
The Porting of a Medical Grid Application
from Globus 4 to the gLite Middleware

Károly Bósa and Wolfgang Schreiner

Abstract In this paper, we compare two implementations of a grid-based software
system on the grid middleware Globus Toolkit 4 and gLite, respectively. This sys-
tem called “Grid-Enabled SEE++” is a grid-based simulation software that supports
the diagnosis and treatment of certain eye motility disorders (strabismus). First, we
developed a parallel version of the software with the help of Globus 4. Since we
met with some limitations of Globus 4, we also designed and developed a version of
SEE++ based on gLite. We focus on the differences between the initial Globus ver-
sion and the gLite version of our software system and report on some comparative
benchmark results.

Key words: “Grid-Enabled SEE++”, Grid Applications, Grid Middleware, Globus,
gLite

1 Introduction

Nowadays various types of grid middleware (Unicore, Globus, LCG, gLite, etc.) are
in use by several research projects. These systems have many similar features, but
there are almost no reports in literature which compare them next to each other in
similar circumstances. We had the opportunity to make such a comparison, since
we developed two versions of a grid application on the basis of the popular grid
middleware systems Globus Toolkit 4 [9] and gLite [8], respectively.

The core software called “Grid-Enabled SEE++” is a grid version of the SEE++
software system [6, 12, 16] for the biomechanical 3D simulation of the human eye
and its muscles (see Figure 1). The software deals with the support of diagnosis and
treatment of strabismus, which is the common name of the misalignment of the eyes

Károly Bósa and Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
e-mail: FirstName.LastName@risc.uni-linz.ac.at

1

2 Károly Bósa and Wolfgang Schreiner

Fig. 1 The Output of the “SEE++ to Grid Bridge” and the GUI of SEE++

where eyes point in different directions such that a person may see double images.
The goal of “Grid-Enabled SEE++” is to adapt and to extend SEE++ in several steps
and to develop an efficient grid-based tool for “Evidence Based Medicine” which
supports the surgeons in choosing optimal surgery techniques for the treatments of
different syndromes of strabismus.

The doctors intend to work with the software in an interactive manner (chang-
ing the eye model parameters by a manual trial and error method), hence the ade-
quate response times are essential for the usability of SEE++. It is also possible to
semi-automatize the determination of the patient pathology on the grid (a non-linear
optimization problem) by the procedure called pathology fitting [3].

In [3, 4], we combined the SEE++ software with the Globus middleware applying
both the pre-Web Service (pre-WS) and the Web Service (WS) frameworks and de-
veloped a parallel version of the simulation. By this, we speeded up this simulation
by a factor of 14–17.

Furthermore, we reported the prototype implementation of a medical database
component for “Grid-Enabled SEE++” [13], which is going to be used for storing
patient medical data with eye model parameters. These stored pathological cases
will be utilized as initial estimations by the new grid-based pathology fitting algo-
rithm presented in [3].

Since we met with some limitation of the Globus Toolkit 4 [4], we also elaborated
an initial design of a SEE++ version compatible with the gLite grid middleware [5]
in the frame of “Enabling Grids for E-sciencE 2” (EGEE2) project [7].

The topic of this paper is to present a refined architecture adapted to the recently
implemented gLite-based SEE++ and to report a comparison between this new ver-

The Porting of a Medical Grid Application from Globus 4 to the gLite Middleware 3

. .
 .

Client Client

. .
 .

GRID

(Hess Calc.)

(Hess Calc.)

WMProxy C++ API

PATHOLOGY FITTING
Request

AMGA C++ API

R−GMA C++ API

HESS CALC. Request

WMProxy C++ API

gLite−enabled SEE++2GRID

BRIDGE

SEE++ SEE++
WMProxy

Parametric Job

Parametric Job

WN k

Site n

Site m

DATABASE

AMGA Server

AMGA Server

DATABASE

R−GMA Information System

. .
 .

SEE++ Data
Miner

HESS Calc.

HESS Calc.

PATH. FITTER

WN j

. .
 .

HESS Calc.

HESS Calc.

WMProxy

WN i

WMProxy

PATH. FITTER

Searching for Published Server
and Database Contacts

Searching for Published Server
and Database Contacts

Publishing Contact Information

Current Architecture

Fig. 2 The Design of the gLite Compatible SEE++

sion of our software system and its other version based on Globus 4. The new design
is described in Section 2. In Section 3, we focus on the new features of the gLite
compatible SEE++. Finally, we present in Section 4 an experimental comparison
with benchmark results between the Globus and the gLite-based versions.

2 The New Architecture based on gLite

As in the case of the Globus-based version, the initial component of the gLite-based
version is the “SEE++ to Grid Bridge”, via which the unchanged SEE++ client can
get access to the infrastructure of the grid (see the box in Figure 2 bordered by the
dashed line). Before the bridge accepts the computational requests from the SEE++
clients, it starts some grid-enabled SEE++ servers in the grid. These processes be-
have as some kind of “executer” programs for the computation tasks such that the
remarkable latencies of the job submissions for the computational requests can be
avoided. The “SEE++ to Grid Bridge” is able to split calculation requests of clients
into subtasks [3] and to distribute them among the servers (data parallelism).

Nevertheless, we found the same problem as in the Globus version of our soft-
ware, namely how to send back the contact information of the started server/executer
processes to the bridge. In the original design, we proposed to exploit an interest-
ing feature of the gLite Workload Management System (WMS) [17] called interac-
tive jobs which returns the corresponding data via interactive connections. How-
ever later we found that such a feature exists only as a theoretical option for job

4 Károly Bósa and Wolfgang Schreiner

submissions in gLite, but it is not supported by real grid architectures (EGEE [7],
int.EU.grid [10], etc.).

So we decided to apply the “Relational Grid Monitoring Architecture” (R-GMA)
information system [14] of gLite for this purpose, which allows users and grid ap-
plications to publish their own data. From time to time, each server announces into a
R-GMA table its address (hostname and port) together with the number of subtasks
received but not yet calculated by the server. The “SEE++ to Grid Bridge” runs a
query on the table R-GMA regularly as well and updates its list of the available
servers. This approach is much more versatile and sophisticated, since many kinds
of information (e.g. workload) can be published about all available SEE++ servers
to more than one bridge component. Each server is always started with two argu-
ments: its identifier (generated by the bridge) and a unique identifier of the bridge
(e.g. the address and port where the bridge is listening for the requests of the SEE++
clients). These two pieces of data are used as a primary key in the R-GMA system,
when a server publishes its own contact and workload information.

Every “SEE++ to Grid Bridge” can be tuned such that it either uses only those
servers that were started by itself or it always chooses for each calculation request
some servers from the pool of all servers available on the grid; this choice is made
with the help of R-GMA on the basis of the published workload information. A
server terminates, if it does not receive any computational request for a predefined
time interval (typically one hour).

The approach to apply executer jobs works only if the worker nodes (WNs) on
where these jobs are executed are not located within private subnetworks. To enforce
this constraint, we applied the following Requirement condition in the JDL [11] file
of the job submission:

Requirements = other.GlueHostNetworkAdapterOutboundIP==True;

This constraint guarantees that the SEE++ servers are started only on those WNs,
that are able to interact through the Internet. We also applied a Rank criterion, that
helps to choose WNs from those which fulfill the Requirement:

Rank = (other.GlueCEStateWaitingJobs == 0 ?
-other.GlueCEStateEstimatedResponseTime :
-other.GlueCEStateWaitingJobs);

According to this criterion, those WNs are preferred which either are idle (there
is not any scheduled job in the state ”WAITING”) and have minimal communication
latencies or (if there are not enough idle WNs) which have the minimal number of
waiting jobs.

The further parts of the design regarding a distributed medical database based on
the database access service of gLite called AMGA [2] and the grid-based pathology
fitting algorithm (depicted on Figure 2) remain as they have already been proposed
in [4].

The Porting of a Medical Grid Application from Globus 4 to the gLite Middleware 5

Globus−Based gLite−Based

by server jobs by server jobs

SEE++ clients interact
with the server jobs

Computations are
performed

via a bridge
component component

via a bridge

SOAP SOAPprotocol between the
software components

one by one
as single jobs

as a special
collection of jobs
(parametric job)

information of each job

by a "forked" and
terminated instance via R−GMA tables

not implemented
framework)

the job submission
automatic (part of

Server jobs are
submitted on the grid

Server jobs return
their contact

Resource discovery

Proxy renewal for
long−running jobs

not implemented
automatic (part of
the job submission

framework)

"File stage on"

no (Servers must be

nodes)
corresponding grid
preinstalled on the

submission framework)
to the WNs by the job
of the servers are sent
yes (the executables

Platform dependency platform where
Globus runs

on every
UNIX/Linux based

only on x86 platforms
with Scientific Linux
(dependency of the

existing gLite versions)

SEE++ VersionSEE++ Version

The communication

SEE++ Versions

Features

Fig. 3 A Comparison between the Two Versions of “Grid-Enabled SEE++”

3 New Features of the gLite-Based Version

In Figure 3, we summarized and compared the essential features of the versions
of our “Grid-Enabled SEE++” software system based on Globus Toolkit and gLite
respectively.

An advantage of the application of gLite is the implicit and automatic support
for resource discovery, which is part of the job submission framework i.e. hidden
from the API and UI levels. In Globus, if the developers would like to provide their
software with this property, they have to implement it on their own by using of a
non-trivial API (which we did not apply in our Globus-based SEE++).

6 Károly Bósa and Wolfgang Schreiner

One of the essential distinctions between the Globus and gLite-based SEE++ is
how the server contact information is returned to the bridge component. In Globus,
we applied some kind of “hack” for overcoming this problem. According to this,
a server started on a grid node forks itself after it has allocated a port number and
terminates [3]. Unfortunately, this technique may induce some problems in the lo-
cal resource management systems (e.g. PBS). Namely, such a local scheduler may
assume the resource is free and may assign some other jobs to it or it may kill the
forked process (in order to clean up). Although we could handle these situations in
the case of some local batch queueing systems by applying some simple techniques
described in [4], we could not find a general solution. By employing the new pub-
lishing method based on R-GMA, such a problem cannot arise at all (moreover there
exists additional benefits as discussed in Section 2).

We employed user proxy certificates stored on a MyProxy [15] server, since the
SEE++ servers have to be authenticated (by a valid proxy available on a MyProxy
server) for accessing the R-GMA grid service from remote WNs. As a side effect
of this requirement, our application is equipped with the automatic proxy renewal
function: the long-running SEE++ servers are not killed on the WNs by the local
resource management after the proxy of their user/submitter expires as long as the
proxy credential can be renewed from a given MyProxy server.

The SEE++ server jobs are executed on the gLite architecture as parametric jobs
via the Workload Management Proxy (WMProxy) [17]. A parametric job is a special
type of job collections and it is defined as a set of jobs which are identical apart from
the values of their parameters. On the one hand, this speeds up the job submission
time compared to individual jobs and it saves a lot of processing time by reusing the
same authentication for all the jobs in the collection; on the other hand, it is possible
to monitor and control each of its jobs separately (via the parametric job handle).
At the submission of a parametric job, the JDL file is usually supplemented some
additional lines as follows:

[
...
JobType="Parametric";
...
Arguments = " PARAM bridge-URL:port";
...
StdError = "stderr PARAM .log";
OutputSandbox = {"stderr PARAM .log"
...
Parameters = numberOfServerJobs;
ParameterStart = 0;
ParameterStep = 1;
...
]

The JDL file for a parametric job may contain a built-in variable called PARAM
and three additional specific attributes Parameters, ParameterStart and Parameter-
Step. These attributes represent respectively the maximum value (or in case of non-
numeric parameter the set of values) of, the starting value of and at last but not least

The Porting of a Medical Grid Application from Globus 4 to the gLite Middleware 7

the step for the modification for the (numeric) values of the parametric variable
PARAM . In our case, the variable PARAM , which has a different value for each

single SEE++ server job is employed to determine the identifier of a SEE++ server
(see the first argument in the line of JDL attribute Arguments above). Additionally,
we also assign a log file with a unique name (generated with help of the paramet-
ric variable) to the standard error of each server job; these files will be collected
if the executions of the server jobs are over (see the JDL attributes StdError and
OutputSandbox above).

To avoid the pre-installation of the SEE++ servers on the grid, we exploit the
“file stage on” feature of the WMProxy to transfer the executable and some other
input files to the corresponding WNs in the job submission phase.

Summarizing this section, our gLite compatible SEE++ has some new features,
which we achieved with investing relatively few efforts. To extend the Globus-based
version with these properties is either not feasible or it requires much more time and
human resources.

4 Experimental Comparison

The basis for this experimental comparison is the simulation of a typical medical ex-
amination called Hess-Lancaster test, whose parallel gridified implementation can
represent a wide group of grid applications, see Section 4.1. In Section 4.2, we
present the outcome of some benchmarks performed with this mentioned medical
simulation.

4.1 A Medical Simulation as the Basis of the Comparison

In [3], we combined the SEE++ software with the Globus middleware [9] and de-
veloped a parallel version of the simulation of the Hess-Lancaster test. Now, we
reimplemented this parallel simulation in gLite, too.

From the Hess-Lancaster test the reason for the pathological situation of a patient
can be estimated. The outcome of such an examination consists of two gaze patterns
of blue points and of red points respectively (see the diagram in the middle of the
GUI of SEE++ on Figure 1). The blue points represent the image seen by one eye
and the red points the image seen by the simulated other eye; in a pathological
situation there is a deviation between the blue and the red points.

The default gaze pattern that is calculated from the patient’s eye data by SEE++
comprises 9 points. Bigger gaze patterns with 21 and 45 points are possible and pro-
vide more precise results for the decision support in case of some pathologies, but
their calculations are more time consuming. The size of the gaze pattern determines
the size of the problem, too. The maximum number of grid jobs we used in a session
was 45, because gaze patterns used in medical examinations can consist of at most

8 Károly Bósa and Wolfgang Schreiner

3 25 309 45

0,92s 0,98s 1,06s 1,09s 1,15s

9,5s 10s 11s 15s 16s 20s

0,85s

1

Submission via Globus WS architecture

Submission via Globus pre−WS architecture

Number of SEE++ Server Jobs

Contact Information via R−GMA

Submission via WMProxy (gLite)
including Resource Discovery,

File Staging (2Mb) and Publishing
38s 46s 91s 142s 156s 224s

Fig. 4 Startup Times in Globus and in gLite Versions

45 gaze points (in the case of the application of 45 jobs, only one gaze point was
computed by one server job in a session).

Our experiences with the simulation of the Hess-Lancaster test on different mid-
dlewares can help and facilitate the work of many grid application developer re-
search groups, because its implementation represents the following very frequently
applied programming strategies of nowadays grid applications:

Parameter Study Since the calculations of each gaze points is completely inde-
pendent from each other, there is no communication among the server processes.
Hence our simulation is a typical example for the parameter study, where the
same algorithm is executed on several grid node but with different arguments.

Interactivity “Grid-Enabled SEE++” has other important characteristics that are
a distributed simulation backend connected to an interactive real-time user inter-
face (the doctors change the eye parameters by a manual trial and error method
and in turn they wait for the results of the simulation). These characteristics are
present in many classical grid monitoring applications and additionally there are
numerous research efforts for establishing interactive grid architectures [10].

4.2 Benchmarks

In some benchmarks, we have compared the effectiveness of the two versions of
“Grid-Enabled SEE++”. Figure 4 and Figure 5 depict the average execution time of
5 computations in different situations where 1, 3, 9, 25, 30 or 45 processors were
used on the grid (one server process was started on each processor).

The reported measurements were accomplished on different hardware architec-
tures in case of Globus and gLite respectively. The reason for this fact that we do not
have access to any grid testbed, where both required grid middlewares are deployed
and available on the same computational resources. Moreover we intended to inves-
tigate the behaviors and the applicabilities of our SEE++ versions on some real grid

The Porting of a Medical Grid Application from Globus 4 to the gLite Middleware 9

Number of Jobs/Servers 1 3 9 25 30 45

Hess Test with Globus
Compatible SEE++

27.18s 18.81s 9.11s 2.17s 2.10s 1.89s

Hess Test with gLite
Compatible SEE++

39.48s 28.05s 16.87s 4.63s 3.03s4.21s

Fig. 5 Execution Times in Globus and gLite

architectures (as described in detail below) providing “production services” instead
of within ideal circumstances on an artificial grid testbed.

The test cases based on Globus 4 were executed on the Austrian Grid site
altix1.jku.austriangrid.at, which contains 64 Intel Itanium proces-
sors (1.4GHz) and resides at the Johannes Kepler University (JKU) in Linz. The
“SEE++ to Grid Bridge” and SEE++ clients were always executed at the RISC
institute located in Hagenberg which has a one Gigabit/sec connection to the
JKU. In case of 25 or more processors, we used some processes on the grid site
altix1.uibk.ac.at in Innsbruck that comprises 16 CPUs of the same type.

The test cases based on gLite were performed on some clusters of the architecture
of the Int.EU.Grid Project [10]. The server jobs were randomly disseminated among
some clusters in Germany (122 CPUs), Poland (32 CPUs), Slovakia (32 CPUs) and
Spain (20 CPUs). All of these CPUs are based on Intel x86 and x86-64 architectures,
but their speed characteristics is unknown.

As a first step, we have compared the costs of the submissions of our SEE++
server processes via Globus pre-WS and WS architectures and gLite WMProxy, see
Figure 4. We found it quite challenging to start more than 20–25 jobs on the gLite
architecture, because in these cases some jobs often got stuck in the submission
procedure with the state “WAITING” for a long time (from 10 minutes to several
hours). Therefore, the values related to gLite are the average values for 5 “success-
ful” job submissions.

From the values listed in Figure 4, we can see obvious differences among the
overheads of the job submissions in the different architectures. Globus (both the
pre-WS and the WS architectures) seems much more efficient. Nevertheless, this
comparison is not completely fair with respect to gLite, since Globus performs only
simple job submissions to one or two dedicated sites, while in the startup phase gLite
additionally discovers resources, transfers files to the WNs (with a total file size of
approx. 2Mb) and finally publishes the server contact information via R-GMA.

In the second step, we have investigated the performance of our parallel grid-
based simulation on Globus and gLite, see Figure 5 and Figure 6. We do not report
different results for the tests run with Globus based on pre-WS and WS architec-
tures, because apart from how the SEE++ servers are started on the grid, there is not
difference the operation of the two Globus-based versions of our software. In these
test cases, we speeded up the simulation by a factor of 12–14 in Globus and by a
factor 9–13 in gLite.

10 Károly Bósa and Wolfgang Schreiner

Number of
Processors

Number of
Processors

5

10

15

20

25

1 3 9 25 30 45 1 25 30 453 9

30

35

EfficiencySpeedup

40 1

0,5

0,75

0.25

Globus Compatible SEE++
gLite Compatible SEE++

Fig. 6 Speedup and Efficiency Diagrams in Globus and gLite

Apparently the results achieved with Globus look better again, but as in the pre-
vious comparison the measured values do not reflect the whole picture: in the tests
based on Globus we employed homogeneous hardware and there were fast connec-
tions between the bridge and the servers with relatively consistent quality. In the
gLite tests the hardware environment was heterogeneous and the communication
latencies were higher with large variations. Nevertheless, the average values in Fig-
ure 5 are closer to each other when we applied 25 or more jobs, because in the
case of more jobs, the load can be more balanced among the various grid nodes.
These facts imply that the differences between the values concerning to Globus and
gLite on Figure 5 and Figure 6 are caused mostly by the disparity of the hardware
architectures of the two testbeds rather than by the applied grid middleware.

5 Conclusions and Future Works

Our comparisons show that while the Globus Toolkit 4 is faster and more efficient,
gLite is much more sophisticated and developer friendly. Therefore, it seems more
appropriate as a basis of further development.

Another difference of the middlewares is the quantity of existing documentation.
In case of Globus 4, the documents are often sketchy and the complete examples
are mostly missing (especially in case of the WS C APIs). On the contrary, there is
sufficient information and example source codes available in gLite.

Our next step will be the porting of our medical database to AMGA [2], which
provides a unified access to them with the grid style certificate-based authentication
and authorization. Since AMGA supports among other database systems MySQL
as well, it would be possible to reuse the same medical databases in the Globus
Toolkit 4 and the gLite environments. On the basis of these developments, we are
going to continue the implementation of the grid-based pathology fitting. These

The Porting of a Medical Grid Application from Globus 4 to the gLite Middleware 11

achievements should make SEE++ an effective grid-based tool for giving effective
decision support to the surgeons before eye surgeries.

Acknowledgements The work described in this paper is partially supported by the Austrian Grid
Project [1], funded by the Austrian BMBWK (Federal Ministry for Education, Science and Cul-
ture) under contract GZ BMWF-10.220/0002-II/10/2007.

This work makes use of results produced by the Enabling Grids for E-sciencE project, a project
co-funded by the European Commission (under contract number INFSO-RI-031688) through the
Sixth Framework Programme. EGEE brings together 91 partners in 32 countries to provide a seam-
less Grid infrastructure available to the European research community 24 hours a day [7].

References

1. Austrian Grid home page. http://www.austriangrid.at
2. AMGA Project home page http://amga.web.cern.ch/amga/
3. Károly Bósa, Wolfgang Schreiner, Michael Buchberger, Thomas Kaltofen. SEE-GRID, A

Grid-Based Medical Decision Support System for Eye Muscle Surgery, 1st Austrian Grid
Symposium, December 1-2, 2005, Hagenberg, Austria. OCG Verlag, pp. 61-74.

4. Károly Bósa, Wolfgang Schreiner, Michael Buchberger, Thomas Kaltofen. A Grid Software
for Virtual Eye Surgery Based on Globus and gLite ISPDC 2007, Hagenberg, Austria, July
5-8, 2007. IEEE Computer Society, pp. 151-158.

5. Károly Bósa, Wolfgang Schreiner, Michael Buchberger The Porting of a Grid Software for
Virtual Eye Surgery from Globus 4 to gLite, Poster on the 3rd EGEE User Forum, Clermont-
Ferrand, France, Februar 10-14, 2008.

6. Michael Buchberger, Biomechanical Modelling of the Human Eye, Ph.D. thesis, Johannes
Kepler University, Linz, Austria, March 2004.
http://www.see-kid.at/download/Dissertation_MB.pdf

7. EGEE-II home page, 2008. http://www.eu-egee.org
8. gLite 3.0.0 home page, 2008. http://www.glite.org
9. The Globus Tookit home page, 2008. http://www.globus.org/toolkit/

10. Int.EU.Grid Project home page, 2008. http://www.interactive-grid.eu/
11. Job Description Language Attributes Specification,

https://edms.cern.ch/file/590869/1/
EGEE-JRA1-TEC-590869-JDL-Attributes-v0-8.pdf

12. Thomas Kaltofen, Design and Implementation of a Mathematical Pulley Model for Biome-
chanical EyeSurgery, Diploma thesis, Upper Austria University of Applied Sciences, Hagen-
berg, June 2002.
http://www.see-kid.at/download/Pulley_Model_Thesis.pdf

13. Daniel Mitterdorfer, Grid-Capable Persistance Based on a Metamodel for Medical Decision
Support, Diploma thesis, Upper Austria University of Applied Sciences, Hagenberg, July
2005.

14. Relational Grid Monitoring Architecture (R-GMA) home page. http://www.r-gma.
org/

15. MyProxy home page, 2008. http://grid.ncsa.uiuc.edu/myproxy/
16. SEE-KID home page, 2008. http://www.see-kid.at
17. Workload Manager Proxy (WMProxy) C++ API Manual, 2008.

http://egee-jra1-wm.mi.infn.it/egee-jra1-wm/api_doc/
api_docwmproxy_cpp/

