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Abstract

In this work various ways to accelerate the computation process in the SEE-
KID/SEE-GRID software for the biomechanical simulation of the human eye
are investigated. Both sequential and parallel strategies are discussed. To
improve the sequential optimizer, the Broyden update method is utilized. A
strategy to interpolate function values is first found on the basis of the De-
launay algorithm. An enhanced strategy was developed based on the special
regularity of the mesh used in the interpolation program. The strategies were
implemented and the results of the benchmarks are presented together with
the source code.

In dieser Arbeit werden Wege vorgestellt, die Berechnungszeit der mathema-
tischen Kernprozesse in SEE-KID/SEE-GRID zur biomechanischen Simula-
tion des menschlichen Auges zu verkürzen. Sowohl sequentielle als auch par-
allele Strategien zur Beschleunigung der Berechnung werden aufgezeigt. Um
den sequentiellen Optimierungsalgorithmus zu verbessern, wird die Meth-
ode des Broyden Updates eingeführt. Eine Strategie die Funktionswerte
zu interpolieren, stellt die Benützung des Delaunay Algorithmus dar. Auf-
bauend auf der Idee der Interpolation wird ein Modell entwickelt, das sich die
Regularität, des in unserem Falle verwendeten Gitters für die Interpolation
zunutze macht. Alle diese Strategien wurden implementiert, beschrieben und
getestet. Die jeweiligen Berechnungszeiten wurden, wie auch der Quelltext
der entwickelten Programmabschnitte, in der Arbeit ausgeführt.
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Chapter 1

Introduction

In this thesis different approaches of accelerating the computation kernel of
the SEE-KID/SEE-GRID software ([7], [6], [26], [27], [1], [8], [9], [10]) are
investigated. The software is designed to help doctors treat eye motility
disorders. The major fields of application of the program are corresponding
the simulation of pathologies of the human eye concerning strabism and eye
surgeries based on a biomechanical model of the human eye.

SEE-KID is developed at the Upper Austrian Research GmbH (UAR)
headed by Michael Buchberger and Thomas Kaltofen; SEE-GRID is a grid
variant of the software developed in cooperation with the Research Institute
for Symbolic Computation (RISC) of the Johannes Kepler University Linz
by Károly Bósa and Wolfgang Schreiner. In SEE-KID/SEE-GRID results
are gained by optimization of a certain function called torque function. This
nonlinear function is used to describe eye positions with given eye parameters
of vice versa. The optimization is performed by the Levenberg Marquardt
algorithm ([3], [13]) which combines robustness in calculation with nearly
quadratic convergence.

The goal of this work is to find a possible strategy to accelerate the com-
putation kernel. First, the investigations were focused on the optimization
process. The idea of parallelizing the optimizer by decomposing the matrices
was deemed as an impossible approach because the dimensions of the utilized
matrices are too small. A way to enhance the sequential optimization pro-
cess is the so called Broyden update method ([2], [3], [13], [12]). Making use
of this method leads to decreasing computation times by just updating the
Jacobian and Hessian matrices used by the optimizer instead of recomputing
it in every step.

A strategy for using parallelizm was found in generating and decompos-
ing a grid over the torque function’s domain. The gridpoints store torque
function values which are used to interpolate values of points between the
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gridpoints. The first approach for implementing this idea was the Delau-
nay algorithm ([17]). With this algorithm a cluster of points can easily be
triangulated. The function value of a certain point is then computed by
interpolation from the three corner points of the surrounding triangle.

The usage of the Delaunay algorithm represents an overkill because it
can deal with irregular mesh structures as well. However, an improved inter-
polation method was found by making use of the regularity of the mesh. The
regular mesh structure in this approach replaces the Delaunay algorithm’s
triangle search by a lookup in the regular mesh structure.

Finally, methods for parallelizing the regular mesh strategy were devel-
oped. For the implementation of the parallel parts of the program the func-
tionality of the programming APIs POSIX ([22], [23], [24], [5], [29], [15]) and
OpenMP ([14], [11], [18], [4]) was used.

The remainder of the thesis is structured as follows: In Chapter 2 a
detailed description of the biomechanical model of the human eye, the torque
function and the structure of the optimization process is given. Chapter 3
first introduces nonlinear optimization, describes the Levenberg Marquardt
algorithm used in the software and shows a way to accelerate the sequential
optimization – the Broyden update. The Delaunay triangulation algorithm
together with interpolation is discussed in Chapter4. Chapter 5 deals with
an interpolation method using the regular structure of the mesh over the
torque function’s domain. Chapter 6 outlines possible ways for parallelizing
the interpolation method developed in Chapter 5.
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Chapter 2

Description of the Problem

2.1 Medical Overview

This chapter gives an introduction in the anatomy of the human eye with
attention to the extraocular eye muscles. An overview of strabismus is shown
and the treatments of eye motility disorders are explained. The description
of mathematical model of the human eye takes the main part of this chapter.
This chapter is based on the PhD thesis by Michael Buchberger [7].

2.1.1 Basic Anatomical definitions

To control the movements of the human eye we have a set of six extraocular
muscles surrounding the eyeball (Figure 2.1). The following list shows the
names and the types of movements performed by each of the six muscles
(Figure 2.2):

• rectus superior muscle for upward movements

• rectus inferior muscle for downward movements

• rectus lateralis muscle for sideways outside movements

• rectus medialis muscle for sideways inside movements

• obliquus superior muscle for upward and outside movements

• obliquus inferior muscle for downward and inside movements

To avoid the slipping off the eyeball during certain movements the eye
muscles have to be stabilized. This stabilization is done by a special tissue
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Figure 2.1: The eye muscles [20]
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Figure 2.2: Relationship between the eye muscles and the types of movements
(Top picture: [32])
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represented by a set of pulleys surrounding every muscle at a specific po-
sition. The length of the muscles during moving the eyeball is eminently
influenced by these pulleys. So they have to be treated carefully during sur-
gical corrections of the muscle length to avoid negative side affects of the
operation.

2.1.2 Strabismus - Forms, Classes, Tests and Treat-
ment

Normally the eyes can only be moved together. The eyes’ movements from
one position to another are performend very fast and certain positions can be
fixed for longer periods of time without getting exhausted. During the process
of seeing, the light reflected by the surrounding (three dimensional) objects
goes through the lens and the vitreous body leading to an upside down picture
on the retina. So we get two slightly different upside down two dimensional
pictures on the two retinas. These two pictures are flipped and merged in the
brain to produce one picture experienced as a three dimensional one. If the
difference between the two pictures is to big the brain cannot merge them,
which represents one form of strabismus. In early childhood the brain is
able to “delete” one of the two pictures delivered by the pathological seeing
mechanism. The big problem now is that one eye is permanently “switched
off” and is not used anymore. So children suffering from strabismus should
be treated very early. Otherwise the result can lead to partial or even total
blindness of one eye.

In general there are four main forms of strabismus which can be observed
in patient’s eye positions (Figure 2.3).

• Esotropia (a): one eye looks inwards while the other eye looks straight
on

• Exotropia (b): one eye looks outwards while the other eye looks straight
on

• Hypertropia (c): one eye looks upwards while the other eye looks
straight on

• Hypotropia (d): one eye looks downwards while the other eye looks
straight on

The sources of strabismus can be divided in three classes.

• Concomitant Strabismus
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Figure 2.3: The forms of strabismus
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• Inconcomitant Strabismus

• Paralytic Strabismus

Concomitant Strabismus Congenital eye motility disorders are called
concomitant strabismus.

Inconcomitant Strabismus The symptoms of incomitant strabismus are
dissociations of the ocular movements. The brain commands the muscles
correctly, but due to defects of the motor path of the binocular reflexes, the
movements are not carried out in the right way.

Paralytic Strabismus Paralytic strabismus shows in the paralyzation of
one or more muscles or nerves. These palsies can be congenital or the result
of certain diseases. There are several tests for diagnosing strabismus. This
tests usually work with lenses, patterns and/or the coverage of one eye. One
of the tests, the Hess-Landaster test carried out in the following way: The
patient wearing red-green glasses gets a green light pointer and a green filter
in front of one eye which is the fixing eye in this situation whereas the doctor
performing the test gets a red light pointer. Now the doctor projects a red
light spot on a certain canvas called “Hess screen”. The patient now has to
put its green light spot at the position of the red one. This procedure is done
a certain number of times and leads to a certain pattern called Hess diagram.
The test is repeated with the other eye and a red filter. So we get two Hess
diagrams, one for each of the two eyes. If the two eyes are healthy the red
and green points overlay in all measured positions.

Hess diagrams are very helpful for doctors because the diagnosis depends
on the form of the Hess diagrams and can even derived directly from them.

Treatment There are three forms of treating strabismus.

• Eyeglasses

• Occlusion treatment

• Surgery

The therapy with eyeglasses is usually done when squinting children are far-
sighted. The squinting of these children is the result of trying to fixate near
objects. Occlusion treatment is applied not only as is but as additional
treatment to glasses or after operations. This form of treatment often lasts a
period of several years. Both the squinting and the healthy eye are covered
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alternately with a special plaster to exercise the squinting eye. This treat-
ment works with children in the growth phase. The third form of strabismus
treatment are surgical operations of the extraocular eye muscles. This oper-
ations are only applied if the children can be examined sufficiently, glasses
are worn reliably and the eyesight of both eyes is nearly equal. There are
three main surgical goals - the weakening surgery, the strengthening surgery
and the transposition surgery. Weakening or recession surgery is done in or-
der to reduce the traction of a certain muscle and strengthening or resection
surgery is performed to raise its traction. If one needs to change the pulling
direction of a certain muscle transposition surgery is applied.

2.2 Specification of the Biomechanical Model

2.2.1 Mathematical Description of Eye Positions and
Rotational Movements

The current position of the eye can be interpreted as two or three dimensional.
These position is represented by (α, β) for the 2D position and (α, β, γ) for
the 3D position. The components of the vectors are angles containing the
two or three angles. To describe 2D or 3D eye positions, we first have to
define the position of the coordinate systems for the eyes. The center of this
coordinate systems lies in the center of the eyeball. Movements of the eye
are interpreted as rotations around these axes (Figure 2.4).

• x-axis (X): elevation, depression

• y-axis (Y ): ab-, adduction

• z-axis (Z): intorsion, extorsion

One part of our model is the calculation of 3D eye positions out of 2D
eye positions. This calculation can be deduced from the so called Listing’s
Law. As explained before 2D eye positions are represented by a vector (α, β)
with the torsional component γ missing. The relationship between 2D and
3D eye positions can be expressed by the mapping

(α, β) RelListing−−−−−−→ (α, β,⊗(α, β))

with the torsional component γ = ⊗(α, β) which is defined by

⊗(α, β) = cos−1 cosα+ cos β

1 + cosα cos β
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Figure 2.4: Eye coordinate system

There are two eye muscles per axis carrying out the movements. Let
(α, β, γ) be the angles rotating around the corresponding axes of the coor-
dinate system (Z,X, Y ). (The order of the axes was defined by Fick; we
will speak of a Fick sequence in further definitions. For expressing an eye
position one needs only the vector of the three angles (α, β, γ). In our model
quaternions are used to deal with rotations instead of rotational matrices.
Quaternions are a generalization of complex numbers. We use quaternions
of the form

q = a+ bI + cJ + dK

to describe eye positions in our model. This quaternion can be written as

q = [a, (b, c, d)]

where Scal(q) = a is the scalar part and V ect(q) = (b, c, d) denotes the
vector part of q. For quaternions there exist operations for the basic arith-
metic operations, for inversion, conjugation and for the quaternion power
operation. These operations are used for expressing rotations represented by
quaternions. Let q be a rotation quaternion, then the quaternion vp can be
rotated by multiplication on the right side with the rotation quaternion and
on the left with the inverse of the rotation quaternion.

v′p = Rot(vp, q) = q−1vpq

For defining the complete rotation quaternion

qListing = qrxqryqrz
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we need the base vectors of our eye coordinate system
−−→
XA(1, 0, 0),

−→
Y A(0, 1, 0)

and
−→
ZA(0, 0, 1). The rotations quaternions qrz, qry and qrx are computed as

follows.
qrx = [β, (

−−→
XA′)]

qry = [γ, (
−−→
Y A′)]

qrz = [α, (
−→
ZA)]

with
−−→
XA′ = V ect(Rot(

−−→
XA, qrx)) and

−−→
Y A′ = V ect(Rot(

−→
Y A, qry))

2.2.2 Mathematical Description of Extraocular Eye Mus-
cle Actions

To describe extraocular eye muscle actions we have to make some definitions
(Figure 2.5).

• insertion point (I) of a muscle: The point on the eyeball where this
muscle is attached to the eyeball.

• origin (O): the end of the muscle fixed on the cranial bone

• tangency point (T ): the point on the eyeball where the muscle first
touches the eyeball.

• action circle (ac) of the muscle: a circle around the eyeball lying in the
plane of muscle force operating.

• arc of contact : the line on the eyeball from insertion to tangency point.

There are some historical models to describe eye muscle actions. In these
models the pulleys are not treated adequate, which means that the slipping
off of the muscles from the eyeball is less or even not implemented in these
models. A complete description of these models can be found in [7] starting
on page 107. In the implementation of the SEE-KID/SEE-GRID software,
the so called pulley model is used. This model considers the action of pulleys.
In the pulley model a new poithe force directing reference position.

The center Cc of the action circle has to be computed separately for
every eye position because in certain eye positions the original center of the
action circle is different from the center in the pulley model (Figure 2.6).
This center is calculated with I, P and the center denoted by C as described

below. First we need three vectors (
−→
SX,
−→
SY ,
−→
SZ) with

−→
SX =

−→
SY ×

−→
SZ
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Figure 2.5: Defined points inside and around the eyeball

−→
SY =

−→
P ×

−→
I

|
−→
P ×

−→
I |

−→
SZ =

−→
I

|
−→
I |

where
−→
I denotes the vector from the center of the coordinate system to

the insertion point. These three vectors are needed for the computation of

(
−−→
TX,

−→
TY ,
−→
TZ).

−−→
TX = V ect(Rot(

−→
SX, q))

−→
TY = V ect(Rot(

−→
SY , q))

−→
TZ = V ect(Rot(

−→
SZ, q))

For the calculation of the center of the action circle, the rotation quater-
nion q describing the current eye position is used to define three vectors

(
−−→
GX,

−−→
GY ,
−→
GZ) with

I ′ = V ect(Rot(
−→
I , q))

−−→
GX =

−−→
GY ×

−→
GZ

−−→
GY =

−→
P ×

−→
I ′

|
−→
P ×

−→
I ′ |

−→
GZ =

−→
I ′

|
−→
I ′ |
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Figure 2.6: Defined points inside and around the eyeball in the pulley model

For the final computation of the muscle action circle in the pulley model,
we need an angle value (side-slip angle) called θ calculated as

θ = −α tan−1

−−→
GX
−→
TY

−−→
GX
−−→
TX

where α is a so called side-slip scalar which is different for each of the six
eye muscles and is derived from the EyeLab model [19]. The exact values for
α can be found in [7] on page 115. With vector

−→
D =

−→
TY sin θ −

−−→
TX cos θ

and vector
−→
N =

−→
D ×

−→
I ′P

|
−→
D ×

−→
I ′P |

we are able to define the center

Cc = (
−→
I ′
−→
N )
−→
N

As a further major thing we have to deal with the eye muscles. First we
define the length of the eye muscles denoted by l.

ml = darc + l1 + l2

darc = rad · α

with
rad = |

−→
I ′ |
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and

α = cos−1
−−→
I ′
−→
T

l = |
−→
P −

−→
CC |

The length from the origin point of the muscle to the pulley point l1 and the
length from the pulley point the point of tangency l2 is given by

l1 = |
−→
P O|

l2 =

√
−→
P
−→
P −

−→
I ′
−→
I ′ − Tl

with Tl denoting the length of the muscle tendon. The passive length change
of a muscle dl can be computed with

dl =
100(ml − L0)

L0

where L0 is the muscle length of a relaxed muscle without tendon. To describe
the muscle force we make use of the muscle length and tension with the
Length-Tension Relationship:

Fi(dli, ei) = λi

(
k

2
(dli + ei) +

√
k2

4
(dli + ei)2 + a2

)

i = 1, 2, . . . , 6 (The index i represents the ith eye muscle.) The parameters
k and a denote the asymptotic slope and the sharpness of the curvature.
ei is the elastic strength which scales the passive force function influencing
elastic properties of a muscle. dli denotes the changes in muscle length and
λ scales the total force function (passive and active force). In addition to
the parameters above we need the contractile strength cs scaling the active
force function, the total strength ts scaling the total force function in relation
to the current muscle and the tendon length Tl which gives us the tendon
length. Innervations of the eye muscles are defined by

ivi(ei) = Fi(0, ei)− F (0, e0)

with a certain constant value e0 where Fi is the total isometric force and
F (0, e0) is the passive isometric force for zero length change with e0 given as
constant value. F (dl, e0) is defined by

F (dl, e0) = λ

(
k

2
(dl + e0) +

√
k2

4
(dl + e0)2 + a2

)
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where λ, k and a denote constant values. The relationship between elastic
force FE(dl) = F (dl, e0) and contractile force FC(dl, iv) = F (dl, iv)− FE(dl)
is defined in the following equation:

FT (dl, iv) = FE(dl) + FC(dl, iv)

By using the scaling parameters es, cs and ts we define the scaled force
function

FT (dl, iv, es, cs, ts) = ts(FE(dl)es) + FC(dl, iv)cs))

For solving kinematic operations, we require a so called stable eye posi-
tion. To express the stable eye position we make use of the torque imbalance
vector

−→
t =

6∑
i=1

FTi
(dli, ivi, esi, csi, tsi) · −→ni

where ni denotes the ith element of the unit moment vector computed by

−→
N =

−→
D ×

−→
I ′P

|
−→
D ×

−→
I ′P |

with −→
D =

−→
TY sin θ −

−−→
TX cos θ

A stable eye position is achieved when:

|−→t | ≈ 0

2.2.3 Refined Mathematical Model

In this basic version of the torque imbalance vector mentioned above, or-
bital restoring forces and globe translations are not considered. An orbital

restoring force denoted by
−→
P is applied by elastic tissues in the eye orbit.

−→
P

depends on torsional stiffness constants. Globe translations are very useful
for the diagnosis. They describe a movement of the eyeball during eye move-
ments. For describing globe translation, we have to define a new coordinate
system lying between the origin points of the rectus superior and the rectus
inferior muscle denoted by Osr and Oir. The apex point in the posterior
region of the orbit is defined as

−→
V =

−→
Osr +

−→
Oir

2
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and −→
Ay =

−→
V

−→
Ax =

−→
Hz ×

−→
Ay

−→
Az =

−→
Ax ×

−→
Ay

denotes the new apex coordinate system. For the definition of the rotation
quaternions for the transformation between the apex and the head-fixed co-
ordinate system we need two rotation angles.

ψ = cos−1−→Ay ·
−→
Hy

ω = cos−1−→Az ·
−→
Hz

Now the quaternion for the forward transformation (from the head-fixed to
the apex coordinate system) is denoted by

qapex = [ω,
−→
Hx] · [ψ,

−→
Hz]

and the other way (from apex to head-fixed coordinates) by

qhead = q−1
apex

For using the globe translation to transform the torque imbalance vector
−→
t

to apex coordinates we use the translation vector
−−−→
Gtrans. To be able to do this

we have to introduce a stiffness vector called Fa containing three constant

values. This leads us to the definition of the translation vector
−−−→
Gtrans and

the amount of globe translation gt.

−−−→
Gtrans =

V ect(Rot(
−→
t , qapex))

2
−→
Fa

gt = |
−−−→
Gtrans|

The translation vector to modify ocular geometry using the head-fixed coor-
dinate system is denoted by

−−−−→
Trans = V ect(Rot(

−−−→
Gtrans, qhead))

The transformation of the muscle rotations axis in the pulley model to a
displaced muscle and pulley origin is done by

Gt(
−−−−→
Trans,

−→
RA) :=

−→
RA→ −

−−−−→
Trans
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with the muscle rotation axis
−→
RA = (ra1, ra2, ra3). In the pulley model

−→
RA =

−→
N . −

−−−−→
Trans translates the origin point O and pulley point P of each

muscle in the opposite direction.

The notation
−→
RA → is for expressing that the axes are calculated with

modified pulley and origin data. With this new definitions we can give the
refined torque imbalance equation

−→
T =

−→
P +

6∑
i=1

−→
FTi

(dli, ivi, esi, csi, tsi) ·Gt(
−−−−→
Trans,−→rai)

To control the value of
−→
T we define the two vectors−→

Iv and
−→
Ep.
−→
Iv = (iv1, iv2, iv3, iv4, iv5, iv6) contains the innervation values for

each eye muscle and
−→
Ep = (ex, ey, ez) contains the position values based on

rotation quaternions. The stable eye position can be found by the minimiza-
tion of the following function called torque function.

LT (
−→
Iv ,
−→
Ep, esi, csi, tsi) =

−→
P +

6∑
i=1

−→
FTi

(dli, ivi, esi, csi, tsi) ·Gt(
−−−−→
Trans,−→rai)

There is no function parameter dl because the six values dli are computed
using Ep.

We introduce
LT (
−→
Iv ,
−→
Ep)

as a shortcut for

LT (
−→
Iv ,
−→
Ep) = LT (

−→
Iv ,
−→
Ep, esi, csi, tsi)

For expressing the following minimization problem the standard form of [13]

is used. The goal is to find values for
−→
Iv and

−→
Ep with

min
(
−→
Iv ,
−→
Ep)
LT (
−→
Iv ,
−→
Ep)

The minimization problem is a least squares problem which is solved in the
SEE-KID/SEE-GRID software with the Levenberg-Marquardt algorithm ([3],
[13]).

2.2.4 Kinematic Operations, Torque function, Opti-
mization

Now we are able to define the terms forward and inverse kinematics.
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• Forward kinematics: to compute an eye position out of a given set of
innervations.

• Inverse kinematics: to compute a set of innervation out of a given eye
position.

2.2.5 Forward Kinematics

In forward kinematics (find a stable eye position with a given set of innerva-
tions) the minimization problem is of the form:

Epmin
(
−→
Iv ) := min−→

Ep

LT (
−→
Iv ,
−→
Ep)

In this case
−→
Iv is constant in the minimization.

2.2.6 Inverse Kinematics

If we solve the problem for inverse kinematics (
−→
Ep is given and constant) we

want to determine the innervation vector
−→
Iv . In this case we get the following

minimization problem:

Ivmin
(
−→
Ep) := min−→

Iv

LT (Ivo(
−→
Iv ),
−→
Ep)

In the inverse kinematics problem we are able to reduce the degrees of
freedom from 6 to 3 with the usage of the odd innervation vector Iv0 . The
even innervation vector can be calculated with the help of Sherrington’s law
of reciprocal innervations:

Ive(Ivo) =
(h+ w)2

Ivo + w
− w

where the form

Iv = (Ivo(1), Ive(1), Ivo(2), Ive(2), Ivo(3), Ive(3))

of Iv is used with Ivo(i) representing the three innervations with odd muscle
indices and Ive(i) denoting the innervations with even muscle indices. In the
SEE-KID model it is also possible to use brainstem data (e.g. for nerve

palsies). There a matrix Dn is used which scales the innervation vector
−→
Iv .

The dimension of the matrix is 6 × 6 and the matrix elements sij express
the scaling parameters for the nerve i and the muscle j. So the influence of
the matrix Dn is given by

−→
I ′v = (

−→
Iv ·Dn)T

where I ′v is the scaled version of Iv.
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2.2.7 Hess-Lancaster Test Simulation

The minimization of the torque function is used for the simulation of the
Hess-Lancaster test. For this simulation a so called reference eye (healthy)

is used. First we need a starting set of innervations corresponding to
−→
P

describing a 2D eye position. If the innervations of the reference eye lead the

following eye’s 2D position to a matching position to
−→
P , then a valid 3D eye

position is found. The fixing eye parameters and the 3D eye position is used
to compute the innervations for the six eye muscles. With this innervations
the fixing eye is brought in the corresponding position. Then the innervations
are used to compute the reference eye’s position. If the calculated positions of
the fixing eye and the reference eye are different, the fixing eye is pathological.
To get the position of the following eye the the intended fixation position of
the fixing eye is mirrored.
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Chapter 3

Accelerating the Sequential
Optimization Algorithm

In the following chapter we give a general overview of nonlinear optimiza-
tion algorithms starting with the Newton method. Based on this method we
introduce trust-region methods which lead us to the explanation of the cur-
rently implemented Levenberg-Marquardt algorithm. Finally an approach to
accelerate the implementation with the Broyden update is discussed.

3.1 Nonlinear Optimization

First we introduce the basics of nonlinear optimization. The general structure
of an optimization algorithm can be seen in Algorithm 3.1.1. The steps of
the algorithm are performed in a loop. Before each step we have to check if
a certain convergence criterion is fulfilled. In every step a search direction
and a step size is computed. These two values are needed for the iteration
rule which is also applied in every step.

The search direction is the direction in which we go in the argument space
to find the minimum. The length of one step gone in the search direction
is called stepsize. The convergence criterion is usually built in one of the
two ways: The first one is to choose a (small) value ε. If the difference of
the result of iteration k and k − 1 is smaller than ε: |xk − xk−1| < ε xk is
returned as the solution. The second way is to choose a certain number n of
iterations. After performing these n iterations the result xn is returned.

In the following sections, we describe existing optimization methods.
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Algorithm 3.1.1: optimization(f, startingvalue)

Input: f : Rn → R, x1

Output: y such that f(y) is minimum

k ← 1
while !(convergence criterion)

do


compute search direction pk ∈ Rn

compute step size αk > 0, with f(xk + αkpk) < fk

xk+1 := xk + αkpk

k ← k + 1
return (xk)

3.2 Steepest-Descent Method

One method for optimization is the steepest-descent method ([13], [3]). In
this “simple” method the search direction is given by

pk = −gk

with

gk = ∇f(x) :=

(
∂f

∂x1

(x),
∂f

∂x2

(x), . . . ,
∂f

∂xn

(x)

)T

denoting the gradient of f(x). The steepest descent method has global con-
vergence. The disadvantage in the steepest-descent method is the very slow
convergence. (beg. In order to get one more correct decimal place, the num-
ber of iterations has to be increased by the factor 10.) The slow convergence
is the main reason for not using the steepest-descent method in general.

3.3 The Newton method

The classical method for solving optimization problems is the Newton method
([3], [13], [12]). Here the search direction is:

pk = −Gk−1

gk

where gk denotes the gradient of f(x) as in Section 3.2 and

Gk = ∇2f(x) :=

(
∂2f

∂xixj

(x)

)
i,j=1,...,n
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denotes the Hessian matrix. The Newton method converges quadratically,
i.e. the number of correct decimal places doubles in every iteration step.

An improvement of the Newton method is the Gauss-Newton method
[3] where the Hessian matrix is approximated by the Jacobian matrix (here
denoted as J) which contains only the first derivatives.

Gk ≈ JkTJk

This approximation is also used in the Levenberg-Marquardt algorithm ex-
plained in Section 3.5.

The problem of the Newton or Gauss-Newton method is the local con-
vergence, which means that the algorithm returns a local minimum as global
solution. In order to achieve global quadratic convergence, we have to modify
the Newton method as described in the following section.

3.4 Trust-Region Methods

An approach to get global convergence can be found in so called trust-region
methods ([13], [3]). The Newton method converges only locally because

(qk(p) 6≈ f(xk))

To gain global convergence we compute pk by solving the minimization prob-
lem

min
p

(qk(p))

i.e. we have to find that p such that

qk(p) = fk(p) + gkT

p+
1

2
pTGkp

is a minimum. The goal of trust-region methods is to construct a set Ω
with p ∈ Ω and qk(p) ≈ f(xk + p). The trust-region can be seen as a
sphere with a certain radius r adjusted during the optimization process. For
the algorithm, depicted in Figure 3.4.1, we need a starting value X1 and six
values (describing the trust region) as input parameters. The value r1 denotes
the initial radius of the trust-region. r is changed during the optimization
by multiplication with τ1 for decreasing the size of the trust-region or with
τ2 for increasing its size. The other values are the following constant values:

• µ0: the least demanded descent.
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Algorithm 3.4.1: TrustRegion(f, x1, r1, µ0, µ1, µ2, τ1, τ2)

Input: f ∈ C2

Output: y such that f(y) is minimum

k ← 1
while !(convergence criterion)

do



compute search direction pk: solve qk(p)→ min, ‖p‖ ≤ rk

4qk := qk(pk)− qk(0) = qk(pk)− fk,
4fk := f(xk + pk)− fk

xk+1 := xk + αkpk

if 4fk ≥ µ04qk

then
{
xk+1 = xk

else
{
xk+1 = xk + pk

if 4fk ≥ µ14qk

then
{
rk+1 = τ1‖pk‖

else


if 4fk < µ24qk and ‖pk‖ = rk

then
{
rk+1 = τ2r

k

else
{
rk+1 = rk

k ← k + 1
return (xk)

• µ1: to measure if there is a descent or if is the descent to small. If there
is no descent at all or the descent is to small in the current step, we
have to decrease the trust-region’s size in the following step.

• µ2: to express if the descent is approximately 4qk. In this case we
have to increase the size of the trust-region in the next step.

• τ1: a factor to make the trust-region smaller.

• τ2: a factor to enlarge the trust region.

The conditions for the described values are as follows: r1 < 0, 0 < µ0 <
µ1 < µ2 < 1), 0 < τ1 < 1 < τ2. In actual implementations the trust-region
method typically switches to the Newton method near minimums.

28



Algorithm 3.5.1: TrustRegionTestLM(xk, xt, f, ν, µ0, µ1, µ2, τ1, τ2)

Input: xk, xt, f, ν, µ0, µ1, µ2, τ1, τ2
Output: xs

r ← xk

while r = xk

do



ared = f(xk)− f(xt)
st = xt − xk

pred = −∇f(xk)T st/2
if ared/pred < µ0

then


z = xk

ν = max(τ2ν, ν
0)

compute xt with the new value ν
if µ0 ≤ ared/pred < µ1

then

{
z = xt

ν = max(τ2ν, ν
0)

if µ1 ≤ ared/pred
then

{
z = xt

if µ2 < ared/pred
then

{
ν = τ1ν

if ν < ν0

then
{
ν = 0

xs = z
return (xs)

3.5 Levenberg-Marquardt Method

The Levenberg-Marquardt algorithm ([3], [13]) is used for solving nonlinear
least squares problems. These problems form a special class of optimization
problems that minimize functions of namely those form:

f(x) =
1

2

M∑
i=1

‖ri(x)‖22 =
1

2
R(x)TR(x)

with the residual vector R = (r1, · · · , rM).
The pseudocode of the Levenberg-Marquardt algorithm is depicted in

Algorithm 3.5.2 and 3.5.1. To perform an optimization with this algorithm
we again need the trust region parameters µ0, µ1, µ2, τ1, τ2 with µ0 ≤ µ1 < µ2
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Algorithm 3.5.2: LevenbergMarquardt(x1, R, kmax, µ0, µ1, µ2, τ1, τ2, ν
0)

Input: x1, R, kmax
Output: minimum f(xk)

ν ← ν0

for k ← 1 to kmax

do


xk = x1

compute R(xk), f(xk), R′(xk) and ∇f(xk)
with test for termination

xt = xk −
(
R′(xk)TR(xk) + νkI

)−1
R(xk)TR(xk)

xk = TrustRegionTestLM(xk, xt, f, ν, µ0, µ1, µ2, τ1, τ2)
return (f(xk))

and 0 < τ1 < 1 < τ2. Moreover an additional value, the so called Levenberg-
Marquardt parameter ν, is needed. During the optimization certain values
have to be computed: the trial point xt, the actual reduction in f denoted
by ared and the predicted reduction denoted by pred.

The algorithm is a combination of the Gauss-Newton and a certain trust-
region method. With this combination we achieve the fast convergence
(nearly quadratic) of the Newton method and global convergence as in the
steepest descent method.

The Levenberg-Marquardt method is very robust and it converges nearly
quadratic like the Gauss-Newton method. The Levenberg-Marquardt method
is used in the SEE-GRID/SEE-KID software system to minimize the Torque
function. The implementation of the Levenberg-Marquardt algorithm in
SEE-GRID is based on a MatLab implementation of a software system called
EyeLab [19]. The MatLab-code was transcripted into C++ as part of the
SEE-KID project.

3.6 Timing the Existing Implementation

We benchmarked the implementation of the Levenberg-Marquardt algorithm
that is currently used in the SEE-KID/SEE-GRID project.The benchmarks
were performed on a PC with 1.4 GHz P4 processor and 512 MB of RAM
and generated by using the existing testsoftware for the mathematic parts of
the SEE-KID software.

In the benchmarks, we have computed
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Test Torque Evaluations Computation Time

Test 1 8532 5.735s
Test 2 37390 24.484s
Test 3 55565 43.906s

Figure 3.1: Number of torque function evaluations

Operation Computation Time

Matrix multiplication 0.014ms
Matrix inversion 0.015ms
Matrix-Vector Multiplication 0.006ms

Figure 3.2: Timings of the existing algorithm

• the number of evaluations of this function (Figure 3.1) and

• average computation time of basic matrix and vector operations used
in every step of the Levenberg-Marquardt algorithm (Figure 3.2).

The computation time of whole optimization processes is depicted in
Figure 3.3 and the number of evaluations of the torque function can be seen
in Figure 3.1 for three different sets of input data:

1. healthy eye.

2. length of the rectus lateralis changed to 30.5 mm.

3. lengths of rectus lateralis, rectus medialis, rectus superior and rectus
inferior changed to 30.5 mm, 32 mm, 32 mm and 29 mm.

3.7 Broyden Update

One possible approach improving the optimization algorithm is the so called
Broyden update ([2], [3], [13], [12]). In general one has to compute the
Jacobian or Hessian matrix in each step of the optimization process. This
is one of the time consuming computations in our implementation of the
Levenberg-Marquardt algorithm. The idea of the Broyden update is to use
a Jacobian matrix computed in the step before and build an approximated
new one by updating the previous one. The Broyden update starts with an
initial Jacobian matrix (often the identity matrix is taken as initial matrix)
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Algorithm 3.7.1: BroydenUpdate(f, startingvalue)

Input: f : Rn → R, x1

Output: y such that f(y) is minimum

k ← 1
while !(convergence criterion)

do



...
if Broyden update criterion holds

then


rk+1 = τ2r

k

vk = xk+1 + xk

yk = F (xk+1)− F (xk)
uk = 1

vkT
vk

(yk − Jkvk)

Jk+1 = Jk + ukvk

else

{
restart: normal computation of the
Jacobian matrix

...
k ← k + 1

return (xk)
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and updates this matrix a certain number of (usually three or four) times.
The number of updates during two exact computations can either be defined
statically as a constant number or dynamically by setting an error bound.
The constant number depends on the problem and has to be determined
by testing the optimizer. The exact computation of the Jacobian matrix
after one or more updates is called “restart” and the optimizer runs one
optimization step with this matrix. After this restart we can update the just
now computed matrix again a certain number of times.

The basic structure of the Broyden update is

vk = xk+1 + xk

yk = F (xk+1)− F (xk)

uk =
1

vkT vk
(yk − Jkvk)

Jk+1 = Jk + ukvk

where F (xk) in our case denotes the Torque function evaluated in every step
k in xk and Jk is the Jacobian matrix in the k-th step.

3.8 Timing the New Implementation

We have developed an implementation of the Broyden update ([30]). In this
implementation we use an update counter initially set to zero. If this counter
is zero, the Jacobian matrix is computed exactly. For every number greater
than zero the update of the Jacobian matrix is performed. The counter is
increased by one at every step and if it reaches a certain number (the number
of updates to be done), it gets zero again. The source code of this prototype
implementation is depicted in Appendix A.

In our specific optimization of the torque function we get a problem with
the Broyden update such that we update in our tests the Jacobian matrix
once. The problem is that the process of optimization lasts even longer as
without performing the update; in some cases the algorithm even does not
terminate or the computation times grow explosively (see Figure 3.3). All
in all the nearly quadratic convergence of the Levenberg Marquardt method
cannot be reached.

Analyzing the problem, it turns out that its root cause is the the loss of
positive definiteness of most of the updated Jacobian matrices (a matrix is
positive definite if all of its eigenvalues are positive). As an example we picked
one of the Jacobian matrices computed during the optimization process and
computed the eigenvalues.
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Test 1 Iterations Time Position of Minimum

LM 1427 5.735s

 −0.14097
−0.262964
0.000077


LM+B 1908 10.093s

 0.002623
−0.26737
−0.005205


Test 2 Iterations Time Position of Minimum

LM 6202 25.484s

 −0.133243
−0.309130
−0.002774


LM+B 14847 74.11s

 0.170384
0.242074
−0.000019


Test 3 Iterations Time Position of Minimum

LM 9003 43.906s

 0.154371
−0.198040
−0.039909


LM+B 49365 243.407s

 −0.080549
−0.153042
−0.019640


Figure 3.3: Benchmarks (Levenberg Marquardt, Levenberg Marquardt with
with Broyden update)

The eigenvalues of 1.1026 −0.145282 −0.027819
13.4197 −17.9943 −3.63714
1.91109 −2.70498 0.482035


are given by the vector

(−18.4096, 1, 1)

One of the elements of this vector is negative, so this matrix is not positive
definite. This causes a very unstable behavior of the optimization.

For benchmarking the Broyden implementation we adapted the existing
testsoftware.
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Figure 3.3 compares the timings and computed minimums both of the
exact Levenberg Marquardt method and the Levenberg Marquardt method
combined with a Broyden update of the Jacobian matrix and shows the
number of iterations performed by the optimizer. It shows three tests: The
first test is done with a healthy eye, in the second test the length of the
rectus lateralis was changed to 30.5 mm and in the third the lengths of rectus
lateralis, rectus medialis, rectus superior and rectus inferior were changed to
30.5, 32, 32 and 29.

In addition to the benchmarks, graphics were generated with the same
parameters. These are depicted in Figure 3.4, 3.5, 3.6. Each of the figures
consists of three graphics. The first (top) shows the function values in every
optimization step with Levenberg Marquardt only (LM), the second picture
in the middle shows the function values from the optimization with Levenberg
Marquardt combined with the Broyden update (LM+B) and the third picture
shows the torque function plot over −30 ≤ x, y ≤ 30. It can be seen that the
optimization with the Broyden update performs more steps in a wider range
inside the domain.

3.9 Conclusions

In this chapter we first introduced the basics of optimization and showed sev-
eral algorithms which led us to the currently implemented Levenberg Mar-
quardt algorithm. The ability of acceleration of this sequential optimization
was discussed and a certain method, the Broyden update, was described and
implemented. During testing it turned out that for our special problem the
Broyden method does not work properly – it produces wrong results and
needs more computation time.

Testing the existing implementation we found out that the evaluations of
the torque function are the most time consuming part. This discovery leads
us to the next chapters which deal with strategies to interpolate the torque
function both sequential and parallel.
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Figure 3.4: Test 1, LM, LM+B, function
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Figure 3.5: Test 2, LM, LM+B, function
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Figure 3.6: Test 3, LM, LM+B, function
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Chapter 4

Triangulation and Interpolation

During the analysis of the existing algorithm it was detected, that the eval-
uations of the Torque function (the function to be minimized) needs more
than half of of the whole computation time. In our optimization algorithm,
we need thousands of evaluations in total. Thus, one idea to improve the effi-
ciency of the algorithm is to reduce this large number of function evaluations
by computing function values of certain points in advance and interpolate
the points in between.

One way to manage a certain set of grid points and use these points for
interpolations is the Delaunay triangulation.

4.1 Delaunay Triangulation

The interpolation we use in our project works by the triangulation of the
function in a certain surface.

When triangulating the function, we decompose the domain into a set
of triangles with our input points as vertices. Every time a function value
is requested, the algorithm has to interpolate this value from the tree vertex
points of the surrounding triangle which should be faster than the exact
computation of the function value.

To implement this idea, we first have to triangulate the function with
the Delaunay algorithm [17]. The Delaunay algorithm is used to describe
3-dimensional surfaces as sets of triangles. This algorithm takes as input a
set of points we get from evaluating the Torque function. It then computes
the triangulation. Afterwards, every function value we have not computed
exactly before can be interpolated. A triangulation is basically computed by
creating edges between the given points. This builds up a mesh of triangles.

For the visualizations of the torque function, the grid points, the triangle
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Figure 4.1: The Torque Function (original - set of points - triangulated)

mesh and the timing we used the so called Listing’s Law ([7]) which let us
compute the z parameter out of x and y. The z axis shows the Euclidian
norm of the three dimensional torque function result vector.

As an example, Figure 4.1 represents the Torque function for a certain
pathology. We changed some data concerning muscle force and length. The
first graphic shows the original Torque function. In the second one, one can
see a set of points (in this case a homogeneous mesh) created by evaluat-
ing the torque function in all of the points chosen before. The last picture
represents a triangulation of this set of points.

4.2 The Delaunay Algorithm

The input of the Delaunay triangulation consists of a set of points
P = {p1, p2, . . . , pn} (later representing the vertices of our triangles). The
output of the algorithm delivers us a triangulation T . The pseudo-code of the
algorithm is depicted as Algorithm 4.2.1. The “overall” algorithm containing
the generation of P and the following Delaunay triangulation is depicted in
algorithm 4.2.2 with the function f and the range of the mesh (lx, ly, ux, uy)
as input.

The first step in the Delaunay triangulation is to create a triangle con-
taining all points of the set P . The triangulations are performed in a loop
iterating over every point pr of P . First pr has to be inserted into the tri-
angulation and then a triangle containing pr has to be found. After that,
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Figure 4.2: Inserting a point located in a triangle

Figure 4.3: Inserting a point located on an edge of a triangle

we check if pr lies in a triangle of the triangulation. If this is the case, the
algorithm splits the triangle into three parts by inserting three new edges
from every vertex of the triangle to pr located in the triangle (see Figure
4.2). We have to check now if the circumcircle of the new triangles does not
contain any other points of P (circumcircle condition). In the case of a point
lying inside the circumcircle of a triangle we have to do an “edge flip” (see
Figure 4.4). This is done by deleting the inner edge and inserting a new
one to create two triangles again. Then the circumcircle condition will hold.
Next, we have to check if pr lies on an edge of a triangle. If this check is true
we have to split the two triangles having this edge in common into four (see
Figure 4.3). After inserting the new edges to split the triangles we have to
validate the circumcircle condition and do edge flipping as described before.

As the last step in the algorithm the initial triangle has to be removed
and the finished triangulation T can be returned.

Figure 4.4: Edge flip

41



Algorithm 4.2.1: Delaunay(P )

Input: Set of points P = {p1, p2, . . . , pn}
Output: Triangulation T

generate a triangle surrounding the whole set P
generate a random permutation of P
for r ← 1 to n

do



insert pr into the triangulation
find a triangle in the triangulation containing pr

if pr lies in a triangle of the triangulation

then


split the triangle into thee triangles by creating
edges from pr to every vertex

check edges if the circumcircle condition holds
otherwise do an edge flip

else if (pr lies on an edge of a triangle)

then


split the two triangles
which have that edge in common into four

check edges if the circumcircle condition holds
otherwise do an edge flip

remove the initial triangle from the triangulation
return (T)

Algorithm 4.2.2: TriangulationWithDelaunay(lx, ly, ux, uy, f)

Input: lx ≤ 0, ly ≤ 0, ux ≥ 0, uy ≥ 0, f
Output: Triangulation T

P :=
for i← lx to ux

do

{
for j ← ly to uy

do
{
P := P ∪ f(i, j)

T =Delaunay(P )

return (T)
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Figure 4.5: Timings of the Delaunay interpolation

4.3 Implementation and Benchmarks

The SEE-KID/SEE-GRID software actually uses a GPL implementation of
the Delaunay triangulation [25] for dealing with surfaces in another part of
the program. This implementation was used for our benchmarks together
with the existing test software ([30]).

For performing the benchmarks we had to change the test software. The
source code snippet is depicted in Appendix B. The range of the mesh in
x and y goes from −30 to 30. For generating the mesh we used two loops
with a stepping of 2. In every step we computed the torque function value
in the current x and y. This produced a set of points which is needed for the
Delaunay algorithm.

After the triangulation of our mesh, we tested and measured the inter-
polation procedure. For this we used again two loops running over the whole
mesh (this time with a stepping of 1) and computed 3600 interpolated values.

The average computation time for one interpolation is 0.33 ms. This
value was computed as the mean value of the timings of these 3600 interpo-
lations. The measured computation times lie between 0, 0023883026 ms and
3, 8312207175 ms. A visualization of the timings can be found in the Figure
4.5. In this figure the timings (in ms) for the interpolations can be seen for
every gridpoint.

4.4 Application of Parallelism

We have the following possibilities for the parallelization of the algorithm:

1. Before the triangulation: We can compute the function values in par-
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Algorithm 4.4.1: ParallelDelaunay(P )

Input: Set of points P = {p1, p2, . . . , pn}
Output: Triangulation T

divide P into disjoint subsets P1, P2, . . . , Pn

such that P1 ∪ P2 ∪ · · · ∪ Pn = P
for each Pi

do in parallel
{
Delaunay(Pi)

combine the T1, T2, . . . , Tn to the triangulation T of P
return (T)

allel: We have to select a certain number of (x, y) sample points and
determine the corresponding z value by evaluating the Torque function
in these points in parallel.

2. Parallel Delaunay: The triangulation of the set of points can be done
in parallel. This means a Divide and Conquer strategy is possible. This
strategy is sketched in Algorithm 4.4.1.

3. Concurrent computation of Delaunay triangulations of different sets of
points: During the optimization we can compute the triangulation of
different subsets of the domain of the Torque function in parallel.

4. Performing triangulation and optimization in parallel: The triangu-
lation is needed for the function evaluations in the optimization algo-
rithm. By considering triangulation not in isolation but in combination
with optimization, the efficiency may be improved and the potential
for parallelization may be increased. This way of parallelization is de-
scribed in Chapter 6.

All in all, the Delaunay triangulation is an overkill for our problem be-
cause it is designed for general meshes. That’s why an implementation of the
parallel Delaunay algorithm was not carried out. In our specific problem we
have a regular mesh (generated before). We can save computation time by
looking for a strategy making use of our ”special“ mesh structure. A possible
way to deal with our regular mesh structure is given in the next chapter.
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Chapter 5

Interpolation using the Regular
Mesh Structure

5.1 Introduction

The Delaunay algorithm is is necessary for general meshes but not for regular
ones. In a regular mesh, the triangulation is given by the mesh structure
and moreover the triangle search can be replaced by a simple lookup. This
chapter describes a possible way to deal with the regular mesh structure in
our specific problem.

First we give a description of the mesh itself and the ideas of making use
of its structure for interpolation.

To introduce the idea we need to look at the input and output parameters
of the torque function. In Section 2.2.3 the torque function was given by

LT (
−→
Iv ,
−→
Ep, esi, csi, tsi) =

−→
P +

6∑
i=1

−→
FTi

(dli, ivi, esi, csi, tsi) ·Gt(
−−−−→
Trans,−→rai)

To decrease the six parameters of
−→
Iv to three we make use of Sherrington’s

Law to compute the three elements with even indices
−→
Ivo out of the other

elements with odd indices. A detailled description of this law can be found
in Section 2.2.4. Basically, the torque function now can be seen as

ftorque : R3 → R3

The domain of input parameters of the torque function can be interpreted as
a cube. For our model we need to create a three dimensional grid in this cube.
In every node point of this grid we have to store a vector of three numbers
representing the three dimensional output vector of the torque function in
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this point. The point (0, 0, 0) is the center of this cube. For generating the
grid we need need a step size which is the space between the node points. In
each of the node points the return vector of the torque function is calculated
and stored in a certain data structure.

Interpolating the function value needs three points surrounding the the
requested point. Basically the interpolation is done in a linear way.

In this chapter we describe the implementation of a standalone version of
the interpolation which was used for testing the data structures and the inter-
polation method and an object oriented implementation which was actually
integrated in the SEE-KID/SEE-GRID software.

Performance tests and benchmarking were done for the object oriented
implementation.

5.2 Description of the Basic Solution

First, we introduce some terms used to describe our model ([31]). The Torque
function gets three double values as input such that the domain of this func-
tion can be interpreted as a cube. This cube is (virtually) divided into sub-
cubes of which only some are actually represented at any time in memory
during the execution of the algorithm (Figure 5.1). There is no data struc-
ture for the cube itself because the values are stored in the subcubes which
are organized as a queue. To save memory, we use a queue of subcubes, where
we store a certain number of subcubes. For the interpolation, we need infor-
mation about the position of each subcube in the domain (the cube) residing
in the subcube data structure as a vector of three elements. One more thing
we need to know is the position of the subcube in the queue. This is done by
a cube of integers (Figure 5.2). In this cube of integers there exists a value
for every virtual or existing subcube. If the subcube has not been calculated
before or is out of the cube, the dedicated value in the cube of integers is −1.
If the cube exists, we store the subcube’s queue position as integer value in
the cube of integers (0 . . . n). This cube of integers has to be updated at any
change of the queue.

If the optimization procedure requires a certain point, we check its posi-
tion and return the function values interpolated from the function values of
the corners of a pre-computed triangle surrounding the point. Our subcube
is virtually divided into planes, so we first have to check the plane of the
requested point and then do the interpolation with three surrounding points
lying in the same plane. Three interpolations have to be performed because
the Torque function returns a vector with three elements.

In the beginning our domain has to be virtually divided into subcubes.
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Figure 5.1: The domain of the Torque function divided into subcubes added
to a queue
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Figure 5.2: The cube with the positions of the subcubes in the queue when
adding a new subcube

Figure 5.3: Subcube with some points already computed

48



Algorithm 5.3.1: interpolate(x, y, z)

1. Set the dimensions of the cube of integers and of the subcubes
and the stepsize

2. Create the cube of integers and the queue

3. f̃ := checkCube(cube of integers, x, y, z, stepsize)

return f̃

After that we check the position of the point to be interpolated. In the very
beginning, we have no subcube calculated before and so we have to create
the first subcube and put it into the queue. In the following steps we check
if the subcube containing the point to be interpolated exists and return the
subcube calculated some time before. If the new point is outside the subcubes
already created, we have to create a new one and also put it into the queue.

For the interpolation of the first point in a subcube, we need to evaluate
the Torque function three times to get a triangle around the point (Figure
5.3). After computing the interpolated function value, a vector containing
the three interpolated Torque function values is returned to the optimizer.

If a point resides in an already existing triangle (the best case), no func-
tion evaluation has to be done. In other cases (the point is “near” an already
existing triangle), we have to compute one or two new function values to
build a new triangle with the point inside. In Figure 5.3 one can see that for
the first point we have to compute three function evaluations, for the second
one two. For the third one, we do not have to compute any points, and for
the fourth point we need one function evaluation.

5.3 Pseudocode

In this section we describe the process of calculating an interpolated point
of the Torque function (see Algorithm 5.3.1). The optimizer calls the inter-
polation function instead of the exact Torque function. As global input we
get a vector of three elements from the optimizer. The domain dimensions,
the sizes of the cube and the subcubes together with the stepsize have to be
set before doing any interpolation.

General Structure of the Algorithm
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Algorithm 5.3.2: checkCube(cube of integers, x ,y, z, stepsize)

1. Determine the position P of the subcube
containing the requested point in the domain

2. Check in the cube of integers if subcube P is computed
if subcube is computed

then

{
Get the queue position i of the subcube

f̃ :=returnValue(queue[i], x, y, z, stepsize)

else


Create the subcube
add the subcube to the queue
update the (cube of integers)

f̃ :=returnValue(subcube, x, y, z, stepsize)

return f̃

• Interpolate (Algorithm 5.3.1) In this function first the datastruc-
tures are created if not existing. Then the method CheckCube is
called.

• CheckCube (Algorithm 5.3.2) To interpolate a point, we have to de-
termine its surrounding subcube. For this we first need the position in
the cube of integers to check if the subcube is already computed (the
value has to be 1 . . . n, depending on the size of the queue). In the case
where the subcube is already computed, we call the method return-
Value (Algorithm 5.3.3) described later in this section. If the subcube
is not computed (represented by the value −1 in the cube of integers),
we have to create a subcube, add this new cube to the queue, perform
an update to the cube of integers and call the returnValue method
with the new subcube.

• returnValue (Algorithm 5.3.3) The real work, the interpolation of
the Torque function values, has to be done by the method return-
Value. The input for this method is a subcube, the coordinates of the
requested point and the stepsize. First we have to determine the plane
index of the point within a set of virtual planes into which we have
divided our subcube. As the next step, we have to calculate the three
triangle vertices on the plane. A 3× 3 matrix has to be filled with the
coordinates of the vertex points in the first two rows and 1 in the third
row (the structure of this matrix can be seen in the pseudocode). For
further calculation we need the inverse of this matrix. The calculation
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Algorithm 5.3.3: returnValue(subcube, x, y, z, stepsize)

1. Check the z position in the subcube to get the plane index i
using the stepsize
2. Compute the coordinates of the three triangle vertex points
surrounding the point in the plane i using the stepsize

P1 =

(
x1

y1

)
, P2 =

(
x2

y2

)
, P3 =

(
x3

y3

)
3. Build a matrix M and fill in the coordinates
of the triangle vertices

M =

x1 x2 x3

y1 y2 y3

1 1 1


4. Compute the inverse of this matrix
5. Compute the scalarproduct r of M−1 and the
point coordinate vector with z = 1

r = M−1 ×

 x
y
1


6. Check for each triangle point Pi,16i63,
if the computed flag is false
if computed flag is false

then


evaluate the Torque function in this point

save the vector

 f1

f2

f3

 in the subcube

set the computed flag of Pi to true
7. Interpolate the three values:

f̃1 = r1 ∗ f1(P1) + r2 ∗ f1(P2) + r3 ∗ f1(P3)

f̃2 = r1 ∗ f2(P1) + r2 ∗ f2(P2) + r3 ∗ f2(P3)

f̃3 = r1 ∗ f3(P1) + r2 ∗ f3(P2) + r3 ∗ f3(P3)

return f̃
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of the inverse matrix is done by dividing the transposed cofactor ma-
trix by the determinate which is computed by Sarrus’ scheme. Next,
we need a vector called r which is computed as the inverse matrix times
the point’s coordinate vector with the third coordinate z = 1.

In the next steps we check for each triangle point if the function values
have been computed already. For this, we have set a flag (the “com-
puted flag”) in our data structure. If the point has been calculated
before, we are lucky. Otherwise, we have to perform an evaluation of
the Torque function to get our three function values in this triangle
point. After the evaluation, the output vector of the Torque function
is saved in our data structure and the computed flag of this point is set
to true. If we have our complete set of function values, we can start to
interpolate. We use a linear interpolation as one can see in our pseu-
docode. Finally, the interpolated values are returned to the optimizer
as a three dimensional vector.

5.4 Prototype Implementation

For this rapid prototyping implementation we used the programming lan-
guage C. Especially for the data structures we used the C construct of structs
for the subcubes, the grid points in the subcubes, the queue elements and
the integer cube.

As input parameter we get a three dimensional vector from the optimizer
representing the input values of the Torque function. Parameters like cube
and subcube dimensions together with the queue size are set in the interpo-
lation routines. These parameters do not effect the optimizer and are not
changed from the optimizer.

Our algorithm returns a three dimensional vector. This vector contains
the interpolated function values of the Torque function.

5.4.1 Sourcecode

In our sourcecode we use methods for creating the cube, the subcubes and the
queue (Appendix C lists the sourcecode of a version with a simple function
for testing). The cube and the subcube are realized as pointers to a matrix
of pointers (eg. **** int) and the queue as pointer to a scalar value.

For every structure used, there exists a method to create this structure
and fill it with a set of initial values (createSubcube, createSubcube-
Queue, createCube). For adding subcubes to the queue we use the method
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addQueue. In the addQueue method each subcube is put into a datastruc-
ture together with its global position in the domain represented by (x, y, z).
The method checkCube gives us the position of the subcube in the queue or
creates a new subcube. Afterwards it calls the returnValue method either
with the new subcube or a certain subcube in the queue. The func method
is a dummy function used for testing.

The main part of the computation is done by the returnValue method.
Here the algorithm determines the position of the point in the subcube and
in the plane in the subcube and checks if the surrounding triangle is com-
plete. If there are points of the triangle missing, the triangle is completed by
the method by performing Torque function evaluations. With the three sur-
rounding points we can compute the three interpolation values by basically
solving a linear equation system in three dimensions. In the case of an error
during the calculation, an exception is thrown and the exact function values
are computed and returned because otherwise the whole optimization would
crash.

Finally, (if there was no error) this method returns a vector consisting of
the interpolated values.

This implementation was tested as standalone program with a dummy
function to check the functionality of the data structures and the interpo-
lation method. In the next section the description of the object oriented
implementation integrated in the existing software is given.

5.5 Object Oriented Implementation

To integrate the idea of mesh interpolation into the existing SEE-KID/SEE-
GRID software we had to develop an object oriented version of the program.
The source code can be seen in Appendix D.

During the design and implementation several improvements were done
such as the cube of integers is not needed any more. There is a difference
in the creation of the subcubes in this implementation. In the standalone
version a subcube is created empty and the function values in the nodepoints
only are computed if they are necessary for an interpolation. In this version
the subcube is filled with the torque function values in every nodepoint at
creation time.

The basic structure of the implementation consists of three classes:

• Interpol

• Subcube
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Figure 5.4: UML diagram of the Interpolation class

• SubcubeQueue

5.5.1 Interpol

The Interpol class is the main class of the project. In the SEE-KID/SEE-
GRID software one needs to create an instance of this class to get interpolated
function values. The class is depicted in Figure 5.4 as an UML diagram.

The class contains the following variables (public):

• a (integer): This variable represents half of the domain size in one
dimension. (e.g. If the domain is the cube from (−30,−30,−30) to
(30, 30, 30), a is 30).

• h (double): h measures the stepsize between the grid points.

• nsc1 (integer): nsc1 represents the number of subcubes in one dimen-
sion of our domain. (e.g. If a is 30 and nsc1 is 30, the dimension of the
subcube would be 2.)

• funcObj (SeeOFuncObject*): This is a pointer to the function object
for computing the torque function values. This variable is initially set
from the optimizer with the constructor of Interpol.

• queue (SubcubeQueue*): The queue is used to store the subcubes.

The constructor of the class is used to set the class variables and create
a queue filled with initial empty subcubes.
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Algorithm 5.5.1: Interpol((x, y, z))

1. compute the left-down-front corner of the subcube
if subcube is in queue

then
{
get the subcube from the queue

else
{
create new subcube

3., 4. 5. and 7. as in Algorithm 5.3.3

return f̃

The main method Interpolate of the project resides in the class Interpol.
This function gets a three dimensional vector as input and returns a three
dimensional vector. The pseudo code of this function is depicted as Algorithm
5.5.1. First we need to determine the left-down-front corner of the subcube.
If this subcube was computed before and is in the queue, it is used to fetch
the three triangle points. If the subcube is not in the queue we have to
create a new one with the corner values computed before. The next step
is to retrieve the triangle points surrounding the requested function value,
perform a linear interpolation and return the interpolated function vector.

If there is any error in Interpolate like the requested point is out of the
borders of our domain of the matrix inversion leads to an error, the function
value of the torque function is computed and returned.

5.5.2 Subcube

Basically the Subcube class handles the creation of subcubes (filling the sub-
cubes with torque function values). Moreover the class contains the methods
to get the three triangle points for the interpolation. The UML diagram can
be found in Figure 5.5.

The following variables are used in the Subcube class:

• public

– ax (integer): The value of the left-down-front corner on the x-axis.

– ay (integer): The value of the left-down-front corner on the y-axis.

– az (integer): The value of the left-down-front corner on the z-axis.

– dim (integer): The dimension of the subcube.

– h (double): The stepsize.

55



Figure 5.5: UML diagram of the Subcube class
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– funcobj (SeeOFuncObject*): The pointer to the function object
performing the torque evaluations.

• private

– Element (structure containing three double values): This user de-
fined variable is used in every grid point of the subcube to store
the torque function vector.

– sc (Element ****) This pointer represents the subcube itself.

For the creation of a Subcube object there are three different constructors
in the class.

• default constructor: for creating an Subcube object without setting
any variables.

• constructor with a Subcube pointer as input: This constructor creates
a new Subcube object out of the pointer to a given one.

• constructor with the whole set of class variables as input parameters: In
this constructor all of the class variables are set to the input parameter
values.

The filling of a subcube with function values is done by calling the Cre-
ateSubcube method. In this method the necessary memory for the subcube
data structure is reserved and filled with the torque function vectors.

For determining the three triangle points there are the methods GetTrp1,
GetTrp2 and GetTrp3. These methods get the input vector of the torque
function as input to compute the positions of the triangle points. Each
of these functions returns a vector containing seven values: the first three
elements are the torque function values in the trianglepoint, the second three
values are the global (not the subcube dimension) coordinates of the triangle
point and the last value is a flag which is 0 if there was any error in the
computation and one if the point is valid.

5.5.3 SubcubeQueue

The class SubcubeQueue represents a queue for storing computed subcubes.
The First in First out principle is used because in general the optimizer
works in one direction.

The SubcubeQueue has two variables (public):

• numOfsc (int): This variable resents the number of subcubes in the
queue.
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Figure 5.6: UML diagram of the SubcubeQueue class

• qu (vector of subcubes): qu is the variable to store the subcubes. It
uses the standard C++ vector library to store Subcube objects.

The constructor to create a SubcubeQueue object needs the queuesize
and an object of the Subcube class as input parameters. In the constructor
the queuesize is set and the vector is filled with the Subcube object.

There are three public methods for using the queue: The first one is
the AddSubcube method. This method gets a pointer to a certain subcube
as input and adds the according subcube to the queue. In this method the
oldest subcube in the queue is deleted.

The second method is the GetSubcube method. This method returns
the subcube with the left-down-front corner (x, y, z) which is given as input
parameter. The method works correctly only in combination with the Check-
Subcube method which returns true if a requested subcube with (x, y, z) as
left-down-front corner is stored in the queue and false if not.

5.6 Testing and Benchmarks

The tests were done with different sets of input parameters both of the inter-
polation class and the torque function. The input data of the torque function
was set to the parameters used in Chapter 3.7:

1. Model 1: healthy eye.

2. Model 2: length of the rectus lateralis changed to 30.5 mm.

3. Model 3: lengths of rectus lateralis, rectus medialis, rectus superior
and rectus inferior changed to 30.5 mm, 32 mm, 32 mm and 29 mm.
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The tests were performed with the following three sets of input data of the
interpolation class:

1. Parameter 1:

(a) Size of the domain in one dimension: 30

(b) Stepsize: 2

(c) Number of subcubes: 10

(d) Queuesize: 10

2. Parameter 2:

(a) Size of the domain in one dimension: 40

(b) Stepsize: 5

(c) Number of subcubes: 4

(d) Queuesize: 10

3. Parameter 3:

(a) Size of the domain in one dimension: 10

(b) Stepsize: 0.25

(c) Number of subcubes: 10

(d) Queuesize: 10

The computation time for a single interpolation is approximately 0.0297ms.
A torque function needs ≈ 0.67ms.

The computation time for one subcube can be described by the following
formula:

timesubcube = ngridpoints ∗ timetorque + overhead

In this formula ngridpoints is the number of grid points in the subcube and
timetorque gives the time of one evaluation of the torque function. The over-
head contains the computation time for creating the data structure and grows
with the number of elements in the subcube because there has to be done
more memory allocation.

The timings of the whole optimization processes can be seen in Figure
5.7. Comparing the number of iterations and the timings of the original
computation to the interpolated version a growth both of the computation
time and the number of iterations can be seen. The reason of the higher
number of iterations can be found in the influenced optimization process
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whereas the biggest amount of the higher computation time is not consumed
by the optimization process but by the computation of the subcubes.

In Figure 5.8 a comparison of the exact result function vector with the
interpolated result function vector can be found.

The tests show that the values computed by using the interpolation of the
torque function are the same (very close to) as the values computed with the
exact torque function evaluations in the first two tests whereas in the third
test the result with interpolating the function values differs from the exact
result. The measured computation times are very high because the creation
(filling with torque function vectors) of the subcubes is very time consuming.
Moreover the convergence of the optimization algorithm is influenced by the
approximated values which can be seen in Test 3. Comparing Set 2 of Test 2
and Test 3 one can see, that in the second test the computation time is higher
for less iterations than in the third test where ≈ 150s of computation time is
saved because there are done more interpolations in the same subcube.

To measure the quality of the result we calculated the Euclidean norm of
the result vector (error function) as depicted in Figure 5.9. In this table it can
be seen clearly that in the first two models the results are of the same quality.
The the computation with the third model gives incorrect results. Looking
at the second parameter set in Model 3 we get ‖ftorque‖2 > ‖finterpolate‖2.
But comparing the position of the minimum to the original computation we
see that in this case the result is better “by accident”.

5.7 Conclusions

The approach of interpolating the torque function values implemented in
the actual program delivers on the one hand nearly exact results and on
the other hand unusable results. The problem is that in some cases the
optimizer is influenced by the “errors” done by interpolating the function
values. However, even if there are unusable results we get highly correct
results in other cases, we have the chance of parallelization of parts of the
algorithm. The ideas and possible strategies for parallelization to reduce the
computation time can be seen in the next chapter.
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Model 1 Iterations Time Position of Minimum

Original 1427 5.735s

 −0.14097
−0.262964
0.000077


Parameter 1 1612 25.75s

 −0.140976
−0.262964
0.000076


Parameter 2 1657 32.516s

 −0.140835
−0.262912
0.000075


Parameter 3 1605 171.765s

 −0.140976
−0.262964
0.000077


Model 2 Iterations Time Position of Minimum

Original 6202 25.484s

 −0.133243
−0.309130
−0.002774


Parameter 1 9186 154.797s

 −0.133243
−0.309130
−0.002774


Parameter 2 10617 187.735s

 −0.133251
−0.309126
−0.002747


Parameter 3 8286 812.344s

 −0.133243
−0.309130
0.002774


Model 3 Iterations Time Position of Minimum

Original 9003 43.906s

 0.154371
−0.198040
−0.039909


Parameter 1 7958 124.422s

 0.045309
1.039755
−0.008367


Parameter 2 8849 152.609s

 −0.173883
−0.124797
−0.017115


Parameter 3 11355 654.328s

 −0.007664
−0.577341
−0.011950


Figure 5.7: Benchmarks for different sets of torque and interpolation param-
eters
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Model 1 ftorque finterpolate f∆ = |ftorque − finterpolate|

Parameter 1

 0.000004
0.000001
−0.000003

  0.000004
0.000001
−0.000003

  0
0
0


Parameter 2

 0.000004
0.000001
−0.000003

  0.000004
0.000001
−0.000003

  0
0
0


Parameter 3

 0.000004
0.000001
−0.000003

  0.000004
0.000001
−0.000003

  0
0
0


Model 2 ftorque finterpolate f∆ = |ftorque − finterpolate|

Parameter 1

 0.000000
0.000064
0.000053

  0.000000
0.000064
0.000053

  0
0
0


Parameter 2

 0.000000
0.000064
0.000053

  0.000000
0.000064
0.000053

  0
0
0


Parameter 3

 0.000000
0.000064
0.000053

  0.000000
0.000064
0.000053

  0
0
0


Model 3 ftorque finterpolate f∆ = |ftorque − finterpolate|

Parameter 1

 −0.000000
−0.000090
−0.000009

  2.665771
25.094553
−5.471609

  2.665771
25.0963
5.4716


Parameter 2

 −0.000000
−0.000090
−0.000009

  0.000000
0.000002
0.000000

  0
0.000092
0.000009


Parameter 3

 −0.000000
−0.000090
−0.000009

  3.540901
26.634500
−4.324699

  3.540901
26.63459
4.32469


Figure 5.8: Comparing the results of the optimization process both with and
without interpolation

62



Model 1 ‖ftorque‖2 ‖finterpolate‖2 ‖ftorque‖2 − ‖finterpolate‖2
Parameter 1 0.000005 0.000005 0
Parameter 2 0.000005 0.000005 0
Parameter 3 0.000005 0.000005 0

Model 2 ‖ftorque‖2 ‖finterpolate‖2 ‖ftorque‖2 − ‖finterpolate‖2
Parameter 1 0.000083 0.000083 0
Parameter 2 0.000083 0.000083 0
Parameter 3 0.000083 0.000083 0

Model 3 ‖ftorque‖2 ‖finterpolate‖2 ‖ftorque‖2 − ‖finterpolate‖2
Parameter 1 0.00009 25.8221 −25.822
Parameter 2 0.00009 0.000002 0.000088
Parameter 3 0.00009 27.2147 −27.2146

Figure 5.9: Comparing the Euclidean norms of the results of the optimization
process both with and without interpolation
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Chapter 6

Parallelization

There are some possible approaches for accelerating our new implementation
by parallelization. Moreover, we have the possibility to do parallelization on
several levels i.e. we can make use of concurrent computation inside other
parallel processes. The figures illustrating the strategies described in this
chapter show the original three dimensional domain and the subdomains
schematical as two dimensional pictures.

6.1 Parallel Interpolation

For obtaining the interpolated three dimensional result vector of the torque
function, three interpolations have to be performed. These three interpo-
lations can be done in parallel (Algorithm 6.1.1) in each of the possible
strategies described before. Thus the parallel interpolation can be seen as
a building block for later. The interpolation is an autonomous process only
requiring three triangle vertices.

6.2 Parallel Grid Point Computation: Brute

Force

The idea of the brute force method is to compute all the function values in
a three dimensional grid (cube) in our domain of input values of the torque
function.

The brute force method (Algorithm 6.2.1, Figure 6.1) is to create a regular
set of grid (or mesh) points with a certain stepsize in our domain. Before
starting the optimization we evaluate the Torque function for all possible
triangle vertices (for all grid points) in parallel and save the computed values
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Algorithm 6.1.1: returnValuePar bf(subcube, x, y, z, stepsize)

Steps 1 to 5 like in Algorithm 5.3.3
6. Perform a lookup in the pre-calculated subcube
to get the triangle points Pi,1≤i≤3 of the surrounding triangle

7. Interpolate the three values in PARALLEL:

f̃1 = r1 ∗ f1(P1) + r2 ∗ f1(P2) + r3 ∗ f1(P3)

f̃2 = r1 ∗ f2(P1) + r2 ∗ f2(P2) + r3 ∗ f2(P3)

f̃3 = r1 ∗ f3(P1) + r2 ∗ f3(P2) + r3 ∗ f3(P3)

return f̃

Figure 6.1: The Brute Force Strategy
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Algorithm 6.2.1: interpolate bf(x, y, z)

domaincube:=Pre-calculate the grid points over the
whole domain in PARALLEL using domain decomposition

2. Set the stepsize

f̃ :=returnValue bf(domaincube, x, y, z, stepsize)

return f̃

in a cubic data structure. If an interpolated value is requested, one has to
do only three lookups in our data structure to get the three triangle vertex
points and compute the interpolated result vector. For this approach, one
needs the capability of a big supercomputer grid system because the Torque
function has to be evaluated in every point of our mesh. With this approach,
we dissipate computing power and memory by calculating many points not
needed in further calculations.

The problem with such an implementation is that the bigger part of the
computed values is not needed in the optimization algorithm. So this strategy
is very inefficient. Nevertheless this algorithm is used as subalgorithm in later
algorithms for smaller subsets.

6.3 Parallel Grid Point Computation: Sub-

cubes

Dividing the Domain into Subcubes This strategy is based on the idea
of dividing the domain into subcubes to restrict the torque function value
computation to certain areas of interest (Figure 6.2). Like in the sequen-
tial case, we can make use of a queue. The queue management has to be
performed by a master process.

To compute the function values in the subcube we have to use the brute
force method for every subcube. This computation of all the grid (or mesh)
points inside the subcube at the subcube’s creation time can be done in
parallel. There are some points computed which are not needed afterwards
but in comparison to the brute force method, we narrow the calculations
to subcubes really needed by the optimization process. With this method
all the time-consuming evaluations of the Torque function can be sourced
out to a supercomputer grid system before an interpolation is done. So, for
every interpolation one only needs three simple lookups like in the brute force
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Figure 6.2: Subcube Strategy

Algorithm 6.3.1: interpolate sc bf(x, y, z)

1. Set the dimensions of the cube of integers and of the subcubes
and the stepsize

2. Create the cube of integers and the queue

3. f̃ := checkCubePar(cube of integers, x, y, z, stepsize)

return f̃

method. This option is depicted as pseudocode in the two Algorithms 6.3.1
and 6.3.2.

6.4 Parallel Grid Point Computation: Over-

lapping with Optimization

The problem with this strategy is that for each new subdomain the optimiza-
tion algorithm has to wait during the interpolation is performed until it can
continue. The idea to improve the solution is to decouple interpolation from
optimization and let the interpolation process work with the new domain,
while the optimizer still operates in the old domain.
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Algorithm 6.3.2: checkCubePar(cube of integers, x ,y, z, stepsize)

1. Determine the position P of the subcube
containing the requested point in the domain

2. Check in the cube of integers if subcube P is computed
if subcube is computed

then

{
Get the queue position i of the subcube

f̃ :=returnValue bf(queue[i], x, y, z, stepsize)

else


Create the subcube
Pre-compute all grid points in the subcube in PARALLEL
add the subcube to the queue
update the (cube of integers)

f̃ :=returnValue bf(subcube, x, y, z, stepsize)

return f̃

Figure 6.3: Schematical view of the parallel processes
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Figure 6.4: Overlapping Strategy

Computation in Advance A further approach calculating the subcubes
is an overlapping strategy between the optimization and the grid point com-
putation. The algorithm computes subcubes in advance during the opti-
mization process. The current position of the optimization has to be checked
and if this position is near the borders of the subcube, we start to compute
subcubes touching these borders.

This strategy (Figure 6.4) combines optimization and interpolation best,
because both can work nearly independently. For this purpose we need to
know the current position of the optimizer. If this position is near the sub-
cube border, we compute the subcube flanking this border.

An implementation of this algorithm needs two threads: one for the
optimization algorithm and one for the interpolation. There has to be done
some communication between the threads for providing the current position
of the optimizer.

6.5 Implementation

In order to implement and test the program with parallelism the source code
was ported to the current supercomputer environment (SGI Altix 4700 [28])
of the Johannes Kepler university. To compile the source code, the available
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Intel Compiler (version 9.1) was used because it produces highly optimized
code for the Intel Itanium processors integrated in the Altix system. More-
over this compiler is able to compile OpenMP commands. Basically speaking,
OpenMP is an API for shared memory parallelism ([14], [11], [18], [4]). The
implementation of the parallel parts of the program was performed using
POSIX threads (pthreads) ([5], [29], [15], [22], [23], [24]) and OpenMP ([18],
[4]).

In the parallel version the parallel fetching of the triangle points was
implemented as an addition to Section 6.1.

6.5.1 Parallel Interpolation

The parallel interpolation of the three elements of the torque function’s in-
terpolated result vector is implemented using pthreads.

The implementation needs three additional methods in the Interpolation
class. Each method of these three computes the interpolated value of one
element of the result vector.

void ∗ I n t e r po l : : f t h r 1 ( void ∗ arg ){
f [0 ]= r [ 0 ] [ 0 ] ∗ trp1 [0 ]+ r [ 1 ] [ 0 ] ∗ trp2 [0 ]+ r [ 2 ] [ 0 ] ∗ trp3 [ 0 ] ;
return ( 0 ) ;

}

void ∗ I n t e r po l : : f t h r 2 ( void ∗ arg ){
f [1 ]= r [ 0 ] [ 0 ] ∗ trp1 [1 ]+ r [ 1 ] [ 0 ] ∗ trp2 [1 ]+ r [ 2 ] [ 0 ] ∗ trp3 [ 1 ] ;
return ( 0 ) ;

}

void ∗ I n t e r po l : : f t h r 3 ( void ∗ arg ){
f [2 ]= r [ 0 ] [ 0 ] ∗ trp1 [2 ]+ r [ 1 ] [ 0 ] ∗ trp2 [2 ]+ r [ 2 ] [ 0 ] ∗ trp3 [ 2 ] ;
return ( 0 ) ;

}

The thread functions are called inside the Interpolate method with:

pthr ead c r ea t e (&fthr1 , NULL, f th r 1 , s t r i n g s ) ;
p th r ead c r ea t e (&fthr2 , NULL, f th r 2 , s t r i n g s ) ;
p th r ead c r ea t e (&fthr3 , NULL, f th r 3 , s t r i n g s ) ;

p th r ead j o i n ( f thr1 , NULL) ;
p th r ead j o i n ( f thr2 , NULL) ;
p th r ead j o i n ( f thr3 , NULL) ;
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6.5.2 Parallel Triangle Fetching

The computation of the interpolated values of requires three points surround-
ing the requested value. In the sequential implementation three methods
perform these triangle fetchings in a serial way.

To perform the fetching of the three triangles in parallel, again pthreads
are used. To realize this idea three thread methods have to be added to the
Interpolation class. Each method is responsible for one triangle point.

void ∗ I n t e r po l : : thread 1 ( void ∗ arg ){
trp1=subc−>GetTrp1 (x ) ;
return ( 0 ) ;

}

void ∗ I n t e r po l : : thread 2 ( void ∗ arg ){
trp2=subc−>GetTrp2 (x ) ;
return ( 0 ) ;

}

void ∗ I n t e r po l : : thread 3 ( void ∗ arg ){
trp3=subc−>GetTrp3 (x ) ;
return ( 0 ) ;

}

Again, the thread functions are called in the Interpolation method by:

pthr ead c r ea t e (&thread1 , NULL, thread 1 , s t r i n g s ) ;
p th r ead c r ea t e (&thread2 , NULL, thread 2 , s t r i n g s ) ;
p th r ead c r ea t e (&thread3 , NULL, thread 3 , s t r i n g s ) ;

p th r ead j o i n ( thread1 , NULL) ;
p th r ead j o i n ( thread2 , NULL) ;
p th r ead j o i n ( thread3 , NULL) ;

6.5.3 Parallel Subcube Computation

Basically, the computation of a subcube can be represented by filling a grid
with function values in every node point. In the current sequential imple-
mentation this computation is performed by a triple nested for loop.

For the parallelization of this nested loop the OpenMP pragma pragma
omp parallel for was used together with instancing private and shared vari-
ables. Inside this triple nested loop first the three dimensional input vector is
computed out of the subcube’s left down front corner point, the stepsize and
the loop variables. The next step – the torque function evaluation – results
in an three dimensional vector. The elements of this vector are inserted into
the subcube at the associated point.
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# pragma omp p a r a l l e l f o r shared ( subcube ,N)
pr i va t e ( i , j , l , func , hh , ax , ay , az , x , tmp)

f o r ( i =0; i<N, i++){
f o r ( j =0; j<N; j++){

f o r ( l =0; l<N; l++){
x [ 0 ] [ 0 ] = ( double ) ax+i ∗h ;
x [ 0 ] [ 1 ] = ( double ) ay+j ∗h ;
x [ 0 ] [ 2 ] = ( double ) az+l ∗h ;

tmp=MatrixToColumnVector ( th i s−>funcObj−>Evaluate (x ) ) ;

(∗ subcube [ i ] [ j ] [ l ] ) . f 1=tmp [ 0 ] ;
(∗ subcube [ i ] [ j ] [ l ] ) . f 2=tmp [ 1 ] ;
(∗ subcube [ i ] [ j ] [ l ] ) . f 3=tmp [ 2 ] ;

}
}

}

6.5.4 Advance Computation

For the advance computation (the computation of a subcube during the op-
timization process) a border area of the subcube has to be defined. The
border area is described by the subcube minus a cube inside the subcube
with side length ainnnersubc = asubc − 2 ∗ stepsize with the side length of
the subcube asubc. The optimization process requests interpolated function
values. If a requested value resides in a predefined area near the side surfaces
of the subcube, the subcube bordering this side surface is computed during
the optimization process. The pseudocode is depicted in Algorithm 6.5.1.

For implementing the OpenMP structure of omp parallel sections was
used. In our special case the number of threads is predefined and set to two
(optimization thread, advance computation thread).

#pragma omp p a r a l l e l s e c t i o n s num threads (2 ) pr i va t e ( x )
{

#pragma omp s e c t i o n {
in te rp−>ComputeInAdvance (x , i n t e rp bo rde r ) ;

}
#pragma omp s e c t i o n
{ opt imiza t i on }

6.6 Parallelizing the Software

During the tests of the the parallel subcube computation and the computa-
tion in advance it turned out that the computation of the torque function
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Algorithm 6.5.1: ComputeInAdvance(x, border)

Determine the position of x in the subcube
check if x is in the range of border near one of

the side surfaces
if x is in border area

then

{
compute bordering subcube in parallel
add subcube to the queue

else
{
exit

evaluation is not thread save. The analysis of the torque function’s source
code showed problems in the Newmat library [16]. This library is highly
optimized for single threaded computation but was not intended thread safe
as the developer describes. The mathematical kernel of the SEE-KID/SEE-
GRID software is based on this library. Therefore, parallel testing using
the Newmat library causes memory access errors and crashes the running
program.

To gain parallelism in the OpenMP parallelized parts of the program,
every usage of the Newmat library has to be eliminated inside the OpenMP
parallelizm. This is not possible for the computation in advance because the
optimization process heavily uses the functionality of Newmat.

To achieve parallelizm in the parallel subcube computation of the pro-
gram, two options are possible:

Option 1: Using another matrix library This option is not possible
because of the lack of an interface for an easy change of the matrix library.

Option 2: Using a separate “server” process for the torque function
evaluation The idea for option 2 is given by Unix process handling and
communication possibilities and commands [21].

• The fork() command fully copies a process including its address space.

• POSIX semaphores allow to set up semaphores to lock and unlock
certain ressources used by different processes or threads.

• POSIX shared memory can be applied to allocate memory for more
than one process. This functionality affords inter process communica-
tion.
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Figure 6.5: The structure of client server model (for four server processes)

First of all we have to get rid of everything using the Newmat library (e.g.
matrices and column vectors). In our triple nested loop described in 6.5.3,
both the matrix and the tmp column vector can be replaced using three
dimensional double arrays (e.g. double * tmp = new double[3]). The subcube
itself uses three double values inside a structure (per grid point) to store the
torque function result vectors.

The evaluation method of the torque function is replaced by a new
method handling the client-server model (Figure 6.5 showing the model
for four server processes). OpenMP assigns each OpenMP thread a cer-
tain thread number. This thread number is used in the parallel program
to identify the thread and evaluate the torque function on the right server
process.

In this strategy we have to create a separate process for every OpenMP
thread before starting the optimization. The process creating is realized by
forking the original process number of processes times. After the fork call
each process id is stored in a vector. The process ids are needed for killing
the server processes.
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As next step a separate shared memory space is assigned to every child
process and the father process. Three double values and two semaphore val-
ues (one for the server and one for the client) reside in the shared memory
structure for every process. The two semaphores are both initiated as block-
ing. After setting up the memory the child process transforms into a server
process. Every server process first checks the server semaphore and waits
till the semaphore’s status is set to nonblocking. After waiting it fetches
the three input values for the torque function out of the shared memory
space and computes the three output values by calling the normal torque
function evaluation method. The three output values are written into the
shared memory, the client semaphore of the process is released and the server
process blocks itself and waits for the next input values.

The client process writes the three input values into the shared memory,
while the server process is waiting, releases the server process and blocks
itself till the client semaphore is set to nonblocking from the server process
after performing the computation. The the three values are popped out of
the shared memory.

In the end the father process deallocates the shared memory of all server
processes, sends the kill signal to each server process and receives (wait(&status))
the “terminated signal” of the children’s (server) processes. The source code
of the client-server model is shown in Appendix E.

6.7 Benchmarks

The test software is designed to switch the different parallel parts either on
or off. The tests were performed on an SGI Altix 4700 system with 128 Intel
Itanium2 Dualcore CPUs with 18 MB L3 Cache and 1 TB of RAM.

The benchmarks were done for the benchmark settings from Chapter 5.6
with (first without OpenMP parallelizm):

• parallel triangle fetching (triangle)

• parallel function interpolation (interpol)

Three combinations of the parallel methods were tested:

• triangle on, interpol off (par1)

• triangle off, interpol on (par2)

• triangle on, interpol on (par3)
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Model 1 timeo (s) times (s) timepar1 (s) timepar2 (s) timepar3 (s)

Parameter 1 5.735 25.75 6.116 4.952 6.272
6.512 4.976 6.52
6.408 4.996 6.384
6.244 5.132 5.736
6.44 5.036 6.22

Average 6.364 5.003 6.292

Parameter 2 5.735 32.516 14.472 10.552 14.392
14.664 10.668 14.656
14.056 10.352 13.944
13.68 10.752 14.764
13.868 10.48 13.82

Average 14.132 10.567 14.331

Parameter 3 5.735 171.765 74.492 68.464 75.312
72.412 68.52 72.924
72.04 68.372 74.024
71.708 68.668 73.648
72.476 68.272 74.04

Average 72.31 68.452 73.904

Figure 6.6: Timings of the parallel computation (Model 1)

For every benchmark setting five test runs were performed. From the
set of the achieved timings the minimum and maximum were eliminated and
the average of the remaining three values was computed. The timings are
depicted as Figures 6.6, 6.7 and 6.8. In the benchmarks the notations timeo

(original computation time) and times (computation time of the sequential
interpolation) are used.

Comparing the computation times of the sequential computation to the
computation times of the parallel version shows that the computation time
on the parallel system is remarkably faster than the sequential interpolation
version but much slower than the original sequential version. One can see that
the combination with parallel triangle fetching off and parallel interpolation
on shows the best results in nearly all benchmark sets. The overhead for
multithreading the triangle fetching methods is too high because the triangle
fetching methods perform only lookups.

The benchmarks in Figures 6.9, 6.10 and 6.11 compare the timings of
parallel subcube computation with parallel interpolation both switched on
and off. In contrast to the benchmarks without using OpenMP, the utilization
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Model 2 timeo times (s) timepar1 (s) timepar2 (s) timepar3 (s)

Parameter 1 25.484 154.797 63.924 47.544 63.916
64.984 46.904 61.04
64.2 47.052 65.776
61.852 46.364 62.616
62.832 47.4 64.2

Average 63.652 47.119 63.577

Parameter 2 25.484 187.735 52.304 39.44 55.264
52.648 38.08 52.368
52.552 39.688 51.04
52.48 39.16 52.068
52.66 38.52 95.22

Average 52.56 39.04 53.234

Parameter 3 25.484 812.344 252.924 274.084 260.492
245.936 274.296 246.316
258.976 273.664 272.26
260.988 274.024 277.368
279.068 273.928 279.776

Average 257.629 274.012 270.04

Figure 6.7: Timings of the parallel computation (Model 2)
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Model 3 timeo times (s) timepar1 (s) timepar2 (s) timepar3 (s)

Parameter 1 43.906 124.422 68.52 48.8 65.176
68.864 48.288 67.668
67.176 48.932 62.752
70.928 47.92 70.568
68.616 47.824 67.264

Average 68.667 48.336 66.703

Parameter 2 43.906 152.609 35.612 28.212 38.928
37.096 27.676 40.38
35.86 28.12 35.608
37.352 27.16 40.008
37.808 27.536 39.688

Average 36.77 27.778 39.541

Parameter 3 43.906 654.328 263.4 237.076 246.756
247.84 237.476 249.252
245 237.424 250.768
245.14 238.032 236.788
242.528 237.368 239.372

Average 245.993 237.423 245.127

Figure 6.8: Timings of the parallel computation (Model 3)

78



of the POSIX parallelizm (parallel interpolation) leads higher computation
times because of the overhead caused by creating and deleting the threads.

The benchmarks were accomplished using 2, 4 and 8 processes. Due to
a faster sequential testing the dimensions of the subcubes were chosen 3, 4
and 8. In the triple nested loop every loop variable has to perform 3, 4 or 8
steps. On this account Parameter Set 1 and 2 are replaced by two other sets
with subcube dimension 16:

1. new Parameter 1:

(a) Size of the domain in one dimension: 64

(b) Stepsize: 1

(c) Number of subcubes: 8

(d) Queuesize: 10

2. new Parameter 2:

(a) Size of the domain in one dimension: 32

(b) Stepsize: 0.25

(c) Number of subcubes: 16

(d) Queuesize: 10

These two sets are used to perform the benchmarks depicted in Figures
6.12, 6.13 and 6.14. The tests with Parameter set 1 and 2 were executed
additionally with 16 processes. In these figures the increasing speed using
more processes can be seen easily.
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Model 1 timeo (s) timepar2 (s) time2 (s) time4 (s) time8 (s)

Parameter 3 5.735 68.452 27.160 15.133 12.116
27.455 17.203 11.172
26.158 17.094 11.176
27.145 15.126 10.138
27.168 15.129 10.128

Average 27.158 15.79 10.83

Parameter 3 + par2 5.735 68.452 30.15 21.135 13.165
26.196 21.144 15.135
26.068 20.137 16.186
30.2 19.182 16.266
26.242 17.131 16.213

Average 27.53 20.152 16.22

Figure 6.9: Timings of the parallel subcube computation (Model 1, Param-
eter Set 3)

Model 2 timeo (s) timepar2 (s) time2 (s) time4 (s) time8 (s)

Parameter 3 25.484 274.012 80.456 44.316 29.179
79.226 45.293 30.102
82.416 46.076 29.186
81.29 50.184 29.197
79.118 45.293 29.285

Average 80.324 45.554 29.223

Parameter 3 + par2 25.484 274.012 92.228 52.244 38.112
92.401 56.352 39.237
103.254 54.152 39.189
88.09 62.520 36.152
88.95 60.358 43.362

Average 91.193 56.954 38.846

Figure 6.10: Timings of the parallel subcube computation (Model 2, Param-
eter Set 3)
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Model 3 timeo (s) timepar2 (s) time2 (s) time4 (s) time8 (s)

Parameter 3 43.906 237.423 102.33 52.213 41.279
104.867 56.298 38.227
106.542 58.354 39.275
102.615 55.29 37.181
95.344 55.267 36.241

Average 103.27 55.618 38.228

Parameter 3 + par2 43.906 237.423 117.493 79.141 54.164
117.73 75.207 64.305
115.497 77.58 63.333
116.413 75.503 58.353
108.194 83.395 77.313

Average 116.468 77.408 66.333

Figure 6.11: Timings of the parallel subcube computation (Model 3, Param-
eter Set 3)

Model 1 timeo (s) times (s) time2 (s) time4 (s) time8 (s) time16 (s)

new Parameter 1 5.735 83.428 41.251 22.21 12.108 8.11
43.222 24.174 12.129 9.096
44.245 23.131 13.063 9.161
42.276 22.091 12.11 9.202
48.104 23.141 12.114 10.146

Average 43.248 22.827 12.118 9.153

new Parameter 2 5.735 139.131 83.478 45.349 23.155 17.234
82.219 44.283 24.204 15.17
82.44 44.16 23.239 16.116
479.231 46.593 23.145 14.227
82.345 44.279 22.224 14.199

Average 82.335 44.637 23.18 15.171

Figure 6.12: Timings of the parallel subcube computation (Model 1, new
Parameter Set 1 and 2)
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Model 2 timeo (s) times (s) time2 (s) time4 (s) time8 (s) time16 (s)

new Parameter 1 25.484 209.848 159.586 85.143 45.942 26.189
159.416 81.182 46.345 26.309
159.758 82.19 47.291 27.212
160.148 84.242 48.13 27.311
156.198 82.144 42.191 27.219

Average 159.587 82.859 46.526 26.914

new Parameter 2 25.484 402.067 266.155 137.181 80.49 54.306
262.219 121.703 77.441 50.377
272.404 136.5 80.132 53.478
257.913 134.795 77.444 51.43
248.278 135.096 74.508 47.241

Average 262.096 135.464 78.339 51.76

Figure 6.13: Timings of the parallel subcube computation (Model 2, new
Parameter Set 1 and 2)

Model 3 timeo (s) times (s) time2 (s) time4 (s) time8 (s) time16 (s)

new Parameter 1 43.906 261.054 178.256 91.456 53.229 34.286
160.184 92.518 56.254 34.289
174.476 93.303 48.234 31.236
176.802 99.326 53.367 37.388
197.602 99.416 55.34 35.171

Average 176.511 95.049 53.979 34.582

new Parameter 2 43.906 400.5 279.48 164.154 90.464 46.29
288.326 168.7433 80.443 44.378
286.247 163.689 77.425 47.217
287.303 159.666 81.555 43.284
278.977 163.214 76.203 47.358

Average 284.343 163.686 79.808 45.962

Figure 6.14: Timings of the parallel subcube computation (Model 3, new
Parameter Set 1 and 2)
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Chapter 7

Conclusions

In our work we both focused on the acceleration of the sequential compu-
tations and the parallel approach. We introduced the biomechanical model
of the human eye which is an elementary part of the SEE-KID/SEE-GRID
software. First, the improvement of the sequential optimization process was
discussed. As a possible way to accelerate the optimizer the Broyden up-
date (updating the Jacobian or Hessian matrices instead of recomputing it
completely) was introduced. As a next strategy for speeding up the com-
putation kernel, the Delaunay triangulation with a succeeding interpolation
of the torque function values was described and implemented. To avoid the
time-consuming triangle search necessary in the Delaunay algorithm caused
by searching in the list of points, a new method based on the regularity of
the mesh in our interpolation routines was introduced. We described a new
approach to replace searching by simple lookups. Finally, possible paralleliza-
tion strategies were developed and implemented. One strategy consisted of
multithreading certain parts of the program whereas another strategy fo-
cused on gaining speedup using the capability of the OpenMP automatic
parallelizer with domain decomposition. Due to problems with the linear al-
gebra library called Newmat, we had to find a strategy to evaluate the torque
function in parallel without crashing the program.

The Broyden update method was implemented and tested but did not
yield to an improved version of the optimization process. The speedup is
achieved at expense of precision. This loss of precision may lead to incorrect
results.

The Delaunay approach was tested too but due to the time consuming
triangle search this strategy had to be rejected.

The idea of interpolating the function values in the Delaunay approach
was picked up in the strategy of interpolation using the regular mesh struc-
ture. Running tests using this strategy lead to very good results in most of
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the cases but failed in tests with other benchmark settings. Moreover, the
measured computation time using the regular mesh strategy together with
interpolation highly increases due to the large number of torque function
evaluations needed to create the subcubes.

To decrease the computation time, suggestions were made to parallelize
certain parts of the program. Problems were encountered trying to parallelize
parts of the program which use the Newmat library. For evaluating the
torque function in parallel, a special client server model was developed and
implemented. The computation time of the interpolation method decreases
using this client server model but does not speedup relative to the original
timings of the sequential program without interpolation.

Future work should concentrate both on implementing an interface to
be able to use other linear algebra libraries and find additional interpolation
methods. Using interpolation in combination with domain decomposition
enables the application of parallelizm.
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Appendix A

Source: Code Broyden update

This code snippet shows the Broyden update procedure. In the for-loop the
Torque function is evaluated. The computation of the updated matrix is
done as described in Section 3.7.

Matrix SeeOSimplex : : Optimize ( Matrix &xIn ){
Matrix x = xIn ;
ColumnVector params ( 2 0 ) ; va lues ( params , 0 ) ;

i f ( funcObj == 0) {
// i f no funcObj i s s e t
return Matrix ( 0 , 0 ) ;

} // i f
i f ( paramObj == 0) {

// i f no paramObj i s s e t
return Matrix ( 0 , 0 ) ;

} // i f

params [ 2 ] = paramObj−>GetTerminationThreshold ( ) ;
params [ 3 ] = paramObj−>GetResidualThreshold ( ) ;
params [ 4 ] = 1 .0 e−6;
params [ 5 ] = 0 ; // LEVENBERG
params [ 1 4 ] = paramObj−>GetIterationMaximum ( ) ;
params [ 1 6 ] = paramObj−>GetStepAccuracy ( ) ; // S t e p s i z e

when modifying Parameters ( Defau l t i s 1e−8)
params [ 1 7 ] = paramObj−>GetStepSize ( ) ; // De fau l t 0 .1

ColumnVector XOUT ( xIn . Storage ( ) ) ;
XOUT = MatrixToColumnVector ( xIn ) ;
i n t nvars = XOUT. Storage ( ) ;
ColumnVector f ( nvars ) ;
f = MatrixToColumnVector ( funcObj−>Evaluate (x ) ) ;
i f ( funcObj−>Evaluat ionError ( ) )

return Matrix ( 0 , 0 ) ;

i n t nfun = f . Nrows ( ) ;
Matrix GRAD ( nvars , nfun ) ;
va lues (GRAD, 0 ) ;
ColumnVector OLDX (XOUT. Storage ( ) ) ; OLDX << XOUT;

Matrix MATX (3 , 1 ) ;
va lues (MATX, 0 ) ;

ColumnVector MATL ( 3 ) ;
va lues (MATL, 0 ) ;
MATL[ 0 ] = f . SumSquare ( ) ;

ColumnVector OLDF 2 ;
double OLDF = MATL[ 0 ] ;
double FIRSTF = OLDF;

i n t Broydenc=0;

OLDX = XOUT;
OLDF 2 = f ;
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i f ( params [ 1 4 ] == 0) {
params [ 1 4 ] = XOUT. Nrows ( )∗ 1 0 0 . 0 ;

} // i f

double PCNT = 0 . 0 ;
double EstSum = 0 . 5 ;
double GradFactor = 0 . 0 ;
double newstep = 0 . 0 ;
double f b e s t = 0 . 0 ;
double fnew = 0 . 0 ;
ColumnVector OX ( xIn . Storage ( ) ) ;

ColumnVector chg ones ( nvars ) ; va lues ( chg ones , 1 ) ;
ColumnVector CHG ( nvars ) ; CHG << prec7 ∗

Abs (XOUT) + prec7 ∗ chg ones ;

params [ 1 0 ] = 1 ;
i n t s t a tu s = −1;
Matrix SD;
Matrix newf ;
Matrix OLDG;
Matrix GDOLD;
Matrix FOLD;
Matrix OLDJ;
Ident i tyMatr ix Iden ( 3 ) ;
Matrix uk , vk ,wk , sk , yk , pk ;
Matrix Hk ( nvars , nfun ) ; va lues (Hk , 0 ) ;

whi le ( ( s t a tu s != 1) && ( ! terminate ) ) {
// Ca l c u l a t e Gradients

OLDF 2 . I n j e c t ( f ) ;
ColumnVector param16 ( nvars ) ;

ColumnVector param17 ( nvars ) ;

va lues ( param16 , params [ 1 6 ] ) ;
va lues ( param17 , params [ 1 7 ] ) ;

i f ( Broydenc==0){
// cout<<”Broyden Res ta r t b eg in”<<end l ;
// cout <<”˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜”<< end l ;
CHG = Mult ip ly ( Signum (CHG+eps ) ,

Minimum(Maximum(Abs (CHG) , param16 ) , param17 ) ) ;

f o r ( i n t gcnt = 0 ; gcnt < nvars ; gcnt++) {
double temp = XOUT [ gcnt ] ;
XOUT [ gcnt ] = temp + CHG [ gcnt ] ;

x = XOUT;
f = MatrixToColumnVector ( funcObj−>Evaluate (x ) ) ;

// f k : Get f o r c e imbalance f o r eye p o s i t i o n x
i f ( funcObj−>Evaluat ionError ( ) )

return Matrix ( 0 , 0 ) ;

i f (CHG [ gcnt ] == 0 . 0 ) {
RowVector tempRow( nvars ) ;
GRAD.Row ( gcnt+1) = va lues (tempRow , 0 . 0 ) ;

} // i f
e l s e {

GRAD.Row ( gcnt+1) = ( ( f−OLDF 2 ) ) . t ( )/CHG [ gcnt ] ;
} // e l s e

XOUT [ gcnt ] = temp ;
} // f o r

f . I n j e c t (OLDF 2 ) ;
params [ 1 0 ] = params [ 1 0 ] + nvars ;

i f ( nfun == 1) {
CHG = Rdevide ( nfun∗prec8 ,GRAD) ;

} // i f
e l s e {

CHG = Rdevide ( nfun∗prec8 , ColSum
(Abs(GRAD) . t ( ) ) . t ( ) ) ;

} // e l s e

OLDJ. CleanUp ( ) ;
OLDJ=Iden ;
FOLD=f ;
OLDX=x ;
OLDF 2=f ;

}
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e l s e {
pk=OLDJ. i ()∗(−1)∗FOLD;
// neues x ( xk+1) berechnen
XOUT=OLDX+pk ;

// f k+1 berechnen
f o r ( i n t gcnt = 0 ; gcnt < nvars ; gcnt++) {

x = XOUT;
f = MatrixToColumnVector ( funcObj−>Evaluate (x ) ) ;

// f k : Get f o r c e imbalance f o r eye p o s i t i o n x
i f ( funcObj−>Evaluat ionError ( ) ){

// cout<<”Function Error”<<end l ;
return Matrix ( 0 , 0 ) ;

}
}

//BFGS−Verfahren
// yk=f−FOLD;
yk=f−FOLD;
sk=XOUT−OLDX;
wk=OLDJ∗ sk ;
vk=sk . t ( )∗ sk ;
uk=(1/vk . element ( 0 , 0 ) )∗ ( yk−wk ) ;

// upgeda t e t e Matrix berechnen
GRAD=OLDJ+(uk∗ sk . t ( ) ) ;

//Bk wird zu Bk+1
OLDJ=GRAD;
FOLD=f ;

}

// Z ı̈¿ 1
2 hler f ı̈¿ 1

2 r Broyden−Update erh ı̈¿ 1
2 hen

Broydenc++;

// Jedes zwe i t e Mal ( j e t z t ) d i e Matrix neu berechnen
i f ( Broydenc==2){

Broydenc=0;
}

Matrix gradf ( nvars , nfun ) ; va lues ( gradf , 0 ) ;
g rad f = 2∗GRAD∗ f ;
Matrix hund = f . t ( ) ∗ f ;

fnew = hund [ 0 ] [ 0 ] ;

i f ( s t a tu s == −1) {
i f ( cond (GRAD) > prec80 ) {

Matrix i d e n t i t y ( nvars , nvars ) ;
eye ( i d e n t i t y ) ;
Matrix a = (GRAD∗GRAD. t ()+(norm (GRAD)+1)∗

( i d e n t i t y ) ) ;
Matrix a i = a . i ( ) ;
Matrix b = GRAD∗ f ;
SD = −( a i ∗b ) ;

i f ( params [ 5 ] == 0) {
GradFactor=norm(GRAD)+1.0 ;

} // i f
} // i f
e l s e {

Matrix i d e n t i t y ( nvars , nvars ) ;
eye ( i d e n t i t y ) ;
Matrix a = (GRAD∗GRAD. t ()+GradFactor ∗( i d e n t i t y ) ) ;
Matrix a i ;
// t r y
{

a i = a . i ( ) ;
Matrix b = GRAD∗ f ;
SD = −( a i ∗b ) ;
}
// ca tch ( . . . ) { SD = GRAD∗ f ; }

} // e l s e
FIRSTF = fnew ;
OLDG = GRAD;
GDOLD = gradf . t ( )∗SD;

i f ( params [ 1 8 ] == 0) {
params [ 1 8 ] = 1 ;

} // i f

// p r i n t f (”%5.0 f %12.6 f %12.3 f %12.3 f ” ,
params [ 1 0 ] , fnew , params [ 1 8 ] ,GDOLD[ 0 ] ) ;
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XOUT = XOUT+params [ 1 8 ]∗SD;

i f ( params [ 5 ] == 0) {
newf = GRAD. t ( )∗SD+f ;
GradFactor = newf . SumSquare ( ) ;
Matrix i d e n t i t y ( nvars , nvars ) ;
eye ( i d e n t i t y ) ;
Matrix a = (GRAD∗GRAD. t ()+GradFactor ∗( i d e n t i t y ) ) ;
Matrix a i ;
Matrix b ;
// t r y
{

a i = a . i ( ) ;
b= GRAD∗ f ;
SD = −( a i ∗b ) ;

}
// ca tch ( . . . )
{
// SD = (GRAD∗ f ) ;
}
} // i f

newf=GRAD. t ( )∗SD+f ;
XOUT = XOUT + params [ 1 8 ]∗SD;
EstSum=newf . SumSquare ( ) ;
s t a tu s =0;

i f ( params [7]==0) {
PCNT=1;

} // i f
} // i f
e l s e {
//−−−−−−−−−−−−−Dire c t i on Update−−−−−−−−−−−−−−−−−−

Matrix gdnew( gradf . Nrows ( ) , g radf . Ncols ( ) ) ;
gdnew << gradf . t ( )∗SD;

/∗
i f ( I sGrea t e r ( gdnew , 0 . 0 ) && ( fnew>FIRSTF)) {

// Case 1 : New func t i on i s b i g g e r than
l a s t and g r ad i en t w . r . t . SD −ve

// . . . i n t e r p o l a t e .
// [ s t e p s i z e ]= cu b i c i 1 ( fnew ,FIRSTF ,

gdnew ,GDOLD,OPTIONS( 1 8 ) ) ;
//OPTIONS(18)=0.9∗ s t e p s i z e ;

} // i f
e l s e ∗/
i f ( fnew<FIRSTF) {

// New func t i on l e s s than o l d fun .
and OK f o r updating

// . . . . update and c a l c u l a t e new d i r e c t i o n .

cubinterp3 ( newstep , fbe s t , fnew ,FIRSTF ,
gdnew ,GDOLD, params [ 1 8 ] ) ;

i f ( fbe s t >fnew ) {
f b e s t =0.9∗ fnew ;

} // i f
i f ( gdnew [ 0 ] [ 0 ] < 0) {

i f ( newstep < params [ 1 8 ] ) {
newstep = (2∗params [18]+1 e−4);
params [18]= fabs ( newstep ) ;

} // i f
e l s e {

i f ( params [ 1 8 ] > 0 . 9 ) {
params [18]= MIN (1 , fabs ( newstep ) ) ;

} // i f
} // e l s e

} // i f

// SET DIRECTION.
// Gauss−Newton Method

double temp = 1 ;
i f ( params [ 5 ] == 1) {

i f ( ( params [ 1 8 ] > prec8 ) &&
( cond (GRAD) < prec80 ) ) {
SD = GRAD. t ( ) . i ( )∗ (GRAD. t ( )∗XOUT−f )−XOUT;
Matrix h = SD. t ( )∗ gradf ;
i f ( h [ 0 ] [ 0 ] > eps ) {
} // i f
temp=0;

} // i f
e l s e {
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/∗ cout << ” Cond i t i on ing o f Gradient Poor −
Swi t ch ing To LM method ” ; ∗/
params [ 5 ]=0 ;
params [18]= fabs ( params [ 1 8 ] ) ;

} // e l s e
} // i f

i f ( temp) {
// Levenberg marquardt Method N.B.
// EstSum i s the e s t ima t ed sum o f s quare s .
// GradFactor i s t he va l u e o f lambda .
// Est imated Res idua l :

i f (EstSum>f b e s t ) {
i f (1.0+params [ 1 8 ] == 0 . 0 )

GradFactor = 0 . 0 ;
e l s e

GradFactor=GradFactor /(1.0+params [ 1 8 ] ) ;
} // i f
e l s e {

i f ( params [18]+ eps == 0 . 0 )
GradFactor = 0 . 0 ;

e l s e
GradFactor=GradFactor+( fbes t−EstSum)/

( params [18]+ eps ) ;
} // e l s e

Matrix i d e n t i t y ( nvars , nvars ) ;
eye ( i d e n t i t y ) ;
Matrix a = (GRAD∗GRAD. t ()+GradFactor ∗( i d e n t i t y ) ) ;
Matrix a i = a . i ( ) ;
Matrix b = GRAD∗ f ;
SD = −( a i ∗b ) ;

params [18 ]=1 ;
Matrix e s t f=GRAD. t ( )∗SD+f ;
EstSum=e s t f . SumSquare ( ) ;

} // i f

gdnew=gradf . t ( )∗SD;

OLDX=XOUT;
// Save Var i a b l e s
FIRSTF=fnew ;
OLDG=gradf ;
GDOLD=gdnew ;

// I f q uad r a t i c i n t e r p o l a t i o n s e t PCNT
i f ( params [ 7 ] == 0) {

PCNT=1;
va lues (MATX, 0 ) ;
MATL[0]= fnew ;

} // i f
} // e l s e i f
e l s e {

// Halve Step−l e n g t h
i f ( fnew==FIRSTF) {

/∗ cout << ”No improvement in search
d i r e c t i o n : Terminating ” << end l ; ∗/

s t a tu s =1;
} // i f
e l s e {

params [ 1 8 ] = params [ 1 8 ] / 8 . 0 ;
i f ( params [ 1 8 ] < prec8 ) {

params [ 1 8 ] = −params [ 1 8 ] ;
} // i f

} // e l s e
} // e l s e

XOUT=OLDX+params [ 1 8 ]∗SD;
} // e l s e
//−−−−−−−−−−End o f D i r e c t i on Update−−−−−−−−−−−−−−−−−−−

i f ( params [ 7 ] ==0) {
PCNT=1;
va lues (MATX, 0 ) ;
MATL[0]= fnew ;

} // i f
// Check Termination

Matrix h = gradf . t ( )∗SD;
i f ( (Abs (SD) .Maximum()< params [ 2 ] ) &&

( h [ 0 ] [ 0 ] < params [ 3 ] ) &&
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(Abs ( grad f ) .Maximum() < 10∗( params [3 ]+ params [ 2 ] ) ) )
{

// cout << ”Opt imiza t ion Terminated S u c c e s s f u l l y ”
<< endl ;

s t a tu s =1;
} // i f
e l s e i f ( params [ 1 0 ] > params [ 1 4 ] ) {

s t a tu s =1;
} // e l s e i f
e l s e {

// Line search us ing mixed po lynomia l
// i n t e r p o l a t i o n and e x t r a p o l a t i o n .
i f (PCNT != 0) {

whi le ( (PCNT > 0) && ( ! terminate ) ) {
x = XOUT;
f = MatrixToColumnVector ( funcObj−>Evaluate (x ) ) ;
i f ( funcObj−>Evaluat ionError ( ) )

return Matrix ( 0 , 0 ) ;

params [ 1 0 ] = params [10 ]+1 ;
fnew = f . SumSquare ( ) ;

// <= used in case when no improvement found .
i f ( fnew <= OLDF 2 . SumSquare ( ) ) {

OX = XOUT;
OLDF 2=f ;

} // i f

double s t ep l en = params [ 1 8 ] ;
quadsearch (PCNT, fnew ,MATL,MATX,GDOLD, s t ep l en ) ;
params [ 1 8 ] = s t ep l en ;

XOUT=OLDX+st ep l en ∗SD;
i f ( fnew==FIRSTF) {

PCNT=0;
} // i f

} // wh i l e
XOUT = OX;
f=OLDF 2 ;

} // i f
e l s e {

x =XOUT;
f = MatrixToColumnVector ( funcObj−>Evaluate (x ) ) ;
i f ( funcObj−>Evaluat ionError ( ) )

return Matrix ( 0 , 0 ) ;

params [ 1 0 ] = params [10 ]+1 ;
} // e l s e

} // e l s e
} // wh i l e
params [ 8 ] = fnew ;
XOUT=OLDX;
x=XOUT;
cout<<”x ”<<x<<endl ;
return ( x .AsRow ( ) ) ;

}
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Appendix B

Source Code: Delaunay Test

DelaunayInterpo lator xx ( po int s1 ) ;
xx . TriangulationToMathematica ( ”D:\\ Arbeit \\SEE Optimizer\\ t r i g . txt ” ) ;
Matrix g r id ;
xx . Calcu lateGr id (30 ,30 , g r id ) ;

xx . SetPoints ( po int s1 ) ;
std : : f s t ream s t r g r i d ;
s t r g r i d . open ( ”D:\\ Arbeit \\SEE Optimizer\\ gr id . txt ” , i o s : : out ) ;
i f ( ! s t r g r i d . good ( ) ) {
return ( 0 ) ;

} // i f
s t r g r i d << ”{” ;
f o r ( i n t i =0; i<gr id . Nrows ( ) ; i++)
{

s t r g r i d << ”{” ;
f o r ( i n t j =0; j<gr id . Ncols ( ) ; j++)

{
char num[ 1 0 0 ] ;
s p r i n t f (num, ”%.3 f ” , g r id [ i ] [ j ] ) ;
s t r g r i d << num;
i f ( j < gr id . Ncols ()−1)
s t r g r i d << ” , ” ;

}
s t r g r i d << ”}”<<endl ;
i f ( i < gr id . Nrows()−1)

s t r g r i d << ” , ” ;
}
s t r g r i d << ”}” ;

s t r g r i d . c l o s e ( ) ;
bool va l i d ;
f o r ( double x=−xw ; x<xw ; x+=2){

f o r ( double y=−xw ; y<xw ; y+=2){
z = gm−>L i s t i n g (x , y ) ;
gm−>SetHeadfixGazeAngles (y , x , z ) ;
mm−>Calcu la teForce s ( MuscleModel : : 6do f ) ;
t = mm−>Torque ( MuscleModel : : 6dof , 1 ) ;
// errVa l = t . l e n g t h ( ) ;
// errVa l = t . z ( ) ;
errVal = t . l ength ( ) ;
e r rVal = pow( errVal , 1 . 2 ) ;
s t r de l au <<” ( ”<<x<<” , ”<<y<<” ) ; ”<<”delaunay : ; ” ;
s t r de l au <<xx . f (x , y , va l i d)<<” ; torque : ; ”<<errVal<<endl ;

}
}
s t r d e l a u . c l o s e ( ) ;
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Appendix C

Source Code: Sequential
Interpolation (Prototype
Implementation)

#inc lude <iostream>
#inc lude <math . h>

us ing namespace std ;

typedef s t ru c t element{
double f1 , f2 , f 3 ;
bool c a l cu l a t ed ;

} Element ;

typedef s t ru c t celement{
i n t v ;

}CElement ;

typedef s t ru c t queueelement{
Element∗∗∗∗ sc ;
i n t xc , yc , zc ; // cube coo rd i na t e s

}QueueElement ;

Element∗∗∗∗ createSubcube ( i n t N){
i n t i , j , l ;
Element ∗∗∗∗ subcube ;

subcube = ( Element ∗∗∗∗)
mal loc ( s i z e o f ( Element ∗∗∗∗) ∗ N) ;

f o r ( i =0; i<N; i++){
subcube [ i ] = ( Element ∗∗∗)

mal loc ( s i z e o f ( Element ∗∗∗) ∗N) ;
f o r ( j =0; j<N; j++){

subcube [ i ] [ j ] = ( Element ∗∗)
mal loc ( s i z e o f ( Element ∗∗) ∗ N) ;

f o r ( l =0; l<N; l++){
subcube [ i ] [ j ] [ l ] = ( Element ∗)

mal loc ( s i z e o f ( Element ) ) ;
}

}
}
f o r ( i =0; i<N; i++){

f o r ( j =0; j<N; j++){
f o r ( l =0; l<N; l++){

(∗ subcube [ i ] [ j ] [ l ] ) . f 1 =0.0;
(∗ subcube [ i ] [ j ] [ l ] ) . f 2 =0.0;
(∗ subcube [ i ] [ j ] [ l ] ) . f 3 =0.0;
(∗ subcube [ i ] [ j ] [ l ] ) . c a l c u l a t ed= f a l s e ;

}
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}
}
cout<<” subcube i n i t complete ”<<endl ;
return ( subcube ) ;

}

QueueElement∗ createSubcubeQueue ( i n t queueElements ){
QueueElement ∗ subcubeQueue ;

subcubeQueue = (QueueElement ∗) mal loc ( s i z e o f (QueueElement )
∗ queueElements ) ;

f o r ( i n t i =0; i<queueElements ; i++){
subcubeQueue [ i ] . xc=−1;
subcubeQueue [ i ] . yc=−1;
subcubeQueue [ i ] . zc=−1;

}

cout<<”subcubeQueue i n i t complete ”<<endl ;
return ( subcubeQueue ) ;

}

CElement∗∗∗∗ createCube ( i n t N){
i n t i , j , l ;
CElement ∗∗∗∗ cube ;

cube = (CElement ∗∗∗∗)
mal loc ( s i z e o f (CElement∗∗∗∗) ∗ N) ;

f o r ( i =0; i<N; i++){
cube [ i ] = (CElement ∗∗∗)

mal loc ( s i z e o f (CElement ∗∗∗) ∗N) ;
f o r ( j =0; j<N; j++){

cube [ i ] [ j ] = (CElement ∗∗)
mal loc ( s i z e o f (CElement∗∗) ∗ N) ;

f o r ( l =0; l<N; l++){
cube [ i ] [ j ] [ l ] = (CElement∗)

mal loc ( s i z e o f (CElement ) ) ;
}

}
}
f o r ( i =0; i<N; i++){

f o r ( j =0; j<N; j++){
f o r ( l =0; l<N; l++){

(∗ cube [ i ] [ j ] [ l ] ) . v=−1;
}

}
}
cout<<”cube i n i t complete ”<<endl ;
return ( cube ) ;

}

void addQueue (CElement ∗∗∗∗ cube ,
QueueElement ∗ subcubeQueue ,
i n t queueElements , Element ∗∗∗∗ newsubcube ,
i n t newxc , i n t newyc , i n t newzc ){

i f ( ( subcubeQueue [ queueElements −1] . xc!=−1)&&
( subcubeQueue [ queueElements −1] . yc!=−1)&&
( subcubeQueue [ queueElements −1] . zc !=−1)){

(∗ cube [ subcubeQueue [ queueElements −1] . xc ]
[ subcubeQueue [ queueElements −1] . yc ]
[ subcubeQueue [ queueElements −1] . zc ] ) . v=−1;

}
f o r ( i n t i=queueElements −1; i >0; i−−){

i f ( ( subcubeQueue [ i ] . xc!=−1)&&
( subcubeQueue [ i ] . yc!=−1)&&
( subcubeQueue [ i ] . zc !=−1)){

(∗ cube [ subcubeQueue [ i ] . xc ]
[ subcubeQueue [ i ] . yc ]
[ subcubeQueue [ i ] . zc ] ) . v=i ;

}
subcubeQueue [ i ] . sc=subcubeQueue [ i −1] . sc ;
subcubeQueue [ i ] . xc=subcubeQueue [ i −1] . xc ;
subcubeQueue [ i ] . yc=subcubeQueue [ i −1] . yc ;
subcubeQueue [ i ] . zc=subcubeQueue [ i −1] . zc ;

}
subcubeQueue [ 0 ] . sc=newsubcube ;
subcubeQueue [ 0 ] . xc=newxc ;
subcubeQueue [ 0 ] . yc=newyc ;
subcubeQueue [ 0 ] . zc=newzc ;
(∗ cube [ subcubeQueue [ 0 ] . xc ]
[ subcubeQueue [ 0 ] . yc ]
[ subcubeQueue [ 0 ] . zc ] ) . v=0;
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}

double∗ func ( double x , double y , double z ){
double ∗ f ;
f = ( double ∗) mal loc ( s i z e o f ( double ) ∗ 3 ) ;
f [0 ]=x∗x+y∗y+z∗z+4;
f [1 ]=x∗x−y∗y+z∗z−3;
f [2 ]=x∗x+y∗y−z∗z+1;
return f ;

}

double∗ returnValue ( Element∗∗∗∗ subcube ,
double x , double y , double z ,
double h , i n t dimsc ){

double xl , xu , yl , yu , z l , zu ;
i n t ∗ tr1 ,∗ tr2 ,∗ t r3 ;
double plane ;
double deta ;
i n t i ;
t r1 = ( i n t ∗) mal loc ( s i z e o f ( i n t ) ∗ 2 ) ;
t r2 = ( i n t ∗) mal loc ( s i z e o f ( i n t ) ∗ 2 ) ;
t r3 = ( i n t ∗) mal loc ( s i z e o f ( i n t ) ∗ 2 ) ;

x l=( i n t ) x ;
xu=xl+h ;
y l=( i n t ) y ;
yu=yl+h ;
z l=( i n t ) z ;
zu=z l+h ;
cout<<xl<<” ”<<xu<<” ”<<yl<<” ”<<yu<<” ”<<z l<<” ”<<zu<<endl ;
i f ( ( z−z l )<(zu−z ) ){

plane=z l ;
}
e l s e {

plane=zu ;
}
// Dre i eck spunk t e
t r1 [0 ]= x l ;
t r1 [1 ]= y l ;
i f (x>y){

t r2 [0 ]=xu ;
t r2 [1 ]= y l ;

}
e l s e {

t r2 [0 ]= x l ;
t r2 [1 ]=yu ;

}
t r3 [0 ]=xu ;
t r3 [1 ]=yu ;

double ∗∗ m;
double ∗∗mi ;

m = ( double ∗∗) mal loc ( s i z e o f ( double ∗) ∗ 3 ) ;
f o r ( i =0; i <3; i++){

m[ i ] = ( double ∗) mal loc ( s i z e o f ( double ) ∗ 3 ) ;
}

mi = ( double ∗∗) mal loc ( s i z e o f ( double ∗) ∗ 3 ) ;
f o r ( i =0; i <3; i++){

mi [ i ] = ( double ∗) mal loc ( s i z e o f ( double ) ∗ 3 ) ;
}

m[ 0 ] [ 0 ] = tr1 [ 0 ] ; m[ 0 ] [ 1 ] = tr2 [ 0 ] ; m[ 0 ] [ 2 ] = tr3 [ 0 ] ;
m[ 1 ] [ 0 ] = tr1 [ 1 ] ; m[ 1 ] [ 1 ] = tr2 [ 1 ] ; m[ 1 ] [ 2 ] = tr3 [ 1 ] ;
m[ 2 ] [ 0 ] = 1 ; m[ 2 ] [ 1 ] = 1 ; m[ 2 ] [ 2 ] = 1 ;

cout<<”Matrix”<<endl ;
cout<<m[0][0] < <” ”<<m[0][1] < <” ”<<m[0][2] < < endl ;
cout<<m[1][0] < <” ”<<m[1][1] < <” ”<<m[1][2] < < endl ;
cout<<m[2][0] < <” ”<<m[2][1] < <” ”<<m[2][2] < < endl ;
deta=m[ 0 ] [ 0 ] ∗ (m[ 1 ] [ 1 ] ∗m[2 ] [ 2 ] −m[ 1 ] [ 2 ] ∗m[ 2 ] [ 1 ] )
−m[ 0 ] [ 1 ] ∗ (m[ 1 ] [ 0 ] ∗m[2 ] [ 2 ] −m[ 1 ] [ 2 ] ∗m[ 2 ] [ 0 ] )+m[ 0 ] [ 2 ]
∗(m[ 1 ] [ 0 ] ∗m[2 ] [ 1 ] −m[ 1 ] [ 1 ] ∗m[ 2 ] [ 0 ] ) ;

mi [ 0 ] [ 0 ]= (m[ 1 ] [ 1 ] ∗m[2 ] [ 2 ] −m[ 1 ] [ 2 ] ∗m[ 2 ] [ 1 ] ) / deta ;
mi [ 0 ] [ 1 ]= (m[ 0 ] [ 2 ] ∗m[2 ] [ 1 ] −m[ 0 ] [ 1 ] ∗m[ 2 ] [ 2 ] ) / deta ;
mi [ 0 ] [ 2 ]= (m[ 0 ] [ 1 ] ∗m[1 ] [ 2 ] −m[ 0 ] [ 2 ] ∗m[ 1 ] [ 1 ] ) / deta ;

mi [ 1 ] [ 0 ]= (m[ 1 ] [ 2 ] ∗m[2 ] [ 0 ] −m[ 1 ] [ 0 ] ∗m[ 2 ] [ 2 ] ) / deta ;
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mi [ 1 ] [ 1 ]= (m[ 0 ] [ 0 ] ∗m[2 ] [ 2 ] −m[ 0 ] [ 2 ] ∗m[ 2 ] [ 0 ] ) / deta ;
mi [ 1 ] [ 2 ]= (m[ 0 ] [ 2 ] ∗m[2 ] [ 2 ] −m[ 0 ] [ 0 ] ∗m[ 1 ] [ 2 ] ) / deta ;

mi [ 2 ] [ 0 ]= (m[ 1 ] [ 0 ] ∗m[2 ] [ 1 ] −m[ 1 ] [ 1 ] ∗m[ 2 ] [ 0 ] ) / deta ;
mi [ 2 ] [ 1 ]= (m[ 0 ] [ 1 ] ∗m[2 ] [ 1 ] −m[ 0 ] [ 0 ] ∗m[ 2 ] [ 1 ] ) / deta ;
mi [ 2 ] [ 2 ]= (m[ 1 ] [ 1 ] ∗m[0 ] [ 0 ] −m[ 0 ] [ 1 ] ∗m[ 1 ] [ 1 ] ) / deta ;

cout<<”Matrix ˆ(−1)”<<endl ;
cout<<mi [0][0] < <” ”<<mi [0][1] < <” ”<<mi [0][2] < < endl ;
cout<<mi [1][0] < <” ”<<mi [1][1] < <” ”<<mi [1][2] < < endl ;
cout<<mi [2][0] < <” ”<<mi [2][1] < <” ”<<mi [2][2] < < endl ;

}
catch ( . . . ) {

return ( func (x , y , z ) ) ;
}

double r [ 3 ] ;

r [0 ]=mi [ 0 ] [ 0 ] ∗ x+mi [ 0 ] [ 1 ] ∗ y+mi [ 0 ] [ 2 ] ;
r [1 ]=mi [ 1 ] [ 0 ] ∗ x+mi [ 1 ] [ 1 ] ∗ y+mi [ 1 ] [ 2 ] ;
r [2 ]=mi [ 2 ] [ 0 ] ∗ x+mi [ 2 ] [ 1 ] ∗ y+mi [ 2 ] [ 2 ] ;
cout<<” r ”<<endl ;
cout<<r [0]<< endl ;
cout<<r [1]<< endl ;
cout<<r [2]<< endl ;

double ∗ f ;
f = ( double ∗) mal loc ( s i z e o f ( double ) ∗ 3 ) ;

i f ( (∗ subcube [ t r1 [ 0 ] ] [ t r1 [ 1 ] ] [ ( i n t ) plane ] ) .
c a l c u l a t ed==f a l s e ){

(∗ subcube [ t r1 [ 0 ] ] [ t r1 [ 1 ] ] [ ( i n t ) plane ] ) .
f 1=func ( t r1 [ 0 ] , t r1 [ 1 ] , p lane ) [ 0 ] ;
(∗ subcube [ t r1 [ 0 ] ] [ t r1 [ 1 ] ] [ ( i n t ) plane ] ) .
f 2=func ( t r1 [ 0 ] , t r1 [ 1 ] , p lane ) [ 1 ] ;
(∗ subcube [ t r1 [ 0 ] ] [ t r1 [ 1 ] ] [ ( i n t ) plane ] ) .
f 3=func ( t r1 [ 0 ] , t r1 [ 1 ] , p lane ) [ 2 ] ;
(∗ subcube [ t r1 [ 0 ] ] [ t r1 [ 1 ] ] [ ( i n t ) plane ] ) .
c a l c u l a t ed=true ;
cout<<” point one miss ing ”<<endl ;
cout<<” func t i onva lue ”<<t r1 [0]<<” ”

<<t r1 [1]<<” ”<<func ( t r1 [ 0 ] , t r1 [ 1 ] , p lane )[0]<< endl ;
cout<<” func t i onva lue ”<<t r1 [ 0 ]

<<” ”<<t r1 [1]<<” ”<<func ( t r1 [ 0 ] , t r1 [ 1 ] , p lane )[1]<< endl ;
cout<<” func t i onva lue ”<<t r1 [ 0 ]

<<” ”<<t r1 [1]<<” ”<<func ( t r1 [ 0 ] , t r1 [ 1 ] , p lane )[2]<< endl ;
}

i f ( (∗ subcube [ t r2 [ 0 ] ] [ t r2 [ 1 ] ] [ ( i n t ) plane ] ) .
c a l c u l a t ed==f a l s e ){

(∗ subcube [ t r2 [ 0 ] ] [ t r2 [ 1 ] ] [ ( i n t ) plane ] ) .
f 1=func ( t r2 [ 0 ] , t r2 [ 1 ] , p lane ) [ 0 ] ;
(∗ subcube [ t r2 [ 0 ] ] [ t r2 [ 1 ] ] [ ( i n t ) plane ] ) .
f 2=func ( t r2 [ 0 ] , t r2 [ 1 ] , p lane ) [ 1 ] ;
(∗ subcube [ t r2 [ 0 ] ] [ t r2 [ 1 ] ] [ ( i n t ) plane ] ) .
f 3=func ( t r2 [ 0 ] , t r2 [ 1 ] , p lane ) [ 2 ] ;
(∗ subcube [ t r2 [ 0 ] ] [ t r2 [ 1 ] ] [ ( i n t ) plane ] ) .
c a l c u l a t ed=true ;
cout<<” t r i a n g l e po int two miss ing ”<<endl ;
cout<<” func t i onva lue ”<<t r2 [ 0 ]

<<” ”<<t r2 [1]<<” ”
<<func ( t r2 [ 0 ] , t r2 [ 1 ] , p lane )[0]<< endl ;

cout<<” func t i onva lue ”<<t r2 [ 0 ]
<<” ”<<t r2 [1]<<” ”
<<func ( t r2 [ 0 ] , t r2 [ 1 ] , p lane )[1]<< endl ;

cout<<” func t i onva lue ”<<t r2 [ 0 ]
<<” ”<<t r2 [1]<<” ”
<<func ( t r2 [ 0 ] , t r2 [ 1 ] , p lane )[2]<< endl ;

}

i f ( (∗ subcube [ t r3 [ 0 ] ] [ t r3 [ 1 ] ] [ ( i n t ) plane ] ) .
c a l c u l a t ed==f a l s e ){

(∗ subcube [ t r3 [ 0 ] ] [ t r3 [ 1 ] ] [ ( i n t ) plane ] ) .
f 1=func ( t r3 [ 0 ] , t r3 [ 1 ] , p lane ) [ 0 ] ;
(∗ subcube [ t r3 [ 0 ] ] [ t r3 [ 1 ] ] [ ( i n t ) plane ] ) .
f 2=func ( t r3 [ 0 ] , t r3 [ 1 ] , p lane ) [ 1 ] ;
(∗ subcube [ t r3 [ 0 ] ] [ t r3 [ 1 ] ] [ ( i n t ) plane ] ) .
f 3=func ( t r3 [ 0 ] , t r3 [ 1 ] , p lane ) [ 2 ] ;
(∗ subcube [ t r3 [ 0 ] ] [ t r3 [ 1 ] ] [ ( i n t ) plane ] ) .
c a l c u l a t ed=true ;
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cout<<” t i r a n g l e po int three miss ing ”<<endl ;
cout<<” func t i onva lue ”<<t r3 [ 0 ]

<<” ”<<t r3 [1]<<” ”
<<func ( t r3 [ 0 ] , t r3 [ 1 ] , p lane )[0]<< endl ;

cout<<” func t i onva lue ”<<t r3 [ 0 ]
<<” ”<<t r3 [1]<<” ”
<<func ( t r3 [ 0 ] , t r3 [ 1 ] , p lane )[1]<< endl ;

cout<<” func t i onva lue ”<<t r3 [ 0 ]
<<” ”<<t r3 [1]<<” ”
<<func ( t r3 [ 0 ] , t r3 [ 1 ] , p lane )[2]<< endl ;

}

f [0 ]= r [ 0 ]∗ (∗ subcube [ t r1 [ 0 ] ] [ t r1 [ 1 ] ] [ ( i n t ) plane ] ) . f 1+r [ 1 ] ∗
(∗ subcube [ t r2 [ 0 ] ] [ t r2 [ 1 ] ] [ ( i n t ) plane ] ) . f 1+r [ 2 ] ∗
(∗ subcube [ t r3 [ 0 ] ] [ t r3 [ 1 ] ] [ ( i n t ) plane ] ) . f 1 ;
f [1 ]= r [ 0 ]∗ (∗ subcube [ t r1 [ 0 ] ] [ t r1 [ 1 ] ] [ ( i n t ) plane ] ) . f 2+r [ 1 ] ∗
(∗ subcube [ t r2 [ 0 ] ] [ t r2 [ 1 ] ] [ ( i n t ) plane ] ) . f 2+r [ 2 ] ∗
(∗ subcube [ t r3 [ 0 ] ] [ t r3 [ 1 ] ] [ ( i n t ) plane ] ) . f 2 ;
f [2 ]= r [ 0 ]∗ (∗ subcube [ t r1 [ 0 ] ] [ t r1 [ 1 ] ] [ ( i n t ) plane ] ) . f 3+r [ 1 ] ∗
(∗ subcube [ t r2 [ 0 ] ] [ t r2 [ 1 ] ] [ ( i n t ) plane ] ) . f 3+r [ 2 ] ∗
(∗ subcube [ t r3 [ 0 ] ] [ t r3 [ 1 ] ] [ ( i n t ) plane ] ) . f 3 ;

return ( f ) ;
}

i n t ∗ checkCube (CElement ∗∗∗∗ cube , double x , double y ,
double z , i n t M, i n t N){
i n t dim=N∗M;
i n t ∗ back ;
back = ( i n t ∗) mal loc ( s i z e o f ( i n t ) ∗ 4 ) ;
i n t xc=0,yc=0, zc=0;
i f ( x !=0)

xc=( i n t )dim/x ;
i f ( y !=0)

yc=( i n t )dim/y ;
i f ( z !=0)

zc=( i n t )dim/z ;
cout<<xc<<” ”<<yc<<” ”<<zc<<endl ;
back [0 ]=(∗ cube [ ( i n t ) xc/N ] [ ( i n t ) yc/N ] [ ( i n t ) zc /N ] ) . v ;
back [1 ]= xc ;
back [2 ]= yc ;
back [3 ]= zc ;
return ( back ) ;

}
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Appendix D

Source Code: Sequential
Interpolation (Object Oriented
Implementation)

// I n t e r p o l . h

// . . i n c l u d e s . . .
#inc lude ”SubcubeQueue . h”

#i f d e f use namespace
us ing namespace NEWMAT;
#end i f

us ing namespace std ;

namespace MathModel {

c l a s s I n t e r po l {

pub l i c :
i n t a ;
double h ;
i n t nsc1 ;
SeeOFuncObject ∗ funcObj ;
SubcubeQueue ∗queu ;

I n t e r po l ( i n t a , double h ,
i n t nsc1 , i n t queues ize , SeeOFuncObject ∗ funcObj ) ;

ColumnVector I n t e r po l a t e ( Matrix x ) ;

˜ I n t e r po l ( ) ;
} ;

}

// I n t e r p o l . cpp

// . . . i n c l u d e s . . .

#inc lude ” In t e r po l . h”
#inc lude ”Subcube . h”
#inc lude ”SubcubeQueue . h”

us ing namespace MathModel ;

I n t e r po l : : I n t e r po l ( i n t a , double h , i n t nsc1 ,
i n t queues ize , SeeOFuncObject ∗ funcObj ){

th i s−>a=a ;
th i s−>h=h ;
th i s−>nsc1=nsc1 ;
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th i s−>funcObj=funcObj ;
Subcube ∗ sc ;
sc=new Subcube(−2∗a,−2∗a,−2∗a , h , ( i n t ) (2∗ a∗(1/h ) )/ nsc1 , funcObj ) ;
queu=new SubcubeQueue ( queues ize , sc ) ;

}

ColumnVector I n t e r po l : : I n t e r po l a t e ( Matrix x){

double mx,my,mz ;
i n t scx , scy , s cz ;
Subcube ∗ subc ;
Subcube ∗ s c s c ;
ColumnVector trp1 , trp2 , trp3 ;

mx=x [ 0 ] [ 0 ] ;
my=x [ 0 ] [ 1 ] ;
mz=x [ 0 ] [ 2 ] ;

// cout<<mx<<” ”<<my<<” ”<<mz<<end l ;
i f ( fabs ( ( double ) a)> f abs (mx)){

i f (mx<0){
scx=( i n t ) (mx/(2∗a/nsc1 )−1)∗(2∗a/nsc1 ) ;

}
i f (mx>=0){

scx=( i n t ) (mx/(2∗a/nsc1 ) )∗ (2∗ a/nsc1 ) ;
}
i f ( fabs ( ( double ) a)> f abs (my)){

i f (my<0){
scy=( i n t ) (my/(2∗a/nsc1 )−1)∗(2∗a/nsc1 ) ;

}
i f (my>=0){

scy=( i n t ) (my/(2∗a/nsc1 ) )∗ (2∗ a/nsc1 ) ;
}
i f ( fabs ( ( double ) a)> f abs (mz)){

i f (mz<0){
scz=( i n t ) (mz/(2∗a/nsc1 )−1)∗(2∗a/nsc1 ) ;

}
i f (mz>=0){

scz=( i n t ) (mz/(2∗a/nsc1 ) )∗ (2∗ a/nsc1 ) ;
}
cout<<scx<<” ”<<scy<<” ”<<scz<<endl ;

}
e l s e {

cout<<”z out o f borders ”<<endl ;
return ( MatrixToColumnVector ( th i s−>funcObj−>Evaluate (x ) ) ) ;

}
}
e l s e {

cout<<”y out o f borders ”<<endl ;
return ( MatrixToColumnVector ( th i s−>funcObj−>Evaluate (x ) ) ) ;

}
}
e l s e {

cout<<”x out o f borders ”<<endl ;
return ( MatrixToColumnVector ( th i s−>funcObj−>Evaluate (x ) ) ) ;

}
cout<<” i n t e r p o l i n i t i a t i n g ”<<endl ;
i f ( queu−>CheckSubcube ( scx , scy , s cz ) ){

s c s c=queu−>GetSubcube ( scx , scy , s cz ) ;
s c s c=new Subcube ( s c s c ) ;
trp1=scsc−>GetTrp1 ( MatrixToColumnVector (x ) ) ;
trp2=scsc−>GetTrp2 ( MatrixToColumnVector (x ) ) ;
trp3=scsc−>GetTrp3 ( MatrixToColumnVector (x ) ) ;

}
e l s e {

cout<<” generat ing new subcube”<<endl ;
subc=new Subcube ( scx , scy , scz , h , ( i n t ) (2∗ a∗(1/h ) )/ nsc1 , funcObj ) ;
subc−>CreateSubcube ( ( i n t ) (2∗ a∗(1/h ) )/ nsc1 ) ;
queu−>AddCube( subc ) ;
trp1=subc−>GetTrp1 ( MatrixToColumnVector (x ) ) ;
trp2=subc−>GetTrp2 ( MatrixToColumnVector (x ) ) ;
trp3=subc−>GetTrp3 ( MatrixToColumnVector (x ) ) ;

}
// cout <<( i n t )(2∗ a∗(1/h ))/ nsc1<<end l ;
// cout<<t r p1 [6]<< t r p2 [6]<< t r p3 [6]<< end l ;
i f ( ( trp1 [6]==1)&&( trp2 [6]==1)&&( trp3 [6]==1)){

Matrix m( 3 , 3 ) ;
m[ 0 ] [ 0 ] = trp1 [ 3 ] ; m[ 0 ] [ 1 ] = trp2 [ 3 ] ; m[ 0 ] [ 2 ] = trp3 [ 3 ] ;
m[ 1 ] [ 0 ] = trp1 [ 4 ] ; m[ 1 ] [ 1 ] = trp2 [ 4 ] ; m[ 1 ] [ 2 ] = trp3 [ 4 ] ;
m[ 2 ] [ 0 ] = 1 ; m[ 2 ] [ 1 ] = 1 ; m[ 2 ] [ 2 ] = 1 ;
// cout <<”˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜”<< end l ;
// cout<<m<<end l ;
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// cout <<”˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜”<< end l ;
try {

m = m. i ( ) ;
}
catch ( . . . ) {

cout<<” i n t e r p o l a t e : matrix i nv e r s i on e r r o r ”<<endl ;
return ( MatrixToColumnVector ( th i s−>funcObj−>Evaluate (x ) ) ) ;

}
cout<<”matrix i nv e r s i on s u c c e s s f u l ”<<endl ;
cout<<” i n t e r p o l a t i o n s t a r t ed ”<<endl ;
Matrix n ( 3 , 1 ) ;
n [ 0 ] [ 0 ] = x [ 0 ] [ 0 ] ;
n [ 1 ] [ 0 ] = x [ 0 ] [ 1 ] ;
n [ 2 ] [ 0 ] = 1 ;
Matrix r ( 3 , 1 ) ;
r= m ∗ n ;
cout<<r<<endl ;
ColumnVector f ( 3 ) ;
cout<<r [ 0 ] [ 0 ] ∗ trp1 [0 ]+ r [ 1 ] [ 0 ] ∗ trp2 [0 ]+ r [ 2 ] [ 0 ] ∗ trp3 [0]<< endl ;
f [0 ]= r [ 0 ] [ 0 ] ∗ trp1 [0 ]+ r [ 1 ] [ 0 ] ∗ trp2 [0 ]+ r [ 2 ] [ 0 ] ∗ trp3 [ 0 ] ;
f [1 ]= r [ 0 ] [ 0 ] ∗ trp1 [1 ]+ r [ 1 ] [ 0 ] ∗ trp2 [1 ]+ r [ 2 ] [ 0 ] ∗ trp3 [ 1 ] ;
f [2 ]= r [ 0 ] [ 0 ] ∗ trp1 [2 ]+ r [ 1 ] [ 0 ] ∗ trp2 [2 ]+ r [ 2 ] [ 0 ] ∗ trp3 [ 2 ] ;
cout<<” ”<<endl ;
cout<<” i n t e r po l a t ed ”<<endl<<f<<endl ;
cout<<” o r i g i n a l ”<<endl<<MatrixToColumnVector ( th i s−>funcObj−>Evaluate (x))<<endl ;
cout<<” ”<<endl ;
return ( f ) ;

}
e l s e {

return ( MatrixToColumnVector ( th i s−>funcObj−>Evaluate (x ) ) ) ;
}

}

I n t e r po l : : ˜ I n t e r po l ( ){
de l e t e ( queu ) ;
de l e t e ( funcObj ) ;

}

// Subcube . h

// . . . i n c l u d e s . . .

#i f d e f use namespace
us ing namespace NEWMAT;
#end i f

us ing namespace std ;

namespace MathModel {

c l a s s Subcube{

pub l i c :
i n t ax ;
i n t ay ;
i n t az ;
i n t dim ;
double h ;
SeeOFuncObject ∗ funcObj ;

pr iva t e :
typedef s t ru c t element{

double f1 , f2 , f 3 ;
} Element ;
Element ∗∗∗∗ sc ;

pub l i c :
Subcube : : Subcube ( ) ;
Subcube : : Subcube ( Subcube ∗ s ) ;
Subcube : : Subcube ( i n t ax , i n t ay , i n t az , double h , i n t dim , SeeOFuncObject ∗ funcObj ) ;

void Subcube : : CreateSubcube ( i n t N) ;
ColumnVector Subcube : : GetTrp1 (ColumnVector xg ) ;
ColumnVector Subcube : : GetTrp2 (ColumnVector xg ) ;
ColumnVector Subcube : : GetTrp3 (ColumnVector xg ) ;

Subcube : : ˜ Subcube ( ) ;
} ;

}
#end i f

// Subcube . cpp
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// . . . i n c l u d e s . . .

#inc lude ” In t e r po l . h”
#inc lude ”Subcube . h”

#i f d e f DEBUG
#de f i n e new DEBUGNEW
#undef THIS FILE
s t a t i c char THIS FILE [ ] = FILE ;
#end i f

us ing namespace MathModel ;

Subcube : : Subcube (){

}

Subcube : : Subcube ( Subcube ∗ s ){

th i s−>ax=s−>ax ;
th i s−>ay=s−>ay ;
th i s−>az=s−>az ;
th i s−>h=s−>h ;
th i s−>dim=s−>dim ;
th i s−>funcObj=s−>funcObj ;
th i s−>sc=s−>sc ;

}

Subcube : : Subcube ( i n t ax , i n t ay , i n t az ,
double h , i n t dim , SeeOFuncObject ∗ funcObj ){

th i s−>ax=ax ;
th i s−>ay=ay ;
th i s−>az=az ;
th i s−>h=h ;
th i s−>dim=dim ;
th i s−>funcObj=funcObj ;

}

void Subcube : : CreateSubcube ( i n t N) {

cout<<””<<N<<endl ;
i n t i , j , l ;
Element ∗∗∗∗ subcube ;
Matrix x ( 1 , 3 ) ;
ColumnVector tmp ;
subcube = ( Element ∗∗∗∗) mal loc ( s i z e o f ( Element ∗∗∗∗) ∗ N) ;
f o r ( i =0; i<N; i++){

subcube [ i ] = ( Element ∗∗∗) mal loc ( s i z e o f ( Element ∗∗∗) ∗N) ;
f o r ( j =0; j<N; j++){

subcube [ i ] [ j ] = ( Element ∗∗) mal loc ( s i z e o f ( Element ∗∗) ∗ N) ;
f o r ( l =0; l<N; l++){

subcube [ i ] [ j ] [ l ] = ( Element ∗) mal loc ( s i z e o f ( ColumnVector ) ) ;
}

}
}
cout<<” subcube created ”<<endl ;
f o r ( i =0; i<N; i++){

f o r ( j =0; j<N; j++){
f o r ( l =0; l<N; l++){

// cout<<i<<” ”<<j<<” ”<<l<<end l ;
// cout <<(doub l e ) i ∗h+a<<end l ;
x [ 0 ] [ 0 ]= ( double ) ax+i ∗h ;
x [ 0 ] [ 1 ]= ( double ) ay+j ∗h ;
x [ 0 ] [ 2 ]= ( double ) az+l ∗h ;
tmp=MatrixToColumnVector ( th i s−>funcObj−>Evaluate (x ) ) ;
// cout<<”to rque ”<<i<<j<<l<<end l ;
(∗ subcube [ i ] [ j ] [ l ] ) . f 1=tmp [ 0 ] ;
(∗ subcube [ i ] [ j ] [ l ] ) . f 2=tmp [ 1 ] ;
(∗ subcube [ i ] [ j ] [ l ] ) . f 3=tmp [ 2 ] ;

}
}

}
th i s−>sc=subcube ;
cout<<” subcube f i l l e d ”<<endl ;

}

ColumnVector Subcube : : GetTrp1 (ColumnVector xg ){

double x , y , z ;
double dx , dy , dz ;
i n t xi , yi , z i ;
ColumnVector p ( 7 ) ;
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p [ 6 ]=1 ;
cout<<” get t rp1 ”<<endl ;
x=xg [ 0 ] ;
y=xg [ 1 ] ;
z=xg [ 2 ] ;

i f (x<0){
x i=( i n t ) ( x+ax )/h+dim ;
dx=(xi−dim)∗h−ax ;
i f ( ( dx−x)>=h){

xi−−;
}
i f ( ( dx−x)>=(h/2)){

xi−−;
}
dx=(xi−dim)∗h−ax ;

}
e l s e {

x i=( i n t ) ( x−ax )/h ;
dx=xi ∗h+ax ;
i f ( ( x−dx)>=h){

x i++;
}
i f ( ( x−dx)>=(h/2)){

x i++;
}
dx=xi ∗h+ax ;

}
i f (y<0){

y i=( i n t ) ( y+ay )/h+dim ;
dy=(yi−dim)∗h−ay ;
i f ( ( dy−y)>=(h )){

yi−−;
}
i f ( ( dy−y)>=(h/2)){

yi−−;
}
dy=(yi−dim)∗h−ay ;

}
e l s e {

y i=( i n t ) ( y−ay )/h ;
dy=yi ∗h+ay ;
i f ( ( y−dy)>=(h )){

y i++;
}
i f ( ( y−dy)>=(h/2)){

y i++;
}
dy=yi ∗h+ay ;

}
i f ( z<0){

z i=( i n t ) ( z+az )/h+dim ;
dz=(z i−dim)∗h−az ;
i f ( ( dz−z)>=(h )){

z i −−;
}
i f ( ( dz−z)>=(h/2)){

z i −−;
}
dz=(z i−dim)∗h−az ;

}
e l s e {

z i=( i n t ) ( z−az )/h ;
dz=z i ∗h+az ;
i f ( ( z−dz)>=(h )){

z i++;
}
i f ( ( z−dz)>=(h/2)){

z i++;
}
dz=z i ∗h+az ;

}
i f ( ( xi>dim−1) | | ( yi>dim−1) | | ( z i>dim−1) | | ( xi <0) | | ( yi <0) | | ( z i <0)){

p [ 6 ]=0 ;
cout<<” trp1 dimension e r r o r ”<<endl ;
return p ;

}
cout<<” trpcoord 1 ”<<xi<<” ”<<yi<<” ”<<z i<<endl ;
p [0 ]=(∗ sc [ x i ] [ y i ] [ z i ] ) . f 1 ;
p [1 ]=(∗ sc [ x i ] [ y i ] [ z i ] ) . f 2 ;
p [2 ]=(∗ sc [ x i ] [ y i ] [ z i ] ) . f 3 ;
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p [3]=dx ;
p [4 ]=dy ;
p [5 ]= dz ;
return p ;

}

ColumnVector Subcube : : GetTrp2 (ColumnVector xg ){

double x , y , z ;
double dx , dy , dz ;
i n t xi , yi , z i ;
ColumnVector p ( 7 ) ;

p [ 6 ]=1 ;
cout<<” get t rp2 ”<<endl ;
x=xg [ 0 ] ;
y=xg [ 1 ] ;
z=xg [ 2 ] ;

i f (x<0){
x i=( i n t ) ( x+ax )/h+dim ;
dx=(xi−dim)∗h−ax ;
i f ( ( dx−x)>=(h )){

xi−−;
}
i f ( ( dx−x)>=(h/2)){

xi−−;
}
dx=(xi−dim)∗h−ax ;

}
e l s e {

x i=( i n t ) ( x−ax )/h ;
dx=xi ∗h+ax ;
i f ( ( x−dx)>=(h )){

x i++;
}
i f ( ( x−dx)>=(h/2)){

x i++;
}
dx=xi ∗h+ax ;

}
i f (y<0){

y i=( i n t ) ( y+ay )/h+dim ;
dy=(yi−dim)∗h−ay ;
i f ( ( dy−y)>=(h )){

yi−−;
}
i f ( ( dy−y)>=(h/2)){

yi−−;
}
dy=(yi−dim)∗h−ay ;

}
e l s e {

y i=( i n t ) ( y−ay )/h ;
dy=yi ∗h+ay ;
i f ( ( y−dy)>=(h )){

y i++;
}
i f ( ( y−dy)>=(h/2)){

y i++;
}
dy=yi ∗h+ay ;

}
i f ( z<0){

z i=( i n t ) ( z+az )/h+dim ;
dz=(z i−dim)∗h−az ;
i f ( ( dz−z)>=(h )){

z i −−;
}
i f ( ( dz−z)>=(h/2)){

z i −−;
}
dz=(z i−dim)∗h−az ;

}
e l s e {

z i=( i n t ) ( z−az )/h ;
dz=z i ∗h+az ;
i f ( ( z−dz)>=(h )){

z i++;
}
i f ( ( z−dz)>=(h/2)){

z i++;
}
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dz=z i ∗h+az ;
}
// I
i f ( ( x>0)&&(y>0)&&(x>=y )){

x i++;
dx=xi ∗h+ax ;
cout<<” I+”<<endl ;

}
i f ( ( x>0)&&(y>0)&&(x<y )){

y i++;
dy=yi ∗h+ay ;
cout<<”I−”<<endl ;

}
// I I
i f ( ( x<0)&&(y>0)&&(−x>=y )){

xi−−;
dx=(xi−dim)∗h−ax ;
cout<<” I I+”<<endl ;

}
i f ( ( x<0)&&(y>0)&&(−x<y )){

y i++;
dy=yi ∗h+ay ;
cout<<” II−”<<endl ;

}
// I I I
i f ( ( x<0)&&(y<0)&&(−x>=−y )){

xi−−;
dx=(xi−dim)∗h−ax ;
cout<<” I I I+”<<endl ;

}
i f ( ( x<0)&&(y<0)&&(−x<−y )){

yi−−;
y i=( i n t ) ( y+ay )/h+dim ;
cout<<” II−+”<<endl ;

}
//IV
i f ( ( x>0)&&(y<0)&&(x>=−y )){

x i++;
dx=xi ∗h+ax ;
cout<<”IV+”<<endl ;

}
i f ( ( x>0)&&(y<0)&&(x<−y )){

yi−−;
y i=( i n t ) ( y+ay )/h+dim ;
cout<<”IV−”<<endl ;

}
i f ( ( xi>dim−1) | | ( yi>dim−1) | | ( z i>dim−1) | | ( xi <0) | | ( yi <0) | | ( z i <0)){

p [ 6 ]=0 ;
cout<<” trp2 dimension e r r o r ”<<endl ;
return p ;

}
cout<<” trpcoord 2 ”<<xi<<” ”<<yi<<” ”<<z i<<endl ;
p [0 ]=(∗ sc [ x i ] [ y i ] [ z i ] ) . f 1 ;
p [1 ]=(∗ sc [ x i ] [ y i ] [ z i ] ) . f 2 ;
p [2 ]=(∗ sc [ x i ] [ y i ] [ z i ] ) . f 3 ;

p [3 ]=dx ;
p [4 ]=dy ;
p [5 ]= dz ;
// cout<<”Tr i ang l e po i n t 2 : ”<<endl<<p<<end l ;
return p ;

}

ColumnVector Subcube : : GetTrp3 (ColumnVector xg ){

double x , y , z ;
double dx , dy , dz ;
i n t xi , yi , z i ;
ColumnVector p ( 7 ) ;

p [ 6 ]=1 ;
cout<<” get t rp3 ”<<endl ;
x=xg [ 0 ] ;
y=xg [ 1 ] ;
z=xg [ 2 ] ;

i f (x<0){
x i=( i n t ) ( x+ax )/h+dim ;
dx=(xi−dim)∗h−ax ;
i f ( ( dx−x)>=(h )){

xi−−;
}
i f ( ( dx−x)>=(h/2)){
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xi−−;
}
xi−−;
dx=(xi−dim)∗h−ax ;

}
e l s e {

x i=( i n t ) ( x−ax )/h ;
dx=xi ∗h+ax ;
i f ( ( x−dx)>=(h )){

x i++;
}
i f ( ( x−dx)>=(h/2)){

x i++;
}
x i++;
dx=xi ∗h+ax ;

}
i f (y<0){

y i=( i n t ) ( y+ay )/h+dim ;
dy=(yi−dim)∗h−ay ;
i f ( ( dy−y)>=(h )){

yi−−;
}
i f ( ( dy−y)>=(h/2)){

yi−−;
}
yi−−;
dy=(yi−dim)∗h−ay ;

}
e l s e {

y i=( i n t ) ( y−ay )/h ;
dy=yi ∗h+ay ;
i f ( ( y−dy)>=(h )){

y i++;
}
i f ( ( y−dy)>=(h/2)){

y i++;
}
y i++;
dy=yi ∗h+ay ;

}
i f ( z<0){

z i=( i n t ) ( z+az )/h+dim ;
dz=(z i−dim)∗h−az ;
i f ( ( dz−z)>=(h )){

z i −−;
}
i f ( ( dz−z)>=(h/2)){

z i −−;
}
dz=(z i−dim)∗h−az ;

}
e l s e {

z i=( i n t ) ( z−az )/h ;
dz=z i ∗h+az ;
i f ( ( z−dz)>=(h )){

z i++;
}
i f ( ( z−dz)>=(h/2)){

z i++;
}
dz=z i ∗h+az ;

}
i f ( ( xi>dim−1) | | ( yi>dim−1) | | ( z i>dim−1) | | ( xi <0) | | ( yi <0) | | ( z i <0)){

p [ 6 ]=0 ;
cout<<” trp3 dimension e r r o r ”<<endl ;
return p ;

}
cout<<” trpcoord 3 ”<<xi<<” ”<<yi<<” ”<<z i<<endl ;
p [0 ]=(∗ sc [ x i ] [ y i ] [ z i ] ) . f 1 ;
p [1 ]=(∗ sc [ x i ] [ y i ] [ z i ] ) . f 2 ;
p [2 ]=(∗ sc [ x i ] [ y i ] [ z i ] ) . f 3 ;

p [3 ]=dx ;
p [4 ]=dy ;
p [5 ]= dz ;

// cout<<”Tr i ang l e po i n t 3 : ”<<endl<<p<<end l ;
return p ;

}

Subcube : : ˜ Subcube (){
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}

//SubcubeQueue . h

// . . . i n c l u d e s . . .

#inc lude ”Subcube . h”

#i f d e f use namespace
us ing namespace NEWMAT;
#end i f

us ing namespace std ;

namespace MathModel {

typedef vector<Subcube> SubcubeVector ;

c l a s s SubcubeQueue{

pub l i c :
unsigned in t numOfsc ;
SubcubeVector qu ;

SubcubeQueue : : SubcubeQueue ( i n t numsc , Subcube∗ sc ) ;

void SubcubeQueue : : AddCube( Subcube∗ sc ) ;
Subcube ∗ SubcubeQueue : : GetSubcube ( i n t x , i n t y , i n t z ) ;
bool SubcubeQueue : : CheckSubcube ( i n t x , i n t y , i n t z ) ;

SubcubeQueue : : ˜ SubcubeQueue ( ) ;
} ;

}
#end i f

//SubcubeQueue . cpp

// . . . i n c l u d e s . . .

#inc lude ” In t e r po l . h”
#inc lude ”Subcube . h”
#inc lude ”SubcubeQueue . h”

#i f d e f DEBUG
#de f i n e new DEBUGNEW
#undef THIS FILE
s t a t i c char THIS FILE [ ] = FILE ;
#end i f

us ing namespace MathModel ;

SubcubeQueue : : SubcubeQueue ( i n t numsc , Subcube ∗ sc ){

numOfsc=numsc ;
qu . a s s i gn (numsc ,∗ sc ) ;

}

void SubcubeQueue : : AddCube( Subcube ∗ sc ){

f o r ( i n t i =0; i<numOfsc−1; i++){
qu . at ( i )=qu . at ( i +1);

}
qu . pop back ( ) ;
qu . push back (∗ sc ) ;

}

Subcube ∗SubcubeQueue : : GetSubcube ( i n t x , i n t y , i n t z ){

bool f l a g=true ;
i n t i =0;

Subcube s ;
Subcube ∗ r e tu rn s c ;
whi le ( f l a g ){

s=qu . at ( i ) ;
i f ( ( x==s . ax)&&(y==s . ay)&&(z==s . az ) ){

f l a g= f a l s e ;
r e tu rn s c=&s ;
cout<<” getsubcube ”<<re turnsc−>ax<<” ”<<re turnsc−>ay<<” ”<<re turnsc−>az<<endl ;
return r e tu rn s c ;

}
i++;

}
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r e tu rn s c=&s ;
return r e tu rn s c ;

}

bool SubcubeQueue : : CheckSubcube ( i n t x , i n t y , i n t z ){

bool f l a g= f a l s e ;
i n t i =0;
Subcube∗ s ;

cout<<” checksubcube 1 ”<<qu . s i z e ()<<endl ;
whi le ( ( ! f l a g )&&(i <( i n t ) qu . s i z e ( ) ) ){

s=&qu . at ( i ) ;
i f ( ( x==s−>ax)&&(y==s−>ay)&&(z==s−>az )){

f l a g=true ;
cout<<” checksubcube 4”<<endl ;
}
i++;

}
cout<<” checksubcube 5”<<endl ;
return f l a g ;

}

SubcubeQueue : : ˜ SubcubeQueue (){

}
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Appendix E

Source Code: Parallel Subcube
Computation

s t ru c t msg s {
double m1,m2,m3;
sem t sem , semm;

} ;

s t ru c t msg s ∗ shared msg ;

i n t shmfd ;
i n t pid ;
char memadr [ 9 ] ;
i n t s h a r e d s e g s i z e ;

i n t Subcube : : SetMemAndFork (){
i f ( shm unlink (memadr) != 0) {

per ro r ( ” In shm unlink ( ) ” ) ;
}
c l o s e ( shmfd ) ;
s h a r e d s e g s i z e = (1 ∗ s i z e o f ( s t ru c t msg s ) ) ; // want shared segment capab l e o f s t o r i n g 1 message
// the shared segment , and head o f the messages l i s t

// c r e a t i n g the shared memory o b j e c t −− shm open ( )
shm unlink (memadr ) ;
shmfd = shm open (memadr0 , O CREAT | O EXCL | O RDWR, S IRWXU | S IRWXG) ;
i f ( shmfd < 0) {

per ro r ( ” In shm open ( ) ” ) ;
}
// f p r i n t f ( s t d e r r , ”Created shared memory o b j e c t %s\n” , memadr ) ;
f t r unca t e ( shmfd , s h a r e d s e g s i z e ) ;
shared msg = ( s t ru c t msg s ∗)mmap(NULL, sha r ed s e g s i z e , PROT READ | PROT WRITE, MAP SHARED, shmfd , 0 ) ;
i f ( shared msg == NULL) {

per ro r ( ” In mmap( ) ” ) ;
}
s em in i t (&shared msg−>sem , 1 , 0 ) ;
s em in i t (&shared msg−>semm, 1 , 0 ) ;

pid = fo rk ( ) ;
i f ( pid < 0 ) {

// f p r i n t f ( s t d e r r , ”Could not c r e a t e a new proce s s .\n” ) ;
e x i t ( −1 ) ;

}
i f ( pid == 0 ) {

ColumnVector tmp ;
Matrix x ( 3 , 1 ) ;
whi le (1){

sem wait(&shared msg−>sem ) ;
s em in i t (&shared msg−>sem , 1 , 0 ) ;
x [ 0 ] [ 0 ]= shared msg−>m1;
x [ 0 ] [ 1 ]= shared msg−>m2;
x [ 0 ] [ 2 ]= shared msg−>m3;
tmp=MatrixToColumnVector ( funcObj−>Evaluate (x ) ) ;
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// cout<<”c a l c u l a t i n g”<<end l ;
shared msg−>m1=tmp [ 0 ] ;
shared msg−>m2=tmp [ 1 ] ;
shared msg−>m3=tmp [ 2 ] ;
// cout<<”va l u e s w r i t t e n ...”<< end l ;
sem post(&shared msg−>semm) ;

}

}
i f ( pid !=0){

return ( pid ) ;
}
return (−1);

}

void Subcube : : UnsetMemAndKill ( ){
i n t s t a tu s ;
i f ( shm unlink (memadr) != 0) {

per ro r ( ” In shm unlink ( ) ” ) ;
}
c l o s e ( shmfd ) ;
i f ( pid != 0 ) {

k i l l ( ( p i d t ) pid , SIGKILL ) ;
wait ( &s ta tu s ) ;

}
}
double ∗ Subcube : : myEvaluate ( double x1 , double x2 , double x3 ){

double ∗back =new double [ 3 ] ;
double ∗tmp =new double [ 3 ] ;

// This i s t he parent p roce s s
i f ( pid != 0 ) {

s em in i t (&shared msg−>semm, 1 , 0 ) ;
shared msg−>m1=x1 ;
shared msg−>m2=x2 ;
shared msg−>m3=x3 ;

sem post(&shared msg−>sem ) ;
sem wait(&shared msg−>semm) ;

back [0 ]= shared msg−>m1;
back [1 ]= shared msg−>m2;
back [2 ]= shared msg−>m3;
return ( back ) ;

}
return ( back ) ;

}
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