
Designing an Architecture for Distributed Shared Data

on the Grid

Dacian Tudor
1

, Vladimir Cretu
1
 and Wolfgang Schreiner

2

1 “Politehnica” University of Timisoara, Computer Science and Engineering Department,

Vasile Parvan Street, No. 2, 300223, Timisoara, Romania

{dacian, vretu} @ cs.upt.ro
2 Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, 4040 Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at

Abstract. Despite the continuous advances of the last years in grid computing,

the grid computing programming paradigms are dominated by the message

passing concept. There is little support for other paradigms such as shared data

or associative programming. In this paper we analyze some of the existing

solutions for grid shared data programming and highlight some of their

drawbacks. We propose a new architecture and its core features as well as new

evaluation means of its behavior in various scenarios including the next

generation grid systems. In addition to the simplicity of our solution, we believe

that it would allow us to easily apply further extensions.

Keywords: grid computing, distributed shared data, programming model.

1 Introduction

Although the number of networked machines has been constantly increased, the

number of new distributed applications is still much lower. Some of the core issues

that are faced by distributed applications are due to latencies, synchronization and

partial failures. Only on dedicated grids ideal conditions can hold during the entire

application lifetime. Next, the increasing heterogeneity and the greater difficulty to

replace large spread legacy systems impose an important break on grid application

development. One of the answers we believe to these challenges is in the grid

programming model and more specifically in grid shared data programming.

In the grid landscape, there are very few solutions for large scale data sharing

models. Solutions like the LOTS system [1], SMG [2] or Teamster-G [3] that

addresses the shared memory problem at the grid level does not provide important

information like detailed design, replication policies, mutual exclusion handling, and

memory consistency specification. Besides the missing information, there is little

evidence of their suitability or behavior in large scale grid computing. A new

direction towards dependable distributed computing systems that aim to improve both

data and service availability is aimed by Dedisys [4], which appears to focus on

availability and fault tolerance at the system level rather than performance. Most

advanced solution for grid shared data programming that came to our knowledge is

JuxMem [5], which is based on peer-to-peer middleware. One of its main drawbacks

is the fixed replication scheme that bounds data replicas at creation time or when fault

occur, and which does not consider the system dynamics such as data usage patterns.

We have noticed that there are few shared memory systems designed for the grid.

Many of these systems were tested in particular environments that represent ideal

scenarios of fast connected machines most of the times being grouped as high

performance clusters. In search for a better approach, we aim to investigate the

problem of distributed shared memory for grid systems and provide a system

specification that addresses the following main points we found missing in most of

the existing solutions:

(1) Large scale system over large latency connections, which are dominant

between machines located at large distances.

(2) Relaxed consistency and type coherence, as we expect that relaxed

consistency does not carry sufficient information on data usage.

(3) Object oriented architecture, as the most appealing concept for grid

application programmers.

(4) Quantifiable system validation and verification, through formal methods

as a proof of concept for the system model.

2 Abstract Model

Some of the previous attempts in designing distributed shared memory systems for

the grid used logical mappings over one single large machine group. We believe that

another split is necessary. We see this mapping as part of the system deployment,

rather than a predefined mapping. In order to address thousands of nodes, we

decompose the system into a federation of groups of abstract machines called

universes. A universe is a logical collection of machine nodes which provides a

hosting environment for distributed objects. Nodes are homogeneous and have a data

storage capacity in memory and code execution capabilities. Each node can hold a

certain number of objects so that the sum of all object weights held by the node shall

not exceed the node’s capacity. All existing universes form together the Grid

Universe. Each universe is a continuously evolving entity together with its

connections to the other universes. A universe groups together more physical

machines which share the same communication paths, thus communication channels

within universes are homogeneous and have known and constant characteristics.

Communication between universes is unpredictable, unknown and dynamic.

We propose an object oriented model which provides interfaces for data

encapsulation and a natural and convenient way to abstract data sharing objects. It

supports the idea of objects residing in architectural different run-time systems like

nodes in universes. The grid universe acts as a container for grid objects and provides

means to create delete and locate grid objects based on a unique object identifier. The

users do not operate directly on objects, but rather on object references. A grid object

reference is a handle to a concrete grid object that provides the same interface as the

object provides. A Grid Object has two identifiers associated with: the GID, which is

associated by the system, and the OID which is given by the creator as a human

friendly identifier. The OID is used to lookup a certain grid object. In order to

decrease access time to grid objects from different universes, we make use of data

replication concepts. If some configurable system conditions are satisfied, a grid

object is replicated to other universe nodes, assuming that object state can be

transferred from one process to another across a communication path.

3 System Architecture Selection

The main issue that our architecture needs to address is the problem of realizing

mutual exclusion. We have chosen entry consistency as replica consistency

specification for our system and we evaluated several possible solutions to realize the

abstract model. In the following table, we summarize the characteristics of each of the

four remaining candidates, where we highlight the negative characteristics of each

solution by marking them in italic style.

Table 1. Solution Selection Criteria

Criteria Centralized/N-

T

Martin/N-T Suzuki-

Kasami/N-T

Grid N-T

Universe Scalability High High High High

Local scalability Low/Medium Low Medium High

Local obtaining time Low/Medium Medium/High Medium Low

Local resource demand Low Medium High Low/Medium

Independent

processing

High Low Low Low

Complexity Low Medium Medium High

Local dynamics High Low/Medium Low/Medium Low

. The first solution is our main contribution and refers to a centralized algorithm

inside each universe and a multi-token algorithm between universes derived from the

Naimi-Trehel [6] algorithm that was adapted to satisfy entry consistency. The core

motivation for this choice is its high local dynamics, higher capability to perform

independently, a low resource demand and low complexity. We have traded the local

scalability for all other characteristics as we believe that universes will have a limited

number of nodes for typical deployment scenarios. The next two considered solutions

are the compositional approaches described [7]. These are similar to the previous

solution, the only difference is the mutual exclusion algorithm applied inside a

universe. The last choice is the adapted Naimi-Trehel algorithm described in [8]

which is applied on the grid scope. This solution requires a gateway node in each

cluster in order to keep track if the token is held remotely or not. From this point of

view, this design approach resembles our proposal. Based on the measurements of [8],

it appears that the Naimi-Trehel algorithm is the most suitable algorithm between

universes and it provides a reasonable trade-off between different classes or

applications (highly parallel vs. low parallel applications) which supports the idea of

our architecture proposal.

Conclusions

In this paper we have highlighted the problem of shared data programming on the grid

and have pointed out that there is little research in this direction. We have introduced

an abstract programming model that transparently defines the grid shared data items

as grid shared objects. In addition to the relaxed entry consistency semantics, we

consider different object types in order to exploit different synchronization schemes

and reduce communications costs. We have proposed a mutual exclusion algorithm

based on the Naimi-Trehel algorithm that is easy to adapt and extend in order to

accommodate different interaction patterns.

A model of the presented system is currently being developed in order to be

simulated and verified using a probabilistic model checker that would provide

quantifiable results on the behavior of our system in various conditions. At the same

time, a prototype implementation is being developed in order to confirm the findings

through model verification and simulation.

References

1. Cheung, B.W.L. Cho-Li Wang Lau, F.C.M. LOTS: a software DSM supporting large

object space, IEEE International Conference on Cluster Computing, Pp. 225-234, ISBN: 0-

7803-8694-9, 2004

2. J.P. Ryan, B.A. Coghlan, SMG: Shared memory for Grids, In: Proceedings of 6th IASTED

International Conference on Parallel and Distributed Computing and Systems. 2004, pp.

439-451. http://www.cs.tcd.ie/coghlan/pubs/pdcs04-06072004-v1.pdf

3. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan

Kaufmann, San Francisco (1999)

4. J. Osrael, L. Froihofer, and K.M. Goeschka. A Replication Model for Trading Data Integrity

against Availabilit, The 12th Int. Symp. on Pacific Rim Dependable Computing

(PRDC'2006), IEEE CS Press, 2006

5. Antoniu, Gabriel and Bougé, Luc and Jan, Mathieu. JuxMem: An Adaptive Supportive

Platform for Data Sharing on the Grid. Scalable Computing: Practice and Experience,

Volume 6, Pp. 45-55, September 2005

6. M. Naimi, M. Trehel, and A. Arnold. A log (N) distributed mutual exclusion algorithm based

on path reversal. JPDC, 34(1) : 1–13, 1996

7. Julien Sopena, Fabrice Legond-Aubry, Luciana Arantes, Pierre Sens. A Composition

Approach to Mutual Exclusion Algorithms for Grid Applications. Proceedings of the 2007

International Conference on Parallel Processing (ICPP 2007), Volume 00, Page: 65, ISBN

0-7695-2933-X, 2007

8. Bertier, M.; Arantes, L.; Sens, P. Hierarchical token based mutual exclusion algorithms.

IEEE International Symposium on Cluster Computing and the Grid, 2004. CCGrid 2004,

ISBN: 0-7803-8430-x, Page 539- 546, 19-22 April 2004.

