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Abstract — It is well known that the dynamics of a Hamiltonian system depends crucially
on whether or not it possesses nonlinear resonances. In the generic case, the set of nonlinear
resonances consists of independent clusters of resonantly interacting modes, described by a few
low-dimensional dynamical systems. We formulate and prove a new theorem on integrability
which allows us to show that most frequently met clusters are described by integrable dynamical
systems. We argue that construction of clusters can be used as the base for the Clipping method,
substantially more effective for these systems than the Galerkin method. The results can be used

directly for systems with cubic Hamiltonian.

Copyright © EPLA, 2009

Introduction. — The very special role of resonant solu-
tions of nonlinear ordinary differential equations (ODEs)
has been first investigated by Poincaré at the end of the
19th century. Poincaré proved that if a nonlinear ODE
has no resonance solutions, then it can be linearized by
an invertible change of variables (for details see [1] and
references therein). This simplifies both analytical and
numerical investigations of the original nonlinear equa-
tion, allows for the introduction of corresponding normal
forms of ODEs, etc. In the middle of the 20th century,
Poincaré’s approach has been generalized to the case of
nonlinear partial differential equations (PDEs) yielding
what is nowadays known as KAM theory (e.g. [2]). This
theory allows us to transform a nonlinear dispersive PDE
into a Hamiltonian equation of motion in Fourier space [3],

i g = OH/0a, (1)

where ay is the amplitude of the Fourier mode corre-
sponding to the wave vector k and the Hamiltonian
‘H is represented as an expansion in powers H,; which
are proportional to the product of j amplitudes ay.
In this letter we are going to consider expansions of
Hamiltonians up to third order in wave amplitude, i.c. a
cubic Hamiltonian of the form

E : 1 1
Hg = ‘63@?@2&3523 +c.c.,
k1,k2 ks

(3) E-mail: mig_busta@yahoo.com
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where for brevity we introduced the notation a; = ay;
and 635 =0(ky —kz —ks) is the Kronecker symbol. If
Hs #£0, three-wave process is dominant and the main
contribution to the nonlinear evolution comes from the
waves satisfying the following resonance conditions:

{W(kl) +w(ks) —w(ks) =1,

2)
ki +ks —k3=0,
where w(k) is a dispersion relation for the linear wave
frequency and 2 >0 is called resonance width.
If >0, we denote ax as Ax and the equation of
motion (1) turns into

A =wihic+ Y VISALALSY, + 2 Vi Ay A5y,
ki ,k2

(3)

If =0, we denote ax as Byx and the equation of
motion (1) turns into

in = Z (V11§B13251‘25(wk — W1 — w2)

ki ,k2

+2 Vk12*BlB;511{25(w1 — Wk 7&)2)). (4)
The co-existence of these two substantially different types
of wave interactions, described by egs. (3) and (4), has
been observed in numerical simulations [4] and proven
analytically in the frame of the kinematic two-layer model
of laminated turbulence [5]. Dynamics of the layer (3) is
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described by wave kinetic equations and is well studied [3].
Dynamics of the layer (4) is practically not studied though
a lot of preliminary results are already known. Namely,
the layer (4) is described by a few independent wave
clusters formed by the waves which are in exact nonlinear
resonance [6]. The solutions of (2), corresponding to
Q =0, can be computed by the specially developed g-class
method [7] and the general form of dynamical systems
describing resonant clusters can also be found algorithmi-
cally [8], as well as coefficients of dynamical systems [9].
Moreover, as it was demonstrated in [10] (numerically)
and in [11] (analytically), these clusters “survive” for
small enough but non-zero 2, which corresponds to
the accuracy of numerical simulations or laboratory
experiments. The main goal of this letter is to study the
dynamics of the most frequently met resonant clusters.

Clusters. — In this letter we present some analytical
and numerical results for the three most commonly met
dynamical systems corresponding to non-isomorphic
clusters of nonlinear resonances —a triad, a kite, and
a butterfly consisting of 3, 4 and 5 complex variables
correspondingly.

The dynamical system for a triad has the standard
Manley-Rowe form

By =ZB}Bs, By=ZB;Bs, Bs=-ZBBy, (5)
where Z is a constant called interaction coefficient.
A kite consists of two triads a and b, with wave amplitudes
Bja, Bjy, j=1,2,3, connected via two common modes.
Analogously to [12], one can point out 4 types of kites
according to the properties of connecting modes. For our
considerations, this is not important: the general method
to study integrability of kites will be the same. For the
concreteness of presentation, in this letter a kite with
Bi, = B1p(= B1) and By, = Bap(= Bs) has been chosen:

By = B3(Z4Bsa + ZyBs),
BQ = Bik(Z(lB?)ll + ZbB?)b)a
By =—Z,B1Ba, B3y =—7,B1Bs.

(6)

A butterfly consists of two triads a and b, with wave ampli-
tudes Bj,, Bjy, j=1,2,3, connected via one common
mode. As was shown in [12], there exist 3 different types
of butterflies, according to the choice of the connecting
mode. Let us take, for instance, Bi, = B1y(=Bi1). The
corresponding dynamical system is then as follows:

By = Z,B3, Bsa + Zy B3, Bay,
By = Z,B;Bsa, Boy = Z,B}Bay,

Bs, = —Z4,B1Bsa, Bsy=—2Z,B1Bap.

(7)

Integrability of resonance clusters. — From here
on, general notations and terminology will follow Olver’s
book [13]. We wuse hereafter Einstein convention on
repeated indices and f,; =0f/0x'. Consider a general

n-dimensional system of autonomous evolution equations

of the form
dz?
dt

(t)=A2I(t), i=1,...,n. (8)
Any scalar function f(z%,t) that satisfies & (f(z(¢),1)) =
2f+Afi=0 is called a conservation law in [13]. It
is easy to see that this definition gives us two types of
conservation laws. The first type is the standard notion
used in classical physics: the conservation law is of the
form f(x'), i.e. it does not depend explicitly on time.
The second type looks more like a mathematical trick:
it is of the form f(x%t), where the time dependence
is explicit. In this letter we will be interested in both
types of conservation law because they are both physically
important. To keep in mind the difference between these
two types of conservation laws, we will call the first type
just a conservation law (CL), and we will call the second
type a dynamical invariant.

We say that syst. (8) is integrable if there are n
functionally independent dynamical invariants. Obviously,
if syst. (8) possesses (n — 1) functionally independent CLs,
then it is constrained to move along a 1-dimensional
manifold, and the way it moves is dictated by 1 dynamical
invariant. This dynamical invariant can be obtained from
the knowledge of the (n — 1) CLs and the explicit form of
syst. (8), i.e. syst. (8) is integrable then. It follows from
the theorem below that in many cases the knowledge of
only (n — 2) CLs is enough for the integrability of syst. (8).

Theorem on (n — 2)-integrability. Let us assume that
syst. (8) possesses a standard Liouville volume density

p(z): (pA*): =0,
and (n—2) functionally independent CLs, H',... H" 2.
Then a new CL in quadratures can be constructed, which
is functionally independent of the original ones, and
therefore the system is integrable.

The (lengthy) complete proof follows from the existence
of a Poisson bracket for the original syst. (8) under the
assumptions of the theorem and is an extension of the
general approach used in [14] for three-dimensional first-
order autonomous equations. The proof is constructive
and allows us to find the explicit form of a new CL for
dynamical systems of the form (5), (6), (7), etc.

For simplicity of presentation, the proof is given here for
the case n = 2. The dynamical system is just 2-dimensional
and we will write it as a vector (A, A%2)T. The theorem
requires the existence of a standard Liouville volume
density p(z!,z?) satisfying

(pAY) 1+ (pA%) 2 =0, (9)
and does not require the knowledge of conservation
laws. The theorem allows us to find by quadratures a
conservation law H (z!,z?) for the system. The procedure
goes along the lines of constructing a Hamiltonian
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structure: one has to solve for the Hamiltonian H(z!,z?)
the following equation:

01 H’1 - pAl

(o) (72) - (52)
This equation is easy to solve for the gradient of H and
the solution is: H;=—pA? Ho,=pA'. Because the
solution is obtained for the gradient of H, there is a
compatibility condition: H ;2= H ;. This condition is
equivalent to eq. (9) and is by assumption fulfilled. H can
be obtained by quadratures. Now it is easy to see that
H is a CL: A'H; =0. This finishes the proof for the case
n=2. The proof for n>2 is along the same lines but
requires the introduction of differential forms of order
higher than two and is omitted here.

The statement of the above theorem is implicitly of a
local character, in the sense that the obtained CLs are
defined in a neighborhood of a point in phase space about
which the system is considered. Considerations of global
character are related to the concept of superintegrabil-
ity [15] and are outside the scope of this paper.

In the examples below, we always need to eliminate
so-called slave phases, which corresponds to the well-
known order reduction in Hamiltonian systems [16].
The number n used below corresponds to the effective
number of degrees of freedom after this reduction has
been performed.

Integrability of a triad, dynamical system (5), is a well-
known fact (e.g. [17]) and its two conservation laws are

(10)

Ins =|Bo|® +|Bs|*, I3 =|B1|* + |Bs|*.

System (5) has been used for a preliminary check of our
method; in this case n=4. The method can thus be
applied and we obtain the following CL:

IT = IIIl(.Bl_BQB;:)7

together with the time-dependent dynamical invariant of

the form
F (arcsin ((R23_§2)1/2> 7 (ﬁi‘ﬁf)l/g)

21/2(Rg — Ry)V/2(I2%, — I13lps + I35)V/4

So=2t—

Here F is the elliptic integral of the first kind,
Ry < Ry < Rg3 are the three real roots of the polynomial

3422 =2/27— (2713~

(T34 In3) (113 — 2I23) (I3 — 2113))/27 (15— I13 153+ 1-223>3/2
and
v=|Bi]? — (2L3 — Ios + (I3 — 133 + 135)1/%) /3

is always within the interval [Ra, R3] which contains the
zero. Notice that the period of the motion (i.e. the time

it takes v(t) to go from Ry to Rs and then back to Rz)
could be easily computed from the above equation.

A kite, dynamical system (6), is also an integrable
system. Indeed, after reduction of slave variables the
system corresponds to n =6 and has 5 CLs (2 linear, 2
quadratic, 1 cubic):

Lr=Re(ZyBsq — ZoBsy), Ly =Im(ZyBs, — Z,B3p),
Iay = |B1|* + | Bsa|?* + | B3 |?,

Ingp = | B2|? + | Bsa|* + | B3y |2,

Ix =Im(B1B2(Z, B3, + ZyB3,)),

with a dynamical invariant that is essentially the
same as for a triad, Sy, after replacing Z =27, + Zp,
It =1x(Z2+2%))7%, TLis=hLhaw(Z2+23)/22 - (L% +
12))22, Iy = L ( 22 + Z}) | 2° — (L% + L3) | 22,

The dynamics of a butterfly is governed by eqs. (7) and
its 4 CLs (3 quadratic and 1 cubic) can easily be obtained:

Insq = |Boa|* +|Bsal?,  Iosp = |Bas|* + | Bas|?,

Iop = |B1|* + |Bsa|? + | Bas|?,
Io = Im(ZaBlBgaBga + ZbBlngng),

(11)

while a Liouville volume density is p = 1. Notice that all
cubic CLs are canonical Hamiltonians for the respective
triad, kite and butterfly systems. From now on we consider
the butterfly case when no amplitude is identically zero;
otherwise the system would become integrable.

The use of standard amplitude-phase representation
Bj = Cjexp(if;) of the complex amplitudes B; in terms
of real amplitudes C; and phases ¢; shows immediately
that only two phase combinations are important:

©q =014 + 020 — 034, ©p =013 + Oop — O3,

called a- and b-triad phases (with the requirement
014 = 01, which corresponds to the choice of the connecting
mode Bj, = Byp.) This reduces five complex equations (7)
to only four real ones:

dgtsa = —7,C1C54 cos @, (12)
ddC:b = —7), C1Coqy cos iy, (13)
dp, Coa  C3q\ . Iy
—7,C - PR 14
=m0 (G Gt e e O
depy Cu  Csp\ . Iy
— =7 e - 1
dt v <03b Coy) "7 (C1)? (15)
The cubic CL reads
Ip=C1 (ZaCZaCSa sin ©Ya + Zy,CapCayp sin (pb) (16)

in terms of the amplitudes and phases. This means that
the dynamics of a butterfly cluster is, in the generic case,
confined to a 3-dimensional manifold. Below we regard a
few particular cases in which syst. (7) is integrable.
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Fig. 1: (Color online) To facilitate view, color hue of the plot
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is a linear function of time ¢, varying from 0 to 1 as ¢ runs

through one quasi-period. Left panel: Z, = Z, =10/100 (integrable case), I ~ 2.1608. Middle panel: Z, =8/100, Z, = 12/100,

Iop = 2.2088. Right panel: Z, =9/100, Z, =11/100, I, =~ 2.1846

Ezample 1: real amplitudes, v, =@, =0. In this case
the Hamiltonian I, becomes identically zero, while
Liouville density in coordinates Cs,, Csp is p(Csq, Csp) =
1/C1C5,Ca. So in this case the equations for the
unknown CL H(Cjs,, Csp) are

Zo 0
Co, OCsy

Z ___0
CQa B 803:1

H

pA03a H, pACSb — _

)

and from eqs. (11) we readily obtain
H(C54,C5p) = Zp arctan (Cs, /Caq) — Z, arctan (Csp/Cap)

i.e. syst. (7) is integrable in this case. Of course, this case is
degenerate for I = 0 yields no constraint on the remaining
independent variables C3,, Cs; satisfying egs. (12), (13).

General change of coordinates. Going back to
egs. (12)—(16), we can jump from this degenerate
case to a more generic case by defining new coordinates
which are suggested by H(C34, C3p). The new coordinates
are to replace the amplitudes Cs,, C3p:

o, =arctan (Cs,/Caq), ap =arctan (Csp/Cap) .

We choose the inverse transformation to be

Coq = \/ECOS(CKG), Csa = mSin(aa)v
Cop =/ Iogp cos(ap),  Csp =/ Iozp sin(ay),
so that the domain for the new variables is 0 <o, <

/2,0 < oy < /2. for these new coordinates, the evolution
equations simplify enormously:

(17)

day, da

T =—Z7,C1 cos g, d—tb = —Z,C cos pp,

dp, 1

:1’; = Z,C1 (cot o, — tan ) sin p, — ﬁ, (18)
d I

% = 7Z,Cy (cot o — tan oy ) sin gy, — ﬁ,

where the amplitude C; > 0 is obtained using egs. (11):

Ci= \/Iab — Iy, sin? ag — Iogp sin? oy, (19)

and the cubic CL is now

)
+ZpIasp sin(2ay) sin(pyp)) .

Iy (Z4 134 sin(20,) sin(g)

(20)

Equations (18)—(20) represent the final form of our
3-dimensional general system.

Example 2: complex amplitudes, Iy =0. Here, we just
impose the condition Iy =0 but the phases are otherwise
arbitrary: this case is therefore not degenerate anymore
and we have a 3-dimensional system which requires
the existence of only 1 CL in order to be integrable:
a CL is A, =sin(2a,)sin(¢,), which can be deduced
from egs. (18). Making use of the theorem, one can
find another CL for this case: Hyew(Caa,Csp) = (14

2a, cos 2a
Zy/Z,,) arccos %) — (14 Z,/Zy) arccos (\/ﬁ )

Obviously A, and H,., are functionally independent,
i.e. the case Iy =0 is integrable.
Ezxample 3: complex amplitudes, Z, = Z;. In this case a
new CL has the form
I2
Z—OE = C3,C3, + 03,03 4 2C5,C3,CopCsp cos(pa — ¢p)

a

—C}(CF — O3, + C3, — O3, + C3), (21)
which is functionally independent of the other known
constants of motion. Therefore, according to the theorem
the case Z, = Z, is integrable.

The numerical scheme is programmed in Mathematica
with stiffness-switching method in single precision. For
arbitrary Z,, Z, the scheme has been checked by comput-
ing Iy from eq. (20) at all consequent time steps; there is
no noticeable change of I up to machine precision.

Numerical simulations. — To investigate the general
behavior of a butterfly cluster with Z, # Z;,, we inte-
grated directly eqgs. (18), (19) with Iy computed from
eq. (20) evaluated at ¢ =0 and used to check numerical
scheme afterwards. Some results of the simulations with
syst. (18) are presented in fig. 1. Initial conditions a,(0)
78,100, a(0) = 60/100, 4 (0) = 147/100, ¢ (0) = 127/100
and values of the constants of motion Iy=11/2000,
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Fig. 2: (Color online) Chain of 4 triads, real amplitudes for all
9 modes. Time and amplitudes in non-dimensioned units.

Is3, =4/100, Iz3, =4/100 are the same for all three parts
of fig. 1. Three-dimensional parametric plots are shown in
space (aq, @a, @p) with color hue depending on time, so
the plots are effectively 4D. The main goal of this series of
numerical simulations was to study changes in the dynam-
ics of a butterfly cluster according to the magnitude of
the ratio (=Z,/Z,. In fig. 1, left panel {; =1, middle
panel (,, =2/3 and right panel {, =9/11. As was shown
above, the case (; =1 is integrable, and one can see in the
left panel a seemingly closed trajectory with quasi-period
T;~21.7. A closer look shows that this trajectory is
not closed, rather the orbit precesses, which is a generic
feature of integrable systems that are not superintegrable.

Rational (,,(. produce again what appear to be
periodic motions and seemingly closed trajectories with
quasi-periods 7T;,~53 and T, ~215 correspondingly.
Again a closer look shows that the orbits precess but we
do not know in this case if the precession is associated to
integrability or not.

A few dozen of simulations made with different rational
ratios ¢ = Z,/Z, show that quasi-periodicity depends on
—or is even defined by— the commensurability of the
coefficients Z, and Z,. Figure 1 shows that ¢, =2/3
gives 2 spikes in one direction and 3 spikes in the
perpendicular direction, while (. =9/11 gives 9 and 11
spikes correspondingly; and so on.

Some preliminary series of simulations have been
performed in order to study chains of triads with connec-
tion types as in (7). The maximum number of triads
in a chain was 8, which corresponds to 17 modes. For
our numerical simulations, resonant clusters of spherical
Rossby waves were taken, with initial (non-dimensioned)
energies of the order of measured atmospheric data,
as in [18]. The dynamical system for computations
was taken in the original variables B;. The case of
real amplitudes is shown in fig. 2: all resonant modes
behave quasi-periodically. Non-dimensioned units for
time and amplitudes were chosen to illustrate clearly the
characteristic behavior of the amplitudes.

Discussion. — Our analysis and general mathematical
results [6] on resonant clusters are valid for arbitrary
Hamiltonian #;, j > 3, though computation of clusters in
the case j >3 is more involved. To keep track of the
evolution of triads and kites (which are integrable clusters)

as well as the evolution of bigger clusters (butterflies
and so on), can be regarded as an alternative method to
integrate numerically a given nonlinear PDE. This method
is known as the clipping method (CM), introduced in [19]
in order to deal with evolutionary dispersive nonlinear
PDEs. Using computer methods [7], one can construct
all resonant clusters in the chosen spectral domain and
perform numerical simulations of only the dynamical
systems corresponding to resonant clusters. As for each of
the non-resonant modes, their energies are approximately
constant during many periods of energy exchange of the
resonant modes, so these non-resonant modes can be
discarded.

Example for atmospheric planetary waves is given
in [10]: wave vectors k, as well as frequencies w are
functions of two integer parameters m and n which can
be regarded as labels of corresponding Fourier harmonics.
If one takes m <n <21, the overall number of Fourier
harmonics is 221, among them 50 are resonant and
divided into 8 clusters: 4 triads, 3 butterflies and one
cluster consisting of 13 resonant modes. Another example
is given in [8] for ocean planetary motions and m,n < 50.
The overall number of Fourier harmonics is 2500, among
them 128 resonant modes divided into 28 clusters: 18
triads, 2 butterflies and 8 clusters of a more complicated
structure; maximal cluster consists of 13 modes.

The clipping method has at least three advantages
compared to Galerkin truncation: i) Numerical schemes
in CM can be truncated at a substantially higher number
of Fourier harmonics than in GM, depending not on
the computer facilities but on some physically relevant
parameters (say, dissipation range of wave vectors k).
ii) Most of the resulting dynamical systems are triads
which are integrable. iii) The solutions obtained from
the integrable cases could be used to parameterize the
numerical solutions of non-integrable systems found for
bigger clusters. This work is in progress.

Last but not least. Even for one specific PDE, it is a
highly non-trivial task to prove that Galerkin truncation
is a Hamiltonian system and to construct an additional
conserved quantity [20]. The clipping method combined
with the constructive procedure based on the theorem on
(n — 2)-integrability, allows us to produce physically rele-
vant dynamical systems and to find additional conserva-
tion laws systematically, for a wide class of evolutionary
dispersive nonlinear PDEs.
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