computation terminates, and gives the
result, it does so in finitely many steps.

In order to compare functions, we consider the case when a partial function g dominates other
partial function f (or alternatively, f is dominated by g). Intuitively, this means that g contains all the
information f does and possibly some more.

Definition 2.2. Let f and g be partial functions: f, g ∈ Fn for some fixed n. We say f is dominated
by g, and write f ⊆ g if and only if

(∀x1, . . . , xn) (f [x1, . . . , xn] ↓ =⇒ f [x1, . . . , xn] = g[x1, . . . , xn]).

For any n, the relation ⊆ defines a partial ordering in Fn with a minimal element the nowhere
defined function on n arguments Ωn, and it is so, because for any f ∈ Fn, we have Ω ⊆ f .

A partial function is finite if its domain is a finite set. For example, Ω is finite. It is clear that, every
finite function is computable. Henceforth, for a fixed n and so Fn, by θ (sometimes with indexes) we
denote finite functions.

We are now ready to give the precise definition of a compact operator.

Definition 2.3. Let Γ be an (n, r) operator. We say Γ is compact if and only if for any f ∈ Fn,

(∀x1, . . . , xr, y) (Γ[f ][x1, . . . , xr] = y =⇒ (∃θ : θ ⊆ f) (Γ[θ][x1, . . . , xr] = y)).

The next interesting feature of G is its effectiveness, that is, if F is computable function, then
G[F ] is also computable function. Moreover, if we know the Gödel number a of F , that is, F = ϕa,
we can find effectively the Gödel number b of G[F ], that is, G[F ] = ϕb.
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Definition 2.4. Let Γ be an (n, r) operator. We say Γ is effective if and only if there exist a recursive
function h, such that,

(∀a : a ∈ N) (Γ[ϕa] = ϕh[a]).

One may observe that all the operators in computer science are effective, because (intuitively)
they are described by a (piece of) program, that is, the transformation corresponding to the operator is
driven by a computable function.

In order to bring this two notions together, namely compactness and effectiveness, the notion of
recursive operator is introduced.

Definition 2.5. Let Γ be an (n, r) operator. We say Γ is recursive if and only if Γ is compact and
effective.

After having introduced the main definitions about operators, namely compact and effective ones,
in the next sections we are going to study their behavior in more detail.

2.3 Compact Operators

In this section we consider closely the properties of compact operators in order to characterize their
behavior. The reader may discover some similarities between compact operators and other compact
objects, e.g., compact sets, compact definitions, etc, from other branches of mathematics, however,
we do not presuppose any knowledge and results taken from that branches.

In order to make the point clearer, in this section we give an example of an operator which is not
compact. Before being ready to do so, we need to have some more definitions.

Definition 2.6. Let X be a set of partial functions on n arguments, that is, X ⊆ Fn, and g ∈ Fn. We
say g is an upper bound of X if and only if (∀f : f ∈ X) (f ⊆ g).

Note that supremum of X is the least upper bound of X , where least is with respect to ⊆.
Also, we need to explicitly mention that there are subsets of Fn, which have no upper bound. For

example, the set {λx. x + 1, λx. 0} has no upper bound.

Lemma 2.7. Given the ascending sequence {fk}k∈N of functions:

f0 ⊆ f1 ⊆ . . . ⊆ fk ⊆ . . .

fk ∈ Fn and the graph G:
G = {〈x, y〉 | (∃k) (fk[x] = y)}.

The function g, defined by its graph G is the supremum of the above sequence, denoted shortly as
{fk}k∈N.

Proof:
First we show that G is a graph of a function. Thus, let us take two elements from G: 〈x, y1〉 , 〈x, y2〉 ∈
G. From the definition of G we have that there are k1 and k2, such that, fk1 [x] = y1 and fk2 [x] = y2.
Let k1 ≤ k2, which implies that fk1 ⊆ fk2 . This means that fk1 [x] = fk2 [x] = y1 = y2.

Second, we show that g is an upper bound of {fk}k∈N. Let us take some x and assume that
fk[x] = y. This means that 〈x, y〉 ∈ G, hence g[x] = y. Thus we conclude that fk ⊆ g, that is, g is
an upper bound.
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Third, we show that g is the least upper bound of {fk}k∈N. Let h be an upper bound of {fk}k∈N.
Assume that g[x] = y. From the definition of g follows that there exists k, such that, fk[x] = y, and
thus h[x] = y. From this follows that g ⊆ h, which completes the proof of the lemma.

As we saw in the course of the proof, the graph of the supremum is the union of all the graphs of
the individual functions. This gives a good reason for using the notation.

Henceforth, by
⋃

fk we denote the supremum of an ascending sequence {fk}k∈N.

Lemma 2.8. Let {fk}k∈N be an ascending sequence of functions fk ∈ Fn, and θ be a finite function
dominated by the supremum, that is, θ ⊆ ⋃

fk . Then this finite function is dominated by some
element of the sequence, that is, there exists m, such that θ ⊆ fm.

Proof:
Let dom[θ] = {x1, . . . , xs}, and θ[x1] = y1, . . . , θ[xs] = ys. From θ ⊆ ⋃

fk follows that⋃
fk[x1] = y1, . . . ,

⋃
fk[xs] = ys. From here, by the previous lemma, we obtain that there are k1,

. . . , ks, such that fk1 [x1] = y1 , . . . , fks [xs] = ys. Now, let m be the maximum of these k1, . . . , ks,
and thus fk1 ⊆ fm, . . . , fks ⊆ fs. This implies θ ⊆ fm, which completes the proof of the lemma.

After having these two lemmata, we go back to the compact operators. We are ready now to give
an example for an operator, which is not compact.

Γ[f ][x] =





1 ⇐ f is total function

0 ⇐ otherwise
(2.3)

Let f be a total function, and thus, Γ[f ][0] = 1. On the other hand, Γ[θ][0] = 0 for any finite θ,
and in particular when θ ⊆ f , which contradicts definition (2.3).

Compact operators behave, in some sense, like continuous functions on reals. We know that, if
two continuous functions coincide for each rational number, they do so for each real as well. The
following lemma formalizes this statement.

Lemma 2.9. Let Γ1 and Γ2 be compact operators of type (n, r). If Γ1[θ] = Γ2[θ] for each finite θ,
θ ∈ Fn , then Γ1[f ] = Γ2[f ] for each f , f ∈ Fn.

Proof.
Let x and y be arbitrary but fixed, such that Γ1[f ][x] = y. From here, by the definition of compact

operators, we derive the following:

Γ1[f ][x] = y ⇐⇒ (∃θ : θ ⊆ f) (Γ1[θ][x] = y) ⇐⇒

⇐⇒ (∃θ : θ ⊆ f) (Γ2[θ][x] = y) ⇐⇒ Γ2[f ][x] = y,

which completes the proof of the lemma.

There is one more characterization of operators, they can be monotonic. Here by monotonic, we
will mean the standard definition:

Definition 2.10. Let Γ be an (n, r) operator. We say Γ is monotonic if and only if for any f, g ∈ Fn,

f ⊆ g =⇒ Γ[f ] ⊆ Γ[g].
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With the next statement, we are going to see the relationship between compact and monotonic
operators.

Lemma 2.11. Any compact operator is monotonic as well.

Proof.
Assume that Γ is a compact operator. Let f , g be arbitrary functions f, g ∈ Fn, such that f ⊆ g.

Let x and y be arbitrary but fixed, such that Γ[f ][x] = y. From here, by the definition of compact
operators, we derive that there exists θ, θ ⊆ f , such that, Γ[θ][x] = y. Since θ ⊆ f and f ⊆ g we
obtain θ ⊆ g and by the definition of compact operators, we obtain: Γ[g][x] = y.

Definition 2.12. Let Γ be an (n, r) operator. We say Γ is continuous if and only if for any ascending
sequence {fk}k∈N, Γ[

⋃
fk] is the supremum of {Γ[fk]}k∈N in Fr.

A bit further, we will see that any continuous operator is also monotonic. This fact allows us to
modify the previous definition in the following way:

Definition 2.13. Let Γ be an (n, r) operator. We say Γ is continuous if and only if Γ is monotonic,
and for any ascending sequence {fk}k∈N, Γ[

⋃
fk] =

⋃
Γ[fk].

With the next statement, we are going to see the relationship between compact and continuous
operators.

Lemma 2.14. Any compact operator is continuous as well.

Proof.
Assume that Γ is a compact operator. Let {fk}k∈N be an ascending sequence.
Let h and g be the supremums of the sequences Γ[fk] and fk respectively, that is: h =

⋃
Γ[fk]

and g =
⋃

fk. We need to show that Γ[g] = h.
Since Γ is monotonic, we have that Γ[fk] ⊆ Γ[g] for each k. From this we conclude that Γ[g] is

an upper bound for the set {Γ[fk]}k∈N, which implies that h ⊆ Γ[g].
Let x and y be arbitrary but fixed, such that Γ[g][x] = y. From here, by the definition of compact

operators, we derive that there exists θ, θ ⊆ g, such that, Γ[θ][x] = y. From here, by lemma (2.8), we
obtain that θ ⊆ fm for some m, that is, Γ[fm][x] = y. From here, by the definition of h, we obtain
that h[x] = y, which implies that Γ[g] ⊆ h, and the proof of the lemma is completed.

Lemma 2.15. Any continuous operator is compact as well.

Remark: Within the proof of this lemma we explicitly use the fact that our functions may have not
only single arguments (that is in case the functions are from F1), but also multiple arguments. Thus
we write here x instead of simply x.

Proof.
Assume that Γ is continuous operator. We first show Γ is monotonic.
Let f , g be arbitrary functions f, g ∈ Fn, such that f ⊆ g. Consider the sequence:

f ⊆ g ⊆ . . . ⊆ g ⊆ . . .
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From here, by lemma (2.7), we obtain that the supremum of the sequence:

f, g, . . . , g, . . .

is g. Since we assumed that Γ is continuous, by its definition we obtain that Γ[g] is an upper bound
for the set {Γ[f ], Γ[g]}, which implies that Γ[f ] ⊆ Γ[g]. The latter one shows that Γ is monotonic.

Now we show that Γ is compact.
Let f be arbitrary function f ∈ Fn, such that f is not finite. Now we construct the finite restrictions

θ1, θ2, . . . , θk, . . .

of f in the following way:
θk = f ¹ {0, . . . , k − 1},

for any k.
Remark: Here, by 0 we denote the zero vector of dimension n, moreover, by i we denote the

vector (i, i, . . . , i) of dimension n.
Remark: The set {0, . . . , k − 1} contains not only the diagonal elements, but all the n∗k possible

vectors.
We now have the following:

• θ0 = Ωn, that is, the first finite approximation θ0 is the nowhere defined function. This is so,
because θ0 = f ¹ ø.

• for any k, the domain dom[θk] of θk has kn elements, namely dom[θk] = {0, . . . k − 1}.

• for any k, θk[i] = f [i], for each i ∈ {0, . . . k − 1}
Now, we can see that:

θ0 ⊆ θ1 ⊆ . . . ⊆ θk ⊆ . . . ,

and f is the supremum of {θk}k∈N, that is f =
⋃

θk. From this follows that Γ[f ] = Γ[
⋃

θk],
and by knowing that Γ is continuous, by the transformed definition of continuous, we obtain that
Γ[

⋃
θk] =

⋃
Γ[θk].

Now we want to show that for any x and y, we have:

Γ[f ][x] = y ⇐⇒ (∃θ : θ ⊆ f) (Γ[θ][x] = y).

First we show this from left to right. Let x and y be arbitrary but fixed, such that Γ[f ][x] = y. This
implies that Γ[

⋃
θk][x] = y, and by lemma (2.8) we obtain that there exists k, such that Γ[θk][x] = y.

Now we show the other direction—from right to left. Let x, y and θ be arbitrary but fixed, such
that θ ⊆ f and Γ[θ][x] = y. Now, since Γ is monotonic, we obtain that Γ[f ][x] = y, which completes
the proof of the lemma.

Definition 2.16. Let Γ be an (n, n) operator. We say f , f ∈ Fn is the minimal fixpoint of Γ if and
only if:

(∀g : g ∈ Fn) (Γ[g] = g =⇒ f ⊆ g),

that is minimal, and it is also a fixpoint
Γ[f ] = f.
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Lemma 2.17. Let Γ be an (n, n) monotonic operator, and f , f ∈ Fn be a minimal solution of the
inequality Γ[X] ⊆ X , that is:

Γ[f ] ⊆ f,

and
(∀g : g ∈ Fn) (Γ[g] ⊆ g =⇒ f ⊆ g).

Then f is a minimal fixpoint of Γ.

Proof.
Assume that Γ is (n, r) monotonic operator, and f , f ∈ Fn is a minimal solution of the inequality

Γ[X] ⊆ X . This implies that Γ[f ] ⊆ f . From here, by applying Γ on both sides of the inequality
(Γ is monotonic) we obtain Γ[Γ[f ]] ⊆ Γ[f ]. This now means that Γ[f ] is a solution of the inequality
Γ[X] ⊆ X , and since f is a minimal solution, we conclude that f ⊆ Γ[f ]. Thus, we have f = Γ[f ],
that is, f is a fixpoint of Γ.

Now we show that f is a minimal fixpoint. Let g be arbitrary but fixed g ∈ Fn, such that Γ[g] = g.
Then we have g ⊆ Γ[g] and thus g ⊆ f , which completes the proof of the lemma.

We are now going to formulate a statement, which is an instance of the famous Knaster-Tarski
theorem originally formulated for lattice theory [25]. There, the formulation is as follows:

Theorem. Let L be a complete lattice and let G, G : L 7→ L be an order-preserving function. Then
the set of fixed points of G in L is also a complete lattice.

Since complete lattices cannot be empty, the theorem in particular guarantees the existence of at
least one fixpoint of G, and even the existence of a least fixpoint. In many practical cases, this is the
most important implication of the theorem.

In our context, the Knaster-Tarski theorem, actually the version we formulate here, shows that any
continuous operator has a minimal fixpoint. The proof itself is also very interesting, because it shows
how to construct a minimal fixpoint.

Theorem 2.18. Any continuous operator Γ of type (n, n) has a minimal fixpoint, which is a minimal
solution of the inequality Γ[X] ⊆ X .

Proof.
Assume that Γ is continuous. Now we construct the functions:

f0, f1, . . . , fk, . . . ∈ Fn,

in the following way:

f0 = Ω

. . .

fk+1 = Γ[fk]

. . . .
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Since Γ is continuous, and thus monotonic as well, we obtain the following:

f0 ⊆ f1 ⊆ . . . ⊆ fk ⊆ . . . .

Let f be the supremum of the sequence, that is, f =
⋃

fk. We show now that f is a minimal
fixpoint of Γ.

Since Γ is continuous, we have:

Γ[f ] = Γ[
⋃

fk] =
⋃

Γ[fk] =
⋃

fk+1.

On the other hand, f is an upper bound for {fk}, which implies that f is an upper bound for
{fk+1}. From here, we conclude that

⋃
fk+1 ⊆ f and hence Γ[f ] ⊆ f .

Let g, g ∈ Fn be arbitrary but fixed, such that Γ[g] ⊆ g. Using induction on k, we show that
fk ⊆ g.

When k = 0 we have f0 = Ω and hence f0 ⊆ g.
Assume that fk ⊆ g, for some k. Since Γ is monotonic, we obtain that Γ[fk] ⊆ Γ[g], that is

fk+1 ⊆ Γ[g] and since Γ[g] ⊆ g, we obtain that fk+1 ⊆ g.
We obtained that f is a minimal solution of the inequality Γ[X] ⊆ X , and by lemma (2.17), we

conclude that f is a minimal fixpoint of Γ, which completes the proof of the theorem.

The original Knaster-Tarski theorem is proven in 1928 by Knaster and Tarski [37], and it was in
the context of Set Theory. Later, Tarski extended the theorem to increasing functions on a complete
lattice and gave some applications in set theory and topology.

The Knaster-Tarski theorem, also known as Knaster-Tarski principle has an impact in theories,
which seem to be far from the original invention, such as metric spaces, recursive functions etc. An
interesting and relatively recent development can be found at [34].

As we see in the last section, this theorem brings us the desired induction principle, which is then
used for proving properties of fixpoints.

2.4 Effective and Recursive Operators

Effective operators are those operators which can be transformed into program code.
Recursive operators are the those operators which are effective and compact. Now, the following

question arises: Does the compactness restrict the class of effective operators? As we see in this
section, the answer is: No, it does not!

The Myhill-Shepherdson theorem (2.21) shows that for a given effective operator E, one can
construct a recursive operator Γ, such that the two operators coincide over the computable functions,
that is, for each computable function ϕ, we have E[ϕ] = Γ[ϕ].

Before continuing with the lemmata about operators, we first formulate one well established result
in recursive function theory, namely Rice-Shapiro theorem, which is used within the proof of the
lemma.

Theorem 2.19. Let A be a set of computable functions on n variables. If the set of Gödel numbers
(index set) IA , IA = {a | ϕa ∈ A} is semidecidable, then for any function f ,

f ∈ A ⇐⇒ (∃θ : θ ∈ A) (θ ⊆ f ∧ θ is finite).
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We do not provide here a proof of this theorem, however, we point the reader to the precise proof
in [57].

It is interesting to point out, that the halting problem itself is a well-known example of an undecid-
able problem. By reducing other problems to the halting problem, showing that they are as difficult,
we find that many important computational questions are undecidable. In fact, according to the Rice-
Shapiro theorem, all non-trivial properties of functions are undecidable. Here by non-trivial property
we mean that there are functions obeying that property and also there are other functions not obeying
it.

Lemma 2.20. Let E be an (n, r) effective operator. Then for every computable function f , f ∈ Fn

the following equivalence holds:
For any x and y,

E[f ][x] = y ⇐⇒ (∃θ : θ ⊆ f ∧ θ is finite) (E[θ][x] = y).

Proof.
Let h be a recursive (total and computable) function, such that for each a, we have E[ϕa] = ϕh[a].

Let also x and y be arbitrary but fixed. Now, from these x and y we construct the setA, whereA ⊆ Fn

in the following way:

A = {ϕ | ϕ is computable ∧ E[ϕ][x] = y}.
The index set of A is IA = {a | ϕa ∈ A}. Now we observe the following:
for any a,

a ∈ A ⇐⇒ E[ϕa][x] = y ⇐⇒ ϕh[a][x] = y.

Since x and y are fixed, the set {a | ϕh[a][x] = y} is recursively enumerable. Now, let ϕ, ϕ ∈ Fn

be arbitrary but fixed computable function. From the definition of A, we have that

ϕ ∈ A ⇐⇒ E[ϕ][x] = y.

On the other hand, by the Rice-Shapiro theorem, we obtain that

ϕ ∈ A ⇐⇒ (∃θ : θ ⊆ ϕ) (θ ∈ A),

and from the definition of A follows

ϕ ∈ A ⇐⇒ (∃θ : θ ⊆ ϕ) (E[θ][x] = y).

The latter one implies that:

E[ϕ][x] = y ⇐⇒ (∃θ : θ ⊆ ϕ) (E[θ][x] = y),

which completes the proof of the lemma.

The next result we want to present is the Myhill-Shepherdson theorem, initially formulated in
[51]. It shows that for a given effective operator E, one can construct a recursive operator Γ, such that
the two operators coincide over the computable functions.

Here we give the formal statement of Myhill-Shepherdson theorem:
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Theorem 2.21. Let E be an (n, r) effective operator. Then there exists exactly one recursive operator
Γ of type (n, r), such that for any computable function ϕ, where ϕ ∈ Fn, we have E[ϕ] = Γ[ϕ].

Proof.
Assume that E is (n, r) effective operator. Let us define Γ in the following way:
for any f , x, and y,

Γ[f ][x] = y ⇐⇒ (∃θ : θ ⊆ f ∧ θ is finite) (E[θ][x] = y).

We need to show the following four properties of Γ:

• Γ is an operator, that is, the definition of Γ does not introduce a contradiction;

• Γ is effective;

• Γ is compact;

• Γ is unique.

Now we show the desired properties one-by-one.

• Let f , θ1, θ2, x, and y be arbitrary but fixed. Assume that θ1 ⊆ θ2 ⊆ f . From here, by lemma
(2.20), applied from right to left, where ϕ ← θ2 and θ ← θ1, we obtain that

E[θ1][x] = y =⇒ E[θ2][x] = y.

From this we see that for any x there exists exactly one y, such that

(∃θ : θ ⊆ f) (E[θ][x] = y).

Thus, Γ is an operator.

• Let ϕ be computable function. By the definition of Γ, we have

Γ[ϕ][x] = y ⇐⇒ (∃θ : θ ⊆ ϕ) (E[θ][x] = y).

On the other hand, from lemma (2.20), we have

((∃θ : θ ⊆ ϕ) (E[θ][x] = y)) ⇐⇒ (E[ϕ][x] = y).

This implies that

Γ[ϕ][x] = y ⇐⇒ E[ϕ][x] = y.

In other words, E and Γ coincide for any computable function and thus we conclude that Γ is
effective.
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• Since any finite function is computable, by the previous observation we transform the definition
of Γ in the following way:

Γ[f ][x] = y ⇐⇒ (∃θ : θ ⊆ f) (Γ[θ][x] = y).

From this we conclude that Γ is compact.

• Assume that ∆ is another (n, r) compact operator, such that for any computable function ϕ, we
have

E[ϕ][x] = ∆[ϕ][x].

This implies that for any finite θ

E[θ][x] = ∆[θ][x].

From here, by lemma (2.9), we obtain that E[f ] = ∆[f ] for any function f , f ∈ Fn. Thus Γ is
unique, which completes the proof of Myhill-Shepherdson theorem.

In general, a fixpoint theorem is a result saying that a function F will have at least one fixpoint
under some conditions on F . Results of this kind are some of the most useful in mathematics [36].

We are now presenting (a version of) Kleene fixpoint theorem which, actually has a very important
consequences in recursion theory and more generaly in computer science.

Theorem 2.22. Let Γ be an (n, n) recursive operator. Then the minimal fixpoint of Γ is computable
function.

Proof.
Let f be the minimal fixpoint of Γ. (It exists, due to Knaster-Tarski theorem (2.18).) From the

proof of that theorem, we know how f is constructed, namely:

f0 = Ω (2.4)

. . .

fk+1 = Γ[fk]

. . .

f =
⋃

fk.

We used so far the fact that Γ is compact. Now, from the fact that Γ is effective, we know that
there exists a recursive function h, such that, for any a Γ[ϕa] = ϕh[a]. Let a0 be a Gödel number for
Ωn. We now define a function g, in the following way:

g[k] =





a0 ⇐ k = 0

h[g[k − 1]] ⇐ otherwise
(2.5)

From the definition of g we see that g[k] is a Gödel number for the computable function fk, that
is fk = ϕg[k]. In other words, we have:
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f0 = ϕa0 = ϕg[0]

. . .

fk = ϕg[k]

. . . .

From here, by lemma (2.7), we obtain that for any x and y:

f [x] = y ⇐⇒ ∃ k (fk[x] ↓ ∧ fk[x] = y) ⇐⇒

⇐⇒ ∃ k (ϕg[k][x] ↓ ∧ ϕg[k][x] = y) .

This implies that the graph of f is a semidecidable set and thus f is computable function, which
completes the proof of the theorem.

From the programming point of view, Kleene fixpoint theorem shows that computable functions
are closed with respect to recursive definitions. Moreover, it gives the description of the exact solution.

2.5 Fixpoint Induction

In this section we introduce a technique for proving properties of fixpoints of recursive operators.
The association which we make between fixpoints of recursive operators and recursive programs is on
purpose. The correctness of this correctness is guaranteed by Kleene fixpoint theorem.

Let Γ be a compact operator of type (n, n). Let f be the minimal fixpoint of Γ. From the proof of
Knaster-Tarski theorem (2.18), we know that f is constructed like in (2.4).

Let P be a property of partial functions on n variables which we want to prove for the minimal
fixpoint f , that is, we want to prove P [f ]. Assume that we have:

P [f0]

(∀g : g ∈ Fn) (P [g] =⇒ P [Γ[g]])

From this, we see that for each k, P [fk] holds. Now, the following question arises: May we
conclude P [f ] holds? The following example shows that this is not always a case.

Let Γ be an operator of type (1, 1), defines as:

Γ[g] = λx. If x = 0 then 1 else x ∗ g[x− 1]. (2.6)

The operator Γ is compact, moreover, it is also recursive. Now, let us consider the finite approxi-
mations

f0 ⊆ f1 ⊆ . . . ,⊆ fk ⊆ . . . .

Using induction on k, one may prove that:

fk = λx. If x < k then x! else Ω[x].
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From this, we obtain that the minimal fixpoint f of Γ is:

f =
⋃

fk = λx. x! .

Now, let us define a property P , saying that the function is not total. The precise definition of P
is:

P [g] ⇐⇒ (∃x) ¬(g[x] ↓) .

As we can easily see, the property P holds for all the finite approximations, and in particular
P [Ω]. Now we show that,

(∀g : g ∈ Fn) (P [g] =⇒ P [Γ[g]]).

Assume that P [g] holds for some arbitrary but fixed g. Assume also that ¬(g[x] ↓) for some x.
From the definition of Γ we derive:

Γ[g][x + 1] = (x + 1) ∗ g[x + 1− 1] = (x + 1) ∗ g[x],

and because ¬(g[x] ↓) we obtain ¬(Γ[g][x + 1] ↓). Thus we have P [Γ[g]].

On the other hand we have ¬P [f ], because, f = λx.x! is a total function.

This example shows, that in order to perform that induction like principle for proving properties
of fixpoints, we need to make some restrictions on the possible properties which are allowed to be
proven that way.

Definition 2.23. Let P be a property of functions from Fn. We say P is continuous if and only if for
any f0, f1, . . . fk, . . . from Fn, such that:

f0 ⊆ f1 ⊆ . . . fk ⊆ . . .

P [fk] holds for any k, then P [
⋃

fk] also holds.

Now we present (and prove) some sufficient conditions for properties in order for them to be
continuous.

Intuitively, the idea here is to describe a property of a partial function g, and the predicates I and
O serve as a specification for it. Then proving that a partial correctness condition P holds for a given
partial function g would imply that g is partially correct with respect to the predicates I and O.

Definition 2.24. Let P be a property of functions from Fn. We say P is a partial correctness condition
if and only if there exist predicates I and O, such that for any function g from Fn, we have:

P [g] ⇐⇒ (∀x) (I[x] ∧ g[x] ↓ =⇒ O[x, g[x]]).

The partial correctness properties are weaker than total correctness properties.
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Definition 2.25. Let P be a property of functions from Fn. We say P is a total correctness condition
if and only if there exist predicates I and O, such that for any function g from Fn, we have:

P [g] ⇐⇒ (∀x) (I[x] =⇒ g[x] ↓ ∧ O[x, g[x]]).

Proving partial correctness properties is, in general, easier than proving total correctness proper-
ties. By the end of this section we define a powerful method for proving partial correctness, however,
not applicable in the case of total correctness.

Lemma 2.26. Let P be a partial correctness condition on functions from Fn. Then P is continuous.

Proof.
Assume that P is a partial correctness condition on functions from Fn. Assume also that:

• Predicates I and O are also given;

• for any function g from Fn, we have:

P [g] ⇐⇒ (∀x) (I[x] =⇒ g[x] ↓ ∧ O[x, g[x]]);

• the function f is defined as f =
⋃

fk

• if all finite approximations f0, f1, . . . fk, . . . from Fn, such that:

f0 ⊆ f1 ⊆ . . . fk ⊆ . . .

satisfy the condition P , that is, P [fk] holds for any k, then P [
⋃

fk] also holds.

We need to show that P [f ] holds.
Let x be arbitrary but fixed, such that I[x] and f [x] ↓. From this, by lemma (2.7), we obtain

that there exists k, such that f [x] = fk[x]. This implies that fk[x] ↓ and by having P [fk], we obtain
O[x, fk[x]], and hence P [f ], which completes the proof of the lemma.

Lemma 2.27. Let Γ1 and Γ2 be continuous operators of type (n, n) and P be defined such that for
any function g from Fn, we have:

P [g] ⇐⇒ Γ1[g] ⊆ Γ2[g].

Then P is continuous.

Proof.
Assume that:

f0, f1, . . . fk, . . .

from Fn, are such that:
f0 ⊆ f1 ⊆ . . . fk ⊆ . . .
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and
Γ1[fk] ⊆ Γ2[fk]

for any k.
We need to show that:

Γ1[
⋃

fk] ⊆ Γ2[
⋃

fk].

Since Γ1 and Γ2 are continuous, we obtain that:

Γ1[
⋃

fk] ⊆
⋃

Γ1[fk]

and
Γ2[

⋃
fk] ⊆

⋃
Γ2[fk],

and thus it suffices to show that: ⋃
Γ1[fk] ⊆

⋃
Γ2[fk].

Let x and y be arbitrary but fixed and assume that
⋃

Γ1[fk][x] = y. Since Γ1 is continuous, it is
also monotonic. From

f0 ⊆ f1 ⊆ . . . fk ⊆ . . .

we obtain:
Γ1[f0] ⊆ Γ1[f1] ⊆ . . . ⊆ Γ1[fk] ⊆ . . . .

Knowing that
⋃

Γ[fk][x] = y, by lemma (2.7), we obtain that there exists m, such that Γ1[fm][x] =
y.

On the other hand, we have Γ1[fm] ⊆ Γ1[fm] and thus Γ2[fm][x] = y. From here, we conclude
that

⋃
Γ2[fk][x] = y, which completes the proof of the lemma.

Lemma 2.28. Let P1 and P2 be continuous properties of functions and P be defined such that for any
function g from Fn, we have:

P [g] ⇐⇒ P1[g] ∧ P2[g].

Then P is continuous.

Remark: Even though this lemma is never used, in our opinion stating it here is not redundant. It
(hopefully) gives some additional clarification about the matters surrounding continuous properties.

Proof.
Assume that the functions:

f0, f1, . . . fk, . . .

from Fn, are such that:
f0 ⊆ f1 ⊆ . . . fk ⊆ . . .

and P [fk] for any k.
By the definition of P we obtain that P1[fk] for any k and P2[fk] for any k, and hence ∀k P1[fk]

and ∀k P2[fk]. Since P1 and P2 are continuous, we have that P1[
⋃

fk] and P2[
⋃

fk].
From here, by the definition of P we obtain that P [

⋃
fk], which completes the proof of the lemma.
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We are finally ready with the preparation for defining the last lemma, known as Scott rule or Scott
induction rule. It gives a common way for proving continuous properties of fixpoints of continuous
operators.

Lemma 2.29. Let Γ be an (n, n) a continuous operator and P be a continuous property.
If the following assumptions hold:

• P [Ω]

• for any function g from Fn, P [g] =⇒ P [Γ[g]],

then P [f ] also holds, where f is the minimal fixpoint of Γ.

Proof.
Assume that Γ is (n, n) continuous operator and P is continuous property. Assume also that the

two assumptions from the lemma hold, namely:

P [Ω],

and,
(∀g : g ∈ Fn) (P [g] =⇒ P [Γ[g]]).

Let f be the minimal fixpoint of Γ. From the proof of Knaster-Tarski theorem (2.18), we know
how f is constructed, namely:

f0 = Ω

. . .

fk+1 = Γ[fk]

. . .

f =
⋃

fk.

Using induction on k one may prove that the property P holds for any finite approximation fk,
that is, ∀k P [fk]. From here, by knowing that P is continuous property, we obtain that P [

⋃
fk], and

hence P [f ], which completes the proof of the lemma.

There is a commonly expressed opinion that recursive programs are difficult for verifying. The
goal of this chapter is to show that this is not a case. Moreover, the overall goal of this thesis is to
show that recursive programs may be verified and debugged efficiently in fully automatic manner.

2.6 Verification Using Fixpoint Induction

After having developed all the apparatus for proving properties of least fixpoints and, in particular,
recursive functions defined as such, we finally consider an example, presented in this section.

In most of the books on programming, the first example to start with is the factorial function, and,
we shall not make an exception here.
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Example 2.30. Let Γ be an operator of type (1, 1), defines as:

Γ[g] = λx. If x = 0 then 1 else x ∗ g[x− 1], (2.7)

and fΓ be the least fixpoint of Γ.

Using the Scott rule (2.29), we show that for any x, x ∈ Dom[fΓ], we have fΓ[x] = x!. First we
define a partial correctness property P as:

(∀g : g ∈ F1) (P [g] ⇐⇒ (∀x (g[x] ↓ =⇒ g[x] = x!))).

Obviously, P [Ω] holds. Assume that P [g] holds for some g. We have to show that P [Γ[g]] holds.
Let x be arbitrary but fixed, such that x ∈ Dom[fΓ]. We have the following two cases:

• Case: x = 0.

In this case we have Γ[g][x] = 1 = 0! = x!.

• Case: x 6= 0.

In this case we have Γ[g][x] = x ∗ g[x− 1].

Since x was chosen such that x ∈ Dom[fΓ], we have g[x − 1] ↓, which is because Γ[g][x] ↓
and x ∗ g[x− 1] ↓. From here, by the induction hypothesis P [g], we obtain g[x− 1] = (x− 1)!
and hence:

Γ[g][x] = x ∗ (x− 1)! = x!.

In both cases we showed P [Γ[g]] holds. From here, by the Scott rule, we conclude that P [fΓ]
holds.

The association we make between least fixpoint of an operator and a definition of a computable
function is justified by Kleene fixpoint theorem. The next step, and it is the most natural one, is
making association between recursive programs and computable functions. Naturally, the computable
function fΓ from the example has the following definition:

fΓ = λx. If x = 0 then 1 else x ∗ fΓ[x− 1],

which is already very similar (even identical) to the syntax used in programming languages. In order
to keep us closer to the common practice, henceforth we use a slightly different syntax, namely:

fΓ[x] = If x = 0 then 1 else x ∗ fΓ[x− 1],

which in our opinion would be the most convenient for readers used to programming.

The theoretical material presented here is used for proving several statements presented in the
next chapters. We saw here how concrete instances of recursive functional programs may be proven
correct.

For the purpose of computer aided verification, based on the presented here fixpoint theory of
programs, we are developing a framework where program analysis can be performed algorithmically.
The correctness of that performance is, however, proven once and for all by using fixpoint theory of
programs.



Chapter 3

Automation of the Verification

In this chapter we develop a theoretical framework whose results are then used for automatic verifica-
tion.

In the literature, there is a variety of strategies for obtaining proof rules. However, some of them
have been discovered to be unsound. Verification condition generators are broadly used for automating
the verification of programs, however, these VCGs have in general not themselves been proven sound.
This implies that any of the programs which were verified by the help of unsound VCG may, in fact,
be incorrect.

In this chapter we define necessary and also sufficient conditions for a program (of certain kind)
to be totaly correct. We then construct a VCG which generates these conditions.

In a series of theorems, we prove soundness and completeness of the respective verification con-
ditions. This implies that the truth of the verification conditions is necessary and sufficient to verify
the total correctness of the program under consideration.

These proofs of soundness and completeness form the basis of an implementation of the VCG that
ensures the verification of concrete programs.

3.1 Program Schemata

Considering program schemata [45] instead of concrete programs has a relatively long traditions.
Early surveys on the theory of program schemata can be found in [27], and in more general splitting
programs into types of programs is well studied in [53].

More generally, the use of schemata (axiom schemata, proposition schemata, problem schemata,
and algorithm schemata) plays a very important role for algorithm-supported mathematical theory
exploration [13], [12], [20].

Program schemata are (almost) programs where the concrete constants, functions and predicates
are replaced by symbolic expressions.

When investigating program schemata instead of concrete programs, one may derive properties
which concern not just one concrete program, but many similar programs, more generally—a whole
class of programs—those which fit to the schema.

Moreover, for a given schema, each concrete program can be obtained from it by an instantiation
which gives concrete meanings to the constant, function and predicate symbols in the schema.

Smith proposed the use of schemata for synthesis of functional programs [60]. In fact, his work
spans over more than two decades, and has produced some of the more important results in practical

33
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program synthesis.
A recent result on the application of program schemata to program synthesis is available at [13],

[12]. There one may find how even non-trivial algorithms, e.g., Buchberger’s algorithm for Gröbner
bases [10], [11] may be synthesized fully automatically starting from the specification and the schema.
Details and full implementation are available at [20].

Nowadays the theory of program schemata is often involved in program transformations and prov-
ing equivalence of different schemata [22], [21]. In this thesis we do not discuss the relevance of such
equivalence transformations to our approach, however, an investigation into that research direction is
planned as well.

We approach the problem of program verification by studying various program schemata. When
deriving necessary (and also sufficient) conditions for program correctness, we actually prove at the
meta-level that for any program of that class (defined by the schema) it suffices to check only the
respective verification conditions. This is very important for the automation of the whole process,
because the production of the verification conditions is not expensive from the computational point of
view.

The following example will give more intuition on the notions of program schemata and concrete
programs. Let us consider the schema defining simple recursive programs :

F [x] = If Q[x] then S[x] else C[x, F [R[x]]], (3.1)

where Q is a predicate and S, C, R are auxiliary functions.
Consider also, the program Fact for computing the factorial function:

Fact[n] = If n = 0 then 1 else Fact[n− 1]. (3.2)

It is now obvious, that the program Fact fits to the simple recursive program schema. In order to
automate the process of reasoning about programs like Fact we reason at the meta-level about their
schemata.
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3.2 Coherent Programs

In this section we state the general principles we use for writing coherent programs with the aim of
building up a non-contradictory system of verified programs. Although, these principles are not our
invention (similar ideas appear in [35]), we state them here because we want to emphasize on and
later formalize them. Similar to these ideas appear also in software engineering—they are called there
Design by Contract or Programming by Contract [50].

We build our system such that it preserves the modularity principle, that is, each concrete imple-
mentation of a program may be replaced by another one at any time.

Building up correct programs: Firstly, we want to ensure that our system of coherent programs
would contain only correct (verified) programs. This we achieve, by:

• start from basic (trustful) functions e.g. addition, multiplication, etc.;

• define each new function in terms of already known (defined previously) functions by giving its
source text, the specification (input and output predicates) and prove their total correctness with
respect to the specification.

This simple inductively defined principle would guarantee that no wrong program may enter our
system. The next we want to ensure is the easy exchange (mobility) of our program implementations.
This principle is usually referred as:

Modularity: Once we define the new function and prove its correctness, we ”forbid” using any
knowledge concerning the concrete function definition. The only knowledge we may use is the spec-
ification. This gives the possibility of easy replacement of existing functions. For example we have a
powering function P , with the following program definition (implementation):

P [x, n] = If n = 0 then 1 else P [x, n− 1] ∗ x (3.3)

The specification of P is:
The domain:

D = R2,

the precondition:

IP [x, n] ⇐⇒ n ∈ N
and the postcondition:

OP [x, n, P [x, n]] ⇐⇒ P [x, n] = xn.

Additionally, we have proven the correctness of P . Later, after using the powering function P for
defining other functions, we decide to replace its definition (implementation) by another one, however,
keeping the same specification. In this situation, the only thing we should do (besides preserving the
name) is to prove that the new definition (implementation) of P meets the old specification.

In order to achieve the modularity, we need to ensure that when defining a new program, all the
calls made to the existing (already defined) programs obey the input restrictions of that programs—we
call this: Appropriate values for the function calls.
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We now define naturally the class of coherent programs as those which obey the appropriate
values to the function calls principle. The general definition comes in two parts: for functions defined
by superposition and for functions defined by if-then-else.

Definition 3.1. Let F be obtained from H , G1, . . . , Gn by superposition:

F [x] = H[G1[x], . . . , Gn[x]]. (3.4)

The program F with the specification (IF and OF ) is coherent with respect to its auxiliary functions
H , Gi and their specifications (IH and OH ), (IGi and OGi)

if and only if

(∀x : IF [x]) =⇒ IG1 [x] ∧ . . . ∧ IGn [x] (3.5)

and

(∀x : IF [x]) (∀y1 . . . yn) (OG1 [x, y1] ∧ · · · ∧ OGn [x, yn] =⇒ IH [y1, . . . yn]). (3.6)

Definition 3.2. Let F be obtained from H , G by if-then-else:

F [x] = If Q[x] then H[x] else G[x]. (3.7)

The program F with the specification (IF and OF ) is coherent with respect to its auxiliary functions
H , G and their specifications (IH and OH ), (IG and OG)

if and only if

(∀x : IF [x]) (Q[x] =⇒ IH [x]) (3.8)

∧
(∀x : IF [x]) (¬Q[x] =⇒ IG[x]).

Throughout this thesis we deal manly with coherent functions. As a first step of the verifica-
tion process, before going to the real verification, we check if the program is coherent. It is not that
programs which are not coherent are necessarily not correct. However, if we want to achieve the
modularity of our system, we need to restrict to dealing with coherent programs only.
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3.3 Simple Recursive Programs

In this section we study the class of simple recursive programs and we extract the purely logical
conditions which are sufficient for the program correctness. These are inferred using Scott induction
and induction on natural numbers in the fixpoint theory of functions and constitute a meta-theorem
which is proven once for the whole class. The concrete verification conditions for each program are
then provable without having to use the fixpoint theory.

Our approach is incremental and experimental: starting from simpler examples, we improve our
methods such that more and more interesting problems can be solved.

We approach the correctness problem by splitting it into two parts: partial correctness (prove that
the program satisfies the specification provided it terminates), and termination (prove that the program
always terminates).

Simple Recursive Programs are the most used in practice and at the same time the most elementary
ones, namely we look at programs of the form:

F [x] = If Q[x] then S[x] else C[x, F [R[x]]], (3.9)

where Q is a predicate and S, C,R are auxiliary functions. Their names are chosen such that, S[x]
is a “simple” function, C[x, y] is a “combinator” function, and R[x] is a “reduction” function. We
assume that the functions S, C, and R satisfy their specifications given by IS [x], OS [x, y], IC [x, y],
OC [x, y, z], IR[x], OR[x, y].

As un important note, we point out that functions with multiple arguments also fall into this
scheme, because the arguments x, y, z could be vectors (tuples).

In practice Q may also be implemented by a program, and it may also have an input condition,
but we do not want to complicate the present discussion by including this aspect, which has a special
flavor.

Type (or domain) information does not appear explicitly in this formulation, however it may be
included in the input conditions.

Note that the “programming language” used here contains only the construct If–then–else in
addition to the language of first order predicate logic.

One may also use some additional restrictions on the shape of the definitions of Q, S, C, and R
(e. g. that they do not contain quantifiers) in order to make the program “easy” to execute. However,
this depends on the complexity of the “interpreter” (“compiler”) and does not influence the actual
generation of the verification conditions. In general, the auxiliary functions may be already defined in
the underlying theory, or by other programs (that includes logical terms).

3.3.1 Coherent Simple Recursive Programs

In the course of verifying a real program, as we discussed in the previous section, we first check its
coherence. Just to remind, coherent programs are the ones, which have the property that each function
call is applied to arguments obeying the respective input specification.

In order to perform this check, we define here the relevant verification conditions, which are
derived from the definition of coherent programs (3.1) and (3.2), namely:

Definition 3.3. Let S, C, and R be functions which satisfy their specifications (IS , OS), (IC , OC),
and (IR, OR). Then the simple recursive program F as defined in (3.9) with its specification (IF , OF )
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is coherent with respect to S, C, R, and their specifications, if and only if the following conditions
hold:

(∀x : IF [x]) (Q[x] =⇒ IS [x]) (3.10)

(∀x : IF [x]) (¬Q[x] =⇒ IF [R[x]]) (3.11)

(∀x : IF [x]) (¬Q[x] =⇒ IR[x]) (3.12)

(∀x, y : IF [x]) (¬Q[x] ∧OF [R[x], y] =⇒ IC [x, y]) (3.13)

As we can see, the above conditions correspond very much to our intuition about coherent pro-
grams, namely:

• (3.10) treats the special case, that is, Q[x] holds and no recursion is applied, thus the input x
must fulfill the precondition of S.

• (3.11) treats the general case, that is, ¬Q[x] holds and recursion is applied, thus the new input
R[x] must fulfill the precondition of the main function F .

• (3.12) treats the general case, that is, ¬Q[x] holds and recursion is applied, thus the input x
must fulfill the precondition of the reduction function R.

• (3.13) treats the general case, that is, ¬Q[x] holds and recursion is applied, thus the input x,
together with any y (where y is a possible output F [R[x]]) must fulfill the precondition of the
combinator function C.

3.3.2 Verification Conditions and their Soundness

As we already discussed, reasoning about programs is translated into proving logical conditions. After
generating these verification conditions, one has to prove them as logical formulae in the theory of the
domain on which the program is defined. If all of them hold, then the program is correct with respect
to its specification. The latter statement we call Soundness theorem, and we are now ready to define
it for the class of coherent simple recursive programs.

Theorem 3.4. Let S, C, and R be functions which satisfy their specifications (IS , OS), (IC , OC), and
(IR, OR). Let also the simple recursive program F as defined in (3.9) with its specification (IF , OF )
be coherent with respect to S, C, R, and their specifications. Then F is totaly correct with respect to
(IF , OF ) if the following verification conditions hold:

(∀x : IF [x]) (Q[x] =⇒ OF [x, S[x]]) (3.14)

(∀x, y : IF [x]) (¬Q[x] ∧ OF [R[x], y] =⇒ OF [x,C[x, y]]) (3.15)

(∀x : IF [x]) (F ′[x] = T) (3.16)
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where:

F ′[x] = If Q[x] then T else F ′[R[x]]. (3.17)

As we can see, the above conditions constitute the following principle:

• (3.14) prove that the base case is correct.

• (3.15) prove that the recursive expression is correct under the assumption that the reduced call
is correct.

• (3.16) prove that a simplified version F ′ of the initial program F terminates. Here, T is the
logical constant true, however, any constant may serve as well.

Proof:
The proof of the Soundness statement is split into two major parts:

• prove partial correctness using Scott induction;

• prove termination using induction on the number of recursive calls.

First we will see that F (3.9) terminates.
Indeed, from the assumption that S, C, and R are totally correct (with respect to IS , IC , and IR)

by the coherence F , namely, formulae (3.10), (3.11), (3.12) and (3.13) we ensure the termination of
the calls to the auxiliary functions S, C, and R.

Take arbitrary but fixed x and assume IF [x]. From (3.16), we obtain that F ′(x) = T. We first
show that there must exist a number n such that after n steps of recursive calls, the predicate Q will
be satisfied, that is,

F ′(x) = T =⇒ (∃n ∈ N) (Q[Rn[x]]), (3.18)

where

R0[x] = x

and
Rn+1[x] = R[Rn[x]].

We prove this statement by contradiction, i.e. assume:

F ′(x) = T ∧ (∀n ∈ N)(¬Q[Rn[x]]).

Now, we look at the construction of F ′ as being the least fixpoint of the operator F ′ as defined in
(3.17).

Let f0, f1, . . . fm, . . . be the finite approximations of F ′ obtained from the nowhere defined func-
tion Ω, in the following way:

f0[x] = Ω[x]

fm+1[x] = If Q[x] then T else fm[R[x]],
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The computable function F ′, corresponding to (3.17) is defined as

F ′ =
⋃
m

fm,

that is, the least fixpoint of (3.17).
Since for our particular x (it was taken arbitrary but fixed) we have F ′(x) = T, there must exist a

finite approximation fm, such that:

fm[x] = T.

If m = 0, then f0[x] = T, but on the other hand, by its definition, f0 is the nowhere defined
function f0 = Ω, thus this is not a case. Hence, we conclude that m > 0.

From
(∀n ∈ N) (¬Q[Rn[x]]),

and in particular ¬Q[x], that is when n = 0, by the definition of fm we obtain:

fm[x] = fm−1[R[x]].

By repeating the same kind of reasoning m times (in fact, formally it is done by induction), we
obtain that:

fm[x] = f0[Rm[x]]

and by its definition (f0 = Ω) we obtain:

f0[Rm[x]] = ⊥,

which contradicts fm[x] = T. This is the desired contradiction, and hence, we have proven (3.18).

The proof of the termination of F will be completed by proving the following statement:

(∃n ∈ N) Q[Rn[x]] =⇒ F [x] ↓ . (3.19)

Assume Q[Rn[x] for our particular x (it was taken arbitrary but fixed).
Now we consider the following two cases:

• Case 1: n = 0.

Now we have Q[x], and by the definition of F , we have F [x] = S[x]. We chose x such that
IF [x], and by (3.10) we obtain that S[x] ↓ and hence F [x] ↓.

• Case 2: n > 0.

Let k be the smallest number such that (¬Q[Rk[x]]) and Q[Rk+1[x]]. We see now that:

(∀i ≤ k) (IF [Ri[x]] ∧ ¬Q[Ri[x]] =⇒ IF [Ri+1[x]]),

which follows from (3.11),

(∀i ≤ k) (IF [Ri[x]] ∧ ¬Q[Ri[x]] =⇒ IR[Ri[x]]),
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which follows from (3.12), and

(∀i ≤ k) (IF [Ri+1[x]] ∧ ¬Q[Ri[x]] =⇒ IC [Ri[x], y]),

which follows from (3.13).

Now we derive that:

IF [Rk+1[x]] ∧ Q[Rk+1[x]] =⇒ IS [Rk+1[x]]),

and from the definition of F we obtain:

F [Rk+1[x]] = S[Rk+1[x]]),

thus F [Rk+1[x]] ↓. From this, by having IF [Rk[x]], IR[Rk[x]], and IC [Rk+1[x], F [Rk[x]]] by
the definition of F (since ¬Q[Rk[x]]) we obtain:

F [Rk[x]] = C[Rk[x], F [Rk+1[x]]],

thus F [Rk[x]] ↓. Applying the same argument k-times, we obtain F [R0[x]] ↓, that is F [x] ↓.

We proved so far that:

F ′(x) = T =⇒ (∃n ∈ N) (Q[Rn[x]])

and
(∃n ∈ N) Q[Rn[x]] =⇒ F [x] ↓,

which completes the proof of termination of F .

Secondly, using Scott induction, we will show that F is partially correct with respect to its speci-
fication, namely:

(∀x : IF [x]) (F [x] ↓ =⇒ OF [x, F [x]]). (3.20)

As it was broadly discussed in chapter (2), not every property is admissible and may be proven by
Scott induction. However, as we already saw, properties which express partial correctness are known
to be admissible.

Let us remind the definition of these properties: A property φ is said to be a partial correctness
property if and only if there are predicates I and O, such that:

(∀f) (φ[f ] ⇐⇒ (∀a) (f [a] ↓ ∧ I[a] =⇒ O[a, f [a]])). (3.21)

We now consider the following partial correctness property φ:

(∀f) (φ[f ] ⇐⇒ (∀a) (f [a] ↓ ∧ IF [a] =⇒ OF [a, f [a]])).

The first step in Scott induction is to show that φ holds for the nowhere defined function Ω. By
the definition of φ we obtain:

φ[Ω] ⇐⇒ (∀a) (Ω[a] ↓ ∧ IF [a] =⇒ OF [a,Ω[a]])),
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and so, φ[Ω] holds, since Ω[a] ↓ never holds.

In the second step of Scott induction, we assume φ[f ] holds for some f :

(∀a) (f [a] ↓ ∧ IF [a] =⇒ OF [a, f [a]]), (3.22)

and show φ[fnew], where fnew is obtained from f by the main program (3.9) as follows:

fnew = If Q[x] then S[x] else C[x, f [R[x]]].

Now, we need to show now that for an arbitrary a,

fnew[a] ↓ ∧ IF [a] =⇒ OF [a, fnew[a]].

Assume fnew[a] ↓ and IF [a]. We have now the following two cases:

• Case 1: Q[a].

By the definition of fnew we obtain fnew[a] = S[a] and since fnew[a] ↓, we obtain that S[a]
must terminate as well, that is S[a] ↓. Now using verification condition (3.14) we may conclude
OF [a, S[a]] and hence OF [a, fnew[a]].

• Case 2: ¬Q[a].

By the definition of fnew we obtain fnew[a] = C[a, f [R[a]]] and since fnew[a] ↓, we conclude
that all the others involved in this computation must also terminate, that is: C[a, f [R[a]]] ↓,
f [R[a]] ↓, and R[a] ↓.

From IF [a], by (3.11), we obtain IF [R[a]] and, knowing that: f [R[a]] ↓ by the induction
hypothesis (3.22) we obtain OF [R[a], f [R[a]]].

Concerning the verification condition (3.15), note that all the assumptions from the left part of
the implication are at hand and thus we can conclude OF [a, fnew[a]].

Now we conclude that the property φ holds for the least fixpoint of (3.9) and hence, φ holds for
the function computed by (3.9), which completes the proof of the soundness theorem (3.4).

In the next sections we will see how this theorem may easily be extend to a more general ones,
by adding an appropriate treatment for programs defined by Case, that is, If–then–else with several
cases, etc.

3.3.3 Completeness of the Verification Conditions

Completing the notion of Soundness, we introduce its dual—Completeness—which have been intro-
duced for the first time by the author of this thesis in [40].

As we already mentioned in the introduction, the notion of Completeness of a verification con-
dition generator is important for the following two reasons: theoretically, it is the dual of Soundness
and practically, it helps debugging. Any counterexample for the failing verification condition would
carry over to a counterexample for the program and the specification, and thus give a hint on “what is
wrong”.
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Indeed, most books about program verification present methods for verifying correct programs.
However, in practical situations, it is the failure which occurs more often until the program and the
specification are completely debugged.

As we already mentioned, after generating the verification conditions, one has to prove them as
logical formulae. If all of them hold, then the program is correct with respect to its specification—
Soundness theorem.

Now, we formulate the Completeness theorem for the class of coherent simple recursive programs.

Theorem 3.5. Let S, C, and R be functions which satisfy their specifications (IS , OS), (IC , OC), and
(IR, OR). Let also the simple recursive program F as defined in (3.9) with its specification (IF , OF )
be coherent with respect to S, C, R, and their specifications, and the output specification of F , (OF )
is functional one.

Then if F is totaly correct with respect to (IF , OF ) then the following verification conditions hold:

(∀x : IF [x]) (Q[x] =⇒ OF [x, S[x]]) (3.23)

(∀x, y : IF [x]) (¬Q[x] ∧ OF [R[x], y] =⇒ OF [x,C[x, y]]) (3.24)

(∀x : IF [x]) (F ′[x] = T) (3.25)

where:

F ′[x] = If Q[x] then T else F ′[R[x]], (3.26)

which are the same as (3.14), (3.15), (3.16), and (3.17) from the Soundness theorem (3.4).

Proof:
We assume now that:

• The functions S, C, and R are totaly correct with respect to their specifications (IS , OS),
(IC , OC), and (IR, OR).

• The simple recursive program F as defined in (3.9) with its specification (IF , OF ) is coherent
with respect to S, C, R, and their specifications.

• The output specification of F , (OF ) is functional one, that is:

(∀x : IF [x]) (∃!y) (OF [x, y]).

• The simple recursive program F as defined in (3.9) is correct with respect to its specification,
that is, the total correctness formula holds:

(∀x : IF [x]) (F [x] ↓ ∧ OF [x, F [x]]). (3.27)

We show that (3.23), (3.24), and (3.25) hold as logical formulae.

We start now with proving (3.23) and (3.24) simultaneously.
Take arbitrary but fixed x and assume IF [x]. We consider the following two cases:
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• Case 1: Q[x]

By the definition of F , we have F [x] = S[x], and by using the correctness formula (3.27) of F ,
we conclude (3.23) holds. The formula (3.24) holds, because we have Q[x].

• Case 2: ¬Q[x]

Now, (3.23) holds. Assume y is such that OF [R[x], y]. Since F is correct, we obtain that
y = F [R[x]], because OF is a functional predicate.

On the other hand, by the definition of F , we have F [x] = C[x, F [R[x]]] and hence F [x] =
C[x, y]. Again, from the correctness of F , we obtain OF [x, C[x, y]], which had to be proven.

Now, we show that the simplified version F ′ of the initial function F terminates. Moreover, F ′

terminates if F terminates. In the course of the proof, one may notice that proving F ′[x] = T is the
same as proving that F ′ terminates.

Take arbitrary but fixed x and assume IF [x]. Since F [x] terminates, we denote F (x) = a, for
some constant a. We first show that there must exist a number n such that after n steps of recursive
calls, the predicate Q will be satisfied, that is:

F (x) = a =⇒ (∃n ∈ N)(Q[Rn[x]]). (3.28)

We prove this statement by contradiction, i.e. assume:

F (x) = a ∧ (∀n ∈ N)(¬Q[Rn[x]]).

Now, we look at the construction of F as being the least fixpoint of the operator F as defined in
(3.9).

Let f0, f1, . . . fm, . . . be the finite approximations of F obtained from the nowhere defined func-
tion Ω, in the following way:

f0[x] = Ω[x]

fm+1[x] = If Q[x] then S[x] else C[x, fm[R[x]]],

The computable function F , corresponding to (3.9) is defined as

F =
⋃
m

fm,

that is, the least fixpoint of (3.9).
Since for our particular x (it was taken arbitrary but fixed) we have F (x) = a, there must exist a

finite approximation fm, such that:

fm[x] = a.

If m = 0, then f0[x] = a, but on the other hand, by its definition, f0 is the nowhere defined
function f0 = Ω, thus this is not a case. Hence, we conclude that m > 0.

From
(∀n ∈ N) (¬Q[Rn[x]]),

and in particular ¬Q[x], that is when n = 0, by the definition of fm we obtain:
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fm[x] = fm−1[R[x]].

By repeating the same kind of reasoning m times (in fact, formally it is done by induction), we
obtain that:

fm[x] = f0[Rm[x]]

and by its definition (f0 = Ω) we obtain:

f0[Rm[x]] = ⊥,

which contradicts fm[x] = a. This is the desired contradiction, and hence, we have proven (3.28).

The proof of the termination of F ′, or equivalently F ′[x] = T, will be completed by proving the
following statement:

(∃n ∈ N) Q[Rn[x]] =⇒ F ′[x] ↓ . (3.29)

Assume Q[Rn[x] for our particular x (it was taken arbitrary but fixed).
Now we consider the following two cases:

• Case 1: n = 0.

Now we have Q[x], and by the definition of F ′, we have F ′[x] = T, and hence F ′[x] ↓.

• Case 2: n > 0.

Let k be the smallest number such that (¬Q[Rk[x]]) and Q[Rk+1[x]]. We see now that:

F ′[Rk+1[x]] = T,

thus F ′[Rk+1[x]] ↓. From this, by the definition of F ′ (since ¬Q[Rk[x]]) we obtain:

F ′[Rk[x]] = F ′[Rk+1[x]] = T,

thus F ′[Rk[x]] ↓. Applying the same argument k-times, we obtain F ′[R0[x]] = T and F ′[R0[x]] ↓,
that is F ′[x] ↓.

We proved so far that:

F ′(x) = T =⇒ (∃n ∈ N) (Q[Rn[x]])

and
(∃n ∈ N) Q[Rn[x]] =⇒ F [x] = T,

which completes our proof of the Completeness theorem.
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3.3.4 Discussion

After developing a theory, it is always recommendable to give some relevant examples. However, here
we only point to them—they are situated at the end of this chapter, at the section Examples (3.10).
There one can see how verification of concrete programs is handled. Moreover, there is a relatively
big discussion on how debugging may be done, based on the completeness.

We want to draw the attention here to the Completeness statement, namely, it is not exactly the
complement of the Soundness theorem. It has one more requirement, namely, the output specification
OF to be functional one, that is, the predicate OF defines a function (for any x, there exists exactly
one y, s.t. OF [x, y]. The natural question now is: Would it be possible to omit this requirement and
still preserve the completeness? The answer is: no!

In order to justify our answer, we give here an example of a program f , holding the following
specific properties:

• f is simple recursive program;

• f together with its specification is coherent with respect to the auxiliary functions and their
specifications;

• f is totaly correct with respect to its specification;

• the output specification of f is not functional one; and

• the generated verification conditions do not hold as logical formulae.

Here is the definition of f :

f [n] = If n = 0 then 1 else n ∗ f [n− 1], (3.30)

with the specification of f , Input:

∀n (If [n] ⇐⇒ n ∈ N) (3.31)

and Output:

∀n,m (Of [n,m] ⇐⇒ m 6= 5). (3.32)

First we are convinced that f is simple recursive program—it fits to the scheme defined in (3.9).

Second, in order to perform the check for coherence, we generate the conditions. They are as
follows:

(∀n : n ∈ N) (n = 0 =⇒ T) (3.33)

(∀n : n ∈ N) (n 6= 0 =⇒ (n− 1) ∈ N) (3.34)

(∀n : n ∈ N) (n 6= 0 =⇒ T) (3.35)

(∀n,m : n ∈ N) (n 6= 0 ∧m 6= 5 =⇒ T) (3.36)
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The condition (3.33) is trivially true—the true constant T comes from the precondition of the
constant function S[x] = 1. The condition (3.34) is also true—it expresses that the reduced input
n − 1 should also satisfy the input condition of f . The condition (3.35) is trivially true—the true
constant T comes from the precondition of the reduction function R[x] = x − 1. The condition
(3.36) is trivially true—the true constant T comes from the precondition of the combinator function
C[x, y] = x ∗ y. Thus, f is coherent.

Third, we need to show that f is totaly correct with respect to its specification. We do not give here
a detailed proof, but only give some hints how this could be done, namely: prove that f computes the
factorial function, that is, f is totaly correct with respect to the specification of the factorial function,
and then, show that this output specification of f follows from the output specification of factorial,
that is:

(∀n,m : n ∈ N) (m = n! =⇒ m 6= 5).

Fourth, we need to show that the output specification of f is not functional one. Considering
(3.32), it is obvious that for any n, there are more than one m, such that m 6= 5. Thus (3.32) is not
functional specification.

Fifth, we need to show that the generated verification conditions do not hold as logical formulae,
actually, one of them is violated. They are as follows:

(∀n : n ∈ N) (n = 0 =⇒ 1 6= 5) (3.37)

(∀n,m : n ∈ N) (n 6= 0 ∧m 6= 5 =⇒ n + m 6= 5) (3.38)

(∀n : n ∈ N) (f ′[n] = T), (3.39)

where:

f ′[n] = If n = 0 then T else f ′[n− 1]. (3.40)

The formulae (3.37) and (3.39) hold, however, (3.38) does not hold, and this is what we wanted
to show.
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3.4 Simple Recursive Programs with Multiple Else

This section is dedicated to the class of simple recursive programs with multiple choice if-then-else
with zero or one recursive calls on each else branch. Shortly, we call them simple multiple else
programs. The section is a proper extension of the previous one, as the class under study here is a
proper extension of the class of simple recursive programs.

As before, we extract the purely logical conditions which are sufficient, and also necessary, for
the program correctness. The proofs are similar to that from the previous section, however, they are a
bit longer.

We approach the correctness problem, again, by splitting it into two parts: partial correctness,
and termination. However, first we check for coherence.

Simple recursive programs with multiple else are programs of the form:

F [x] = If Q0[x] then S[x] (3.41)

elseif Q1[x] then C1[x, F [R1[x]]]
elseif Q2[x] then C2[x, F [R2[x]]]
. . .

elseif Qn[x] then Cn[x, F [Rn[x]]],

where Qi are predicates and S, Ci, Ri are auxiliary functions (S[x] is a “simple” function (the bottom
of the recursion), Ci[x, y] are “combinator” functions, and Ri[x] are “reduction” functions).

We assume that the functions S, Ci, and Ri satisfy their specifications given by IS [x], OS [x, y],
ICi [x, y], OCi [x, y, z], IRi [x], ORi [x, y].

Additionally, assume that the Qi predicates are noncontradictory and consistent, that is:

Q1 ⇒ ¬Q0

. . .

Qn ⇒ ¬Qn−1

and the last one is otherwise-like:

Qn = ¬Q0 ∧ · · · ∧ ¬Qn−1,

which we do only in order to simplify the presentation.
This is, in fact, the usual semantics of most programming languages (C, Java, Lisp).

3.4.1 Coherent Simple Recursive Multiple Else Programs

As already discussed, before going to the real verification process, we first check if the program is
coherent, that is, all function call are applied to arguments obeying the respective input specifications.

The corresponding conditions for this class of programs, which are derived from the definition of
coherent programs (3.1) and (3.2), are:
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Definition 3.6. Let for all i, the functions S, Ci, and Ri be such that they satisfy their specifications
(IS , OS), (ICi , OCi), and (IRi , ORi). Then the simple program with multiple else F as defined in
(3.41) with its specification (IF , OF ) is coherent with respect to S, Ci, Ri, and their specifications, if
and only if the following conditions hold:

(∀x : IF [x]) (Q0[x] =⇒ IS [x]) (3.42)

(∀x : IF [x]) (Q1[x] =⇒ IF [R1[x]]) (3.43)

. . .

(∀x : IF [x]) (Qn[x] =⇒ IF [Rn[x]]) (3.44)

(∀x : IF [x]) (Q1[x] =⇒ IR1 [x]) (3.45)

. . .

(∀x : IF [x]) (Qn[x] =⇒ IRn [x]) (3.46)

(∀x, y : IF [x])(Q1[x] ∧OF [R1[x], y] =⇒ IC1 [x, y]) (3.47)

. . .

(∀x, y : IF [x])(Qn[x] ∧OF [Rn[x], y] =⇒ ICn [x, y]). (3.48)

Again we see that the respective conditions for coherence correspond very much to our intuition
about coherent programs, namely:

• (3.42) treats the special case, that is, Q0[x] holds and no recursion is applied, thus the input x
must fulfill the precondition of S.

• (3.43), . . . , (3.44) treat the general case, that is, ¬Q0[x], and say Qi[x] holds and recursion is
applied, thus the new input Ri[x] must fulfill the precondition of the main function F .

• (3.45), . . . , (3.46) treat the general case, that is, ¬Q0[x], and say Qi[x] holds and recursion is
applied, thus the input x must fulfill the precondition of the reduction function Ri.

• (3.47), . . . , (3.48) treat the general case, that is, ¬Q0[x], and say Qi[x] holds and recursion is
applied, thus the input x, together with any y (where y is a possible output F [Ri[x]]) must fulfill
the precondition of the combinator function Ci.
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3.4.2 Verification Conditions and their Soundness

As we already discussed, in order to be sure that a program is correctly proven to be correct, one has
to formally rely on the technique used for verification. Thus we formulate here a Soundness theorem,
for the class of coherent simple programs with multiple else.

Theorem 3.7. Let for each i S, Ci, and Ri be functions which satisfy their specifications (IS , OS),
(ICi , OCi), and (IRi , ORi). Let also the simple program with multiple else F as defined in (3.41) with
its specification (IF , OF ) be coherent with respect to S, Ci, Ri, and their specifications. Then F is
totaly correct with respect to (IF , OF ) if the following verification conditions hold:

(∀x : IF [x]) (Q0[x] =⇒ OF [x, S[x]]) (3.49)

(∀x, y : IF [x]) (Q1[x] ∧ OF [R1[x], y] =⇒ OF [x, C1[x, y]]) (3.50)

. . .

(∀x, y : IF [x]) (Qn[x] ∧ OF [Rn[x], y] =⇒ OF [x,Cn[x, y]]) (3.51)

(∀x : IF [x]) (F ′[x] = T) (3.52)

where:

F ′[x] = If Q0[x] then T (3.53)

elseif Q1[x] then F ′[R1[x]]
elseif Q2[x] then F ′[R2[x]]
. . .

elseif Qn[x] then F ′[Rn[x]].

The above conditions constitute the following principle:

• (3.49) prove that the base case is correct.

• (3.50), . . . , (3.51) for any else branch, prove that the recursive expression is correct under the
assumption that the reduced call is correct.

• (3.52) prove that a simplified version F ′ of the initial program F terminates.

Proof:
The proof of the Soundness statement is split into two major parts:

• prove partial correctness using Scott induction;

• prove termination using induction on the number of recursive calls.
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First we will see that F (3.41) terminates.
Indeed, from the assumption that for all i: S, Ci, and Ri are totally correct (with respect to IS ,

ICi , and IRi) by the coherence of F , namely, formulae (3.42), (3.43), . . . , (3.44), (3.45), . . . , (3.46),
and, (3.47), . . . , (3.48), we ensure the termination of the calls to the auxiliary functions S, Ci, and Ri.

Take arbitrary but fixed x and assume IF [x]. From (3.52), we obtain that F ′[x] = T.

We now show that there must exist a sequence of l in number else branch indexes i1, . . . , il (ij
is an index of an else branch, i.e., 1 ≤ ij ≤ n), such that finally the bottom of the recursion will be
reached, that is:

Q0[Ri1 [Ri2 [. . . Ril [x]]]] ∧ . . . ∧ Qil−1
[Ril [x]] ∧ Qil [x].

Since the predicates Qi are consistent and noncontradictory, for the given x, there always exists il,
such that Qil [x], and then for the Ril [x], there exists again a il−1, such that Qil−1

[Ril [x]], etc. What
we need to show is that i1 = 0, that is, the Q0 predicate will finally be fulfilled.

We prove this by contradiction, i.e. assume that for any sequence of else branch indexes i1, . . . , il :

¬Q0[Ri1 [Ri2 [. . . Ril [x]]]].

Now, we look at the construction of F ′ as being the least fixpoint of the operator F ′ as defined in
(3.53).

Let f0, f1, . . . fm, . . . be the finite approximations of F ′ obtained from the nowhere defined func-
tion Ω, in the following way:

f0[x] = Ω[x]

fm+1[x] = If Q0[x] then T

elseif Q1[x] then fm[R1[x]]
elseif Q2[x] then fm[R2[x]]
. . .

elseif Qn[x] then fm[Rn[x]].

The computable function F ′, corresponding to (3.53) is defined as

F ′ =
⋃
m

fm,

that is, the least fixpoint of (3.53).
Since for our particular x (it was taken arbitrary but fixed) we have F ′(x) = T, there must exist a

finite approximation fm, such that:

fm[x] = T.

If m = 0, then f0[x] = T, but on the other hand, by its definition, f0 is the nowhere defined
function f0 = Ω, thus this is not a case. Hence, we conclude that m > 0.

Assume now, that for some m0, fm0 [x] =⊥ and fm0 [R1[x]] =⊥, . . . , fm0 [Rn[x]] =⊥.
We show that fm0+1[x] =⊥.
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Indeed, by the definition of finite approximations, we have:

fm0+1[x] = If Q0[x] then T

elseif Q1[x] then fm0 [R1[x]]
elseif Q2[x] then fm0 [R2[x]]
. . .

elseif Qn[x] then fm0 [Rn[x]].

From here, by having that for any sequence of else branch indexes i1, . . . , il :

¬Q0[Ri1 [Ri2 [. . . Ril [x]]]],

and in particular ¬Q0[x], we obtain that fm0+1[x] =⊥.
This leads us to the desired contradiction, namely fm[x] =⊥, which contradicts fm[x] = T.

The proof of the termination of F will be completed by proving the following statement:

If there exists a sequence of l in number else branch indexes i1, . . . , il, such that:

Q0[Ri1 [Ri2 [. . . Ril [x]]]] ∧ . . . ∧ Qil−1
[Ril [x]] ∧ Qil [x],

then F [x] ↓.

Assume that for our particular x, which was taken arbitrary but fixed, we have:

Q0[Ri1 [Ri2 [. . . Ril [x]]]] ∧ . . . ∧ Qil−1
[Ril [x]] ∧ Qil [x].

Now we consider the following two cases:

• Case 1: l = 0.

Now we have Q0[x], and by the definition of F , we have F [x] = S[x]. We chose x such that
IF [x], and by (3.42) we obtain that S[x] ↓ and hence F [x] ↓.

• Case 2: l > 0.

Now, by following the definition of F , we have F [x] = Cil [x, F [Ril [x]]]. Since F is coherent,
we obtain that IRil

[x] and ICil
[x, y], and hence F [x] ↓ if and only if F [Ril [x]] ↓.

Applying the same kind of reasoning l times, and by having

Q0[Ri1 [Ri2 [. . . Ril [x]]]],

and
IS [Ri1 [Ri2 [. . . Ril [x]]]]

we obtain:
S[Ri1 [Ri2 [. . . Ril [x]]]] ↓ .

On the other hand, by the definition of F , we get that:

F [Ri1 [Ri2 [. . . Ril [x]]]] = S[Ri1 [Ri2 [. . . Ril [x]]]]
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and hence
F [Ri1 [Ri2 [. . . Ril [x]]]] ↓ .

We also have that
F [Ri1 [Ri2 [. . . Ril [x]]]] ↓ iff F [x] ↓ .

From here, we conclude that F [x] ↓, which completes the proof of termination of F .

Secondly, using Scott induction, we will show that F is partially correct with respect to its speci-
fication, namely:

(∀x : IF [x]) (F [x] ↓ =⇒ OF [x, F [x]]). (3.54)

As it was broadly discussed in chapter (2), not every property is admissible and may be proven by
Scott induction. However, as we already saw, properties which express partial correctness are known
to be admissible.

Let us remind the definition of these properties: A property φ is said to be a partial correctness
property if and only if there are predicates I and O, such that:

(∀f) (φ[f ] ⇐⇒ (∀a) (f [a] ↓ ∧ I[a] =⇒ O[a, f [a]])). (3.55)

We now consider the following partial correctness property φ:

(∀f) (φ[f ] ⇐⇒ (∀a) (f [a] ↓ ∧ IF [a] =⇒ OF [a, f [a]])).

The first step in Scott induction is to show that φ holds for the nowhere defined function Ω. By
the definition of φ we obtain:

φ[Ω] ⇐⇒ (∀a) (Ω[a] ↓ ∧ IF [a] =⇒ OF [a,Ω[a]])),

and so, φ[Ω] holds, since Ω[a] ↓ never holds.

In the second step of Scott induction, we assume φ[f ] holds for some f :

(∀a) (f [a] ↓ ∧ IF [a] =⇒ OF [a, f [a]]), (3.56)

and show φ[fnew], where fnew is obtained from f by the main program (3.41) as follows:

fnew[x] = If Q0[x] then S[x]

elseif Q1[x] then C1[x, f [R1[x]]]
elseif Q2[x] then C2[x, f [R2[x]]]
. . .

elseif Qn[x] then Cn[x, f [Rn[x]]],

Now, we need to show now that for an arbitrary a,

fnew[a] ↓ ∧ IF [a] =⇒ OF [a, fnew[a]].

Assume fnew[a] ↓ and IF [a]. We have now the following two cases:
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• Case 1: Q0[a].

By the definition of fnew we obtain fnew[a] = S[a] and since fnew[a] ↓, we obtain that S[a]
must terminate as well, that is S[a] ↓. Now using verification condition (3.49) we may conclude
OF [a, S[a]] and hence OF [a, fnew[a]].

• Case 2: Qi[a] for some i, 1 ≤ i ≤ n.

By the definition of fnew we obtain fnew[a] = Ci[a, f [Ri[a]]] and since fnew[a] ↓, we conclude
that all the others involved in this computation must also terminate, that is: Ci[a, f [Ri[a]]] ↓,
f [Ri[a]] ↓, and Ri[a] ↓.

From IF [a], by (3.43), we obtain IF [Ri[a]] and, knowing that: f [Ri[a]] ↓ by the induction
hypothesis (3.56) we obtain OF [Ri[a], f [Ri[a]]].

Concerning the verification condition (3.50), note that all the assumptions from the left part of
the implication are at hand and thus we can conclude OF [a, fnew[a]].

Now we conclude that the property φ holds for the least fixpoint of (3.41) and hence, φ holds for
the function computed by (3.41), which completes the proof of the soundness theorem (3.4).

3.4.3 Completeness of the Verification Conditions

Completing the notion of Soundness, we introduce its dual—Completeness.
As we already mentioned, after generating the verification conditions, one has to prove them as

logical formulae. If all of them hold, then the program is correct with respect to its specification—
Soundness theorem.

Now, we formulate the Completeness theorem for the class of coherent simple multiple else pro-
grams.

Theorem 3.8. Let for any i, the functions S, Ci, and Ri satisfy their specifications (IS , OS),
(IC , OC), and (IR, OR). Let also the simple program with multiple else F as defined in (3.41) with its
specification (IF , OF ) be coherent with respect to S, Ci, Ri, and their specifications, and the output
specification of F , (OF ) is functional one.

Then if F is totaly correct with respect to (IF , OF ) then the following verification conditions hold:

(∀x : IF [x]) (Q0[x] =⇒ OF [x, S[x]]) (3.57)

(∀x, y : IF [x]) (Q1[x] ∧ OF [R1[x], y] =⇒ OF [x, C1[x, y]]) (3.58)

. . .

(∀x, y : IF [x]) (Qn[x] ∧ OF [Rn[x], y] =⇒ OF [x,Cn[x, y]]) (3.59)

(∀x : IF [x]) (F ′[x] = T) (3.60)

where:

F ′[x] = If Q0[x] then T (3.61)
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elseif Q1[x] then F ′[R1[x]]
elseif Q2[x] then F ′[R2[x]]
. . .

elseif Qn[x] then F ′[Rn[x]].

which are the same as (3.49), (3.50), (3.52), and (3.53) from the Soundness theorem (3.4).

Proof:
We assume now that:

• For all i, the functions S, Ci, and Ri are totaly correct with respect to their specifications
(IS , OS), (ICi , OCi), and (IRi , ORi).

• The program F as defined in (3.41) with its specification (IF , OF ) is coherent with respect to
S, Ci, Ri, and their specifications.

• The output specification of F , (OF ) is functional one, that is:

(∀x : IF [x]) (∃!y) (OF [x, y]).

• The program F as defined in (3.41) is correct with respect to its specification, that is, the total
correctness formula holds:

(∀x : IF [x]) (F [x] ↓ ∧ OF [x, F [x]]). (3.62)

We show that (3.57), (3.58), . . . , (3.59), and (3.60) hold as logical formulae.

We start now with proving (3.57) and (3.58), . . . , (3.59) simultaneously.
Take arbitrary but fixed x and assume IF [x]. We consider the following two cases:

• Case 1: Q0[x]

By the definition of F , we have F [x] = S[x], and by using the correctness formula (3.62) of
F , we conclude (3.57) holds. The formulae (3.58), . . . , (3.59) are trivial to prove, because we
predicates Q are consistent and noncontradictory, and hence ¬Qi[x] for all i, 1 ≤ i ≤ n.

• Case 2: Qi[x] for some i, 1 ≤ i ≤ n.

Now, the formulae (3.57) and all except one of (3.58), . . . , (3.59) hold. Assume y is such that
OF [Ri[x], y]. Since F is correct, we obtain that y = F [Ri[x]], because OF is a functional
predicate.

On the other hand, by the definition of F , we have F [x] = Ci[x, F [Ri[x]]] and hence F [x] =
Ci[x, y]. Again, from the correctness of F , we obtain OF [x, Ci[x, y]], which had to be proven.

Now, we show that the simplified version F ′ of the initial function F terminates. Moreover, F ′

terminates if F terminates. In the course of the proof, one may notice that proving F ′[x] = T is the
same as proving that F ′ terminates.

Take arbitrary but fixed x and assume IF [x]. Since F [x] terminates, we denote F [x] = a, for
some constant a.
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We now show that there must exist a sequence of l in number else branch indexes i1, . . . , il, such
that finally the bottom of the recursion will be reached, that is:

Q0[Ri1 [Ri2 [. . . Ril [x]]]] ∧ . . . ∧ Qil−1
[Ril [x]] ∧ Qil [x].

Since the predicates Qi are consistent and noncontradictory, for the given x, there always exists il,
such that Qil [x], and then for the Ril [x], there exists again a il−1, such that Qil−1

[Ril [x]], etc. What
we need to show is that i1 = 0, that is, the Q0 predicate will finally be fulfilled.

We prove this by contradiction, i.e. assume that for any sequence of else branch indexes i1, . . . , il :

¬Q0[Ri1 [Ri2 [. . . Ril [x]]]].

Now, we look at the construction of F as being the least fixpoint of the operator F as defined in
(3.41).

Let f0, f1, . . . fm, . . . be the finite approximations of F obtained from the nowhere defined func-
tion Ω, in the following way:

f0[x] = Ω[x]

fm+1[x] = If Q0[x] then S[x]

elseif Q1[x] then C1[x, fm[R1[x]]]
elseif Q2[x] then C2[x, fm[R2[x]]]
. . .

elseif Qn[x] then Cn[x, fm[Rn[x]]].

The computable function F , corresponding to (3.41) is defined as

F =
⋃
m

fm,

that is, the least fixpoint of (3.41).
Since for our particular x (it was taken arbitrary but fixed) we have F (x) = a, there must exist a

finite approximation fm, such that:

fm[x] = a.

If m = 0, then f0[x] = a, but on the other hand, by its definition, f0 is the nowhere defined
function f0 = Ω, thus this is not a case. Hence, we conclude that m > 0.

Assume now, that for some m0, fm0 [x] =⊥ and fm0 [R1[x]] =⊥, . . . , fm0 [Rn[x]] =⊥.
We show that fm0+1[x] =⊥.
Indeed, by the definition of finite approximations, we have:

fm0+1[x] = If Q0[x] then S[x]

elseif Q1[x] then C1[x, fm0 [R1[x]]]
elseif Q2[x] then C2[x, fm0 [R2[x]]]
. . .

elseif Qn[x] then Cn[x, fm0 [Rn[x]]].
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From here, by having that for any sequence of else branch indexes i1, . . . , il :

¬Q0[Ri1 [Ri2 [. . . Ril [x]]]],

and in particular ¬Q0[x], we obtain that fm0+1[x] =⊥.
This leads us to the desired contradiction, namely fm[x] =⊥, which contradicts fm[x] = a.

The proof of the termination of F ′ will be completed by proving the following statement:

If there exists a sequence of l in number else branch indexes i1, . . . , il, such that:

Q0[Ri1 [Ri2 [. . . Ril [x]]]] ∧ . . . ∧ Qil−1
[Ril [x]] ∧ Qil [x],

then F ′[x] ↓.

Assume that for our particular x, which was taken arbitrary but fixed, we have:

Q0[Ri1 [Ri2 [. . . Ril [x]]]] ∧ . . . ∧ Qil−1
[Ril [x]] ∧ Qil [x].

Now we consider the following two cases:

• Case 1: l = 0.

Now we have Q0[x], and by the definition of F ′, we have F [x] = T and hence F [x] ↓.

• Case 2: l > 0.

Now, by following the definition of F ′, we have F ′[x] = F ′[Ril [x]]. Applying the same kind
of reasoning l times, we obtain:

F ′[x] = F ′[Ri1 [Ri2 [. . . Ril [x]]]],

and by having:
Q0[Ri1 [Ri2 [. . . Ril [x]]]],

we conclude that:
F ′[x] = F ′[Ri1 [Ri2 [. . . Ril [x]]]] = T,

hence, F ′[x] ↓, which completes the proof of termination of F ′.

We proved so far that:
If F [x] terminates, then there must exist a sequence of l in number else branch indexes i1, . . . , il,

such that finally the bottom of the recursion is reached, that is:

Q0[Ri1 [Ri2 [. . . Ril [x]]]] ∧ . . . ∧ Qil−1
[Ril [x]] ∧ Qil [x],

and If there exist a sequence of l in number else branch indexes i1, . . . , il, such that:

Q0[Ri1 [Ri2 [. . . Ril [x]]]] ∧ . . . ∧ Qil−1
[Ril [x]] ∧ Qil [x],

then F ′[x] terminates.
By this we completed our proof of the Completeness theorem.
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In order to illustrate the Soundness and the Completeness theorems, and the class of simple pro-
grams with multiple else, we refer to the example of the binary powering function (3.10.7). There, the
reader finds also wrongly written versions of that program and may follow up the respective verifica-
tion conditions. Moreover, there is a relatively big discussion on how debugging may be done, based
on the completeness.
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3.5 Fibonacci-like Schemata

In this section we study the class of Fibonacci-like recursive programs. They are like simple recursive
programs, but on the else branch several recursive calls may appear simultaneously, and thus the
Fibonacci program may be treated.

This schema is a proper extension of the simple recursive programs schema, thus this section itself
is a proper extension of section (3.3).

Here we again extract the purely logical conditions which are sufficient and also necessary for the
program correctness. The proofs of the Soundness and the Completeness theorems are similar to the
ones presented in (3.3), however, they are a bit more complicated, due to the extension of the class of
programs they treat.

Fibonacci-like Recursive Programs are programs of the form:

F [x] = If Q[x] then S[x] else C[x, F [R1[x]], . . . , F [Rk[x]]]. (3.63)

We assume that the functions S, C, and R1, . . . , Rk satisfy their specifications given by IS [x],
OS [x, y], IC [x, y], OC [x, y1, . . . , yk, z], IRi [x], ORi [x, y].

We must admit, that this kind of programs is not the most popular in practice, however, it has
specific features. Programs of this kind are considered to be (in some cases) more efficient then
others, however, this is a discussion which is not relevant to our research. Note, that the so called
Divide and conquer algorithms fit well to the Fibonacci-like schema.

3.5.1 Coherent Fibonacci-like Recursive Programs

We start up with instantiating the definitions for coherent programs (3.1) and (3.2), namely:

Definition 3.9. Let for all i, the functions S, C, and Ri satisfy their specifications (IS , OS), (IC , OC),
and (IRi , ORi). Then the program F as defined in (3.63) with its specification (IF , OF ) is coherent
with respect to S, C, Ri, and their specifications, if and only if the following conditions hold:

(∀x : IF [x]) (Q[x] =⇒ IS [x]) (3.64)

(∀x : IF [x]) (¬Q[x] =⇒ IF [R1[x]]) (3.65)

. . .

(∀x : IF [x]) (¬Q[x] =⇒ IF [Rk[x]]) (3.66)

(∀x : IF [x]) (¬Q[x] =⇒ IR1 [x]) (3.67)

. . .

(∀x : IF [x]) (¬Q[x] =⇒ IRk
[x]) (3.68)
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(∀x, y1, . . . , yk : IF [x]) (3.69)

(¬Q[x] ∧OF [R1[x], y] ∧ . . . ∧ OF [Rk[x], y] =⇒ IC [x, y1, . . . , yk])

When looking closer to the definitions, we see that our intuition about coherent programs is met
again, namely:

• (3.64) treats the special case, that is, Q[x] holds and no recursion is applied, thus the input x
must fulfill the precondition of S.

• (3.65), . . . , (3.66) treat the general case, that is, ¬Q[x] holds and recursion is applied, thus the
new inputs Ri[x] must fulfill the precondition of the main function F .

• (3.67), . . . , (3.68) treat the general case, that is, ¬Q[x] holds and recursion is applied, thus the
input x must fulfill the precondition of all the reduction functions Ri.

• (3.69) treats the general case, that is, ¬Q[x] holds and recursion is applied, thus the input
x, together with any y1, . . . , yn (where y1, . . . , yn are possible outputs from F [R1[x]], . . . ,
F [Rk[x]]) must fulfill the precondition of the combinator function C.

After having defined the coherence verification conditions, we go towards defining the verification
conditions for ensuring total correctness.

3.5.2 Verification Conditions and their Soundness

We introduce the verification conditions for the class of Fibonacci-like recursive programs, by pro-
viding the relevant Soundness theorem. The statement itself and the proof are generalization of the
similar theorem (3.4) for the class of simple recursive programs.

Theorem 3.10. Let for all i, the functions S, C, and Ri satisfy their specifications (IS , OS), (IC , OC),
and (IRi , ORi). Let also the program F as defined in (3.63) with its specification (IF , OF ) be coherent
with respect to S, C, Ri, and their specifications. Then F is totaly correct with respect to (IF , OF ) if
the following verification conditions hold:

(∀x : IF [x]) (Q[x] =⇒ OF [x, S[x]]) (3.70)

(∀x, y1, . . . , yk : IF [x]) (3.71)

(¬Q[x] ∧ OF [R1[x], y1] ∧ . . . ∧ OF [Rk[x], yk] =⇒ OF [x,C[x, y1, . . . , yk]])

(∀x : IF [x]) (F ′[x] = T) (3.72)

where:

F ′[x] = If Q[x] then T else F ′[R1[x]] ∧ F ′[R2[x]] ∧ . . . ∧ F ′[Rk[x]]. (3.73)

The above conditions constitute the following principle:
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• (3.70) prove that the base case is correct.

• (3.71) prove that the recursive expression is correct under the assumption that all the reduced
calls are correct.

• (3.72) prove that a simplified version F ′ of the initial program F terminates.

Proof:
As usual, the proof of the Soundness statement is split into two major parts:

• prove partial correctness using Scott induction;

• prove termination.

First we will see that F (3.63) terminates.
Indeed, from the assumption that for all i: S, C, and Ri are totally correct (with respect to IS , IC ,

and IRi) by the coherence of F , namely, formulae (3.64), (3.65), . . . , (3.66), (3.67), . . . , (3.68) and
(3.69) we ensure the termination of the calls to the auxiliary functions S, C, and Ri.

Take arbitrary but fixed x and assume IF [x]. From (3.72), we obtain that F ′(x) = T. Now we
construct the recursive tree of F ′, starting form x, RTF ′ [x] in the following way:

• x is the root of the tree, that is, the uppermost node;

• for any node u, if Q[u] holds, then stop further construction on that branch, and put the symbol
> ;

• for any node u, if ¬Q[u] holds, then construct all the k descendent nodes R1[u], . . . , Rk[u].
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R1[R1[x]]
>

R2[R1[x]]

...
...

...
...

Rk[R1[x]]
>

. . . R1[Rk[x]] Rk[Rk[x]]. . . . . .

¬Q[R1[x]] Q[R2[x]] Ã > ¬Q[Rk[x]]

Q[R1[R1[x]]] Ã > ¬Q[R2[R1[x]]] Q[Rk[R1[x]]] Ã > ¬Q[R1[Rk[x]]] ¬Q[Rk[Rk[x]]]
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We first show that RTF ′ [x] is finite.
We prove this statement by contradiction, i.e. assume RTF ′ [x] is infinite. Hence, there exists an

infinite path (i1, i2, . . . , il, . . . ), such that:

¬Q[x] ∧ ¬Q[Ri1 [x]] ∧ . . . ∧ ¬Q[Ril [. . . [Ri1 [x]]]] ∧ . . . (3.74)

Now, we look at the construction of F ′ as being the least fixpoint of the operator F ′ as defined in
(3.73).

Let f0, f1, . . . fm, . . . be the finite approximations of F ′ obtained from the nowhere defined func-
tion Ω, in the following way:

f0[x] = Ω[x]

fm+1[x] = If Q[x] then T else fm[R1[x]] ∧ . . . ∧ fm[Rk[x]].

The computable function F ′, corresponding to (3.73) is defined as

F ′ =
⋃
m

fm,

that is, the least fixpoint of (3.73).
Since for our particular x (it was taken arbitrary but fixed) we have F ′(x) = T, there must exist a

finite approximation fm, such that:

fm[x] = T.

If m = 0, then f0[x] = T, but on the other hand, by its definition, f0 is the nowhere defined
function f0 = Ω, thus this is not a case. Hence, we conclude that m > 0.

From the assumption (3.74), and in particular ¬Q[x], by the definition of fm we obtain:

fm[x] = fm−1[R1[x]] ∧ . . . ∧ fm−1[Rk[x]].

From here, and fm[x] = T we obtain that:

fm−1[R1[x]] = T ∧ . . . ∧ fm−1[Rk[x]] = T,

and hence fm−1[Ri1 [x]] = T.
By repeating the same kind of reasoning m times (in fact, formally it is done by induction), we

obtain that:

f0[Rim [. . . [Ri1 [x]]]] = T

and by its definition (f0 = Ω) we obtain:

f0[Rim [. . . [Ri1 [x]]]] = ⊥.

This is the desired contradiction, and hence, we have proven that the recursive tree RTF ′ [x] is finite.

Now we continue the proof of the termination of F . For our particular x (it was taken arbitrary
but fixed, IF [x]), we consider the following two cases:
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• Case 1: Q[x].

Now by the definition of F , we have F [x] = S[x]. We chose x such that IF [x], and by (3.64)
we obtain that S[x] ↓ and hence F [x] ↓.

• Case 2: ¬Q[x]. Now, by following the definition of F , we have,

F [x] = C[x, F [R1[x], . . . , Rk[x]]],

and since F is coherent, we have IR1 [x], IR2 [x], and IRk
[x], and IC [x, y1, . . . , yk], and thus,

proving F [x] ↓, reduces to proving:

F [R1[x] ↓ ∧ F [R2[x] ↓ ∧ . . . F [Rk[x] ↓ .

We need to apply the same kind of reasoning to all the nodes of the recursive tree RTF ′ [x], and
since it is finite, after unfolding finitely many times we reach the leaves where for each leaf we
arrive at the Case 1. Thus, F [x] ↓.

Secondly, using Scott induction, we will show that F is partially correct with respect to its speci-
fication, namely:

(∀x : IF [x]) (F [x] ↓ =⇒ OF [x, F [x]]). (3.75)

As it was broadly discussed in chapter (2), not every property is admissible and may be proven by
Scott induction. However, as we already saw, properties which express partial correctness are known
to be admissible.

Let us remind the definition of these properties: A property φ is said to be a partial correctness
property if and only if there are predicates I and O, such that:

(∀f) (φ[f ] ⇐⇒ (∀a) (f [a] ↓ ∧ I[a] =⇒ O[a, f [a]])). (3.76)

We now consider the following partial correctness property φ:

(∀f) (φ[f ] ⇐⇒ (∀a) (f [a] ↓ ∧ IF [a] =⇒ OF [a, f [a]])).

The first step in Scott induction is to show that φ holds for the nowhere defined function Ω. By
the definition of φ we obtain:

φ[Ω] ⇐⇒ (∀a) (Ω[a] ↓ ∧ IF [a] =⇒ OF [a,Ω[a]])),

and so, φ[Ω] holds, since Ω[a] ↓ never holds.

In the second step of Scott induction, we assume φ[f ] holds for some f :

(∀a) (f [a] ↓ ∧ IF [a] =⇒ OF [a, f [a]]), (3.77)

and show φ[fnew], where fnew is obtained from f by the main program (3.63) as follows:

fnew = If Q[x] then S[x] else C[x, f [R1[x]], f [R2[x]], . . . , f [Rk[x]]].

Now, we need to show that for an arbitrary a,
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fnew[a] ↓ ∧ IF [a] =⇒ OF [a, fnew[a]].

Assume fnew[a] ↓ and IF [a]. We have now the following two cases:

• Case 1: Q[a].

By the definition of fnew we obtain fnew[a] = S[a] and since fnew[a] ↓, we obtain that S[a]
must terminate as well, that is S[a] ↓. Now using verification condition (3.70) we may conclude
OF [a, S[a]] and hence OF [a, fnew[a]].

• Case 2: ¬Q[a].

By the definition of fnew we obtain:

fnew[a] = C[a, f [R1[x]], f [R2[x]], . . . , f [Rk[x]]]

and since fnew[a] ↓, we conclude that all the others involved in this computation must also
terminate, that is:

C[a, f [R1[x]], f [R2[x]], . . . , f [Rk[x]]] ↓,

f [R1[x]] ↓, f [R2[x]] ↓, . . . , f [Rk[x]] ↓,

R1[a] ↓, R2[a] ↓, . . . , Rk[a] ↓ .

From IF [a], by (3.65), . . . , (3.66) we obtain IF [R1[a]], . . . , IF [Rk[a]] and, knowing that:
f [R1[a]] ↓, . . . , f [Rk[a]] ↓ by the induction hypothesis (3.77) we obtain:

OF [R1[a], f [R1[a]]], OF [R2[a], f [R2[a]]], . . . , OF [Rk[a], f [Rk[a]]].

Concerning the verification condition (3.71), note that all the assumptions from the left part of
the implication are at hand and thus we can conclude:

OF [a,C[a, f [R1[x]], f [R2[x]], . . . , f [Rk[x]]]],

and thus OF [a, fnew[a]].

Now we conclude that the property φ holds for the least fixpoint of (3.63) and hence, φ holds for
the function computed by (3.63), which completes the proof of the soundness theorem (3.10).

This completes the proof of the Soundness theorem. Now we proceed towards its complement,
namely, the Completeness theorem.
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3.5.3 Completeness of the Verification Conditions

Now, we formulate the Completeness theorem for the class of Fibonacci-like recursive programs.

Theorem 3.11. Let for all i the functions S, C, and Ri satisfy their specifications (IS , OS), (IC , OC),
and (IRi , ORi). Let also the program F as defined in (3.63) with its specification (IF , OF ) be coherent
with respect to S, C, Ri, and their specifications, and the output specification of F , (OF ) is functional
one.

Then if F is totaly correct with respect to (IF , OF ) then the following verification conditions hold:

(∀x : IF [x]) (Q[x] =⇒ OF [x, S[x]]) (3.78)

(∀x, y1, . . . , yk : IF [x]) (3.79)

(¬Q[x] ∧ OF [R1[x], y1] ∧ . . . ∧ OF [Rk[x], yk] =⇒ OF [x,C[x, y1, . . . , yk]])

(∀x : IF [x]) (F ′[x] = T) (3.80)

where:

F ′[x] = If Q[x] then T else F ′[R1[x]] ∧ F ′[R2[x]] ∧ . . . ∧ F ′[Rk[x]]. (3.81)

which are the same as (3.70), (3.71), (3.72), and (3.73) from the Soundness theorem (3.10).

Proof:
We assume now that:

• The functions S, C, and Ri are totaly correct with respect to their specifications (IS , OS),
(IC , OC), and (IRi , ORi).

• The program F as defined in (3.63) with its specification (IF , OF ) is coherent with respect to
S, C, Ri, and their specifications.

• The output specification of F , (OF ) is functional one, that is:

(∀x : IF [x]) (∃!y) (OF [x, y]).

• The program F as defined in (3.63) is correct with respect to its specification, that is, the total
correctness formula holds:

(∀x : IF [x]) (F [x] ↓ ∧ OF [x, F [x]]). (3.82)

We show that (3.78), (3.79), and (3.80) hold as logical formulae.

We start now with proving (3.78) and (3.79) simultaneously.
Take arbitrary but fixed x and assume IF [x]. We consider the following two cases:

• Case 1: Q[x]

By the definition of F , we have F [x] = S[x], and by using the correctness formula (3.82) of F ,
we conclude (3.78) holds. The formula (3.79) holds, because we have Q[x].
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• Case 2: ¬Q[x]

Now, (3.78) holds. Assume y1, . . . , yk are such that:

OF [R1[x], y1], . . . , OF [R1[x], yk].

Since F is correct, we obtain that:

y1 = F [R1[x]], . . . , yk = F [Rk[x]]

because OF is a functional predicate.

On the other hand, by the definition of F , we have:

F [x] = C[x, F [R1[x]], . . . , F [Rk[x]]]

and hence F [x] = C[x, y1, . . . , yk]. Again, from the correctness of F , we obtain:

OF [x,C[x, y1, . . . , yk]],

which had to be proven.

Now, we show that the simplified version F ′ of the initial function F terminates. In the course of
the proof, one may notice that proving F ′[x] = T is the same as proving that F ′ terminates.

Take arbitrary but fixed x and assume IF [x]. Since F [x] terminates, we denote F [x] = a, for
some constant a.

Now we construct the recursive tree of F , starting form x, RTF [x] in the following way:

• x is the root of the tree, that is, the uppermost node;

• for any node u, if Q[u] holds, then stop further construction on that branch, and put the symbol
> ;

• for any node u, if ¬Q[u] holds, then construct all the k descendent nodes R1[u], . . . , Rk[u].
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R1[R1[x]]
>

R2[R1[x]]
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...

Rk[R1[x]]
>

. . . R1[Rk[x]] Rk[Rk[x]]. . . . . .

¬Q[R1[x]] Q[R2[x]] Ã > ¬Q[Rk[x]]

Q[R1[R1[x]]] Ã > ¬Q[R2[R1[x]]] Q[Rk[R1[x]]] Ã > ¬Q[R1[Rk[x]]] ¬Q[Rk[Rk[x]]]

Note that the recursive tree of F , RTF [x] is the same as the recursive tree of F ′, RTF ′ [x]. Thus
RTF [x] is finite.

Now we need to show termination of F ′. For our particular x (it was taken arbitrary but fixed,
IF [x]), we consider the following two cases:

• Case 1: Q[x].

Now by the definition of F ′, we have F [x] = T and hence F ′[x] ↓.

• Case 2: ¬Q[x]. Now, by following the definition of F ′, we have,

F ′[x] = F ′[R1[x]] ∧ . . . ∧ F ′[Rk[x]].

We need to apply the same kind of reasoning to all the nodes of the recursive tree RTF [x], and
since it is finite, after unfolding finitely many times we reach the leaves where for each leaf we
arrive at the Case 1. Thus, F ′[x] ↓.

By this we completed our proof of the Completeness theorem.

In order to illustrate the Soundness and the Completeness theorems, and the class of Fibonacci-
like programs, we refer to the example of Neville’s algorithm, (3.264), which is broadly discussed in
section (3.10.8). There, the reader is introduced to a nonclassical proof of a classical theorem from
the area of numerical analysis.
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3.5.4 A Note on the Termination of Fibonacci-like Programs

In this section we share some thoughts about proving termination of Fibonacci-like programs. In fact,
we show that certain simplification is not possible by constructing a counterexample.

Consider the following program (already a simplified version) for computing F :

F [x] = If Q[x] then T else F [R1] ∧ F [R2]. (3.83)

The question we want to ask is the following: In order to prove termination of F , would it be
sufficient to prove termination of a split of F , namely to prove termination of F1 and F2, where:

F1[x] = If Q[x] then T else F [R1], (3.84)

F2[x] = If Q[x] then T else F [R2]. (3.85)

We do not want to go into discussions on if this were so. We give an example in order to show that
this is not a case. Let us have:

Q[x] ⇐⇒ x = 0

R1[0] = 1, R1[1] = 2, R1[2] = 0

R2[0] = 2, R2[1] = 0, R2[2] = 1

IF [x] ⇐⇒ IR1 [x] ⇐⇒ IR2 [x] ⇐⇒ x = 0 ∨ x = 1 ∨ x = 2.

First check if the program F is coherent. In order to perform the coherence check, we instantiate
the relevant conditions:

(∀x : x = 0 ∨ x = 1 ∨ x = 2) (x = 0 =⇒ x = 0 ∨ x = 1 ∨ x = 2)

(∀x : x = 0 ∨ x = 1 ∨ x = 2) (x 6= 0 =⇒ R1[x] = 0 ∨ R1[x] = 1 ∨ R1[x] = 2)

(∀x : x = 0 ∨ x = 1 ∨ x = 2) (x 6= 0 =⇒ R2[x] = 0 ∨ R2[x] = 1 ∨ R2[x] = 2)

(∀x : x = 0 ∨ x = 1 ∨ x = 2) (x 6= 0 =⇒ x = 0 ∨ x = 1 ∨ x = 2)

(∀x : x = 0 ∨ x = 1 ∨ x = 2) (x 6= 0 =⇒ x = 0 ∨ x = 1 ∨ x = 2)

(∀x : x = 0 ∨ x = 1 ∨ x = 2) (x 6= 0 ∧ . . . =⇒ T).
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After we are convinced that F is coherent, we first observe that its split F1 and F2 both terminate.
For F1, all the possibilities are:

F1[0] = T

F1[1] = F1[2] = F1[0] = T

F1[2] = F1[0] = T,

and for F2:

F2[0] = T

F2[1] = F2[0] = T

F2[2] = F2[1] = F2[0] = T.

Now we will show that F [1] does not terminate. Indeed:

F [1] = F [R1[1]] ∧ F [R2[1]] = F [2] ∧ F [0] = F [R1[2]] ∧ F [R2[2]] =

= F [0] ∧ F [1] = T ∧ F [1].

Thus, proving termination of Fibonacci-like programs requires proving termination of the whole
simplified version, and, in general, no split into parts is possible.
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3.6 Generalization of Fibonacci-like Schemata

This section is dedicated to the most general class of recursive programs which have no nested re-
cursion. It is defined similarly to Fibonacci-like programs, however, with multiple choice if-then-else
with zero or more recursive calls on each else branch.

Shortly, we call them general multiple else programs.
The section is a proper extension of the previous ones, as the class under study here is a proper

extension of the classes of simple recursive programs, simple recursive multiple else programs and
Fibonacci-like programs.

As before, we extract the purely logical conditions which are sufficient, and also necessary, for
the program correctness. The proofs are similar to that from the previous sections, however, they are
a bit longer.

We approach the correctness problem, again, by splitting it into two parts: partial correctness,
and termination. However, first we check for coherence.

General recursive programs with multiple else are programs of the form:

F [x] = If Q0[x] then S[x] (3.86)

elseif Q1[x] then C1[x, F [R1,1[x]], . . . , F [R1,k1 [x]]]
elseif Q2[x] then C2[x, F [R2,1[x]], . . . , F [R2,k2 [x]]]
. . .

elseif Qn[x] then Cn[x, F [Rn,1[x]], . . . , F [Rn,kn [x]]],

where Qi are predicates and S, Ci, Ri,j are auxiliary functions (S[x] is a “simple” function (the bot-
tom of the recursion), Ci[x, y1, . . . , yki ] are “combinator” functions, and Ri,j [x] are “reduction” func-
tions).

We assume that the functions S, Ci, and Ri,j satisfy their specifications given by IS [x], OS [x, y],
ICi [x, y1, . . . , yki ], OCi [x, y1, . . . , yki , z], IRi,j [x], ORi,j [x, y].

Additionally, assume that the Qi predicates are consistent and noncontradictory, that is:

Q1 ⇒ ¬Q0

. . .

Qn ⇒ ¬Qn−1

and the last one is otherwise-like:

Qn = ¬Q0 ∧ · · · ∧ ¬Qn−1,

which we do only in order to simplify the presentation.
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3.6.1 Coherent General Recursive Multiple Else Programs

As already discussed, before going to the real verification process, we first check if the program is
coherent, that is, all function call are applied to arguments obeying the respective input specifications.

The corresponding conditions for this class of programs, which are derived from the definition of
coherent programs (3.1) and (3.2), are:

Definition 3.12. Let for all i, j, the functions S, Ci, and Ri,j be such that they satisfy their speci-
fications (IS , OS), (ICi , OCi), and (IRi,j , ORi,j ). Then the simple program with multiple else F as
defined in (3.86) with its specification (IF , OF ) is coherent with respect to S, Ci, Ri,j , and their
specifications, if and only if the following conditions hold:

(∀x : IF [x]) (Q0[x] =⇒ IS [x]) (3.87)

(∀x : IF [x]) (Q1[x] =⇒ IF [R1,1[x]] ∧ . . . ∧ IF [R1,k1 [x]]) (3.88)

. . .

(∀x : IF [x]) (Qn[x] =⇒ IF [Rn,1[x]] ∧ . . . ∧ IF [Rn,kn [x]]) (3.89)

(∀x : IF [x]) (Q1[x] =⇒ IR1,1 [x] ∧ . . . ∧ IR1,k1
[x]) (3.90)

. . .

(∀x : IF [x]) (Qn[x] =⇒ IRn,1 [x] ∧ . . . ∧ IRn,kn
[x]) (3.91)

(∀x, y1, . . . , yk1 : IF [x]) (Q1[x] ∧OF [R1,1[x], y1] ∧ . . . ∧OF [R1,k1 [x], yk1 ] (3.92)

=⇒
IC1 [x, y1, . . . , yk1 ])

. . .

(∀x, y1, . . . , ykn : IF [x]) (Qn[x] ∧OF [Rn,1[x], y1] ∧ . . . ∧OF [Rn,kn [x], ykn ] (3.93)

=⇒
IC1 [x, y1, . . . , yk1 ])

Again we see that the respective conditions for coherence correspond very much to our intuition
about coherent programs, namely:

• (3.87) treats the special case, that is, Q0[x] holds and no recursion is applied, thus the input x
must fulfill the precondition of S.

• (3.88), . . . , (3.89) treat the general case, that is, ¬Q0[x], and say Qi[x] holds and recursion is
applied, thus all the new inputs Ri,1[x], . . . , Ri,ki [x] must fulfill the precondition of the main
function F .
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• (3.90), . . . , (3.91) treat the general case, that is, ¬Q0[x], and say Qi[x] holds and recursion is
applied, thus the input x must fulfill the preconditions of the reduction functions Ri,1, . . . , Ri,ki .

• (3.92), . . . , (3.93) treat the general case, that is, ¬Q0[x], and say Qi[x] holds and recursion is
applied, thus the input x, together with any y1, . . . , yki

(where for each j, yj is a possible output
F [Ri,j [x]]) must fulfill the precondition of the combinator function Ci.

3.6.2 Verification Conditions and their Soundness

As we already discussed, in order to be sure that a program is correctly proven to be correct, one has
to formally rely on the technique used for verification. Thus we formulate here a Soundness theorem,
for the class of coherent general programs with multiple else.

Theorem 3.13. Let for each i, j: S, Ci, and Ri,j be functions which satisfy their specifications
(IS , OS), (ICi , OCi), and (IRi,j , ORi,j ). Let also the general program with multiple else F as de-
fined in (3.86) with its specification (IF , OF ) be coherent with respect to S, Ci, Ri,j , and their spec-
ifications. Then F is totaly correct with respect to (IF , OF ) if the following verification conditions
hold:

(∀x : IF [x]) (Q0[x] =⇒ OF [x, S[x]]) (3.94)

(∀x, y1, . . . , yk1 : IF [x]) (Q1[x] ∧OF [R1,1[x], y1] ∧ . . . ∧OF [R1,k1 [x], yk1 ] (3.95)

=⇒
OF [x,C1[x, y1, . . . , yk1 ]])

. . .

(∀x, y1, . . . , ykn : IF [x]) (Qn[x] ∧ OF [Rn,1[x], y1] ∧ . . . ∧OF [Rn,kn [x], ykn ] (3.96)

=⇒
OF [x, Cn[x, y1, . . . , ykn ]])

(∀x : IF [x]) (F ′[x] = T) (3.97)

where:

F ′[x] = If Q0[x] then T (3.98)

elseif Q1[x] then F ′[R1,1[x]] ∧ . . . ∧ F ′[R1,k1 [x]]
elseif Q2[x] then F ′[R2,1[x]] ∧ . . . ∧ F ′[R2,k2 [x]]
. . .

elseif Qn[x] then F ′[Rn,1[x]] ∧ . . . ∧ F ′[Rn,kn [x]].
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The above conditions constitute the following principle:

• (3.94) prove that the base case is correct.

• (3.95), . . . , (3.96) for any else branch, prove that the recursive expression is correct under the
assumption that the reduced calls are correct.

• (3.97) prove that a simplified version F ′ of the initial program F terminates.

Proof:

The proof of the Soundness statement is split into two major parts:

• prove partial correctness using Scott induction;

• prove termination.

First we will see that F (3.86) terminates.

Indeed, from the assumption that for all i: S, Ci, and Ri,j are totally correct (with respect to IS ,
ICi , and IRi,j ) by the coherence of F , namely, formulae (3.87), (3.88), . . . , (3.89), (3.90), . . . , (3.91),
and, (3.92), . . . , (3.93), we ensure the termination of the calls to the auxiliary functions S, Ci, and
Ri,j .

Take arbitrary but fixed x and assume IF [x]. From (3.97), we obtain that F ′[x] = T.

Now we construct the recursive tree of F ′, starting form x, RTF ′ [x] in the following way:

• x is the root of the tree, that is, the uppermost node;

• for any node u, if Q0[u] holds, then stop further construction on that branch, and put the symbol
> ;

• for any node u, if Qi[u] holds, for some i 6= 0, then construct all the ki descendent nodes
Ri,1[u], . . . , Ri,ki [u].
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Rj,1[Ri,1[x]]
> ...

...
...

...

Rj,kj [Ri,1[x]]
>

. . . Rm,1[Ri,ik [x]] Rm,km [Ri,ik [x]]. . . . . .

Qi[x]

Qj [Ri,1[x]] Q0[Ri,2[x]] Ã > Qm[Ri,ik [x]]

Q0[Rj,1[Ri,1[x]]] Ã > Q0[Rj,kj [Ri,1[x]]] Ã >

We first show that RTF ′ [x] is finite.
We prove this statement by contradiction, i.e. assume RTF ′ [x] is infinite. Hence, there exists an

infinite path (〈i1, j1〉, 〈i2, j2〉, . . . , 〈il, jl〉 . . . ), such that:

(3.99)¬Q0[x] but: Qi1 [x]

¬Q0[Ri1,j1 [x]] but: Qi2 [Ri1,j1 [x]]

. . .

¬Q0[Ril,jl
[ . . . [Ri1,j1 [x]]]] but: Qil+1

[Ril,jl
[ . . . [Ri1,j1 [x]]]]

. . . .

Now, we look at the construction of F ′ as being the least fixpoint of the operator F ′ as defined in
(3.98).

Let f0, f1, . . . fm, . . . be the finite approximations of F ′ obtained from the nowhere defined func-
tion Ω, in the following way:

f0[x] = Ω[x]

fm+1[x] = If Q0[x] then T

elseif Q1[x] then fm[R1,1[x]] ∧ . . . ∧ fm[R1,k1 [x]]
elseif Q2[x] then fm[R2,1[x]] ∧ . . . ∧ fm[R2,k2 [x]]
. . .

elseif Qn[x] then fm[Rn,1[x]] ∧ . . . ∧ fm[Rn,kn [x]].
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The computable function F ′, corresponding to (3.98) is defined as

F ′ =
⋃
m

fm,

that is, the least fixpoint of (3.98).
Since for our particular x (it was taken arbitrary but fixed) we have F ′(x) = T, there must exist a

finite approximation fm, such that:

fm[x] = T.

If m = 0, then f0[x] = T, but on the other hand, by its definition, f0 is the nowhere defined
function f0 = Ω, thus this is not a case. Hence, we conclude that m > 0.

From the assumption (3.99), and in particular ¬Q0[x] and Qi1 [x], by the definition of fm we
obtain:

fm[x] = fm−1[Ri1,1[x]] ∧ . . . ∧ fm−1[Ri1,ki1
[x]].

From here, and fm[x] = T we obtain that:

fm−1[Ri1,1[x]] = T ∧ . . . ∧ fm−1[Ri1,ki1
[x]] = T,

and hence fm−1[Ri1,j1 [x]] = T.
By repeating the same kind of reasoning m times (in fact, formally it is done by induction), we

obtain that:

f0[Rim,jm [ . . . [Ri1,jm [x]]]] = T

and by its definition (f0 = Ω) we obtain:

f0[Rim,jm [ . . . [Ri1,j1 [x]]]] = ⊥.

This is the desired contradiction, and hence, we have proven that the recursive tree RTF ′ [x] is finite.

Now we continue the proof of the termination of F . We prove this statement by contradiction, i.e.
assume RTF ′ [x] is finite and F [x] = ⊥.

For our particular x (it was taken arbitrary but fixed, IF [x]), we consider the following two cases:

• Case 1: Q0[x].

Now by the definition of F , we have F [x] = S[x]. We chose x such that IF [x], and by (3.87)
we obtain that S[x] ↓ and hence F [x] ↓ and thus we obtain a contradiction.

• Case 2: ¬Q0[x], and assume Qi1 [x]. Now, by following the definition of F , we have,

F [x] = Ci1 [x, F [Ri1,1[x], . . . , Ri1,ki1
[x]]],

and since F is coherent, we have IRi1,1 [x], IRi1,2 [x], and IRi1,ki1
[x], and IC [x, y1, . . . , yki1

],
and thus, there exist j1, such that Ri1,j1 [x] = ⊥.
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Applying the same kind of reasoning we obtain the infinite path (〈i1, j1〉, 〈i2, j2〉, . . . , 〈il, jl〉 . . . ),
(we already considered the same in (3.99)), that is:

¬Q0[x] but: Qi1 [x]

¬Q0[Ri1,j1 [x]] but: Qi2 [Ri1,j1 [x]]

. . .

¬Q0[Ril,jl
[ . . . [Ri1,j1 [x]]]] but: Qil+1

[Ril,jl
[ . . . [Ri1,j1 [x]]]]

. . . .

This implies that the three RTF ′ [x] is infinite, which is the desired contradiction.

Secondly, using Scott induction, we will show that F is partially correct with respect to its speci-
fication, namely:

(∀x : IF [x]) (F [x] ↓ =⇒ OF [x, F [x]]). (3.100)

As it was broadly discussed in chapter (2), not every property is admissible and may be proven by
Scott induction. However, as we already saw, properties which express partial correctness are known
to be admissible.

Let us remind the definition of these properties: A property φ is said to be a partial correctness
property if and only if there are predicates I and O, such that:

(∀f) (φ[f ] ⇐⇒ (∀a) (f [a] ↓ ∧ I[a] =⇒ O[a, f [a]])). (3.101)

We now consider the following partial correctness property φ:

(∀f) (φ[f ] ⇐⇒ (∀a) (f [a] ↓ ∧ IF [a] =⇒ OF [a, f [a]])).

The first step in Scott induction is to show that φ holds for the nowhere defined function Ω. By
the definition of φ we obtain:

φ[Ω] ⇐⇒ (∀a) (Ω[a] ↓ ∧ IF [a] =⇒ OF [a,Ω[a]])),

and so, φ[Ω] holds, since Ω[a] ↓ never holds.
In the second step of Scott induction, we assume φ[f ] holds for some f :

(∀a) (f [a] ↓ ∧ IF [a] =⇒ OF [a, f [a]]), (3.102)

and show φ[fnew], where fnew is obtained from f by the main program (3.86) as follows:

fnew[x] = If Q0[x] then S[x]

elseif Q1[x] then C1[x, f [R1,1[x]], . . . , f [R1,k1 [x]]]
elseif Q2[x] then C2[x, f [R2,1[x]], . . . , f [R2,k2 [x]]]
. . .

elseif Qn[x] then Cn[x, f [Rn,1[x]], . . . , f [Rn,kn [x]]],
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Now, we need to show now that for an arbitrary a,

fnew[a] ↓ ∧ IF [a] =⇒ OF [a, fnew[a]].

Assume fnew[a] ↓ and IF [a]. We have now the following two cases:

• Case 1: Q0[a].

By the definition of fnew we obtain fnew[a] = S[a] and since fnew[a] ↓, we obtain that S[a]
must terminate as well, that is S[a] ↓. Now using verification condition (3.94) we may conclude
OF [a, S[a]] and hence OF [a, fnew[a]].

• Case 2: Qi[a] for some i, 1 ≤ i ≤ n.

By the definition of fnew we obtain:

fnew[a] = Ci[a, f [Ri,1[a]], . . . , f [Ri,ki [a]]]

and since fnew[a] ↓, we conclude that all the others involved in this computation must also
terminate, that is:

Ci[a, f [Ri,1[a]], . . . , f [Ri,ki [a]]] ↓,

f [Ri,1[a]] ↓, . . . , f [Ri,ki [a]] ↓
and

Ri,1[a] ↓, . . . , Ri,ki [a] ↓ .

Since F is coherent, namely from IF [a], by (3.88)–(3.89), we obtain:

IF [Ri,1[x]] ∧ . . . ∧ IF [Ri,k1 [x]]

and, knowing that for each j: f [Ri,j [a]] ↓, by the induction hypothesis (3.102) we obtain
OF [Ri,j [a], f [Ri,j [a]]].

Considering the appropriate ith verification condition (3.95)–(3.96), note that all the assump-
tions from the left part of the implication are at hand and thus we can conclude:

OF [a,Ci[a, f [Ri,1[a]], . . . , f [Ri,ki [a]]]],

which is

OF [a, fnew[a]].

Now we conclude that the property φ holds for the least fixpoint of (3.86) and hence, φ holds for
the function computed by (3.86), which completes the proof of the soundness theorem (3.13).
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3.6.3 Completeness of the Verification Conditions

Completing the notion of Soundness, we introduce its dual—Completeness.
As we already mentioned, after generating the verification conditions, one has to prove them as

logical formulae. If all of them hold, then the program is correct with respect to its specification—
Soundness theorem.

Now, we formulate the Completeness theorem for the class of coherent general multiple else
recursive programs.

Theorem 3.14. Let for any i, j the functions S, Ci, and Ri,j satisfy their specifications (IS , OS),
(IC , OC), and (IRi,j , ORi,j ). Let also the general program with multiple else F as defined in (3.86)
with its specification (IF , OF ) be coherent with respect to S, Ci, Ri,j , and their specifications, and
the output specification of F , (OF ) is functional one.

Then if F is totaly correct with respect to (IF , OF ) then the following verification conditions hold:

(∀x : IF [x]) (Q0[x] =⇒ OF [x, S[x]]) (3.103)

(∀x, y1, . . . , yk1 : IF [x]) (Q1[x] ∧OF [R1,1[x], y1] ∧ . . . ∧OF [R1,k1 [x], yk1 ] (3.104)

=⇒
OF [x,C1[x, y1, . . . , yk1 ]])

. . .

(∀x, y1, . . . , ykn : IF [x]) (Qn[x] ∧ OF [Rn,1[x], y1] ∧ . . . ∧OF [Rn,kn [x], ykn ] (3.105)

=⇒
OF [x, Cn[x, y1, . . . , ykn ]])

(∀x : IF [x]) (F ′[x] = T) (3.106)

where:

F ′[x] = If Q0[x] then T (3.107)

elseif Q1[x] then F ′[R1,1[x]] ∧ . . . ∧ F ′[R1,k1 [x]]
elseif Q2[x] then F ′[R2,1[x]] ∧ . . . ∧ F ′[R2,k2 [x]]
. . .

elseif Qn[x] then F ′[Rn,1[x]] ∧ . . . ∧ F ′[Rn,kn [x]],

which are the same as (3.94), (3.95)–(3.96), (3.97), and (3.98) from the Soundness theorem (3.13).

Proof:
We assume now that:
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• For all i, j the functions S, Ci, and Ri,j are totaly correct with respect to their specifications
(IS , OS), (ICi , OCi), and (IRi,j , ORi,j ).

• The program F as defined in (3.86) with its specification (IF , OF ) is coherent with respect to
S, Ci, Ri,j , and their specifications.

• The output specification of F , (OF ) is functional one, that is:

(∀x : IF [x]) (∃!y) (OF [x, y]).

• The program F as defined in (3.86) is correct with respect to its specification, that is, the total
correctness formula holds:

(∀x : IF [x]) (F [x] ↓ ∧ OF [x, F [x]]). (3.108)

We show that (3.103), (3.104), . . . , (3.105), and (3.106) hold as logical formulae.

We start now with proving (3.103) and (3.104), . . . , (3.105) simultaneously.
Take arbitrary but fixed x and assume IF [x]. We consider the following two cases:

• Case 1: Q0[x]

By the definition of F , we have F [x] = S[x], and by using the correctness formula (3.108) of
F , we conclude (3.103) holds. The formulae (3.104), . . . , (3.105) hold, because the predicates
Q are consistent and noncontradictory, and hence ¬Qi[x] for all i, 1 ≤ i ≤ n.

• Case 2: Qi[x] for some i, 1 ≤ i ≤ n.

Now, the formulae (3.103) and all except one of (3.104), . . . , (3.105) hold trivially, because at
the left hand side of the implication we have ¬Qi[x].

Assume y1, . . . , yki
are such that:

OF [Ri,1[x], y1], . . . , OF [Ri,ki [x], yki ].

Since F is correct, we obtain that:

y1 = F [Ri,1[x]], . . . , yki = F [Ri,ki [x]]

because OF is a functional predicate.

On the other hand, by the definition of F , we have:

F [x] = Ci[a, F [Ri,1[a]], . . . , F [Ri,ki [a]]]

and hence F [x] = Ci[x, y1, . . . , yki ].

Again, from the correctness of F , we obtain OF [x,Ci[x, y1, . . . , yki ]], which had to be proven.

Now, we show that the simplified version F ′ of the initial function F terminates. Moreover, F ′

terminates if F terminates. In the course of the proof, one may notice that proving F ′[x] = T is the
same as proving that F ′ terminates.

Take arbitrary but fixed x and assume IF [x].
Now we construct the recursive tree of F , starting form x, RTF [x] in the following way:
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• x is the root of the tree, that is, the uppermost node;

• for any node u, if Q0[u] holds, then stop further construction on that branch, and put the symbol
> ;

• for any node u, if Qi[u] holds, for some i 6= 0, then construct all the ki descendent nodes
Ri,1[u], . . . , Ri,ki [u].
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Rj,1[Ri,1[x]]
> ...

...
...

...

Rj,kj [Ri,1[x]]
>

. . . Rm,1[Ri,ik [x]] Rm,km [Ri,ik [x]]. . . . . .

Qi[x]

Qj [Ri,1[x]] Q0[Ri,2[x]] Ã > Qm[Ri,ik [x]]

Q0[Rj,1[Ri,1[x]]] Ã > Q0[Rj,kj [Ri,1[x]]] Ã >
Note that the recursive tree of F , RTF [x] is the same as the recursive tree of F ′, RTF ′ [x]. Thus

RTF [x] is finite.
Now we need to show termination of F ′. For our particular x (it was taken arbitrary but fixed,

IF [x]), we consider the following two cases:

• Case 1: Q0[x].

Now by the definition of F ′, we have F [x] = T and hence F ′[x] ↓.

• Case 2: ¬Q0[x], and say Qi[x]. Now, by following the definition of F ′, we have,

F ′[x] = F ′[Ri,1[x]] ∧ . . . ∧ F ′[Ri,ki [x]].

We need to apply the same kind of reasoning to all the nodes of the recursive tree RTF [x], and
since it is finite, after unfolding finitely many times we reach the leaves where for each leaf we
arrive at the Case 1. Thus, F ′[x] ↓.

By this we completed our proof of the Completeness theorem.

In order to illustrate the Soundness and the Completeness theorems, we may take any of the
examples presented in this thesis—the only one which is not suitable for this schema is the “McCarthy
91”, because it contains nested recursion.
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3.7 Mutual Recursion

Mutual recursion is a special form of recursion where two programs are defined in terms of each
other. Moreover, the two programs form a system, and its solution is the computable function which
is defined by the programs.

We study the class of simple mutual recursive programs and we extract the purely logical condi-
tions which are sufficient for the program correctness. As in the other sections, they are inferred using
Scott induction and induction on natural numbers in the fixpoint theory of functions and constitute a
meta-theorem.

Simple Mutual Recursive Programs are the simplest mutual recursive programs, however their
study gives an impression how one can perform verification in more general setting.

We look at programs F , defined by the system F1, F2:

F [x] = F1[x], (3.109)

where:

F1[x] = If Q1[x] then S1[x] else C1[x, F2[R1[x]]], (3.110)

and

F2[x] = If Q2[x] then S2[x] else C2[x, F1[R2[x]]], (3.111)

with Q1 and Q2 are predicates and S1, S2, C1, C2, R1, R2 are auxiliary functions. Their names are
chosen such that, Si[x] is a “simple” function, Ci[x, y] is a “combinator” function, and Ri[x] is a
“reduction” function. We assume that the functions Si, Ci, and Ri satisfy their specifications given
by ISi [x], OSi [x, y], ICi [x, y], OCi [x, y, z], IRi [x], ORi [x, y].

The specifications of the two functions F1 and F2 is given, that is, IF1 [x], OF1 [x, y] and IF2 [x],
OF2 [x, y]. The specification of the main function F is (by definition) the same as the specification of
F1.

3.7.1 Coherent Simple Mutual Recursive Programs

In order to perform the coherence check, we define here the relevant verification conditions, which
are derived from the definition of coherent programs (3.1) and (3.2), namely:

Definition 3.15. Let Si, Ci, and Ri (for i = 1, 2) be functions which satisfy their specifications
(ISi , OSi), (ICi , OCi), and (IRi , ORi). Then the program F as defined in (3.109) with its specification
(IF1 , OF1) is coherent if F1, F2 are coherent with respect to Si, Ci, Ri, and their specifications, if and
only if the following conditions hold:

(∀x : IF1 [x]) (Q1[x] =⇒ IS1 [x]) (3.112)

(∀x : IF1 [x]) (¬Q1[x] =⇒ IF2 [R1[x]]) (3.113)

(∀x : IF1 [x]) (¬Q1[x] =⇒ IR1 [x]) (3.114)
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(∀x, y : IF1 [x]) (¬Q1[x] ∧OF2 [R1[x], y] =⇒ IC1 [x, y]) (3.115)

(∀x : IF2 [x]) (Q2[x] =⇒ IS2 [x]) (3.116)

(∀x : IF2 [x]) (¬Q2[x] =⇒ IF1 [R2[x]]) (3.117)

(∀x : IF2 [x]) (¬Q2[x] =⇒ IR2 [x]) (3.118)

(∀x, y : IF2 [x]) (¬Q2[x] ∧OF1 [R2[x], y] =⇒ IC2 [x, y]) (3.119)

As we can see, the above conditions correspond very much to our intuition about coherent pro-
grams, namely:

• (3.112) treats the special case in F1, that is, Q1[x] holds and no recursion is applied, thus the
input x must fulfill the precondition of S1.

• (3.113) treats the general case in F1, that is, ¬Q1[x] holds and a call to F2 is applied, thus the
new input R1[x] must fulfill the precondition of F2.

• (3.114) treats the general case in F1, that is, ¬Q1[x] holds and a call to F2 is applied, thus the
input x must fulfill the precondition of the reduction function R2.

• (3.115) treats the general case in F1, that is, ¬Q1[x] holds and a call to F2 is applied, thus the
input x, together with any y (where y is a possible output F2[R1[x]]) must fulfill the precondition
of the combinator function C1.

• (3.116) treats the special case in F2, that is, Q2[x] holds and no recursion is applied, thus the
input x must fulfill the precondition of S2.

• (3.117) treats the general case in F2, that is, ¬Q2[x] holds and a call to F1 is applied, thus the
new input R2[x] must fulfill the precondition of F1.

• (3.118) treats the general case in F2, that is, ¬Q2[x] holds and a call to F1 is applied, thus the
input x must fulfill the precondition of the reduction function R1.

• (3.119) treats the general case in F2, that is, ¬Q2[x] holds and a call to F1 is applied, thus the
input x, together with any y (where y is a possible output F1[R2[x]]) must fulfill the precondition
of the combinator function C2.
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3.7.2 Verification Conditions and their Soundness

As we already discussed, reasoning about programs is translated into proving logical conditions. After
generating these verification conditions, one has to prove them as logical formulae in the theory of the
domain on which the program is defined. If all of them hold, then the program is correct with respect
to its specification. The latter statement we call Soundness theorem, and we are now ready to define
it for the class of coherent simple mutual recursive programs.

Theorem 3.16. Let Si, Ci, and Ri (for i = 1, 2) be functions which satisfy their specifications
(ISi , OSi), (ICi , OCi), and (IRi , ORi). Let also the simple mutual recursive program F as defined in
(3.109) with its specification (IF1 , OF1) be coherent, that is, F1, F2 be coherent with respect to Si,
Ci, Ri, and their specifications. Then F is totaly correct with respect to (IF1 , OF1) if the following
verification conditions hold:

(∀x : IF1 [x]) (Q1[x] =⇒ OF1 [x, S1[x]]) (3.120)

(∀x, y : IF1 [x]) (¬Q1[x] ∧ OF2 [R1[x], y] =⇒ OF1 [x,C1[x, y]]) (3.121)

(∀x : IF2 [x]) (Q2[x] =⇒ OF2 [x, S2[x]]) (3.122)

(∀x, y : IF2 [x]) (¬Q2[x] ∧ OF1 [R2[x], y] =⇒ OF2 [x,C2[x, y]]) (3.123)

(∀x : IF1 [x]) (F ′
1[x] = T) (3.124)

where:

F ′
1[x] = If Q1[x] then T else F ′

2[R1[x]] (3.125)

F ′
2[x] = If Q2[x] then T else F ′

1[R2[x]]. (3.126)

As we can see, the above conditions constitute the following principle:

• (3.120), (3.122) prove that the base cases for F1 and F2 are correct.

• (3.121), (3.123) prove that the recursive expressions for F1 and F2 are correct under the as-
sumption that the reduced calls are correct.

• (3.124) prove that a simplified version F ′
1 of F1, (whose definition also involves a simplified

version F ′
2 of F2) terminates for all possible inputs x: IF1 [x].

Proof:
The proof of the Soundness statement is split into two major parts:

• prove partial correctness using Scott induction;

• prove termination.
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First we will see that F (3.109) terminates.
Indeed, from the assumption that: Si, Ci, and Ri are totally correct (with respect to ISi , ICi , and

IRi) by the coherence of F1 and F2, namely, formulae (3.112), (3.113), (3.114), (3.115), and, (3.116),
(3.117), (3.118), (3.119) we ensure the termination of the calls to the auxiliary functions Si, Ci, and
Ri.

Take arbitrary but fixed x and assume IF1 [x]. From (3.124), we obtain that F ′[x] = T.

Now we construct the recursive tree of the system F ′
1, F

′
2 starting form x, RTF ′1,F ′2 [x] in the fol-

lowing way:

• x is the root of the tree, that is, the uppermost node;

• x is an even node;

• for any even node u, if Q1[u] holds, then stop further construction, and put the symbol > ;

• for any even node u, if ¬Q1[u] holds, construct an odd node R1[u];

• for any odd node u, if Q2[u] holds, then stop further construction, and put the symbol > ;

• for any odd node u, if ¬Q2[u] holds, construct an even node R2[u].

xeven

¬Q1[x]

R1[x]odd

¬Q2[R1[x]]

R2[R1[x]]even

¬Q1[R2[R1[x]]]

R1[R2[R1[x]]]odd
...

...

R2[ . . . R2[R1[x]]]even

Q1[R2[ . . . R2[R1[x]]]]>

Q1[R2[ . . . R2[R1[x]]]] Ã >
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We first show that RTF ′1,F ′2 [x] is finite.
We prove this statement by contradiction, i.e. assume RTF ′1,F ′2 [x] is infinite. Hence, for any even

node u there will be ¬Q1[u], and for any odd node u — ¬Q2[u], respectively.
Now, we look at the construction of the system F ′

1, F
′
2 as being the least fixpoint of (3.125),

(3.126).
Let f0, f1, . . . fm, . . . be the finite approximations of F ′

1, and g0, g1, . . . gm, . . . be the finite ap-
proximations of F ′

2, obtained from the nowhere defined function Ω, in the following way:

f0[x] = Ω[x]

fm+1[x] = If Q1[x] then T else gm[R1[x]]

and

g0[x] = Ω[x]

gm+1[x] = If Q2[x] then T else fm[R2[x]].

The computable function F ′
1, corresponding to (3.125) is defined as:

F ′
1 =

⋃
m fm, and F ′

2 =
⋃

m gm.

Since for our particular x (it was taken arbitrary but fixed) we have F ′
1(x) = T, there must exist a

finite approximation fm, such that:

fm[x] = T.

If m = 0, then f0[x] = T, but on the other hand, by its definition, f0 is the nowhere defined
function f0 = Ω, thus this is not a case. Hence, we conclude that m > 0.

From the assumption, and in particular ¬Q1[x], by the definition of fm we obtain:

fm[x] = gm−1[R1[x]].

From here, and fm[x] = T we obtain that:

gm−1[R1[x]] = T.

Now, from the assumption ¬Q2[R1[x]], by the definition of gm−1 we obtain:

gm−1[R1[x]] = fm−2[R2[R1[x]]] = T.

By repeating the same kind of reasoning m times (in fact, formally it is done by induction), we
obtain that:

f0[R2[ . . . [R1[x]]]] = T

and by its definition (f0 = Ω) we obtain:

f0[R2[ . . . [R1[x]]]] = ⊥.
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Remark: If m is an odd number, we obtain:

g0[R1[ . . . [R1[x]]]] = T,

however, the observation is the same.
This is the desired contradiction, and hence, we have proven that the recursive tree RTF ′1,F ′2 [x] is
finite.

Now we continue the proof of the termination of F1. We prove this statement by contradiction,
i.e. assume RTF ′1,F ′2 [x] is finite and F1[x] = ⊥.

For our particular x (it was taken arbitrary but fixed, IF1 [x]), we consider the following two cases:

• Case 1: Q1[x].

Now by the definition of F1, we have F1[x] = S1[x]. We chose x such that IF1 [x], and by
(3.112) we obtain that S1[x] ↓ and hence F1[x] ↓ and thus we obtain a contradiction.

• Case 2: ¬Q1[x]. Now, by following the definition of F1, we have,

F1[x] = C1[x, F2[R1[x]]],

and since F1 is coherent, we have IR1 [x], and IC1 [x, y], and thus, in order to have F1[x] = ⊥,
we have F2[R1[x]] = ⊥.

By following the definition of F2, we see that if Q2[R1[x]] holds, F2[R1[x]] terminates (which
contradicts F1[x] = ⊥) and thus we conclude ¬Q2[R1[x]].

Applying the same kind of reasoning we obtain an infinite sequence:

¬Q1[x], ¬Q2[R1[x]], . . . , ¬Q2[R1 . . . [R1[x]]] . . . ,

which implies that the three RTF ′1,F ′2 [x] is infinite, and this is the desired contradiction.

Secondly, using Scott induction, we will show that F1 is partially correct:

(∀x : IF1 [x]) (F1[x] ↓ =⇒ OF1 [x, F1[x]]). (3.127)

In fact, we will show that the minimal fixpoint f, g of the system (3.110), (3.111), satisfies:

(∀x : IF1 [x]) (f [x] ↓ =⇒ OF1 [x, f [x]])

(∀x : IF2 [x]) (g[x] ↓ =⇒ OF2 [x, g[x]]).

As it was broadly discussed in chapter (2), not every property is admissible and may be proven by
Scott induction. However, as we already saw, properties which express partial correctness are known
to be admissible.

Let us remind the definition of these properties: A property φ is said to be a partial correctness
property if and only if there are predicates I and O, such that:

(∀f) (φ[f ] ⇐⇒ (∀a) (f [a] ↓ ∧ I[a] =⇒ O[a, f [a]])). (3.128)
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We now consider the following partial correctness properties φ1 and φ2:

(∀f, g) (φ1[f, g] ⇐⇒ (∀a) (f [a] ↓ ∧ IF1 [a] =⇒ OF1 [a, f [a]]))

(∀f, g) (φ2[f, g] ⇐⇒ (∀a) (g[a] ↓ ∧ IF2 [a] =⇒ OF2 [a, g[a]])).

Since the properties φ1 and φ2 are continuous, by Lemma (2.28), we obtain that their conjunction
is continuous property as well. Namely, we construct the property φ as:

(∀f, g) (φ[f, g] ⇐⇒
(∀a) (f [a] ↓ ∧ IF1 [a] =⇒ OF1 [a, f [a]]) ∧
∧ (∀a) (g[a] ↓ ∧ IF2 [a] =⇒ OF2 [a, g[a]])).

The first step in Scott induction is to show that φ holds for the nowhere defined function Ω. By
the definition of φ we obtain:

φ[Ω, Ω] ⇐⇒
(∀a) (Ω[a] ↓ ∧ IF1 [a] =⇒ OF1 [a,Ω[a]]) ∧
∧ (∀a) (Ω[a] ↓ ∧ IF2 [a] =⇒ OF2 [a, Ω[a]]),

and so, φ[Ω,Ω] holds, since Ω[a] ↓ never holds.

In the second step of Scott induction, we assume φ[f, g] holds for some f, g:

(∀a) (f [a] ↓ ∧ IF1 [a] =⇒ OF1 [a, f [a]])

(∀a) (g[a] ↓ ∧ IF2 [a] =⇒ OF2 [a, g[a]])

and show φ[fnew, gnew], where fnew, gnew are obtained from f, g by the system (3.110), (3.111) as
follows:

fnew = If Q1[x] then S1[x] else C1[x, g[R1[x]]]

gnew = If Q2[x] then S2[x] else C2[x, f [R2[x]]].

First we show φ1[fnew, gnew], namely we need to show now that for an arbitrary a:

fnew[a] ↓ ∧ IF1 [a] =⇒ OF1 [a, fnew[a]].

Assume fnew[a] ↓ and IF1 [a]. We have now the following two cases:

• Case 1: Q1[a].

By the definition of fnew we obtain fnew[a] = S1[a] and since fnew[a] ↓, we obtain that
S1[a] must terminate as well, that is S1[a] ↓. Now using verification condition (3.120) we may
conclude OF1 [a, S1[a]] and hence OF1 [a, fnew[a]].
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• Case 2: ¬Q1[a].

By the definition of fnew we obtain fnew[a] = C1[a, g[R1[a]]] and since fnew[a] ↓, we conclude
that all the others involved in this computation must also terminate, that is: C1[a, g[R1[a]]] ↓,
g[R1[a]] ↓, and R1[a] ↓.

From IF1 [a], by (3.113), we obtain IF2 [R1[a]] and, knowing that: g[R1[a]] ↓ by the induction
hypothesis we obtain OF2 [R1[a], g[R1[a]]].

Concerning the verification condition (3.121), note that all the assumptions from the left part of
the implication are at hand and thus we can conclude:

OF1 [a,C1[a, g[R1[a]]]].

Since we have:

fnew[a] = C1[a, g[R1[a]]],

we finally obtain that OF1 [a, fnew[a]].

It remains to show φ2[fnew, gnew], namely we need to show now that for an arbitrary a:

gnew[a] ↓ ∧ IF2 [a] =⇒ OF2 [a, gnew[a]].

Assume gnew[a] ↓ and IF2 [a]. We have now the following two cases:

• Case 1: Q2[a].

By the definition of gnew we obtain gnew[a] = S2[a] and since gnew[a] ↓, we obtain that S2[a]
must terminate as well, that is S2[a] ↓. Now using verification condition (3.122) we may
conclude OF2 [a, S2[a]] and hence OF2 [a, gnew[a]].

• Case 2: ¬Q2[a].

By the definition of gnew we obtain gnew[a] = C2[a, f [R2[a]]] and since gnew[a] ↓, we conclude
that all the others involved in this computation must also terminate, that is: C2[a, f [R2[a]]] ↓,
f [R2[a]] ↓, and R2[a] ↓.

From IF2 [a], by (3.117), we obtain IF1 [R2[a]] and, knowing that: f [R2[a]] ↓ by the induction
hypothesis we obtain OF1 [R2[a], f [R2[a]]].

Concerning the verification condition (3.123), note that all the assumptions from the left part of
the implication are at hand and thus we can conclude:

OF2 [a,C2[a, f [R2[a]]]].

Since we have:

gnew[a] = C2[a, f [R2[a]]],

we finally obtain that OF2 [a, gnew[a]].

Now we conclude that the property φ holds for the least fixpoint of the system (3.110), (3.111) and
hence, φ holds for the function computed by this system, which completes the proof of the soundness
theorem (3.16).
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3.7.3 Completeness of the Verification Conditions

As we already mentioned in the introduction, the notion of Completeness of a verification condition
generator is important for the following two reasons: theoretically, it is the dual of Soundness and
practically, it helps debugging. Any counterexample for the failing verification condition would carry
over to a counterexample for the program and the specification, and thus give a hint on “what is
wrong”.

Now, we formulate the Completeness theorem for the class of coherent simple mutual recursive
programs.

Theorem 3.17. Let Si, Ci, and Ri (for i = 1, 2) be functions which satisfy their specifications
(ISi , OSi), (ICi , OCi), and (IRi , ORi). Let also the simple mutual recursive program F as defined in
(3.109) with its specification (IF1 , OF1) be coherent, that is, F1, F2 be coherent with respect to Si, Ci,
Ri, and their specifications, and the output specifications of Fi, (OFi) are functional ones.

Then if F1 and F2 are totaly correct with respect to (IFi , OFi) then the following verification
conditions hold:

(∀x : IF1 [x]) (Q1[x] =⇒ OF1 [x, S1[x]]) (3.129)

(∀x, y : IF1 [x]) (¬Q1[x] ∧ OF2 [R1[x], y] =⇒ OF1 [x,C1[x, y]]) (3.130)

(∀x : IF2 [x]) (Q2[x] =⇒ OF2 [x, S2[x]]) (3.131)

(∀x, y : IF2 [x]) (¬Q2[x] ∧ OF1 [R2[x], y] =⇒ OF2 [x,C2[x, y]]) (3.132)

(∀x : IF1 [x]) (F1
′[x] = T) (3.133)

where:

F ′
1[x] = If Q1[x] then T else F ′

2[R1[x]] (3.134)

F ′
2[x] = If Q2[x] then T else F ′

1[R2[x]]. (3.135)

which are the same as (3.120), (3.121), (3.122), (3.123), (3.124), and (3.125), (3.126) from the Sound-
ness theorem (3.16).

Proof:
We assume now that:

• The functions Si, Ci, and Ri (for i = 1, 2) are totaly correct with respect to their specifications
(ISi , OSi), (ICi , OCi), and (IRi , ORi).

• The simple mutual recursive program F as defined in (3.109) with its specification (IF1 , OF1)
is coherent, that is, F1, F2 are coherent with respect to Si, Ci, Ri, and their specifications.
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• The output specifications of Fi, (OFi) are functional ones, that is:

(∀x : IFi [x]) (∃!y) (OFi [x, y]).

• Each of the components of the system F1 and F2 as defined in (3.110), and (3.111) are correct
with respect to their specifications, that is, the total correctness formulae hold:

(∀x : IFi [x]) (Fi[x] ↓ ∧ OFi [x, Fi[x]]). (3.136)

We show that (3.129),(3.130), (3.131), (3.132), and (3.133) hold as logical formulae.

We start now with proving (3.129) and (3.130) simultaneously.
Take arbitrary but fixed x and assume IF1 [x]. We consider the following two cases:

• Case 1: Q1[x]

By the definition of F1, we have F1[x] = S1[x], and by using the correctness formula (3.136)
of F1, we conclude (3.129) holds. The formula (3.130) holds, because we have Q1[x].

• Case 2: ¬Q1[x]

Now, (3.129) holds. Assume y is such that OF2 [R1[x], y]. Since F2 is correct, we obtain that
y = F2[R1[x]], because OF2 is a functional predicate.

On the other hand, by the definition of F1, we have F1[x] = C1[x, F2[R1[x]]] and hence F1[x] =
C1[x, y]. From the correctness of F1, we obtain OF1 [x,C1[x, y]], which completes the proof of
(3.130).

We continue with proving (3.131) and (3.132) simultaneously, which is very similar to the previ-
ous proof. Take arbitrary but fixed x and assume IF2 [x]. We consider the following two cases:

• Case 1: Q2[x]

By the definition of F2, we have F2[x] = S2[x], and by using the correctness formula (3.136)
of F2, we conclude (3.131) holds. The formula (3.132) holds, because we have Q2[x].

• Case 2: ¬Q2[x]

Now, (3.131) holds. Assume y is such that OF1 [R2[x], y]. Since F1 is correct, we obtain that
y = F1[R2[x]], because OF1 is a functional predicate.

On the other hand, by the definition of F2, we have F2[x] = C2[x, F1[R2[x]]] and hence F2[x] =
C2[x, y]. From the correctness of F2, we obtain OF2 [x,C2[x, y]], which completes the proof of
(3.132).

Now, we show that the simplified versions F ′
1 and F ′

2 of the components of the system F1, F2

terminate. Take arbitrary but fixed x and assume IF1 [x].

Now we construct the recursive tree of the system F ′
1, F

′
2 starting form x, RTF ′1,F ′2 [x] in the fol-

lowing way:

• x is the root of the tree, that is, the uppermost node;
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• x is an even node;

• for any even node u, if Q1[u] holds, then stop further construction, and put the symbol > ;

• for any even node u, if ¬Q1[u] holds, construct an odd node R1[u];

• for any odd node u, if Q2[u] holds, then stop further construction, and put the symbol > ;

• for any odd node u, if ¬Q2[u] holds, construct an even node R2[u].

xeven

¬Q1[x]

R1[x]odd

¬Q2[R1[x]]

R2[R1[x]]even

¬Q1[R2[R1[x]]]

R1[R2[R1[x]]]odd
...

...

R2[ . . . R2[R1[x]]]even

Q1[R2[ . . . R2[R1[x]]]]>

Q1[R2[ . . . R2[R1[x]]]] Ã >

Note that the recursive tree of F1, F2, RTF1,F2 [x] is the same as the recursive tree of F ′
1, F

′
2,

RTF ′1,F ′2 [x]. Thus RTF1,F2 [x] is finite.
Now we need to show termination of F ′

1. In fact, we proof termination of F ′
1 and F ′

2 simultane-
ously. For our particular x (it was taken arbitrary but fixed, IF1 [x]), we consider the following two
cases:

• Case 1: Q1[x].

Now by the definition of F ′
1, we have F ′

1[x] = T and hence F ′
1[x] ↓. In this case, F ′

2 terminates
trivially, because no execution is made at all.
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• Case 2: ¬Q1[x]. Now, by following the definition of F ′
1, we have, F ′

1[x] = F ′
2[R1[x]].

By unfolding the definitions of F ′
1 and F ′

2, we see that we actually cover all the nodes of the
recursive tree RTF1,F2 [x], and since it is finite, after unfolding finitely many times we reach the
bottom. Thus, F ′

1[x] ↓ and F ′
2 ↓.

By this we completed our proof of the Completeness theorem.

In order to illustrate the class of simple mutual recursive programs, and, actually what are the
necessary and sufficient conditions for the program to be correct, we point to an example (3.10.6) for
checking whether a given natural number is even or not.
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3.8 Nested Recursion

In this section we study a class of recursive functions may contain nested recursive definitions. The
programs here are like simple recursive programs, but on the else branch several nested recursive calls
may appear, that is, an argument to a recursive call of the program may contain another invocation of
the program itself. For example:

f [x] = If x = 0 then 0 else f [f [x− 1]].

Now, for this kind of programs we will not attempt proving termination but only partial cor-
rectness. The proofs of the Soundness and the Completeness theorems (in their parts concerning
termination)are very complicated and presenting them would not be worth reading.

The reason of doing so we summarize as follows: Throughout the previous sections we conveyed
the idea that, in order to prove termination, we construct a simplified version F ′ of the initial program
F and we state that proving termination of F is equivalent to proving termination of F ′. This idea
worked well for programs fitting to “popular” schemata, e.g. factorial, and proving termination
of many examples would be reduced to matching against simplified versions. However, programs
containing nested recursion are not popular at all, and finding examples having the same simplified
version is now hopeless.

The reader would loose any motivation, if finally in the examples, the initial program is the same
as its simplified version as it would be with the McCarthy 91 function [48], [47].

In order to prove partial correctness, we again extract the purely logical conditions which are
sufficient and also necessary for the program to be partially correct. The proofs of the Soundness
and the Completeness theorems are similar to the ones presented in (3.3), however, they treat partial
correctness.

We concentrate here on the essence of nested recursion, thus we consider programs of the form:

F [x] = If Q[x] then S[x] else C1[x, F [C2[x, F [. . . Ck[x, F [R[x]]]]]]]. (3.137)

We assume that the functions S, C1, . . . , Ck and R satisfy their specifications given by IS [x],
OS [x, y], ICi [x, y], OCi [x, y, z], IR[x], OR[x, y].

It is well agreed that functions having nested recursion are difficult to reason about [59], especially
in an automatic manner. The purpose of our study is to generate adequate verification conditions,
which describe the program definition and the specification as first order predicate logic formulae.

We demonstrate our method on the McCarthy 91 function, which is viewed as a “challenge prob-
lem” for automated program verification.

3.8.1 Coherent Nested Recursive Programs

We start up with instantiating the definitions for coherent programs (3.1) and (3.2), namely:

Definition 3.18. Let for all i, the functions S, Ci, and R satisfy their specifications (IS , OS), (ICi , OCi),
and (IR, OR). Then the program F as defined in (3.137) with its specification (IF , OF ) is coherent
with respect to S, Ci, R, and their specifications, if and only if the following conditions hold:
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(∀x : IF [x]) (Q[x] =⇒ IS [x]) (3.138)

(∀x : IF [x]) (¬Q[x] =⇒ IF [R[x]]) (3.139)

(∀x : IF [x]) (¬Q[x] =⇒ IR[x]) (3.140)

(∀x, y1, . . . , y2k : IF [x]) (3.141)

(¬Q[x] ∧ OF [R[x], y1] ∧ OF [y2, y3] ∧ . . . ∧ OF [y2k−2, y2k−1] ∧
∧ OCk

[x, y1, y2] ∧ OCk−1
[x, y3, y4] ∧ . . . ∧ OC1 [x, y2k−1, y2k]

=⇒
IC1 [x, y1] ∧ IC2 [x, y3] ∧ . . . ∧ ICk

[x, y2k−1] ∧
∧ IF [y2] ∧ IF [y4] ∧ . . . ∧ IF [y2k−2])

Now the conditions for coherence look a bit more complicated, however, in the example we will
see that this is not a case. We see again that our intuition about coherent programs is met, namely:

• (3.138) treats the special case, that is, Q[x] holds and no recursion is applied, thus the input x
must fulfill the precondition of S.

• (3.139) treats the general case, that is, ¬Q[x] holds and recursion is applied, thus the first new
input R[x] must fulfill the precondition of the main function F .

• (3.140) treats the general case, that is, ¬Q[x] holds and recursion is applied, thus the input x
must fulfill the precondition of the reduction function R.

• (3.141) treats the general case, and expresses in a cascade manner, that all the inputs to the
combinator functions C1, . . . , Ck must be appropriate and also all the intermediate inputs to the
main function F must be appropriate as well.

After having defined the coherence verification conditions, we go towards defining the verification
conditions for ensuring total correctness.

3.8.2 Verification Conditions and their Soundness

We introduce the verification conditions for the class of programs with nested recursion, by providing
the relevant Soundness theorem. The statement itself and the proof are generalization of the similar
theorem (3.4) in that part where partial correctness is concerned.

Theorem 3.19. Let for all i, the functions S, Ci, and R satisfy their specifications (IS , OS), (ICi , OCi),
and (IR, OR). Let also the program F as defined in (3.137) with its specification (IF , OF ) be coherent
with respect to S, Ci, R, and their specifications. Then F is partially correct with respect to (IF , OF )
if the following verification conditions hold:

(∀x : IF [x]) (Q[x] =⇒ OF [x, S[x]]) (3.142)



3.8. NESTED RECURSION 95

(∀x, y1, . . . , y2k : IF [x]) (3.143)

(¬Q[x] ∧ OF [R[x], y1] ∧ OF [y2, y3] ∧ . . . ∧ OF [y2k−2, y2k−1] ∧
∧ OCk

[x, y1, y2] ∧ OCk−1
[x, y3, y4] ∧ . . . ∧ OC1 [x, y2k−1, y2k]

=⇒
OF [x, y2k])

The above conditions constitute the following principle:

• (3.142) prove that the base case is correct.

• (3.143) prove that the recursive expression is correct under the assumption that all the reduced
calls are correct.

Proof:
Using Scott induction, we will show that F is partially correct with respect to its specification,

namely:
(∀x : IF [x]) (F [x] ↓ =⇒ OF [x, F [x]]). (3.144)

We now consider the following partial correctness property φ:

(∀f) (φ[f ] ⇐⇒ (∀a) (f [a] ↓ ∧ IF [a] =⇒ OF [a, f [a]])).

The first step in Scott induction is to show that φ holds for the nowhere defined function Ω. By
the definition of φ we obtain:

φ[Ω] ⇐⇒ (∀a) (Ω[a] ↓ ∧ IF [a] =⇒ OF [a,Ω[a]])),

and so, φ[Ω] holds, since Ω[a] ↓ never holds.

In the second step of Scott induction, we assume φ[f ] holds for some f :

(∀a) (f [a] ↓ ∧ IF [a] =⇒ OF [a, f [a]]), (3.145)

and show φ[fnew], where fnew is obtained from f by the main program (3.137) as follows:

fnew = If Q[x] then S[x] else C1[x, f [C2[x, f [. . . Ck[x, f [R[x]]]]]]].

Now, we need to show that for an arbitrary a,

fnew[a] ↓ ∧ IF [a] =⇒ OF [a, fnew[a]].

Assume fnew[a] ↓ and IF [a]. We have now the following two cases:

• Case 1: Q[a].

By the definition of fnew we obtain fnew[a] = S[a] and since fnew[a] ↓, we obtain that S[a]
must terminate as well, that is S[a] ↓. Now using verification condition (3.142) we may con-
clude OF [a, S[a]] and hence OF [a, fnew[a]].
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• Case 2: ¬Q[a].

By the definition of fnew we obtain:

fnew[a] = C1[a, f [C2[a, f [. . . Ck[a, f [R[a]]]]]]]

and since fnew[a] ↓, we obtain that all the programs involved in this computation also terminate,
that is:

C1[a, f [C2[a, f [. . . Ck[a, f [R[a]]]]]]] ↓

and say: C1[a, f [C2[a, f [. . . Ck[a, f [R[a]]]]]]] = y2k,

f [C2[a, f [. . . Ck[a, f [R[a]]]]]] ↓

and say: f [C2[a, f [. . . Ck[a, f [R[a]]]]]] = y2k−1,

C2[a, f [. . . Ck[a, f [R[a]]]]] ↓

and say: C2[a, f [. . . Ck[a, f [R[a]]]]] = y2k−2,

f [C3[a, f [. . . Ck[a, f [R[a]]]]]] ↓

and say: f [C3[a, f [. . . Ck[a, f [R[a]]]]]] = y2k−3,

. . .

f [Ck[a, f [R[a]]]] ↓

and say: f [Ck[a, f [R[a]]]] = y3,

Ck[a, f [R[a]]] ↓

and say: Ck[a, f [R[a]]] = y2,

f [R[a]] ↓

and say: f [R[a]] = y1, and

R[a] ↓ .

From here, by the induction hypothesis, we obtain that:

OF [R[a], y1] ∧ OF [y2, y3] ∧ . . . ∧ OF [y2k−2, y2k−1].
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On the other hand, by knowing that all the programs C1, C2, . . . , Ck are partially correct with
respect to their specifications, we obtain that:

OC1 [a, y2k−1, y2k] ∧ OC2 [a, y2k−3, y2k−2] ∧ . . . ∧ OCk−1
[a, y3, y4] ∧ OCk

[a, y1, y2].

Concerning the verification condition (3.143), note that all the assumptions from the left part of
the implication are at hand and thus we can conclude:

OF [a, y2k],

and thus OF [a, fnew[a]].

Now we conclude that the property φ holds for the least fixpoint of (3.137) and hence, φ holds for
the function computed by (3.137), which completes the proof of the soundness theorem (3.19).

This completes the proof of the Soundness theorem. Now we proceed towards its complement,
namely, the Completeness theorem.

3.8.3 Completeness of the Verification Conditions

Now, we formulate the Completeness theorem for the class of programs with nested recursion.

Theorem 3.20. Let for all i the functions S, Ci, and R satisfy their specifications (IS , OS), (ICi , OCi),
and (IR, OR). Let also the program F as defined in (3.137) with its specification (IF , OF ) be coher-
ent with respect to S, Ci, R, and their specifications, and the output specifications of F , Ci: (OF ),
(OCI

are functional ones.
Then if F is partially correct with respect to (IF , OF ) then the following verification conditions

hold:

(∀x : IF [x]) (Q[x] =⇒ OF [x, S[x]]) (3.146)

(∀x, y1, . . . , y2k : IF [x]) (3.147)

(¬Q[x] ∧ OF [R[x], y1] ∧ OF [y2, y3] ∧ . . . ∧ OF [y2k−2, y2k−1] ∧
∧ OCk

[x, y1, y2] ∧ OCk−1
[x, y3, y4] ∧ . . . ∧ OC1 [x, y2k−1, y2k]

=⇒
OF [x, y2k])

which are the same as (3.142) and (3.143) from the Soundness theorem (3.19).

Proof:
We assume now that:

• The functions S, Ci, and R are partially correct with respect to their specifications (IS , OS),
(ICi , OCi), and (IR, OR).
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• The program F as defined in (3.137) with its specification (IF , OF ) is coherent with respect to
S, Ci, R, and their specifications.

• The output specifications of F , Ci: OF , OCi are functional ones, that is:

(∀x : IF [x]) (∃!y) (OF [x, y]),

(∀x, y : ICi [x, y]) (∃!z) (OCi [x, y, z]).

• The program F as defined in (3.137) is partially correct with respect to its specification, that is,
the partial correctness formula holds:

(∀x : IF [x]) (F [x] ↓ =⇒ OF [x, F [x]]). (3.148)

We show that (3.146) and (3.147) hold as logical formulae by proving them simultaneously.
Take arbitrary but fixed x and assume IF [x] and F [x] ↓. We consider the following two cases:

• Case 1: Q[x]

By the definition of F , we have F [x] = S[x], and by using the partial correctness formula
(3.148) of F , we conclude (3.146) holds. The formula (3.147) holds, because we have Q[x].

• Case 2: ¬Q[x]

Now, (3.146) holds. Assume y1, . . . , y2k are such that:

OF [R[x], y1] ∧ OF [y2, y3] ∧ . . . ∧ OF [y2k−2, y2k−1] ∧
∧ OCk

[x, y1, y2] ∧ OCk−1
[x, y3, y4] ∧ . . . ∧ OC1 [x, y2k−1, y2k].

Since F is partially correct and F [x] ↓, we obtain that:

C1[x, F [C2[x, F [. . . Ck[x, F [R[x]]]]]]] ↓

F [C2[x, F [. . . Ck[x, F [R[x]]]]]] ↓

C2[x, F [. . . Ck[x, F [R[x]]]]] ↓

F [C3[x, F [. . . Ck[x, F [R[x]]]]]] ↓

. . .

F [Ck[x, F [R[x]]]] ↓
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Ck[x, F [R[x]]] ↓

F [R[x]] ↓

R[x] ↓ .

Since the output specifications of F , Ci: OF , OCi are functional predicates, we obtain that:

C1[x, f [C2[x, f [. . . Ck[x, f [R[x]]]]]]] = y2k,

f [C2[x, f [. . . Ck[x, f [R[x]]]]]] = y2k−1,

C2[x, f [. . . Ck[x, f [R[x]]]]] = y2k−2,

f [C3[x, f [. . . Ck[x, f [R[x]]]]]] = y2k−3,

. . .

f [Ck[x, f [R[x]]]] = y3,

Ck[x, f [R[x]]] = y2,

f [R[x]] = y1.

On the other hand, by the definition of F , we have:

F [x] = C1[x, f [C2[x, f [. . . Ck[x, f [R[x]]]]]]]

and hence F [x] = y2k. Again, from the correctness of F , we obtain:

OF [x, y2k],

which had to be proven.

By this we completed our proof of the Completeness theorem.
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3.8.4 Example and Discussion

In order to illustrate the Soundness and the Completeness theorems, and the class of recursive func-
tions which may contain nested recursive definitions, we consider the McCarthy 91 function, which
is viewed as a “challenge problem” for automated program verification.

The program itself is defined as follows:

M [x] = If x ≥ 101 then x− 10 else M [M [x + 11]], (3.149)

with the specification:

(∀x) (IM [x] ⇐⇒ x ∈ N) (3.150)

and

(∀x, y) (OM [x, y] ⇐⇒ (x < 101 ∧ y = 91) ∨ (x ≥ 101 ∧ y = x− 10)). (3.151)

The (automatically generated) conditions for coherence are:

(∀x : x ∈ N) (x ≥ 101 ⇒ T) (3.152)

(∀x : x ∈ N) (x � 101 ⇒ x + 11 ∈ N) (3.153)

(∀x : x ∈ N) (x � 101 ⇒ T) (3.154)

(∀x, y1, y2, y3, y4 : x ∈ N) (3.155)

(x � 101 ∧ ((x + 11 < 101 ∧ y1 = 91) ∨ (x + 11 ≥ 101 ∧ y1 = x + 11− 10)) ∧
∧ ((y2 < 101 ∧ y3 = 91) ∨ (y2 ≥ 101 ∧ y3 = y2 − 10)) ∧ y1 = y2 ∧ y3 = y4

=⇒
T ∧ T ∧ y2 ∈ N ∧ y4 ∈ N)

One sees that the formulae (3.152) and (3.154) hold, because we have the logical constant T at
the right side of an implication. The origin of these T come from the preconditions of the x − 10
(S[x] = x− 10) and the projection functions (C1[x, y] = y and C2[x, y] = y).

The formulae (3.153) and (3.155) are easy consequences of the elementary theory of naturals.
For the further check of correctness the generated conditions are:

(∀x : x ∈ N) (3.156)

(x ≥ 101 =⇒ (x < 101 ∧ x− 10 = 91) ∨ (x ≥ 101 ∧ x− 10 = x− 10)).

(∀x, y1, y2, y3, y4 : x ∈ N) (3.157)

(n � 101 ∧ ((x + 11 < 101 ∧ y1 = 91) ∨ (x + 11 ≥ 101 ∧ y1 = x + 11− 10)) ∧
∧ ((y2 < 101 ∧ y3 = 91) ∨ (y2 ≥ 101 ∧ y3 = y2 − 10)) ∧ y1 = y2 ∧ y3 = y4

=⇒
(x < 101 ∧ y4 = 91) ∨ (x ≥ 101 ∧ y4 = x− 10)).
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The proofs of these verification conditions are straightforward, and thus the program (3.149) is
partially correct with respect to the specification (3.150), (3.151).

Now comes the question: What if the program is not correctly written? Thus, we introduce now a
bug. The program M is now almost the same as the previous one, but in the base case (when x ≥ 101)
the return value is x− 11. The new (wrong) definition of M is:

M [x] = If x ≥ 101 then x− 11 else M [M [x + 11]], (3.158)

After generating the verification conditions, we see that all but one hold, namely:

(∀x : x ∈ N) (3.159)

(x ≥ 101 =⇒ (x < 101 ∧ x− 11 = 91) ∨ (x ≥ 101 ∧ x− 11 = x− 10)).

which reduces to proving:

x− 11 = x− 10.

Therefore, according to the completeness of the method, we conclude that the program M does
not satisfy its specification. Moreover, the failed proof gives a hint for “debugging”: we need to
change the return value in the case x ≥ 101 to x− 10.

A similar experiment shows, that in fact, the input condition (3.151), that is x ∈ N is too strong,
and could be successfully replaced by x ∈ Z.
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3.9 Termination

In this section we present a specialized strategy for proving termination of recursive functional pro-
grams. The detailed termination proofs may in many cases be skipped, because the termination con-
ditions are reusable and thus collected in specialized libraries. Enlargement of the libraries is possible
by proving termination of each candidate, but also by taking new elements directly from existing
libraries.

It is well agreed, that proving correctness of recursive programs is still challenging, especially
when by correctness is meant total correctness. There are various approaches, however, there is
no (and cannot be) general recipe. Termination proofs exposed in classical books (e.g., [44]) are
very comprehensive, however, their orientation is theoretical rather than practical. On the other hand
there are various tools for proving program correctness automatically or semiautomatically, (see, e.g.,
[28],[4]), and this is where the contribution of this section falls into.

Termination proofs of individual programs are, in general, expensive from the automatic theorem
proving point of view—they normally involve induction and thus an induction prover must be applied.
In some cases, program termination, however, may be ensured—and this is the main contribution of
this chapter—by matching against simplified versions (of programs) collected in specialized libraries.

As we already saw, proving total correctness of a program is split into three distinct steps: first—
proving coherence, second—proving partial correctness, and third—proving termination.

Furthermore, partial correctness and termination, expressed as verification conditions which them-
selves may be proven without taking into account their order. Moreover, as we have shown in the
previous sections, a coherent program (of a certain recursive type) is totaly correct if and only if its
verification conditions hold as logical formulae.

Proving any of the three kinds of verification conditions has its own difficulty, however, our expe-
rience shows that proving coherence is relatively easy, proving partial correctness is more difficult and
proving the termination verification condition (it is only one condition) is in general the most difficult
one.

The proof typically needs an induction prover and the induction step may sometimes be difficult
to find. Fortunately, due to the specific structure, the proof is not always necessary, and this is what
we discuss here.

3.9.1 Libraries of Terminating Programs

In this subsection we describe the idea of proving termination of recursive programs by creating and
exploring libraries of terminating programs, and thus avoiding redundancy of induction proofs. The
core idea is that different recursive programs may have the same simplified version.

Let us reconsider the following very simple recursive program for computing the factorial func-
tion:

Fact[n] = If n = 0 then 1 else n ∗ Fact[n− 1], (3.160)

with the specification of Fact, Input:

∀n (IFact[n] ⇐⇒ n ∈ N) (3.161)

and Output:
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∀n,m (OFact[n,m] ⇐⇒ n! = m). (3.162)

The verification condition for the termination of Fact is expressed using a simplified version of
the initial function:

Fact′[n] = If n = 0 then T else Fact′[n− 1], (3.163)

namely, the verification condition is

(∀n : n ∈ N) (Fact′[n] = T), (3.164)

where T expresses the logical constant true.

More generally, when having a recursive program which may fit to the schema:

F [x] = If Q[x] then S[x] else C[x, F [R1[x]], . . . , F [Rk[x]]], (3.165)

where Q is a predicate and S, C, R1, . . . , Rk are auxiliary functions whose total correctness is
assumed, the corresponding simplified version of F is:

F ′[x] = If Q[x] then T else F ′[R1[x]] ∧ · · · ∧ F ′[Rk[x]],

which only depends on Q, R1, . . . , Rk. It is obtained by replacing the function S by T, and the
function C by the logical and for combining the recursive calls. Namely, the termination condition is

(∀x : IF [x]) (F ′[x] = T), (3.166)

which must be proven, based on the logical formulae corresponding to the definition of F ′ and the
theory of the domain of Q, R1, . . . , Rk.

Moreover, proving that

(∀x : IF [x]) (F ′[x] = T) (3.167)

is equivalent to proving termination of F ′[x], for all x satisfying IF [x] (it is so, because if F ′[x]
terminates it returns T, and vice versa), which may be used alternatively.

Note, that different recursive programs may have the same simplified version. Let us now consider
another very simple recursive program for computing the sum function:

Sum[n] = If n = 0 then 0 else n + Sum[n− 1], (3.168)

with the specification of Sum, Input:

∀n (ISum[n] ⇐⇒ n ∈ N) (3.169)

and Output:

∀n,m (OSum[n,m] ⇐⇒ n ∗ (n + 1)
2

= m). (3.170)

The verification condition for the termination of Sum is expressed using a simplified version of
the initial function:



104 CHAPTER 3. AUTOMATION OF THE VERIFICATION

Sum′[n] = If n = 0 then T else Sum′[n− 1], (3.171)

namely, the verification condition is

(∀n : n ∈ N) (Sum′[n] = T). (3.172)

Notably, the termination verification conditions (3.164) and (3.172) of the programs (3.163) and
(3.171) are the same.

Primitive recursive functions (3.173) are very broadly used in practice. It is well known that they
always terminate [9]. However, proving that a function is primitive recursive has to be carried over.

Prim[n] = If n = 0 then S[n] else C[n, Prim[n− 1]], (3.173)

Now, the simplified version of (3.173) is:

Prim′[n] = If n = 0 then T else Prim′[n− 1], (3.174)

namely, the verification condition is

(∀n : n ∈ N) (Prim′[n] = T). (3.175)

which is the same as (3.164).

For serving the termination proofs, we are now creating libraries containing simplified versions
together with their input conditions, whose termination is proven. The proof of the termination may
now be skipped if the simplified version is already in the library and this membership check is much
easier than an induction proof—it only involves matching against simplified versions.

Starting from a small library—actually it is not only one, but more, because each recursive schema
has several domain based libraries—we intend to enlarge it. One way of doing so is by carrying over
the whole proof of any new candidate, appearing during a verification process.

3.9.2 Enlargement within libraries

Enlargement within a library is also possible by applying special knowledge retrieval. As we have
seen, termination depends on the simplified version F ′ and on the input condition IF . Considering
again the factorial example (3.160), in order to prove its termination we need to prove (3.164). As-
sume, now the pair (3.163),(3.164) is in our library. We may now strengthen the input condition IFact

and actually produce a new one:

IF−new[n] ⇐⇒ (n ∈ N ∧ n ≥ 100).

The simplified version Fact′ remains the same (3.163) – we did not change the initial program (3.160),
however, the termination condition becomes:

(∀n : n ∈ N ∧ n ≥ 100) (Fact′[n] = T), (3.176)

and (after proving them) we add it to the library. It is easy to see that any new version of a simplified
program which is obtained by strengthening the input condition can also be included in the library
without further proof. Assume

(∀x : IF [x]) (F ′[x] = T)
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is a member of a library. Then for any “stronger” input condition IF−strng, we have:

IF−strng[x] =⇒ IF [x],

and thus
(∀x : IF−strng[x]) (F ′[x] = T).

This is of course not the case for weakening the input condition. Consider the following weakening
of IFact:

IF−real[n] ⇐⇒ (n ∈ R),

which leads to nontermination of our Fact′ as defined in (3.164), that is:

(∀n : n ∈ R) (Fact′[n] = T),

which does not hold.
Strengthening of input conditions leads to preserving the termination properties and thus enlarging

a library without additional proof is possible. However, for a fixed simplified version, keeping (and
collecting in some cases) the weakest input condition is the most efficient strategy, because then
proving the implication from stronger to weaker condition is relatively easier.

3.9.3 Conclusions

Termination proofs are reduced to proving properties of simplified versions, which themselves are
reusable. They may be done by using a Theorema prover (see, e.g., [14],[17]). However, delivering the
proof problem itself to another specialized tool (e.g., [30],[18]) is also possible. Enlarging the libraries
by taking (and adopting) simplified versions directly from other libraries (e.g., the Coq Library [5])
can be considered as well.

Alternatively, one may add to the libraries simplified versions of conjectures whose proofs are not
provided, but well believed or considered as obvious. For instance, the well studied Collatz conjecture
[41], [42] whose termination is an open problem since 1937 may be included into a library, since it
has been explored and checked mechanically for extremely big numbers. However, in order to keep
at the safe side, one may add as a precondition that the input will not exceed the number-of-today’s
achievement.
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3.10 Examples and Discussion

After developing a theory, it is always recommendable to give some relevant examples. Even though,
in this thesis, most of the examples appear together with the theoretical observations, or immediately
after them, in this section we collected a couple of examples which did not find their place at the other
sections. However, they may still be of some interest to the reader.

Although the examples presented here appear to be relatively simple, they already demonstrate the
usefulness of our approach in the general case. We aim at extending these experiments to industrial-
scale examples, which are in fact not more complex from the mathematical point of view.

The last two examples (3.10.7) and (3.10.8) are dedicated to the discussion about possible appli-
cations of our research in domains which seem to be a bit far from program verification. However, we
believe that the methods developed within the frame of this thesis may well be accepted and specifi-
cally adapted by researchers from other fields of Mathematics, Computer Science, Physics, etc. More
specifically, we address two issues, namely

• Teaching Formal Methods to graduate students

• Algorithm investigation for scientific computing.



3.10. EXAMPLES AND DISCUSSION 107

3.10.1 Factorial

The first example books on programming start with is that of factorial. Besides the fact that it is very
elementary and easy to explain and understand, it may be used as a standard example for comparing
tools and strategies for program verification.

The emphasis we want to put here is on the similarities of the program definition, the logical
formulae expressed as the verification conditions and the properties of the mathematical function
factorial.

Consider the program Fact, for computing the factorial function:

Fact[x] = If x = 0 then 1 else x ∗ Fact[x− 1], (3.177)

with the specification:

(∀x) (IFact[x] ⇐⇒ x ∈ N),

(∀x, y) (OFact[x, y] ⇐⇒ y = x!).

Before starting with the essential part of the verification, we first check if Fact is coherent with
respect to its specification, the auxiliary programs and their specifications. In order to perform the
coherence check, we instantiate the relevant conditions:

(∀x : x ∈ N) (x = 0 =⇒ T) (3.178)

(∀x : x ∈ N) (x 6= 0 =⇒ x− 1 ∈ N) (3.179)

(∀x : x ∈ N) (x 6= 0 =⇒ T) (3.180)

(∀x, y : x ∈ N) (x 6= 0 ∧ [x− 1]! = y) =⇒ T). (3.181)

As we can see, the conditions (3.178), (3.180) and (3.181) are trivial to prove, because we have T
at the right hand side of an implication. The origin of these T are the preconditions of the auxiliary
functions λx.1, the minus one function λx.x− 1, and multiplication λx, y.x ∗ y.

In fact, only (3.179) requires a proofs, however, it is easily tractable in the theory of natural
numbers.

After we are convinced that Fact is coherent, we instantiate the relevant verification conditions
for proving correctness:

(∀x : x ∈ N) (x = 0 =⇒ 1 = x!) (3.182)

(∀x, y : x ∈ N) (x 6= 0 ∧ y = [x− 1]! =⇒ x ∗ y = x!) (3.183)

We see, that (3.182), (3.183) and are tractable in the theory of natural numbers.

Now we need to prove the termination of Fact, that is:
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(∀x : x ∈ N) (Fact′[x] = T) (3.184)

where:

Fact′[x] = If x = 0 then T else Fact′[x− 1]. (3.185)

We have arrived to the most popular simplified version, namely the primitive recursive one and
thus we are done.
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3.10.2 Summation of a number

The next example we consider is the summation of a number:

x∑

i=1

i.

The emphasis we want to put here is on the similarities of the verification conditions we obtain
here and the verification conditions from the previous example (3.10.1).

In our opinion, many practical programs, when verifying, will have similar verification conditions.
This fact could be considered as a research problem by the Mathematical Knowledge Management
community.

Consider the program Sum, for computing the summation of a number function:

Sum[x] = If x = 0 then 0 else x + Sum[x− 1], (3.186)

with the specification:

(∀x) (ISum[x] ⇐⇒ x ∈ N),

(∀x, y) (OSum[x, y] ⇐⇒ y =
x ∗ (x + 1)

2
).

Even though, this program is suppose to compute the summation of a number, we provide here an
alternative output specification.

Before starting with the essential part of the verification, we first check if Sum is coherent with
respect to its specification, the auxiliary programs and their specifications. In order to perform the
coherence check, we instantiate the relevant conditions:

(∀x : x ∈ N) (x = 0 =⇒ T) (3.187)

(∀x : x ∈ N) (x 6= 0 =⇒ x− 1 ∈ N) (3.188)

(∀x : x ∈ N) (x 6= 0 =⇒ T) (3.189)

(∀x, y : x ∈ N) (x 6= 0 ∧ (x− 1) ∗ ((x− 1) + 1)
2

= y) =⇒ T). (3.190)

As we can see, the conditions (3.187), (3.189) and (3.190) are trivial to prove, because we have T
at the right hand side of an implication. The origin of these T are the preconditions of the auxiliary
functions λx.0, the minus one function λx.x− 1, and addition λx, y.x + y.

In fact, only (3.188) requires a proofs, however, it is easily tractable in the theory of natural
numbers.

Note that in the previous example (3.10.1), we have the same condition (3.179).

After we are convinced that Sum is coherent, we instantiate the relevant verification conditions
for proving correctness:
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(∀x : x ∈ N) (x = 0 =⇒ 0 =
x ∗ (x + 1)

2
) (3.191)

(∀x, y : x ∈ N) (x 6= 0 ∧ y =
(x− 1) ∗ ((x− 1) + 1)

2
=⇒ x + y =

x ∗ (x + 1)
2

) (3.192)

We see, that (3.191), (3.192) and are tractable in the theory of natural numbers.
Note that these are the specific verification conditions. In fact, the proofs of all the other verifi-

cation conditions, that is, coherence and termination, may be reusable, because they are the same for
different programs.

Now we need to prove the termination of Sum, that is:

(∀x : x ∈ N) (Sum′[x] = T) (3.193)

where:

Sum′[x] = If x = 0 then T else Sum′[x− 1]. (3.194)

We again arrived at the most popular simplified version, namely the primitive recursive one and
thus we are done.
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3.10.3 Floor of a real number

The next example we consider is the floor of a real number.
The purpose of showing this example is to demonstrate the ability of our method in domains

different from N. In fact, we do not give any restrictions on the possible domains on which the
programs are executed and verified. For this particular example we take R as our domain.

Consider the program Floor, for computing the floor of a real nonnegative number:

Floor[x] = If 0 ≤ x < 1 then 0 else 1 + Floor[x− 1], (3.195)

with the specification:

(∀x) (IFloor[x] ⇐⇒ x ∈ R ∧ x ≥ 0),

(∀x, y) (OFloor[x, y] ⇐⇒ y ∈ N ∧ x− y < 1 ∧ y ≤ x).

Before starting with the essential part of the verification, we first check if Floor is coherent with
respect to its specification, the auxiliary programs and their specifications. In order to perform the
coherence check, we instantiate the relevant conditions:

(∀x : x ∈ R ∧ x ≥ 0) (0 ≤ x < 1 =⇒ T) (3.196)

(∀x : x ∈ R ∧ x ≥ 0) (¬(0 ≤ x < 1) =⇒ x− 1 ∈ R ∧ x− 1 ≥ 0) (3.197)

(∀x : x ∈ R ∧ x ≥ 0) (¬(0 ≤ x < 1) =⇒ T) (3.198)

(∀x : x ∈ R ∧ x ≥ 0) (¬(0 ≤ x < 1)∧y ∈ N ∧ (x−1)−y < 1 ∧ y ≤ (x−1)) =⇒ T). (3.199)

As we can see, the conditions (3.196), (3.198) and (3.199) are trivial to prove, because we have T
at the right hand side of an implication. The origin of these T are the preconditions of the auxiliary
functions λx.0, the minus one function λx.x− 1, and the plus one function λx.1 + x.

In fact, only (3.197) requires a proofs, however, it is easily tractable in the theory of real numbers.

After we are convinced that Floor is coherent, we instantiate the relevant verification conditions
for proving correctness:

(∀x : x ∈ R ∧ x ≥ 0) (0 ≤ x < 1 =⇒ 0 ∈ N ∧ x− 0 < 1 ∧ 0 ≤ x) (3.200)

(∀x : x ∈ R ∧ x ≥ 0) (¬(0 ≤ x < 1) ∧ y ∈ N ∧ (x− 1)− y < 1 ∧ y ≤ (x− 1) (3.201)

=⇒
1 + y ∈ N ∧ x− (1 + y) < 1 ∧ (1 + y) ≤ x).
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We see, that (3.200) and (3.201) are tractable in the theory of real numbers.
Now we need to prove the termination of Floor, that is:

(∀x : x ∈ R ∧ x ≥ 0) (Floor′[x] = T) (3.202)

where:

Floor′[x] = If 0 ≤ x < 1 then T else Floor′[x− 1]. (3.203)

This is a new simplified version, and one has to prove its termination, which easily possible by
induction. We split the R+ into intervals with length one and then perform normal induction over the
naturals.
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3.10.4 A wrong version of Floor

The next example we consider is a wrong version of the floor function. We introduce here a bug in
order to explore the verification conditions in such a situation. Moreover, a distinctive feature of our
approach is the hint on “what is wrong” in case of a verification failure.

Consider the program WrFloor, for computing the floor of a real nonnegative number:

WrFloor[x] = If 0 ≤ x < 1 then 5 else 1 + WrFloor[x− 1], (3.204)

with the specification:

(∀x) (IWrFloor[x] ⇐⇒ x ∈ R ∧ x ≥ 0),

(∀x, y) (OWrFloor[x, y] ⇐⇒ y ∈ N ∧ x− y < 1 ∧ y ≤ x).

The the specification of WrFloor is same as the Floor, presented in (3.10.3), however, in the
definition of WrFloor we introduced a bug, namely when 0 ≤ x < 1, WrFloor[x] = 5, in contrast
to Floor[x] = 0.

Before starting with the essential part of the verification, we first check if WrFloor is coherent
with respect to its specification, the auxiliary programs and their specifications. In order to perform
the coherence check, we instantiate the relevant conditions:

(∀x : x ∈ R ∧ x ≥ 0) (0 ≤ x < 1 =⇒ T) (3.205)

(∀x : x ∈ R ∧ x ≥ 0) (¬(0 ≤ x < 1) =⇒ x− 1 ∈ R ∧ x− 1 ≥ 0) (3.206)

(∀x : x ∈ R ∧ x ≥ 0) (¬(0 ≤ x < 1) =⇒ T) (3.207)

(∀x : x ∈ R ∧ x ≥ 0) (¬(0 ≤ x < 1)∧y ∈ N ∧ (x−1)−y < 1 ∧ y ≤ (x−1)) =⇒ T). (3.208)

As we can see, the conditions (3.205), (3.207) and (3.208) are trivial to prove, because we have T
at the right hand side of an implication. The origin of these T are the preconditions of the auxiliary
functions λx.5, the minus one function λx.x− 1, and the plus one function λx.1 + x.

Only (3.206) requires a proofs, however, it is easily tractable in the theory of real numbers.
In fact, all the conditions here are the same as in the correct version of Floor (3.10.3).

After we are convinced that WrFloor is coherent, we instantiate the relevant verification condi-
tions for proving correctness:

(∀x : x ∈ R ∧ x ≥ 0) (0 ≤ x < 1 =⇒ 5 ∈ N ∧ x− 5 < 1 ∧ 5 ≤ x) (3.209)

(∀x : x ∈ R ∧ x ≥ 0) (¬(0 ≤ x < 1) ∧ y ∈ N ∧ (x− 1)− y < 1 ∧ y ≤ (x− 1) (3.210)
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=⇒
1 + y ∈ N ∧ x− (1 + y) < 1 ∧ (1 + y) ≤ x).

(∀x : x ∈ R ∧ x ≥ 0) (WrFloor′[x] = T) (3.211)

where:

WrFloor′[x] = If 0 ≤ x < 1 then T else WrFloor′[x− 1]. (3.212)

We see, that (3.210), (3.211) are tractable in the theory of real numbers and they are the same as
in the correct version of Floor.

Now, for this buggy version of WrFloor we see that all the verification conditions remain the
same, except one, namely, (3.209). Therefore, according to the completeness of the method, we
conclude that the program WrFloor does not satisfy its specification.

Furthermore, in order to demonstrate how a bug might be located in an automatic manner, we
have a broad discussion on that topic in (3.10.7).
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3.10.5 Remainder Rem in division of integers

In arithmetic, when the result of the division of two integers cannot be expressed with an integer
quotient, the remainder is the amount “left over.” The next example we consider is the remainder
function Rem.

The purpose of showing this example is to demonstrate the ability of our method in vector do-
mains, that is, the arguments x, y, z could be not only single variables but vectors (tuples) as well.

Consider the program Rem, for computing the remainder of the division of two natrurals:

Rem[x, y] = If x < y then x else Rem[x− y, y], (3.213)

with the specification:

(∀x, y) (IRem[x, y] ⇐⇒ x ∈ N ∧ y ∈ N+),

(∀x, y, z) (ORem[x, y, z] ⇐⇒ (∃q : q ∈ N) (x = z + y ∗ q ∧ z < y)).

Before starting with the essential part of the verification, we first check if Rem is coherent with
respect to its specification, the auxiliary programs and their specifications. In order to perform the
coherence check, we instantiate the relevant conditions:

(∀x, y : x ∈ N ∧ y ∈ N+) (x < y =⇒ T) (3.214)

(∀x, y : x ∈ N ∧ y ∈ N+) (¬(x < y) =⇒ x− y ∈ N ∧ y ∈ N+) (3.215)

(∀x, y : x ∈ N ∧ y ∈ N+) (¬(x < y) =⇒ T) (3.216)

(∀x, y, z : x ∈ N ∧ y ∈ N+) (¬(x < y)∧(∃q : q ∈ N) (x−y = z+y∗q ∧ z < y)) =⇒ T). (3.217)

As we can see, the conditions (3.214), (3.216) and (3.217) are trivial to prove, because we have T
at the right hand side of an implication. The origin of these T are the preconditions of the auxiliary
functions: the identity λx.x, the minus function λx, y.x− y, and the projection λx, y.y.

In fact, only (3.215) requires a proofs, however, it is easily tractable in the theory of natural
numbers.

After we are convinced that Rem is coherent, we instantiate the relevant verification conditions
for proving correctness:

(∀x, y : x ∈ N ∧ y ∈ N+) (x < y =⇒ (∃q : q ∈ N) (x = x + y ∗ q ∧ x < y)) (3.218)

(∀x, y, z : x ∈ N ∧ y ∈ N+) (¬(x < y) ∧ (∃q : q ∈ N) (x− y = z + y ∗ q ∧ z < y) (3.219)
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=⇒
(∃q : q ∈ N) (x = z + y ∗ q ∧ z < y)).

We see, that (3.218) and (3.219) are tractable in the theory of natural numbers.
Now we need to prove the termination of Rem, that is:

(∀x, y : x ∈ N ∧ y ∈ N+) (Rem′[x, y] = T) (3.220)

where:

Rem′[x, y] = If x < y then T else Rem′[x− y, y]. (3.221)

This is a new simplified version, and one has to prove its termination. For that proof, we would
suggest to use induction on q, where x = Rem[x, y] + y ∗ q for any x and y: x ∈ N ∧ y ∈ N+.
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3.10.6 Even and Odd

This example is dedicated to demonstrating mutual recursive definitions—actually what are the nec-
essary and sufficient conditions for the program to be correct.

Consider the system E, defined with the help of the functions EV and OD for checking whether
given natural number is even or not:

F [x] = EV [x], (3.222)

where:

EV [x] = If x = 0 then T else OD[x− 1], (3.223)

OD[x] = If x = 0 then F else EV [x− 1], (3.224)

with the specification:

(∀x) (IEV [x] ⇐⇒ x ∈ N),

(∀x, y) (OEV [x, y] ⇐⇒ (Even[x] ∧ y = T) ∨ (Odd[x] ∧ y = F)),

(∀x) (IOD[x] ⇐⇒ x ∈ N),

(∀x, y) (OOD[x, y] ⇐⇒ (Even[x] ∧ y = F) ∨ (Odd[x] ∧ y = T)),

The program E is suppose to check whether a given natural number is even or not, that is, for any
natural number x, if x is even number, it should return T, and if x is odd, F.

Before starting with the essential part of the verification, we first check if the program E is coher-
ent. In order to perform the coherence check, we instantiate the relevant conditions:

(∀x : x ∈ N) (x = 0 =⇒ T) (3.225)

(∀x : x ∈ N) (x 6= 0 =⇒ x− 1 ∈ N) (3.226)

(∀x : x ∈ N) (x 6= 0 =⇒ T) (3.227)

(∀x, y : x ∈ N) (x 6= 0 ∧ (Even[x− 1] ∧ y = F) ∨ (Odd[x− 1] ∧ y = T) =⇒ T) (3.228)

(∀x : x ∈ N) (x = 0 =⇒ T) (3.229)

(∀x : x ∈ N) (x 6= 0 =⇒ x− 1 ∈ N) (3.230)
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(∀x : x ∈ N) (x 6= 0 =⇒ T) (3.231)

(∀x, y : x ∈ N) (x 6= 0 ∧ (Even[x− 1] ∧ y = T) ∨ (Odd[x− 1] ∧ y = F) =⇒ T). (3.232)

As we can see, most of the conditions are trivial to prove, because we have T at the right hand
side of an implication. The origin of these T are the preconditions of some of the auxiliary functions,
e.g., the constant function λx.T, the minus one function λx.x− 1, etc.

In fact, only (3.226) and (3.230) require proofs, however, they are easily tractable in the theory of
natural numbers.

After we are convinced that E is coherent, we instantiate the relevant verification conditions for
proving correctness:

(∀x : x ∈ N) (x = 0 =⇒ (Even[x] ∧ T = T) ∨ (Odd[x] ∧ T = F)) (3.233)

(∀x, y : x ∈ N) (x 6= 0 ∧ (Even[x− 1] ∧ y = F) ∨ (Odd[x− 1] ∧ y = T) (3.234)

=⇒
(Even[x] ∧ y = T) ∨ (Odd[x] ∧ y = F))

(∀x : x ∈ N) (x = 0 =⇒ (Even[x] ∧ T = T) ∨ (Odd[x] ∧ T = F)) (3.235)

(∀x, y : x ∈ N) (x 6= 0 ∧ (Even[x− 1] ∧ y = T) ∨ (Odd[x− 1] ∧ y = F) (3.236)

=⇒
(Even[x] ∧ y = F) ∨ (Odd[x] ∧ y = T))

We see, that all of verification conditions are tractable in the theory of natural numbers. Essen-
tially, one has to prove that: if x 6= 0 and Even[x − 1] then Odd[x], and, complementary: if x 6= 0
and Odd[x− 1] then Even[x].

Now we need to prove the termination of E, that is:

(∀x : x ∈ N) (EV ′[x] = T) (3.237)

where:

EV ′[x] = If x = 0 then T else OD′[x− 1] (3.238)

OD′[x] = If x = 1 then T else EV ′[x− 1]. (3.239)
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It is now interesting to see, that EV ′ and OD′ have the same definitions (up to renaming), and we
can merge into one, namely:

F ′[x] = If x = 1 then T else F ′[x− 1]. (3.240)

Now, we see that we have arrived to the most popular simplified version, namely the primitive
recursive one and thus we are done.
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3.10.7 Binary Powering

We consider again a powering function P , however we provide this time a different implementation,
namely binary powering:

P [x, n] = If n = 0 then 1 (3.241)

elseif Even[n] then P [x ∗ x, n/2] (3.242)

else x ∗ P [x ∗ x, (n− 1)/2]. (3.243)

This program in the context of the theory of real numbers, and in the following formulae, all
variables are implicitly assumed to be real. Additional type information (e. g. n ∈ N) may be
explicitly included in some formulae.

The specification is:

(∀x, n : n ∈ N) P [x, n] = xn. (3.244)

The (automatically generated) conditions for coherence are:

(∀x, n : n ∈ N) (n = 0 ⇒ T) (3.245)

(∀x, n : n ∈ N) (n 6= 0 ∧ Even[n] ⇒ Even[n]) (3.246)

(∀x, n : n ∈ N) (n 6= 0 ∧ ¬Even[n] ⇒ Odd[n]) (3.247)

(∀x, n, m : n ∈ N)(n 6= 0 ∧ Even[n] ∧m = (x ∗ x)n/2 ⇒ T) (3.248)

(∀x, n, m : n ∈ N)(n 6= 0 ∧ ¬Even[n] ∧m = (x ∗ x)(n−1)/2 ⇒ T) (3.249)

One sees that the formulae (3.245), (3.248) and (3.249) are trivial, because we have the logical
constant T at the right side of an implication. The origin of these T come from the preconditions of
the 1 constant-function-one and the ∗ multiplication.

The formulae (3.246) and (3.247) are easy consequences of the elementary theory of reals and
naturals. For the further check of correctness the generated conditions are:

(∀x, n : n ∈ N) (n = 0 ⇒ 1 = xn) (3.250)

(∀x, n : n ∈ N) (n 6= 0 ∧ Even[n] ⇒ n/2 ∈ N) (3.251)

(∀x, n, m : n ∈ N)(n 6= 0 ∧ Even[n] ∧m = (x ∗ x)n/2 ⇒ m = xn) (3.252)

(∀x, n : n ∈ N) (n 6= 0 ∧ ¬Even[n] ⇒ (n− 1)/2 ∈ N) (3.253)

(∀x, n, m : n ∈ N)(n 6= 0 ∧ ¬Even[n] ∧m = (x ∗ x)(n−1)/2 ⇒ x ∗m = xn) (3.254)
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(∀x, n : n ∈ N) P ′[x, n] = 0, (3.255)

where

P ′[x, n] = If n = 0 then 0 (3.256)

elseif Even[n] then P ′[x ∗ x, n/2] (3.257)

else P ′[x ∗ x, (n− 1)/2]. (3.258)

The proofs of these verification conditions are straightforward.
Now comes the question: What if the program is not correctly written? Thus, we introduce now a

bug. The program P is now almost the same as the previous one, but in the base case (when n = 0)
the return value is 0.

P [x, n] = If n = 0 then 0 (3.259)

elseif Even[n] then P [x ∗ x, n/2] (3.260)

else x ∗ P [x ∗ x, (n− 1)/2]. (3.261)

Now, for this buggy version of P we may see that all the respective verification conditions remain
the same—and thus the program is correct—except one, namely, (3.250) is now:

(∀x, n : n ∈ N) (n = 0 ⇒ 0 = xn) (3.262)

which itself reduces to:
0 = 1

(because we consider a theory where 00 = 1).
Therefore, according to the completeness of the method, we conclude that the program P does not

satisfy its specification. Moreover, the failed proof gives a hint for “debuging”: we need to change the
return value in the case n = 0 to 1.

Furthermore, in order to demonstrate how a bug might be located, we construct one more “buggy”
example where in the “Even” branch of the program we have P [x, n/2] instead of P [x ∗ x, n/2]:

P [x, n] = If n = 0 then 1
elseif Even[n] then P [x, n/2]
else x ∗ P [x ∗ x, (n− 1)/2].

Now, we may see again that all the respective verification conditions remain the same as in the
original one, except one, namely, (3.252) is now:

(∀x, n : n ∈ N) (∀x, n, m : n ∈ N)(n 6= 0 ∧ Even[n] ∧m = (x)n/2 ⇒ m = xn) (3.263)

which itself reduces to:
m = xn/2 ⇒ m = xn
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From here, we see that the “Even” branch of the program is problematic and one should satisfy
the implication. The most natural candidate would be:

m = (x2)n/2 ⇒ m = xn

which finally leads to the correct version of P .
The question whether (actually how), this correction of the program could be done automatically

or semi-automatically is a matter of investigation at the border between program verification and
program synthesis. In our opinion, research results in that direction would have a big practical impact,
and thus would be welcome.
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3.10.8 Neville’s Algorithm

We demonstrate our method on Neville’s algorithm for polynomial interpolation [29], [56] and show
how it may be validated fully automatically. We choose this example because, first, we want to
demonstrate the usefulness of our framework on examples which go beyond triviality, e.g., factorial
and summa, and second, we want to attract some attention from researchers working in the field of
numerical analysis.

Neville’s algorithm is an algorithm used for polynomial interpolation. Given n points, there is a
unique polynomial of degree n−1 which goes through the given points. Neville’s algorithm constructs
this polynomial.

Neville’s algorithm is based on the Newton form of the interpolating polynomial and the recursion
relation for the divided differences. Algorithmically, it fits to the Fibonacci-like recursive schema.

The original problem is as follows: Given a field K, two non-empty tuples x and a over K of
same length n, such that

(∀i, j : i, j = 1, . . . , n) (i 6= j ⇒ xi 6= xj),

that is, no two xi from x are the same.

Find a polynomial p over the field K, such that

• deg[p] ≤ n− 1 and

• (∀i : i = 1, . . . , n) (Eval[p, xi] = ai),

where the Eval function evaluates a polynomial p at value xi.

This original problem, as stated here, was solved by E. H. Neville [43] by inventing an algorithm
for the construction of such a polynomial [52]. The algorithm itself may be formulated as follows:

p[x, a] = If ‖a‖ ≤ 1 (3.264)

then First[a]

else
(X − First[x])(p[Tail[x], Tail[a]])− (X − Last[x])(p[Bgn[x], Bgn[a]])

Last[x]− First[x]
,

where we use the following notation:

• ‖a‖ gives the number n of elements of a,

• First[a] gives the first element a1 of a,

• Last[a] gives the last element an of a, provided ‖a‖ = n,

• Tail[a] gives the tail of a, that is, a without its first element,

• Bgn[a] gives the beginning of a, that is, a without its last element, and
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• X is a constant expressing the single polynomial of degree 1, leading coefficient 1 and free
coefficient 0.

In fact, in abstract algebra X may also be interpreted as an indeterminate of the polynomials, that
is, the variable in polynomial functions. This is a discussion which is not relevant for this presentation,
however, it is very important when constructing the theory of polynomials, on which the verification
conditions would have to be proven.

In order to illustrate how Neville’s algorithm works, we consider the following example: x =
〈−1, 0, 1〉 and a = 〈3, 4, 7〉. After executing (3.264), we obtain:

p[〈−1, 0, 1〉, 〈3, 4, 7〉] = · · · = X 2 + 2X + 4.

This polynomial has a degree 2, as expected, and if we now evaluate it at the values −1, 0, and 1, we
obtain:

Eval[X 2 + 2X + 4,−1] = 3,

Eval[X 2 + 2X + 4, 0] = 4,

and
Eval[X 2 + 2X + 4, 1] = 7,

which corresponds to the initial a.

However, in order to be sure that this algorithm would always return the correct polynomial, one
has to prove its correctness, and this was done by Neville himself [52].

Our contribution consists in automating the process of the correctness proof. Moreover, we will
see that even if a small part of the specification is missing, which sometimes happens, the algorithm
would not be correct anymore.

Verification of Neville’s Algorithm

In order to verify (3.264), we first formalize the specification, and then produce the respective veri-
fication conditions. Finally, we discuss how each of these conditions may be proven in the theory of
lists and tuples.

We give here some notations which we use for the formalization of the specification:

• [[a]]i gives the ith element ai of a tuple a. Sometimes, ai is used as an abbreviation for [[a]]i. In
addition to it, we have the restriction 1 ≤ i ≤ ‖a‖.

• IsPoly[poly] is a predicate standing that the expression poly is a polynomial. For example
IsPoly[X 2 + 2X + 4].

• IsTuple[a] is a predicate standing that the expression a is a tuple. For example IsTuple[〈3, 4, 7〉].
• deg[poly] gives the degree of the polynomial poly. For example deg[X 2 + 2X + 4] = 2.

• Eval[poly, x] evaluates a polynomial poly at value x.

The preconditions of the functions used for the definition of (3.264) are as follows:
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• First: IFirst[a] ⇐⇒ IsTuple[a] ∧ ‖a‖ ≥ 1

• Last: ILast[a] ⇐⇒ IsTuple[a] ∧ ‖a‖ ≥ 1

• Tail: ITail[a] ⇐⇒ IsTuple[a] ∧ ‖a‖ ≥ 1

• Bgn: IBgn[a] ⇐⇒ IsTuple[a] ∧ ‖a‖ ≥ 1

• [[a]]i: IProjection[a, i] ⇐⇒ IsTuple[a] ∧ 1 ≤ i ≤ ‖a‖
• u

v : IDiv[u, v] ⇐⇒ v 6= 0

• u v: IMult[u, v] ⇐⇒ T

• u + v: IAdd[u, v] ⇐⇒ T

• u− v: ISub[u, v] ⇐⇒ T

We are now ready to give the formal specification of (3.264). The precondition is:

(∀x, a) (Ip[x, a] ⇐⇒ (3.265)

⇐⇒ IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j))),

and the postcondition is:

(∀x, a) (Op[x, a, p] ⇐⇒ (3.266)

⇐⇒ IsPoly[p] ∧ deg[p] ≤ ‖a‖ − 1 ∧
∧ ((∀i : i ∈ N)(1 ≤ i ≤ ‖a‖ ∧ i 6= j =⇒ Eval[p, xi] = ai))).

As we can see, the algorithm (3.264), fits to the Fibonacci-like recursive schema, and thus, we
know how to generate its verification conditions. However, before going to the real verification, we
first check if (3.264) with its specification (3.265), (3.266) is coherent with respect to its auxiliary
functions and their specifications.

The (automatically generated) conditions for coherence are:

(∀x, a) (IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧ (3.267)

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)) ∧ ‖a‖ ≤ 1

=⇒
IsTuple[a] ∧ ‖a‖ ≥ 1)

(∀x, a) (IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧ (3.268)

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)) ∧ ¬(‖a‖ ≤ 1)
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=⇒
(IsTuple[Tail[x]] ∧ IsTuple[Tail[a]] ∧ ‖Tail[x]‖ = ‖Tail[a]‖ ∧ ‖Tail[a]‖ ≥ 1 ∧
∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖Tail[a]‖ ∧ i 6= j =⇒ [[Tail[x]]]i 6= [[Tail[x]]]j))

(∀x, a) (IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧ (3.269)

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)) ∧ ¬(‖a‖ ≤ 1)

=⇒
(IsTuple[Bgn[x]] ∧ IsTuple[Bgn[a]] ∧ ‖Bgn[x]‖ = ‖Bgn[a]‖ ∧ ‖Bgn[a]‖ ≥ 1 ∧
∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖Bgn[a]‖ ∧ i 6= j =⇒ [[Bgn[x]]]i 6= [[Bgn[x]]]j))))

(∀x, a) (IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧ (3.270)

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)) ∧ ¬(‖a‖ ≤ 1)

=⇒
(IsTuple[x] ∧ ‖x‖ ≥ 1 ∧ IsTuple[a] ∧ ‖a‖ ≥ 1))

(∀x, a) (IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧ (3.271)

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)) ∧ ¬(‖a‖ ≤ 1)

=⇒
(IsTuple[x] ∧ ‖x‖ ≥ 1 ∧ IsTuple[a] ∧ ‖a‖ ≥ 1))

(∀x, a, p1, p2) (IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧ (3.272)

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)) ∧ ¬(‖a‖ ≤ 1) ∧
∧ IsPoly[p1] ∧ ((∀i : i ∈ N) (1 ≤ i ≤ ‖ Tail[x]‖ =⇒ Eval[p1, [[Tail[x]]]i] = [[Tail[a]]]i] ∧

∧ deg[p1] ≤ ‖ Tail[a]‖ − 1 ∧
∧ IsPoly[p2] ∧ ((∀i : i ∈ N) (1 ≤ i ≤ ‖ Bgn[x]‖ =⇒ Eval[p2, [[Bgn[x]]]i] = [[Bgn[a]]]i] ∧

∧ deg[p2] ≤ ‖ Bgn[a]‖ − 1

=⇒
(Last[x]− First[x] 6= 0) ∧ IsTuple[x] ∧ ‖x‖ ≥ 1))).

At the first side, the formulae look very complicated, however, they are almost trivial to prove.
Let us have a closer look at them—one-by-one.

In (3.267) the outermost symbol is “=⇒” and, at the right-hand-side, we have to prove:
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IsTuple[a] ∧ ‖a‖ ≥ 1,

which is assumed at the left-hand-side. Thus, the formula holds.

In (3.268) the outermost symbol is “=⇒” and, at the right-hand-side, we have to prove:

(IsTuple[Tail[x]] ∧ IsTuple[Tail[a]] ∧ ‖Tail[x]‖ = ‖Tail[a]‖ ∧ ‖Tail[a]‖ ≥ 1 ∧

∧ (∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖Tail[a]‖ ∧ i 6= j =⇒ [[Tail[x]]]i 6= [[Tail[x]]]j).

Under the assumption that IsTuple[x] and IsTuple[a] and ‖x‖ ≥ 1 and ¬(‖x‖ ≤ 1), it follows
IsTuple[Tail[x]] and IsTuple[Tail[a]].

Additionally, from ‖x‖ = ‖a‖ and ‖x‖ ≥ 1 and ¬(‖x‖ ≤ 1), it follows ‖Tail[x]‖ = ‖Tail[a]‖
and ‖Tail[a]‖ ≥ 1.

Now, it remains to prove that:

(∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖Tail[a]‖ ∧ i 6= j =⇒ [[Tail[x]]]i 6= [[Tail[x]]]j),

which follows from the assumption:

(∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j).

Thus, the formula (3.268) holds.

In (3.269) the outermost symbol is “=⇒” and, at the right-hand-side, we have to prove:

(IsTuple[Bgn[x]] ∧ IsTuple[Bgn[a]] ∧ ‖Bgn[x]‖ = ‖Bgn[a]‖ ∧ ‖Bgn[a]‖ ≥ 1 ∧

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖Bgn[a]‖ ∧ i 6= j =⇒ [[Bgn[x]]]i 6= [[Bgn[x]]]j))).

Under the assumption that IsTuple[x] and IsTuple[a] and ‖x‖ ≥ 1 and ¬(‖x‖ ≤ 1), it follows
IsTuple[Bgn[x]] and IsTuple[Bgn[a]].

Additionally, from ‖x‖ = ‖a‖ and ‖x‖ ≥ 1 and ¬(‖x‖ ≤ 1), it follows ‖Bgn[x]‖ = ‖Bgn[a]‖
and ‖Bgn[a]‖ ≥ 1.

It remains to prove that:

(∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖Bgn[a]‖ ∧ i 6= j =⇒ [[Bgn[x]]]i 6= [[Bgn[x]]]j),

which follows from the assumption:

(∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j).

Thus, the formula (3.269) holds.

In (3.270), we have to prove:

(IsTuple[x] ∧ ‖x‖ ≥ 1 ∧ IsTuple[a] ∧ ‖a‖ ≥ 1),
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where we have assumed:

(IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1).

Thus, the formula (3.270) holds.

Condition (3.271) is the same as (3.270) and thus it holds.

In (3.272) we have to prove that:

(Last[x]− First[x] 6= 0) ∧ IsTuple[x] ∧ ‖x‖ ≥ 1.

In the assumption list we have that:

IsTuple[x] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1,

and thus the second half of the proof of (3.272) is done.

Now, from the assumptions:

‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧ ¬(‖a‖ ≤ 1),

we derive that ‖x‖ > 1. From here and from the assumption:

(∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)

we derive that Last[x] 6= First[x] and thus:

Last[x]− First[x] 6= 0,

which concludes the proof of (3.272).

After proving that the algorithm is coherent, we now generate the verification conditions which
would ensure the total correctness of the algorithm. First we list them, as they are automatically
generated, and then we analyze all of them in more details.

The condition treating the special case, that is, the bottom of the recursion is:

(∀x, a) (IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧ (3.273)

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)) ∧ ‖a‖ ≤ 1

=⇒
IsPoly[First[a]] ∧

∧ ((∀i : i ∈ N) (1 ≤ i ≤ ‖a‖ =⇒ Eval[First[a], [[x]]i] = [[a]]i) ∧
∧ deg[First[a]] ≤ ‖a‖ − 1)).

The condition treating the general case, that is, the recursive calls is:

(∀x, a, p1, p2) (IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧ (3.274)

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)) ∧ ¬(‖a‖ ≤ 1) ∧
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∧ IsPoly[p1] ∧ ((∀i : i ∈ N) (1 ≤ i ≤ ‖ Tail[x]‖ =⇒ Eval[p1, [[Tail[x]]]i] = [[Tail[a]]]i]) ∧
∧ deg[p1] ≤ ‖ Tail[a]‖ − 1 ∧

∧ IsPoly[p2] ∧ ((∀i : i ∈ N) (1 ≤ i ≤ ‖ Bgn[x]‖ =⇒ Eval[p2, [[Bgn[x]]]i] = [[Bgn[a]]]i] ∧
∧ deg[p2] ≤ ‖ Bgn[a]‖ − 1

=⇒

IsPoly[
(X − First[x])p1 − (X − Last[x])p2

Last[x]− First[x]
] ∧

∧ (∀i : i ∈ N)(1 ≤ i ≤ ‖ x‖ =⇒ Eval[
(X − First[x])p1 − (X − Last[x])p2

Last[x]− First[x]
, [[x]]i] = [[a]]i) ∧

∧ deg[
(X − First[x])p1 − (X − Last[x])p2

Last[x]− First[x]
] ≤ ‖a‖ − 1)).

The condition treating termination is:

(∀x, a) (p′[x, a] = T), (3.275)

where:

p′[x, a] = If ‖a‖ ≤ 1 then T else p′[Tail[x], Tail[a]] ∧ p′[Bgn[x], Bgn[a]]. (3.276)

Now, let us see how these formulae may be proven.

The first verification condition (3.273) is about the special case of the algorithm, that is, the bottom
of the recursion. There, the outermost symbol is “=⇒” and, at the right-hand-side, we have to prove:

IsPoly[First[a]] ∧
∧ (∀i : i ∈ N) (1 ≤ i ≤ ‖a‖ =⇒ Eval[First[a], [[x]]i] = [[a]]i) ∧

∧ deg[First[a]] ≤ ‖a‖ − 1.

From the assumptions IsTuple[a] ∧ ‖a‖ ≥ 1 ∧ ‖a‖ ≤ 1 we derive that ‖a‖ = 1 and
IsPoly[First[a]].

On the other hand, since First[a] is a constant, we have that deg[First[a]] = 0 and thus
deg[First[a]] ≤ ‖a‖ − 1.

Now we need to prove:

(∀i : i ∈ N) (1 ≤ i ≤ ‖a‖ =⇒ Eval[First[a], [[x]]i] = [[a]]i),

which reduces to

Eval[First[a], [[x]]1] = [[a]]1,
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because ‖a‖ = 1. Since First[a] is a polynomial of degree 0, the evaluation of it at any point would
be First[a] itself, thus

Eval[First[a], [[x]]1] = First[a] = [[a]]1,

which completes the proof of (3.273).

The second verification condition (3.274) is the most complicated one and it actually corresponds
to the essence of Neville’s algorithm. There, at the right-hand-side of the implication we have three
different conjuncts, corresponding to the three requirements to the result, namely: p is a polynomial,
the degree of p is not more than n− 1 (where n is the length of the tuples x and a), and the evaluation
of the polynomial p at each point xi form x is equal to ai form a. In order to prove (3.274) we split it
into three formulae, corresponding to the three conjuncts at right-hand-side.

The first part of (3.274) is:

(∀x, a, p1, p2) (IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧ (3.277)

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)) ∧ ¬(‖a‖ ≤ 1) ∧
∧ IsPoly[p1] ∧ ((∀i : i ∈ N) (1 ≤ i ≤ ‖ Tail[x]‖ =⇒ Eval[p1, [[Tail[x]]]i] = [[Tail[a]]]i]) ∧

∧ deg[p1] ≤ ‖ Tail[a]‖ − 1 ∧
∧ IsPoly[p2] ∧ ((∀i : i ∈ N) (1 ≤ i ≤ ‖ Bgn[x]‖ =⇒ Eval[p2, [[Bgn[x]]]i] = [[Bgn[a]]]i] ∧

∧ deg[p2] ≤ ‖ Bgn[a]‖ − 1

=⇒
IsPoly[

(X − First[x])p1 − (X − Last[x])p2

Last[x]− First[x]
].

Under the assumptions that p1 and p2 are polynomials and First[x] and Last[x] are constants, it
follows that:

IsPoly[
(X − First[x])p1 − (X − Last[x])p2

Last[x]− First[x]
].

The second part of (3.274) is:

(∀x, a, p1, p2) (IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧ (3.278)

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)) ∧ ¬(‖a‖ ≤ 1) ∧
∧ IsPoly[p1] ∧ ((∀i : i ∈ N) (1 ≤ i ≤ ‖ Tail[x]‖ =⇒ Eval[p1, [[Tail[x]]]i] = [[Tail[a]]]i]) ∧

∧ deg[p1] ≤ ‖ Tail[a]‖ − 1 ∧
∧ IsPoly[p2] ∧ ((∀i : i ∈ N) (1 ≤ i ≤ ‖ Bgn[x]‖ =⇒ Eval[p2, [[Bgn[x]]]i] = [[Bgn[a]]]i)) ∧

∧ deg[p2] ≤ ‖ Bgn[a]‖ − 1

=⇒
(∀i : i ∈ N)(1 ≤ i ≤ ‖ x‖ =⇒ Eval[

(X − First[x])p1 − (X − Last[x])p2

Last[x]− First[x]
, [[x]]i] = [[a]]i).
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First, let us observe that ‖x‖ = ‖a‖ > 1 because among the assumptions we have ‖x‖ = ‖a‖ and
‖a‖ ≥ 1 and ¬(‖a‖ ≤ 1). In order to simplify the notation, we make some conventions, namely:

‖x‖ = n,

F irst[x] = x1,

Last[x] = xn.

From n > 1 and from

(∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)

follows x1 6= xn, that is, First[x] 6= Last[x].
Now, we take arbitrary but fixed i such that 1 ≤ i ≤ n and we prove:

Eval[
(X − x1)p1 − (X − xn)p2

xn − x1
, xi] = ai.

We consider the following three cases:

• i = 1

Now we have to show that:

Eval[
(X − x1)p1 − (X − xn)p2

xn − x1
, x1] = a1,

which by having the properties of Eval:

Eval[X − x1, x1] = x1 − x1,

Eval[X − xn, x1] = x1 − xn,

we transform into:

Eval[
(X − x1)p1 − (X − xn)p2

xn − x1
, x1] =

=
Eval[(X − x1), x1] Eval[p1, x1]−Eval[(X − xn), x1] Eval[p2, x1]

Eval[(xn − x1), x1]
=

=
−(x1 − xn) Eval[p2, x1]

xn − x1
=

and by Eval[p2, x1] = a1, which follows from the assumption:

((∀i : i ∈ N) (1 ≤ i ≤ ‖ Bgn[x]‖ =⇒ Eval[p2, [[Bgn[x]]]i] = [[Bgn[a]]]i)),

we finally obtain:

=
(x1 − xn) a1

xn − x1
= a1,

because xn 6= x1.
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• i = n

Now we have to show that:

Eval[
(X − x1)p1 − (X − xn)p2

xn − x1
, xn] = an,

which we transform into:

Eval[
(X − x1)p1 − (X − xn)p2

xn − x1
, xn] =

=
Eval[(X − x1), xn] Eval[p1, xn]−Eval[(X − xn), xn] Eval[p2, xn]

Eval[(xn − x1), xn]
=

=
(xn − x1) Eval[p1, xn]− (xn − xn) Eval[p2, xn]

xn − x1
=

=
(xn − x1) Eval[p1, xn]

xn − x1
=

and by Eval[p1, xn] = an, which follows from the assumption:

((∀i : i ∈ N) (1 ≤ i ≤ ‖ Tail[x]‖ =⇒ Eval[p1, [[Tail[x]]]i] = [[Tail[a]]]i)),

we finally obtain:

=
(xn − x1) an

xn − x1
= an

because xn 6= x1.

• 1 < i < n (this case exists only if n ≥ 3)

We have to show that:

Eval[
(X − x1)p1 − (X − xn)p2

xn − x1
, xi] = ai,

which we transform into:

Eval[
(X − x1)p1 − (X − xn)p2

xn − x1
, xi] =

=
Eval[(X − x1), xi] Eval[p1, xi]−Eval[(X − xn), xi] Eval[p2, xi]

Eval[(xn − x1), xi]
=

=
(xi − x1) Eval[p1, xi]− (xi − xn) Eval[p2, xi]

xn − x1
=

and by Eval[p1, xi] = ai and Eval[p2, xi] = ai, which follows from the assumptions:



3.10. EXAMPLES AND DISCUSSION 133

((∀i : i ∈ N) (1 ≤ i ≤ ‖ Tail[x]‖ =⇒ Eval[p1, [[Tail[x]]]i] = [[Tail[a]]]i))

and
((∀i : i ∈ N) (1 ≤ i ≤ ‖ Bgn[x]‖ =⇒ Eval[p2, [[Bgn[x]]]i] = [[Bgn[a]]]i)),

we finally obtain:

=
(xi − x1) ai − (xi − xn) ai

xn − x1
=

(xn − x1) ai

xn − x1
= ai,

because xn 6= x1.

With this we conclude the proof of (3.278).

The third part of (3.274) is:

(∀x, a, p1, p2) (IsTuple[x] ∧ IsTuple[a] ∧ ‖x‖ = ‖a‖ ∧ ‖a‖ ≥ 1 ∧ (3.279)

∧ ((∀i, j : i, j ∈ N) (1 ≤ i, j ≤ ‖a‖ ∧ i 6= j =⇒ [[x]]i 6= [[x]]j)) ∧ ¬(‖a‖ ≤ 1) ∧
∧ IsPoly[p1] ∧ ((∀i : i ∈ N) (1 ≤ i ≤ ‖ Tail[x]‖ =⇒ Eval[p1, [[Tail[x]]]i] = [[Tail[a]]]i]) ∧

∧ deg[p1] ≤ ‖ Tail[a]‖ − 1 ∧
∧ IsPoly[p2] ∧ ((∀i : i ∈ N) (1 ≤ i ≤ ‖ Bgn[x]‖ =⇒ Eval[p2, [[Bgn[x]]]i] = [[Bgn[a]]]i)) ∧

∧ deg[p2] ≤ ‖ Bgn[a]‖ − 1

=⇒

deg[
(X − First[x])p1 − (X − Last[x])p2

Last[x]− First[x]
] ≤ ‖a‖ − 1)).

In fact, we have to prove that:

deg[
(X − x1) p1 − (X − xn) p2

xn − x1
] ≤ n− 1.

First, we see that deg[xn − x1] = 0 because xn and x1 are constants.
From the assumptions we know that:

deg[p1] ≤ ‖Tail[a]‖ − 1 = n− 2

deg[p2] ≤ ‖Bgn[a]‖ − 1 = n− 2.

This implies that

deg[(X − x1) p1] ≤ n− 1,

deg[(X − x2) p2] ≤ n− 1,

and thus
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deg[
(X − x1) p1 − (X − xn) p2

xn − x1
] ≤ n− 1.

With this, we conclude the proof of (3.279) and (3.274).

The third verification condition (3.275) is the one which ensures termination of Neville’s algo-
rithm. We now prove that the simplified version p′ (3.276) with the precondition (3.265) always
terminates.

As we have already discussed, there is no general recipe for proving termination. For this partic-
ular case, we will use induction on the length of the initial tuples a and x.

For optical reasons, we give here once more the definition of p′:

p′[x, a] = If ‖a‖ ≤ 1 then T else p′[Tail[x], Tail[a]] ∧ p′[Bgn[x], Bgn[a]].

Let the length of the tuples a and x be n, that is, ‖a‖ = ‖x‖ = n. Using induction on n we will
prove p′ always terminates. Since a and x must be non-empty, the smallest length n can be 1 and thus
we start with it.

• n = 1

Then obviously, ‖a‖ ≤ 1 and thus p′[a, x] = T.

• n > 1

Assume that for all ‖a0‖ and ‖x0‖ with length smaller than n, that is, ‖a0‖ = ‖x0‖ < n, we
have p′[a0, x0] = T.

Let the length of the tuples a and x be n, that is, ‖a‖ = ‖x‖ = n. Now we have:

p′[a, x] = p′[Tail[x], Tail[a]] ∧ p′[Bgn[x], Bgn[a]].

Since we have:

‖Tail[x]‖ = ‖Tail[a]‖ = n− 1

and

‖Bgn[x]‖ = ‖Bgn[a]‖ = n− 1,

we apply the induction hypothesis and obtain that

p′[Tail[x], Tail[a]] = T

and

p′[Bgn[x], Bgn[a]] = T.

From here, we obtain that p′[a, x] = T, which completes the proof of (3.275).

As we described in the chapter about proving termination, before proving (3.275), one first checks
if the simplified version p′ is in a library. However, we have also the possibility to take it as an
unproven conjecture, if it is believed to be correct.



Chapter 4

Conclusions and Further Work

In this thesis we present an experimental prototype environment for defining and verifying recursive
functional programs.

In contrast to classical books on program verification [31], [16], [44] which expose methods for
verifying correct programs, we put special emphasize on verifying incorrect programs. The user may
easily interact with the system in order to correct the program definition or the specification.

We first perform a check whether the program under consideration is coherent with respect to its
specification, that is, each function call is applied to arguments obeying the respective input specifi-
cation.

The program correctness is then transformed into a set of first-order predicate logic formulae by
a Verification Condition Generator (VCG)—a device, which takes the program (its source code) and
the specification (precondition and postcondition) and produces several verification conditions, which
themselves, do not refer to any theoretical model for program semantics or program execution, but
only to the theory of the domain used in the program.

However, there is no “universal” VCG, due to the fact that proving program correctness is un-
decidable in general. On the other hand, in practice, proving program’s correctness is possible in
many particular cases and, therefore, many VCG-s have been developed for serving a big variety of
situations. Our research is contributing exactly in this direction.

The kinds of programs we are dealing may be split into the following general classes:

• Recursive programs which may have multiple choice if-then-else with zero, one or more recur-
sive calls on each branch – these are the most used in practice;

• Programs which are defined by mutual recursion;

• Programs with nested recursive definitions.

For coherent programs we are able to define a necessary and sufficient set of verification condi-
tions, thus our condition generator is not only sound, but also complete. This distinctive feature of
our method is very useful in practice for program debugging – as we also demonstrate by several
examples.

The applicability of the research presented in this thesis goes beyond the area of Program Verifica-
tion and Formal Methods. We discuss also the possibility of applying our methods in domains which
seem to be a bit far from program verification.
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For the purpose of serving education, in [55] we presented our experimental prototype environ-
ment. The discussion there is about improving the education of future software engineers by exposing
them to successful examples of using formal methods (and in particular automated reasoning) for the
verification and the debugging of concrete programs.

The use of formal methods for software design is motivated by the expectation that, performing
appropriate mathematical reasoning can contribute to the reliability of a design. In our opinion, these
methods should be used in practice, however, their acceptance by industry is not yet very broad. The
author is convinced that in order to increase the practical impact of formal methods, the education of
future software engineers should be improved, and parts of this thesis may serve as basis for such an
improvement.

In section (3.10), in particular (3.10.8), we describe the possibility of supporting research in Nu-
merical Analysis by tools for program verification. We give some ideas on how our framework may
increase the efficiency of algorithm creation in Scientific Computing.

We address not only logicians (interested on program verification and automatic theorem proving),
but also mathematicians, physicists and engineers who are inventing algorithms for solving concrete
problems. On one hand, the help comes with the automatically obtained correctness proof. On the
other hand, the inventor may try to prove the correctness of any conjecture, and in case of a failure
obtain a counterexample, which may eventually help making a new conjecture.

The approach to program verification presented here is a result of an experimental work with the
aim of practical verification of recursive programs. Although the examples presented here appear to
be relatively simple, they already demonstrate the usefulness of our approach in the general case. We
aim at extending these experiments to industrial-scale examples, which are in fact not more complex
from the mathematical point of view. Furthermore we aim at improving the education of future soft-
ware engineers by exposing them to successful examples of using formal methods (and in particular
automated reasoning) for the verification and the debugging of concrete programs.

Furthermore, we want to approach the problem of program synthesis which may replace the nowa-
days standard way of programming.

One possible direction of our further work is the development of methods for proving total cor-
rectness of tail recursive programs. More precisely, methods for programs having a specific structure
in which an auxiliary tail recursive function is driven by a main nonrecursive function, and only the
specification of the main function is provided.

The difficulty there is that it is impossible to find automatically, in general, verification conditions
for an arbitrary tail recursive function without knowing its specification. However, in many particular
cases this is, nevertheless, possible.

The specification of the auxiliary function could be obtained automatically, for example by solving
coupled linear recursive sequences with constant coefficients.

Furthermore, we aim at developing methods for synthesis of recursive programs for computing
concrete problems by means of “cheap” operations e.g., additions, subtractions and multiplications.

The correctness of the synthesized programs should follow from the general correctness of the
synthesis method. The synthesis method itself should be proven once for all, using, for example, the
verification methods presented in this thesis.

We already made the first steps in that direction [39], [54], however, there is a lot to be investigated.
Throughout this thesis we declared many times our willingness to work only with coherent pro-

grams. However, in order to serve the specific research problems, we make some effort dealing with
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non-coherent programs. This is so, because we want to explore some properties of tail-recursive
programs which would otherwise go beyond the capability of our already established techniques.
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