
A Pattern-based Interaction Language for Mathematical

Services ∗

Andreas Duscher
Research Institute for Symbolic Computation (RISC-Linz)

Johannes Kepler University, Linz, Austria
andreas.duscher@risc.uni-linz.ac.at

January 2008

Abstract

In this paper we investigate a possible approach for describing the communication behavior

of mathematical software. The observed behaviour implies the occurrence of commonly recur-

ring patterns of interaction between communication participants. Identifying the interaction

patterns facilitates the development of a declarative pattern language and in a �nal step the

possibility of ad-hoc interaction between the involved parties, that have no pre-implemented

interaction protocols.

Contents

1 Introduction 3

2 Related Work 3

3 Problem domain 4

4 The Design of MPDL 6

4.1 Input/Output De�nitions . 6
4.2 Message De�nitions . 6
4.3 Behaviour De�nitions . 7
4.4 Basic Behaviours . 7
4.5 Conditional Expressions . 9
4.6 Value Expressions . 10

5 Formal Semantics of MPDL 10

5.1 Abstract Syntax . 10
5.2 Semantic Algebras . 11
5.3 Semantic Functions . 13

6 Example 15

6.1 Use Case QEPCAD . 15
6.2 Use Case QEPCADService . 17

7 The MPDL Engine Architecture and Implementation 19

7.1 The Architecture . 19
7.2 The Prototype Implementation . 20

8 Conclusion 20

∗This work was sponsored by the FWF (Austrian Science Fund) Project P17643-N04 "MathBroker II: Brokering
Distributed Mathematical Services"

1

A The MPDL Grammar 21

A.1 MPDL Syntax . 21
A.2 MPDL Lexer . 22

B QEPCAD Command Line 23

C Example Web Service Description 23

D Example Behaviour 26

2

1 Introduction

Mathematical services are web services that provide solutions to mathematical problems. Due
to the nature of mathematics they usually operate in a semantically rich domain. Current web
service technologies (e.g. WSDL[5]) mainly cover static aspects on a syntactic level. Projects like
�MathBroker� or �Mathematics on the Net� described in Section 2 have thus extended web service
technologies by means to encode semantic information about mathematical services.

Moreover web service interfaces are conceptually similar to remote procedure calls; commu-
nication protocols that consist of multiple calls have to be written manually which is a tedious
and error-prone task. This is a problem for mathematical services because of two reasons: First,
mathematical services are usually backed by software that is intended for solving problems in a
certain area of mathematics. Such software packages often need some initialization steps (e.g. for
loading corresponding libraries) and/or termination steps (e.g. for freeing allocated resources).
Second, mathematical services are involved in an intensive dialog with a client to produce a result,
i.e. according to a certain interaction protocol a sequence of messages has to be exchanged between
both parties.

Our goal is to facilitate the interaction between a client and one or more services, that have
no or little knowledge of one another. It is assumed that the client has found a matching service
that can help in achieving its computation goal. Beforehand the client has no knowledge about the
interaction protocol, the order of messages to be exchanged, nor does the client have any knowledge
about the used data types. On the base of semantic descriptions we want to enable the ad-hoc
interaction between two or more parties that have no shared pre-implemented interaction protocol.
Beside current web service and semantic web technologies, ideally we have an additional form of
representation that allows us to express patterns of interaction between parties. To achieve this
high-level goal we have to conclude the following steps:

• First we have to investigate the patterns that occur during interaction with mathematical
software.

• These interaction patterns have to be documented and described in an appropriate way.

• Based on the prior steps we have to develop a declarative language based on the found
patterns for describing the interaction protocol.

• As a �nal step we implement a prototype that allow an ad-hoc interaction between parties
which had no or little knowledge of one another.

In this paper we describe the third step. The structure of this paper is as follows: After a sketch
of the related work in Section 2, Section 3 illustrates the current problem domain. In Section
6 we describe the interaction pattern of a sample mathematical software and its relation to a
possible web service implementation. Section 4 informally describes the structure and syntax
of the proposed language. Section 5 speci�es the language on a more formal basis by applying
denotational semantics [24].

2 Related Work

In the European �Mathematics on the Net� (MONET) project [8] a prototype architecture for math-
ematical web services was developed which consists of clients and services, a broker for discovering
services by clients [10] and a manager for handling object persistence. MONET was launched si-
multaneously with the �MathBroker� project and both in�uenced each others. While the MONET
project has taken over the idea of Mathematical Service Description Language (MSDL) and ex-
pressed its own version of it, the �Mathbroker� project rede�ned the original MSDL as an extension
of the new version created by MONET [11]. In the �nal stages of MONET, it was investigated
how to encode the MONET language in the Web Ontology Language OWL [13] such that brokers
for mathematical services can make use of reasoning tools of the Semantic Web community. While
the OWL tools were found to be still experimental, this was considered as a promising direction
for the future [9].

In [1] work has been done to identify the most common service interaction patterns from a busi-
ness perspective. Barros et al distinguish three dimensions of interaction patterns: the number of

3

participants, the number of messages exchanged, and whether the receiver of a message is identi-
cal with the sender of the initial request. In a previous report (see [15]) on describing patterns of
mathematical software, we have overtaken the �rst two dimensions because they naturally describe
the basic features of interacting parties. As we do not consider the routing of messages, we skipped
the third dimension but added the dimension of failure recovery to our pattern classi�cation. Our
proposed language builds on these classi�ed patterns. To our knowledge, two fruitful approaches
exist that formalize the general patterns from [1] by either using Abstract State Machines (more
in [2]) or by applying the π-calculus (see [22]).

In the �eld of multi agent systems and agent communication several approaches exist which
deal with the formal speci�cation of interaction protocols between agents. The work done in [16]
proposes a language for de�ning inter-agent communication by the use of protocols. The result
is an executable speci�cation language called Multi-Agent Dialogue Protocols (MAP) which is
in�uenced by process calculus, and especially by Calculus of Communicating Systems [23]. In [17]
the authors adopt MAP to perform the coordination of groups of web services by using agent stubs
that delegate invocations to web services. While this mentioned work focuses on describing all
interactions of a group of web services, [19] uses a simpler form of MAP to describe the interaction
with one single web service.

In [21] the authors present a twofold calculus for describing the general communication behav-
iour of concurrent systems. While the �rst part deals with the issues of describing the oberservable
communication behaviour (respectively the global message �ow) from an global point of view, the
second part describes the endpoint behaviour of each participant. Although our pattern language
concentrates on the interaction protocols of mathematical services, this formal approach and might
represent a good starting point for additional research.

The work described in [18] focuses on a commitment-based approach for specifying interaction
protocols. By their de�nition, commitments encapsulate contractual relationships between agents
at di�erent interaction states. Their work follows a rule-based approach to combine the observable
communication behaviour with the agent's internal policies. One interesting concept concentrates
on the possibility to re�ne existing protocols, which we �nd a good inspiration for our own work.

OWL-S [13] is divided into the three main parts service pro�le, service model, and service
grounding. The service pro�le describes the non-functional service properties. The service ground-
ing relates the process model to concrete web services. The service model represents the core
functionality of a service and describes it in terms of processes. Atomic processes are indivisible
and represent the direct communication between a client and a service. Composite processes de-
scribe the relationship between atomic and additional composite processes with the help of control
�ow mechanisms. Known from work�ow languages (e.g. WS-BPEL) and imperative programming
languages these mechanisms include for instance the execution of process sequences, the concurrent
branching of di�erent processes, or conditional statements.

Beside the de�nition of control �ows for processes, the OWL-S service model o�ers the possibil-
ity to de�ne data �ows, that allow to handle data along various process constructs. As described
in [21] the scope of data is bound to the composite process, which limits the data exchange to
themselves or to the parent process. However, it is possible to derive the interaction protocol for a
service from these service models. As stated in [19], this is not a straightforward and lightweight
task. Moreover, capturing the interaction protocols as monolithic process �ows does not promote
dynamic and �exible protocol re�nements. Additional formalisms that extend and supplement
existing semantic web service technologies are feasible.

3 Problem domain

Intuitively the interaction with a web service does not seem to be a challenging task. Usually a
static interface description (e.g. WSDL) speci�es the callable methods with their input parameters,
their possible output values, and their potential fault messages. Even if this kind of information
seems to be su�cient for a human user to enable a communication, several issues are not addressed
by static interface descriptions. For better illustration let us consider a sample web service that
can integrate a polynomial.

startDialog () SessionId
useLibrary(LibName , SessionId) -
integrate(Polynomial , SessionId) Polynomial

4

freeResources(SessionId) -

Figure 1: Method Signature IntegrationService

Figure 1 describes the method signatures of the integrating service as it would appear in a WSDL
document. With some intuition a human user might reason about the method's intended e�etcs,
their correct order of execution and the semantic meaning of the input and output parameters.
Looking at the service interface, it seems obvious that certain methods have to be called before
integrating a given polynomial. For example, calling the method startDialog initiates the inter-
action with the service and returns a SessionId which is used by all remaining methods. The
method integrate represents the service's core feature of providing an integrated polynomial.
The interaction seems to end upon calling freeResources. Additionally the method useLibrary

allows to specify some libraries that can be used during computation. As shown above a human
user might be capable of deriving information from such service interface descriptions, as long as
method and parameter names reveal their real intended meaning. Using general types for input
and output parameters, such as String and Integer or using method names with no implicit
meaning can compromise even a human user's reasoning ability. Moreover from the service inter-
face the correct application of useLibrary cannot be derived. It is not clear if the invocation of
useLibrary is optional nor reveals the method signature the appropirate library names.

Current semantic markup techniques can provide solutions for some of these challenges. For
instance the knowledge contained in input and output parameters, respectivily the semantics of
the service tasks and its arguments, can be speci�ed by using OWL and OWL-S. However, due to
the missing concept of variables in the underlying formalism of description logics, computational
aspects cannot be described easily. OWL and its derivates build on a rather structural than a
computational approach, which makes the encoding of procedural knowledge not a straigthforward
process [14]. Inter-argument dependencies between di�erent method invocations as shown in the
above example The order of arguments hasInput and hasOutput cannot not be speci�ed in OWL-S
(This can only be achieved with the help of an underlying servivce grounding).

In the example the described service can be considered a simple mathematical web service.
In our view a mathematical web service o�ers mathematical computation capability by applying
web service technologies. Mostly these capabilities are provided by an underlying mathematical
software and as a consequence the service interface has to re�ect the features of this software. The
mathematical web service above and its capabilities are not complex, but as shown, for simple
services several problems are not addressed by current semantic markup techniques.

Moreover, the situation gets sophisticated when more elaborate types of mathematical software
(e.g an automated reasoner or a computer algebra system) are involved. The interaction patterns
of these mathematical software types are usually intented to ful�ll the communication needs of
a human user and do not easily �t into the web services' concepts of remote procedure calls.
Mathematical software's interaction behaviour is highly dynamic and allows to activly communicate
with the initiating party. For instance the mathematical software might ask several questions
about the submitted problem or demands further information for successful computation. Or the
initiating party (e.g. the client) not only passively consumes the provided service functionality, but
can actively o�er methods for the providing party (e.g. the mathematical service) in reverse. The
current web services description and process languages, both semantic and non-semantic markup,
do not allow to describe this proactive communication behaviour easily because web services usually
act as passive software entities that wait for external requests.

Looking at the problem domain from a more technical point of view the underlying web service
technologies partly di�er in their concepts. For instance WSDL in its current version [5] relies
on the concept of remote procedure calls in which input, output, input faults and output faults
are de�ned. On contrary the Web Service Resoure Framework (WSRF) [6] mainly bases on the
exchange of XML-based messages. Combining both approaches would allow us to stay more �exible
and the interaction protocols could be described independently from the grounding technologies
and standards.

To overcome these de�cencies a new approach would be desirable that covers the computational
and proactive aspects of mathematical web services. In [15] we have identi�ed several interaction
patterns that recurrently appear in mathematical software. Based on this work we have developed
a Mathematical Process De�nition Language (MPDL) that allows to specify interaction protocols
in a formal way. Beside this core feature our language addresses the mentioned computational and
proactive aspects of mathematical web services and its underlying software. Our intention is not
to replace but to supplement existing description techniques.

5

4 The Design of MPDL

MPDL is a domain-speci�c process de�nition language for describing the interaction with math-
ematical services. In our view a service behaviour is a communication pattern that de�nes a
commonly recurring order of message exchanges between a client and a mathematical service. In
this work we only consider bilateral communication acts although de�ning an extension for mul-
tilateral communication is considered a straigthforward task. In our language the de�nition of a
service behaviour consists of an unique identi�er, of a set of de�ned input and output messages
(see section 4.1), local message de�nitions (see section 4.2), a set of local behaviour de�nitions (see
section 4.3) and a main behaviour.

serviceBehaviour ::= service behaviour <identifier> <input>+ <output>+

<msgDefinition>* <behaviourDefinition>* <behaviours>

behaviours ::= LCB <basicBehaviour> (DOT <basicBehaviour>)* RCB

The �gure above shows the syntax fragment that describes a service behaviour.Both, local message
and local behaviour de�nitions are optional. At least one input and one output message must be
de�ned. The main behaviour is obligatory and forms the core functionality. It may consists of
one or arbitrary many basic behaviours (see section 4.4) that are sequentially executed. In the
following sections we present the language constructs in more detail. Appendix A describes the
complete language grammar of MPDL and Appendix 6 gives an overview of an example service
behaviour de�nition.

4.1 Input/Output De�nitions

Input and output de�nitions specify the interface of a service behaviour. Every service behaviour
must have at least one input and one output message. The construct input de�nes the required
message(s) that a service needs to start the interaction (e.g. the input parameters). The construct
output de�nes the required message(s) that are returned by the service after �nishing execution
(e.g. the interaction results).

input ::= input <msgIdentifier> COLON <typeIdentifier> SEMICOLON

output ::= output <msgIdentifier> COLON <typeIdentifier> SEMICOLON

These languages constructs de�ne input and output messages by an unique identi�er and a type.
Furthermore semicolons separates the de�nitions.

service behaviour QEPCAD {

input f:Formula;

output r:Result;

...

}

The �gure above shows the correct use of input and output statements. A service behaviour named
QEPCAD is de�ned, followed by the de�ntions of an input message f of type Formula and an output
message r of type Result.

4.2 Message De�nitions

Message de�nitions are similar to input and output de�nitions as they are also ident�ed by name
and type but they distinguish in the way assignments are handled. A value expression can only be
assigned (see section 4.6) to message de�nitions.

msgDefinition ::= <msgIdentifier> COLON <typeIdentifier>

(ASSIGN <valueExpr>)? SEMICOLON

In principle the message identi�er represents the variable name and the type identi�er represents
the variable type.

descr:Description = "A description comes here.";

The uses cases in the next sections extensively demonstrate the application of message de�nitions
but for the sake of completeness we show a sample de�nition in the �gure above.

6

4.3 Behaviour De�nitions

Behaviour de�nitions allow to de�ne and identify a set of one or arbitrary many basic behaviours.
A de�nition starts with the keyword behaviour, followed by an identi�er and the set of basic
behaviours that describe the interaction pattern.

behaviourDefinition ::= behaviour <behaviourIdentifier> LCB <behaviours> RCB

Although behaviour de�nitions are resuseable throughout the service behaviour in which they are
speci�ed, they are only limited to the that service behaviour. The following use case illustrates
these concepts.

Use Case. When interacting with a Mathematica service some interaction patterns may occure

more than one time. As a consequence it is reasonable to encapsulate certain interaction patterns

that can be repeatedly invoked during execution.

service behaviour Mathematica {

behaviour Finish {

!UnloadLib(id).

!EndInteraction(id)

}

...

{

DoSomeInteraction.

Finish

}

}

The service behaviour namedMathematica holds the behaviour de�nition for Finish which consists
of two basic behaviours (see section 4.4). First, the main behaviour invokes the behaviour Do-
SomeInteraction which is de�ned elsewhere in the service behaviour. Finally to stop the interaction
the behaviour Finish is invoked.

4.4 Basic Behaviours

Basic behaviours build the foundation for the de�nition of mathematical service behaviours.

basicBehaviour ::= <behaviourIdentifier> | <condStmnt> | <commBehav>

We de�ne three groups to categorize these language constructs. It can either be an a behaviour
invocation, a conditional statement, or a communication behaviour. Behaviour invocations allow
to invoke a prede�ned group of basic behaviours (see ??) that are accessible by an identi�er.
Conditional statements control the execution �ow. Communication behaviours build the core
language constructs for formulating interactions with mathematical services.

Conditional Statements

Conditional statements evaluate conditional expressions (see 4.5) and, depending on the evaluation
result, may cause changes in the subsequent control �ow.

condStmnt ::= loop <condExpr> <behaviours> |

if <condExpr> <behaviours> (else <behaviours>)?

We provide two di�erent control structures well known from imperative languages, a loop statement
and an if statement:

• loop. As long as a certain conditional expression evaluates to true, a sequence of basic
behaviours is executed.

• if. Only if a certain conditional expression evaluates to true, a sequence of basic behaviours
is executed. Additionally an alternative sequence can be exectued but this so-called else

branch is optional.

For further examples on these constructs see the sections 4.5 and 4.6.

7

Communication Behaviours

Communication behaviours describe the most-grounding interaction patterns that might occur
during service interations. according to web service pattern

commBehav ::= <send> | <receive> |

<sendReceive> | <receiveSend>

<oracle>

The �rst four constructs form the basic interaction patterns for the description of service inter-
actions. The oracle construct has a special meaning and we treat it separatly later on in this
section. It acts as an abstract placeholder for additional systems, such as an internal knowledge
base or a human user interface. Basically a communication behaviour consists of a direction oper-
ator, an operation identi�er, a message identi�er and an optional fault handling behaviour. The
following �gure shows this fundamental structure by means of the send and receive de�nitions. The
additional requirements for sendReceive and receiveSend will be discussed later in this section.

send ::= OUT <operationIdentifier> LPAR <msgIdentifier> RPAR

(LANG <msgIdentifier> <behaviourIdentifier> RANG)?

receive :: = IN <operationIdentifier> LPAR <msgIdentifier> RPAR

(LANG <msgIdentifier> <behaviourIdentifier> RANG)?

The direction operator determines the communication direction from a client's perspective. It can
either symbolize an outgoing ("!") or an incoming ("?") communication act. Operation identi�ers
represent the name of the service method to be invoked. From a more formal point of view an
operation identi�er can also be seen as a named communication channel on which messages are
transfered between two parties. A message identi�er, depending on the communication direction,
may have two di�erent meanings. It can either represent a message to be sent to a service or a
message to be received from a service.

The fault handling behaviour allows to specify an alternative control �ow in case of a received
fault message. Such a fault message has to be de�ned in the message de�nitions part (see section
4.2). Therefore every fault message has a certain message type and is uniquely identi�ed by its
message identi�er. Fault messages only di�er in their status as it changes from "normal" to "fault"
with the receiption of a fault message.

Use Case. First the formula description is sent to the service. If some fault occurred, the inter-

action will be �nalized. Otherwise the client awaits the service request for additional information

to be transmitted.

desc:Description := "The formula describes ... ";

f:InvalidFormat;

req:isReady;

...

!SetFormulaDescription(desc) <f HandleFormatFault>.

?RedayForComputation(isReady)

...

The use case demonstrates the sending and receiving of messages along with the de�nition of a
fault handling behaviour. First, the messages desc, f and isReady are de�ned in the message
de�nitions part. By default all messages have a normal status which can change during execution.
While a value expression (see section 4.6) is assigned to desc, f and isReady are empty. After these
de�nitions the interaction with the service starts. Based on a service oriented point of view, the
client invokes the service operation SetFormulaDescription with the message desc as a parameter.
It is also possible to consider this interaction as a message exchange over a named communication
channel. However, when applying the communication behaviour send the client expects no further
response from the service but in the use case above an alternative fault handling behaviour is
de�ned. Therefore it might occur that the service returns a fault message of type InvalidFormat.
In this case the status of f switches from "normal" to "fault", the returned fault message is stored
in f and the client invokes the behaviour HandleFormatFault which is responsible for further fault
handling. After the invocation of SetFormulaDescription and the optional invocation of the fault
handling behaviour HandleFormatFault, the client waits to be invoked by RedayForComputation

8

and to receive a message of type isReady. This interaction pattern can also be seen as noti�cation
mechanism, that the service provides for the client.

The sendReceive and receiveSend communication behaviours represent a more elaborate inter-
action pattern, which better re�ects the reality of current web service technologies.

• The sendReceive behaviour starts the interaction with sending a speci�c message and ex-
pects to receive a message of a certain type.

• The receiveSend behaviour waits for a speci�c message to be received and replies with a
message of a certain type.

sendReceive ::= OUT <operationIdentifier> LPAR <msgIdentifier> RPAR

RASSIGN <msgIdentifier>

(LANG <msgIdentifier> <behaviourIdentifier> RANG)?

receiveSend :: = IN <operationIdentifier> LPAR <msgIdentifier> RPAR

LASSIGN <msgIdentifier>

(LANG <msgIdentifier> <behaviourIdentifier> RANG)?

In principle these behaviours consist of two communication acts and can be seen as sequential com-
binations of the send and receive behaviours. However, compared to the separate use of send
and receive the messages are transmitted over the same communication channel, respectively only
one service operation is invoked. As we show in the �gure above, both behaviours additionally
allow to specify a fault handling behaviour.

Use Case. First the formula to be integrated is sent to the service. The result is sent back to the

client and stored. If some fault occurred, the interaction will be �nalized. Otherwise the service

asks, if more computations have to be done. The client responses with its prede�ned answer.

f:InvalidFormat;

formula:Forumula := "x^2 + 3";

result:Result;

answer:MoreComputationsRespone = "Yes.";

...

!IntegrateFormula(formula) --> result <f EndInteraction>.

?AskForMoreComputations(req) <-- answer.

...

The oracle statement

oracle ::= oracle LPAR <valueExpr> <msgIdentifier> RPAR

4.5 Conditional Expressions

Conditional expressions evaluate an expression and return a boolean value based on this evaluation.
They consist of two types, base expressions and combining expressions. Base expressions directly
evaluate an expression by returning a boolean value. They may determine the type of de�ned
messages (typeOf), help to check for null values (isNull), or check for equality. Combining
expressions aggregate conditional expressions by the usage of boolean operations (e.g. and, or,
not) with both, base expressions and additional combining expressions.

condExpr ::= LPAR

<condExpr> and <condExpr> |

<condExpr> or <condExpr> |

not <condExpr> |

isNull LPAR <msgIdentifier> RPAR |

<msgIdentifier> typeOf <typeIdentifier> |

<valueExpr> EQUALS <valueExpr>

RPAR

9

In association with conditional statements conditional expressions allow to de�ne several execution
paths depending on some conditions. The following example demonstrates such an association of
serveral conditional expressions with the if statement.

Use Case. Only if the message f is of type Formula and is not null, the service operation Send-

FormulaToService with message f as parameter is invoked.

if((f typeOf Formula) and (not (isNull(f)))

{ !SendFormulaToService(f) }

4.6 Value Expressions

Value Expressions can either be message identi�ers, quoted strings or numbers. They are used in
value assignments of message de�nitions or in equality checks of conditional statements.

valueExpr ::= IDENTIFIER | Q_STRING | INT

Through message identi�ers the corresponding value is retrieved from the storage and used in the
calling context. The use case below shows how to use an equality check with two value expressions.
While the left hand side value expression is a declared message identi�er, the right hand side value
expressions is a quoted string.

Use Case. As long as a certain message has not been received ("Ready for your computation."),
the client asks the service for free computation time.

loop(not (receivedMsg == "Ready for your computation.")))

{ !AskForComputationTime(req) --> receivedMsg }

5 Formal Semantics of MPDL

In this section we present the formal semantics of MPDL by applying the methodology of Denota-
tional Semantics [24]. It is a formal approach that allows to specify the semantics of programming
languages. The Denotational Semantics technique maps the programming language constructs to
its meaning (respectively its denotation). This is achieved by de�ning semantic functions that
map elements of the syntax domains to elements of the semantic domains. Concepts of set theory
build the foundation for these semantic domains. Its elements are mathematical objects such as
sets, functions, etc., which together form the domains that give meaning to programming language
contructs.

5.1 Abstract Syntax

The abstract syntax de�nitions specify the structure of a programming language. These de�nitions
consist of syntax domains and abstract rules. Syntax domains represent a collection of values
which share the same syntactic structure. Abstract rules de�ne the MPDL grammar in an EBNF
style. The following �gue gives an overview of the used syntax domains. Domain names such
as ServiceBehaviour, ServiceBehaviourIdenti�er, Input, Output, etc. are written in normal style.
Capital letters and abbreviated strings such as P, Name, In, Out, etc. represent typed variables
over these domains.

P ∈ ServiceBehaviour
Name ∈ ServiceBehaviourIdentifier
In ∈ Input
Out ∈ Output
D ∈ Definition
BD ∈ BehaviourDefinition
B ∈ Behaviour
BName ∈ BehaviourIdentifier
T ∈ MessageType
M ∈ MessageIdentifier
Op ∈ OperationIdentifier
Cond ∈ CondExpr
V ∈ ValueExpr
S ∈ String
N ∈ Numeral

Figure 2: Syntax Domains

10

Figure 3 shows the abstract rules that de�ne the MPDL grammar. Every rule is build up of a
left hand and right hand side separated by the rule symbol '::='. The left hand side speci�es a
nonterminal symbol such as a typed variable above (e.g. P, Name, In, Out, etc.). The right hand
side speci�es a terminal or nonterminal symbol with alternatives. Keywords are written in bold
style and variables are written in capital letters or abbreviated strings (e.g. P, Name, In, Out,

etc.). Lines that start with "//" are considered to be comments and do not play a role in the
abstract rules.

//The service behaviour.

P ::= service behaviour Name In Out D BD B

//The input message(s) for the service behaviour.

In ::= In1;In2 | //Sequence of definitions.

in M:T

//The output message(s) for the service behaviour.

Out ::= Out1;Out2 | //Sequence of definitions.

out M:T

//Definition of local messages.

D ::= D1;D2 | //Sequence of definitions.

M:T
M:T = V //Assignments are optional.

//Defintion of local behaviours.

BD ::= BD1;BD2 | //Sequence of local behaviour definitions.

behaviour BName B //Definition of local behaviour.

//Set of basic behaviours.

B ::= B1 . B2 | //Sequential exectuion

B1 + B2 | //Parallel execution

loop Cond B | //Loop

if Cond then B1 else B2 | //Condition.

BName | //Invocation of a defined local behaviour.

Op(M) |

Op(M1) 〈M2 BName〉 |
Op(M) | Op(M1) 〈M2 BName〉 |

Op(M1) → M2 |

Op(M1) → M2 〈M3 BName〉 |
Op(M1) ← M2 |
Op(M1) ← M2 〈M3 BName〉 |
oracle(M1, M2)

//Conditional expressions.

Cond ::= Cond1 and Cond2 | //Boolean AND.

Cond1 or Cond2 | //Boolean OR.

not Cond | //Boolean NOT.

isNull(M) | //Check for null values.

V ofType T | //Type check.

V1 = V2 //Equalitiy check.

//Value expressions.

V ::= M | S | N

Figure 3: MPDL Abstract Rules

The semantic functions (see section 5.3) map the syntactic language constructs of MPDL to CCS
expressions. The syntactic domains and the abstract rules of these expressions are de�ned as
follows:

C ∈ CCSExpr = Port + FunctionExpression + Identifier
Pt ∈ Port
E ∈ FunctionExpression
I ∈ Identifier

C ::= C1.C2 | C1 + C2 | C1|C2 | nil |

Pt(I).C | Pt(E).C | if E then C1 else C2 |
I | set I = C

5.2 Semantic Algebras

Semantic algebras constitutes of

I. Boolean Values

Domain b ∈ Bool = B
Operations

true, false : Bool
and : Bool× Bool→ Bool
or : Bool× Bool→ Bool
not : Bool→ Bool

11

II. Natural Numbers

Domain n ∈ Nat = N
Operations

zero, one, two, ... : Nat

III. Sequence of Characters

Domain s ∈ CharacterList

IV. Expressions for Calculus of Communicating Systems

Domain c ∈ CCS = CCSExpr

V. Identi�ers
The domains BehaviourId, MessageId,OperationId model the di�erent ident�ers used in CCS
expressions.

Domain bId ∈ BehaviourId = Identifier
Domain mId ∈MessageId = Msg
Domain oId ∈ OperationId = Port

VI. Service Descriptions
The ServiceDescription domain models the description of a service as a mapping from op-
eration identi�ers to corresponding service operations. The �rst domain operation returns a
service operation

Domain sd ∈ ServiceDescription = OperationId→ Operation
Operations

accessOperation : OperationId→ ServiceDescripton→ (Operation + Errvalue)
existsOperation : OperationId→ ServiceDescripton→ Bool

existsOperation = λoId.λ(sd, bd). let op = (accessOperation oId sd) in cases of
isOperation(op) → true
isErrvalue(op) → false

VII. List of Behaviour De�nitions
The BDList domain models a list of behaviour identi�ers.

Domain bd ∈ BDList = BehaviourId∗
Operations

createBDList : BDList
addBDList : BehaviourId→ Environment→ Environment
inBDList : BehaviourId→ Environment→ Bool

VIII. Environment
The Environment domain models the actual execution context. It is a compound domain
consisting of service descriptions and a list of behaviour identi�ers.

Domain e ∈ Environment = ServiceDescription× BDList
Operations

createEnv : ServiceDescription→ Environment
createEnv = λsd.(sd, createBDList)

IX. Service Operations
The Operation domain models a service operation as a relation of four elements of the Type
domain. Elements of the Operation domain are equvivalent to ports used in CCS expressions.

Domain op ∈ Operation = Type× Type× Type× Type
where Operation = Port

Operations
in : Operation→ Type

in = λ(in, infault, out, outfault).in
inType : OperationId→ Environment→ Type

inType = λoId.λ(sd, bd). let op = (accessOperation oId sd) in cases of
isOperation(op) → (in op)
isErrvalue(op) → notDefined

out : Operation→ Type
out = λ(in, infault, out, outfault).out

outType : OperationId→ Environment→ Type
outType = λoId.λ(sd, bd). let op = (accessOperation oId sd) in cases of

isOperation(op) → (out op)
isErrvalue(op) → notDefined

infault : Operation→ Type
infault = λ(in, infault, out, outfault).infault

infaultType : OperationId→ Environment→ Type
infaultType = λoId.λ(sd, bd). let op = (accessOperation oId sd) in cases of

12

isOperation(op) → (infault op)
isErrvalue(op) → notDefined

outfault : Operation→ Type
outfault = λ(in, infault, out, outfault).outfault

outfaultType : OperationId→ Environment→ Type
outfaultType = λoId.λ(sd, bd). let op = (accessOperation oId sd) in cases of

isOperation(op) → (outfault op)
isErrvalue(op) → notDefined

5.3 Semantic Functions

The semantic functions, also called valuation functions, eventually specify and clearify the given
meaning of the syntactic language constructs. They map elements from the abstract syntax do-
mains to elements of the semantic domains. Every abstract rule from 5.1 has a correspondig
valuation function. The syntactic language constructs are enclosed in [[]] to symbolize their
syntactic meaning. Generally speaking we express the denotation of MPDL by the mapping of
our abstract rules to CCS expressions. The following listing shows the structure of the semantic
function de�nitions by the example of input message de�ntions:

In: Input → CCS

In[[in M:T]] = write(M[[M]], (newIn T[[T]])). nil

The semantic function In takes a syntactic language construct, as de�ned by abstract rules, as
argument and returns a CCS expression. Depending on the various semantic functions the returned
elements may di�er. We describe the following semantic functions in more detail in the next
sections:

• The service behaviour valuation function

P: ServiceBehaviour → (ServiceDescription× Store)→ CCS

• The input message valuation function

In: Input → CCS

• The output message valuation function

Out: Output → CCS

• The message de�nition valuation function

D: Definition → CCS

• The behaviour de�nition valuation function

BD: BehaviourDefinition → Environment→ CCS

• The basic behaviour valuation function

B: Behaviour → Environment→ CCS

• The conditional expression valuation function

Cond: CondExpr → Store→ Bool

• The value expression valuation function

V: ValueExpr → Store→ V alue

Service Behaviour Function

This semantic function is the starting point for the mapping process. We take a service description
and a store as arguments, assume that both are already initialized and anticipate a CCS expression
that represents the service behaviour. First by applying createEnv we create an environment
that is capable of storing the service description and the behaviour de�nitions. In a next step
the semantic functions for the input messages, the output messages, the message de�nitions, the
behaviour de�nitions and the main behaviour are applied.

13

P: ServiceBehaviour → (ServiceDescription× Store)→ CCS
P[[service behaviour BName In Out D BD B]] = λ(sd, s). let e = (createEnv sd) in

In[[In]] . Out[[Out]] . D[[D]] . BD[[BD]]e . B[[B]]e | StoreManager(s)

where StoreManager(s) = read(mId). value((accessMessage mId s)) +
write(mId, m). StoreManager((updateMessage mId m s)) +

store(s). store(s′). StoreManager(s′)

Additionally the StoreManager process is initialized. It manages the access to the store by starting
three concurrent subprocesses. The �rst subprocess handles read operations, the second subprocess
handles write operations, and the third subprocess allows to generally access the store for further
operations.

Input Message Function

The function In maps a input message de�nition to a CCS expression.

In: Input → CCS

• The equation In[[In1;In2]] allows to sequentially de�ne more than one input message.

In[[In1;In2]] = In[[In1]] . In[[In2]]

• The equation In[[in M:T]] @TODO Beschreibung vervollständigen

In[[in M:T]] = write(M[[M]], (newIn T[[T]])). nil

Output Message Function

The function Out maps a output message de�nition to a CCS expression.

Out: Output → CCS

• The equation Out[[Out1;Out2]] allows to sequentially de�ne more than one input message.

Out[[Out1;Out2]] = Out[[Out1]] . Out[[Out2]]

• The equation Out[[in M:T]] @TODO Beschreibung vervollständigen

Out[[out M:T]] = write(M[[M]], (newOut T[[T]])). nil

Message De�nition Function

The function D maps a message de�nition to a CCS expression.

D: Definition → CCS

• The equation D[[D1;D2]] allows to sequentially de�ne more than one message.

D[[D1;D2]] = D[[D1]] . D[[D2]]

• The equation D[[M:T]] creates a new message M of type T and saves it to the store. By
default the message has a null value.

D[[M:T]] = write(M[[M]], (newMessage T[[T]])). nil

• Not only that the equation D[[M:T = V]] creates a new message M of type T and saves it
to the store, it also assigns a value expression to the message.

D[[M:T = V]] = store(s). write(M[[M]], (newMessage T[[T]] V[[V]]s)). store(s). nil

14

Behaviour De�nition Function

The function BD maps a behaviour de�nition and an environment to a CCS expression.

BD: BehaviourDefinition → Environment→ CCS

• The equation BD[[BD1;BD2]] @TODO Beschreibung vervollständigen

BD[[BD1;BD2]] = λe. BD[[BD1]]e . BD[[BD2]]e

• The equation BD[[behaviour BName B]] @TODO Beschreibung vervollständigen

BD[[behaviour BName B]] = λe. let id = BName[[BName]] in let e1 = (addBDList id e) in
set id = B[[B]]e1

Basic Behaviour Function

The function B maps a basic behaviour and an environment to a CCS expression.

B: Behaviour → Environment→ CCS

• The equation

B[[if Cond B1 else B2]] = λe.

store(s). if Cond[[Cond]]s then store(s). B[[B1]]e else store(s). B[[B2]]e

• The equation

B[[BName]] = λe. (inBDList BName[[BName]] e) → BName[[BName]] [] nil

• The equation

B[[Op(M)]] = λe. read(M[[M]]). value(m).
if (existsOperation Op[[Op]] e) and isMessage(m)

and ((inType Op[[Op]] e) equals type(m)) then

Op[[Op]](M[[M]])
else nil

@TODO Am besten exemplarisch einige Basic Behaviours herausgreifen und davon

die Denotionalen Semantik beschreiben

6 Example

This section presents an example use case to give an overall picture of the work described in this
paper. It consists of two parts. The �rst part presents an introductory example addressing the
events that may occur when interacting with mathematical software (in this case QEPCAD). In the
second part we show how to specify the interaction between a client and an example mathematical
service based on QEPCAD by applying our language MPDL.

6.1 Use Case QEPCAD

QEPCAD [3] is an implemention for quanti�er elimination based on partial cylindrical algebraic
decomposition (CAD). It has an command-line driven interface developed in C and is based on
the SACLIB [4] library of computer algebra functions. The command-line interface guides the user
through quanti�er elimination, which consists in QEPCAD of �ve basic steps. A screenshot of the
command line can be found in the Appendix B.

• Entering the quanti�ed formula.

• The normalization step.

• The projection step.

• The stack construction (or lifting) step.

• The construction of the solution formula.

Figure 1 gives a general overview of QEPCAD`s execution lifecylce.

15

Figure 1: The Exectuion Lifecycle of QEPCAD

16

In each step the command line o�ers the user the possibility to add additional knowledge,
that may lead the process into several directions. First QEPCAD asks for general information,
such as the list of used and free variables. After providing general information QEPCAD asks for
the quanti�ed formula. Completing the �rst phase, during every step the user has the possibility
to handle the computation to QEPCAD, manually add new knowledge, or directly jump to the
construction of the solution formula.

From the user's perspective normalizing the quanti�ed formula is an unspectacular step: all
atomic formulas are put into a special form, polynomials in atomic formulas are factored, etc. The
user can make assumptions about the quanti�ed formula, so parts of the formula that does not
satisfy the assumptions are ignored which helps to interpret the solution formula easier.

In the projection step, QEPCAD produces a so called projection factor set, which is a set of
polynomials de�ning the cylindrical algebraic decomposition that is used in the next step. The user
can choose between two operations that generate such projection factor sets. While one operation
always produces valid but larger sets, the other might not always lead to a valid result. QEPCAD
does not inform the user about success or failure until the next step. In case of failure the user has
to restart the computation process, go through all former steps and use the alternative operation.
If a valid projection factor set exists, QEPCAD moves to the stack contruction (the lifting phase)
and constructs a CAD de�ned by the projection factor set.

In the �nal step QEPCAD produces a solution formula, which is by default in the language of
Tarski formulas, but more options are available for the user to generate di�erent solution formulas.
The �gures above give an �rst impression of the guided interaction between QEPCAD and the
user. The user can either skip this step by typing in the command "`go"' or using "`�nish"'
to jump directly to the formula construction. A detailed list of commands can be found in the
documentation of QEPCAD [3].

6.2 Use Case QEPCADService

To access QEPCAD over the network a mathematical service is needed that maps QEPCAD
commands to service operations and vice versa. To achieve such a goal two approaches exist (see
Figure 2):

• Low-Level. Only a minimum set of operations (at least one) is used to map commands from
the service to the underlying mathematical software. For example only one service operation
exists that directs every command line string to QEPCAD. In a Java-like notation such an
operation would look like the following:
String ExcecuteCommand(String cmd).

• High-Level. Every executable command is mapped to a service operation that takes a more
elaborate type as parameter. In a Java-like notation these operations would look like the
following:
SessionId StartDialogue(), SetLiftingType(LiftingType t), etc.

(a) Single Service Op-
eration Mapping

(b) Multiple Service Opera-
tion Mappings

Figure 2: Low-Level and High-Level Mappings

Depending on the implementation the service facilitates either one of these two approaches or a
mixture of both. As such implementation choices are not known in advance or can change over time,
MPDL has to be decoupled from such considerations. In this section we present the WSDL-based
mathematical service QEPCADService that applies the approach of high-level mapping. Every
QEPCAD command is mapped to a speci�c service operation with an input message and/or an

17

output messages combined with a optional fault message. The service desciption is twofold. The
WSDL document presented in Appendix C describes the service interface. The MDPL document
presented in Appendix D describes the service interaction behaviour. Based on the execution
lifecycle presented in Figure 1 each execution phase has a corresponding local behaviour de�nition
which is invoked in the main behaviour of the QEPCADService shown in the next �gure:

!StartDialogue(req) --> id .
InputPhase.
NormalizationPhase.
ProjectionPhase.
LiftingPhase.
SolutionPhase.
Finish

First the client initializes the dialogue by calling the service operation StartDialogue. It takes a
value of type DialogueRequest as input message and expects to receive a value of type SessionId.
Figure 3 demonstrates the relation between MPDL statements and the WSDL constructs. The

Figure 3: Relation between MPDL Statements and WSDL Constructs

message de�nitions req and id directly correspond to the type de�nitions in the WSDL schema
part. Every MPDL message type used for communication has a related message type in the WSDL
document. The communication behaviour StartDialogue represents a service operation de�ned
in the WSDL interface part. The kind of communication behaviour (send, sendReceive, receive,
receiveSend) additionally correlates to the operation's message exchange pattern [25] which gives
enhanced information about the message exchange sequence during the invocation of a service
operation. However, we do not limit to WSDL. Every named entity that describes messages and
operations can be related to MDPL message and behaviour de�ntions. Eventually, it depends on
the concrete implemenation of the Toolkit component (see 7.2) which underlying communication
protocol (respectivley which description standard) is supported.

Second, the main behaviour sequentially invokes the local behaviours that represent the phases
of the execution lifecycle. To give an overview we only describe the solution phase which we consider
the most complex local behaviour (see Figure 4). The remaining behaviours are straigthforward
and self-explanatory. During the solution phase the service requests a solution type from the client.
This request is handled to the oracle (respectively to a knowledge base) that provides a possible
solution type. If the provided answer su�ces is not clear in advance because it hardly depends
on the concrete formula to be solved. Therefore it is likely that the service sends a fault message
to the client. The local behaviour SolveAgain then tries to obtain a new solution type from the
oracle by sending the fault message. As long as the oracle provides an answer, the client tries
to solve the formula with the given solution type by invoking UseSolutionTypeAndSolve. The
interaction with the service only ends when the client receives a result or no more alternatives for
solution types are provided by the oracle.

behaviour SolutionPhase {
?AskForSolutionType(q4).
oracle(q4,sType).
!UseSolutionTypeAndSolve(sType) --> result <f5 SolveAgain >.
Finish

}

behaviour SolveAgain {
oracle(f5,sType).
if (isNull(sType)) then Finish
else

!UseSolutionTypeAndSolve(sType) --> result <f5 SolveAgain >.
Finish

18

}

Figure 4: Solution Phase

In this section we have described an example that shows the application of MPDL and its relation
to established web service technologies. MPDL is decoupled from the underlying communication
standards which allows to focus on the interaction behaviour of mathematical services.

7 The MPDL Engine Architecture and Implementation

In this section we give a high-level overview of the MPDL engine architecture with respect to the
underlying prototype implementation which is based on the denotational semantics (see Section
5). Applying this approach we have a reference for the implementation. Moreover, we focus on
a component-oriented architecture that facilitates the easy replacement of core components in a
plug-and-play style.

7.1 The Architecture

In Figure 4 we present the general architecture of the MPDL engine and its interacting counterparts.

• The client provides a MPDL document that builds the foundation for the interaction with a
mathematical service. The client may receive such a document from a registry after successful
querying for services that full�l the requirements.

• The MPDL engine processes the MPDL document and interacts with the involved parties.

• The oracle acts as external knowledge base that can be consulted for non-trivial answers.

The core of this architecture forms the MPDL engine that consists of the following components:

• The Parser takes a MPDL document as input and parses the document according the the
de�ned MPDL grammar into an abstract syntax tree.

• The Storage stores the local variables, the sent and received messages, and the local behav-
iours. Referring to the denotational semantics (see Section 5) this component would represent
the Store and the Environment.

• The Toolkit forms the underlying communication component that handles all incoming and
outgoing messages. Depending on

• The Processor acts as the core component that mediates between the di�erent sibling
components. It consists of two subcomponents, the PdlWalker and the Communicator. The
PdlWalker processes the parsed MPDL document (respectively the corresponding abstract
syntax tree), which is the internal representation of the input MPDL document. Fragments
of these abstract syntax trees may also represent local behaviours de�ned in the MPDL
descriptions. The Storage component holds these fragments which can be further invoked by
the main behaviour de�ned in the MPDL document. The Communicator loosely couples the
Storage and the Toolkit together in a transparent manner allowing the replacement of both
components depending on the user requirements.

A MPDL document represents an interaction pattern with a mathematical service. It is
processed as follows:

• First the client sends the MPDL document to the engine to start the execution. The Parser
processes and checks the document according to the grammar.

• After successful parsing the document is transformed into an abstract syntax tree that is
handled over to the Processor. The subcomponent PdlWalker walks through the syntax
tree and executes the interaction pattern according to the grammar and the denotational
semantics. For example the PdlWalker reserves memory for message de�nitions or stores
local behaviours that can be invoked later on during execution.

19

Figure 4: The MPDL Engine Architecture

• Basic communication behaviours (e.g. send and receive statements) are processed and han-
dled over to the Communicator which transparently acts as a bridge between the engine and
the outside world.

• The Communicator passes all interaction attempts to the Toolkit component. This decou-
pling of the communication components allow to easily adopt new technologies and commu-
nication protocols while the other components stay untouched. Depending on the current
Toolkit component and the involved parties a certain communication protocol is provided,
e.g SOAP, WSDL, etc.

• After successful interaction with a mathematical service the Processor returns the result to
the client. It might happen that during execution more complex questions arise. The oracle
is a generic stub that represents a knowledge base.

7.2 The Prototype Implementation

For implementing the MPDL engine we used the ANTLRv3 (ANother Tool for Language Recogni-
tion) tool [26], which is a java-based parser generator that allows to create lexers, parsers and tree
walkers based on EBNF-style grammar �les. Based on ANTLRv3 we implemented the following
three classes:

• The PdlLexer receives a MPDL document and constructs a token stream that consists of
language tokens ready for further processing.

• The PdlParser takes the generated token stream, checks for compliance with the language
syntax and constructs an Abstract Syntax Tree (AST).

• The PdlWalker is the core of the engine. It traverses through the generated AST which
acts as the internal data representation of the service behaviour. Every node of the AST
has a corresponding implementation that represents the functionality of the current MPDL
language construct.

The implementation consists of the following packages:

• Package at.ac.uniLinz.risc.pdl contains the generated lexer/parser classes and the tree
walker, e.g. the Parser and the PdlWalker.

• Package at.ac.uniLinz.risc.comm contains all classes that provide communication func-
tionality, e.g. the Communicator and the Toolkit.

• Package at.ac.uniLinz.risc.model contains auxilary classes, e.g. the Storage.

8 Conclusion

20

A The MPDL Grammar

We apply the Extended Backus-Naur Form (EBNF) grammar for describing the grammar of MPDL.
We uses the following notation:

• The ::= de�nes a rule defnition. The lefthand side is a non-terminal sybmol and the righthand
side is a sequence of terminals and/or non-terminals.

• Words in capital letters de�ne lexical elements.

• Words in small letters de�ne keywords.

• ? The question mark de�nes zero or one of the preceding element.

• * The asterisk symbol de�nes zero or more of the preceding element.

• + The plus symbol de�nes one or more of the preceding element.

• () Parentheses allow to group several elements.

• <> Angel brackets de�ne non-terminal elements.

A.1 MPDL Syntax

serviceBehaviour ::= service behaviour <identifier> <input>+ <output>+

<msgDefinition>* <behaviourDefinition>* <behaviours>

input ::= input <msgIdentifier> COLON <typeIdentifier> SEMICOLON

output ::= output <msgIdentifier> COLON <typeIdentifier> SEMICOLON

msgDefinition ::= <msgIdentifier> COLON <typeIdentifier>

(ASSIGN <valueExpr>)? SEMICOLON

behaviourDefinition ::= behaviour <behaviourIdentifier> LCB <behaviours> RCB

behaviours ::= LCB <basicBehaviour> (DOT <basicBehaviour>)* RCB

basicBehaviour ::= <behaviourIdentifier> | <condStmnt> | <commBehav>

condStmnt ::= loop <condExpr> <behaviours> |

if <condExpr> <behaviours> (else <behaviours>)?

commBehav ::= <send> | <receive> |

<sendReceive> | <receiveSend>

<oracle>

send ::= OUT <operationIdentifier> LPAR <msgIdentifier> RPAR

(LANG <msgIdentifier> <behaviourIdentifier> RANG)?

receive :: = IN <operationIdentifier> LPAR <msgIdentifier> RPAR

(LANG <msgIdentifier> <behaviourIdentifier> RANG)?

sendReceive ::= OUT <operationIdentifier> LPAR <msgIdentifier> RPAR

RASSIGN <msgIdentifier>

(LANG <msgIdentifier> <behaviourIdentifier> RANG)?

receiveSend :: = IN <operationIdentifier> LPAR <msgIdentifier> RPAR

LASSIGN <msgIdentifier>

(LANG <msgIdentifier> <behaviourIdentifier> RANG)?

condExpr ::= LPAR

21

<condExpr> and <condExpr> |

<condExpr> or <condExpr> |

not <condExpr> |

isNull LPAR <msgIdentifier> RPAR |

<msgIdentifier> typeOf <typeIdentifier> |

<valueExpr> EQUALS <valueExpr>

RPAR

valueExpr ::= IDENTIFIER | Q_STRING | INT

behaviourIdentifier ::= IDENTIFIER

operationIdentifier ::= IDENTIFIER

msgIdentifier ::= IDENTIFIER

typeIdentifier ::= IDENTIFIER

A.2 MPDL Lexer

OUT ::= '!'

IN ::= '?'

RASSIGN ::= '-->'

LASSIGN ::= '<--'

ASSIGN ::= ':='

DOT ::= '.'

COLON ::= ':'

SEMICOLON ::= ';'

LCB ::= '{'

RCB ::= '}'

LPAR ::= '('

RPAR ::= ')'

LANG ::= '<'

RANG ::= '>'

EQUALS ::= '=='

IDENTIFIER ::= ('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'0'..'9'|'_')*

Q_STRING ::= '"'! ('"' '"'! | ~('"'|'\n'|'\r'))* ('"'|)

INT ::= ('0'..'9')+

22

B QEPCAD Command Line

C Example Web Service Description

<?xml version="1.0"?>

<definitions name="QEPCAD" targetNamespace="http://www.risc.uni-linz.ac.at/qepcad/wsdl"

xmlns:tns="http://www.risc.uni-linz.ac.at/qepcad/wsdl"

xmlns:qs="http://www.risc.uni-linz.ac.at/qepcad/schema"

xmlns:soap="http://www.w3.org/2003/11/wsdl/soap12"

xmlns="http://www.w3.org/2003/11/wsdl">

<import namespace="http://www.risc.uni-linz.ac.at/qepcad/schema"

location="http://www.risc.uni-linz.ac.at/qepcad/schema"/>

<!--------------- Types ---------------->

<types>

<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.risc.uni-linz.ac.at/qepcad/schema"

xmlns="http://www.risc.uni-linz.ac.at/qepcad/schema">

<xs:element name="DialogueRequest" type="xs:string"/>

<xs:element name="SessionId" type="xs:integer"/>

<xs:element name="Formula" type="tFormula"/>

<xs:complexType name="tFormula">

<xs:all>

23

<xs:element name="PartFormula" type="xs:string"/>

</xs:all>

</xs:complexType>

<xs:element name="VariableList" type="tVarList"/>

<xs:complexType name="tVarList">

<xs:all>

<xs:element ref="Variable" minOccurs="1" maxOccurs="unbound"/>

</xs:all>

</xs:complexType>

<xs:element name="Variable" type="xs:string"/>

<xs:element name="NrVars" type="xs:integer"/>

<xs:element name="DescriptionRequest"/>

<xs:element name="Description" type="xs:string"/>

<!----- Questions ----->

<xs:element name="NormalizationTypeQuestion" type="xs:string"/>

<xs:element name="ProjectionTypeQuestion" type="xs:string"/>

<xs:element name="LiftingTypeQuestion" type="xs:string"/>

<xs:element name="SolutionTypeQuestion" type="xs:string"/>

<!----- Answers ----->

<xs:element name="NormalizationType" type="xs:string"/>

<xs:element name="ProjectionType" type="xs:string"/>

<xs:element name="LiftingType" type="xs:string"/>

<xs:element name="SolutionType" type="xs:string"/>

<!----- Faults ----->

<xs:element name="WrongFormat" type="xs:string"/>

<xs:element name="TooMuchFreeVariables" type="xs:string"/>

<xs:element name="NoProjectionPossible" type="xs:string"/>

<xs:element name="CommandUnknown" type="xs:string"/>

<xs:element name="NotSolveable" type="xs:string"/>

</xs:schema>

</types>

<!----------------- Interface ---------------->

<interface name="QEPCADService">

<operation name="StartDialogue"

pattern="http://www.w3.org/2003/11/wsdl/in-out">

<input message="qs:DialogueRequest"/>

<output message="qs:SessionId"/>

</operation>

<operation name="AskForDescription"

pattern="http://www.w3.org/2003/11/wsdl/out-only">

<output message="qs:DescriptionRequest"/>

<input message="qs:Description"/>

</operation>

<operation name="SetVariableList"

pattern="http://www.w3.org/2003/11/wsdl/in-only">

<input message="qs:VariableList"/>

</operation>

<operation name="SetNrFreeVars"

pattern="http://www.w3.org/2003/11/wsdl/robust-in-only">

24

<input message="qs:NrVars"/>

<infault ref="qs:TooMuchFreeVariables"/>

</operation>

<operation name="SetFormula"

pattern="http://www.w3.org/2003/11/wsdl/robust-in-only">

<input message="qs:Formula"/>

<infault ref="qs:WrongFormat"/>

</operation>

<operation name="AskForNormalizationType"

pattern="http://www.w3.org/2003/11/wsdl/out-only">

<output message="qs:NormalizationTypeQuestion"/>

</operation>

<operation name="SetNormalizationType"

pattern="http://www.w3.org/2003/11/wsdl/robust-in-only">

<input message="qs:NormalizationType"/>

<infault message="qs:CommandUnknown"/>

</operation>

<operation name="AskForProjectionType"

pattern="http://www.w3.org/2003/11/wsdl/out-only">

<output message="qs:SolutionTypeQuestion"/>

</operation>

<operation name="SetProjectionType"

pattern="http://www.w3.org/2003/11/wsdl/robust-in-only">

<input message="qs:ProjectionType"/>

<infault message="qs:NoProjectionPossible"/>

</operation>

<operation name="AskForLiftingType"

pattern="http://www.w3.org/2003/11/wsdl/out-only">

<output message="qs:LiftingTypeQuestion"/>

</operation>

<operation name="SetLiftingType"

pattern="http://www.w3.org/2003/11/wsdl/robust-in-only">

<input message="qs:LiftingType"/>

<infault message="qs:CommandUnknown"/>

</operation>

<operation name="AskForSolutionType"

pattern="http://www.w3.org/2003/11/wsdl/out-only">

<output message="qs:SolutionTypeQuestion"/>

</operation>

<operation name="UseSolutionTypeAndSolve"

pattern="http://www.w3.org/2003/11/wsdl/in-out">

<input message="qs:SolutionType"/>

<output message="qs:Result"/>

<infault ref="qs:NotSolveable"/>

</operation>

</interface>

25

</definitions>

D Example Behaviour

service behaviour QEPCAD {

input descr:Description;

input variables:VariableList;

input nrFreeVars:Number;

input formula:Formula;

output result:Formula;

req:DialogueReqest

id:SessionId

q1:NormalizationTypeQuestion;

q2:ProjectionTypeQuestion;

q3:LiftingTypeQuestion;

q4:SolutionTypeQuestion;

nType:NormalizationType;

pType:ProjectionType;

lType:LiftingType;

sType:SolutionType;

retry:Answer;

f1:WrongFormat;

f2:TooMuchFreeVariables;

f3:NoProjectionPossible;

f4:CommandUnknown;

f5:NotSolveable;

behaviour InputPhase {

?AskForDescription(descrReq) <-- descr .

!SetVariableList(variables) <f1 Finish> .

!SetNrFreeVars(nrFreeVars) <f2 Finish> .

!SetFormula(formula) <f1 Finish>

}

behaviour NormalizationPhase {

?AskForNormalizationType(q1) .

consult(q1,nType) .

!SetNormalizationType(nType) <f4 Finish> .

}

behaviour ProjectionPhase {

?AskForProjectionType(q2) .

consult(q2,pType) .

!SetProjectionType(pType) <f3 AltProjection>

}

behaviour AltProjection {

consult(f3,retry).

if (retry == "yes") then InputPhase else Finish

}

behaviour LiftingPhase {

?AskForLiftingType(q3) .

consult(q3,lType) .

!SetLiftingType(lType) <f4 Finish> .

}

26

behaviour SolutionPhase {

?AskForSolutionType(q4) .

oracle(q4, sType).

!UseSolutionTypeAndSolve(sType) --> result <f5 SolveAgain> .

Finish

}

behaviour SolveAgain {

oracle(f5,sType).

if (isNull(sType)) then Finish

else

!UseSolutionTypeAndSolve(sType) --> result <f5 SolveAgain> .

Finish

}

behaviour Finish {

!EndDialogue(id)

}

{

!StartDialogue(req) --> id .

InputPhase.

NormalizationPhase.

ProjectionPhase.

LiftingPhase.

SolutionPhase.

Finish

}

}

27

References

[1] Alistair Barros et al, Service interaction patterns. In: van der Aalst, W.M.P., Benatallah, B.,
Casati, F., Curbera, F., eds.: Business Process Management. Volume 3649. (2005) 302�318

[2] Alistair Barros and Egon Börger, A Compositional Framework for Service Interaction Pat-
terns and Interaction Flows, Invited paper in: K.-K. Lau and R. Banach (Eds): Formal
Methods and Software Engineering. Proc. 7th International Conference on Formal Engineer-
ing Methods (ICFEM 2005). Springer LNCS 3785, 2005, pp. 5-35.

[3] QEPCAD (project page), August 2006. http://www.cs.usna.edu/ qepcad/B/QEPCAD.html

[4] SACLIB (project page), August 2006. http://www.cis.udel.edu/saclib/

[5] Roberto Chinnici et al, Web Services Description Language (WSDL) Version 2.0 Part 1:
Core

[6] Tim Banks, Web Services Resource Framework (WSRF) - Primer, December 2005.
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf

[7] Alexandre Alves et al, Web Services Business Process Execution Language Version 2.0, Com-
mitee draft, January 23, 2006. http://www.oasis-open.org/committees

[8] MONET � Mathematics on the Web, MONET Consortium, April 2004.
http://monet.nag.co.uk

[9] Mike Dewar, The MONET Ontologies in OWL, In MONET Workshop, Bath, UK, March
2004. http://monet.nag.co.uk/cocoon/monet/MONETWorkshop.html ICMS 2002, Bejing,
China, August 17�19, 2002. World Scienti�c Publishing, Singapore.

[10] Mike Dewar, Identifying and Brokering Mathematical Web Services, The Web Services Jour-
nal, 3(8), August 2003. http://www.syscon.com/webservices

[11] Olga Caprotti, Extending MONET to the MathBroker Information Model. Project report,
Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz,
Austria, June 2003.

[12] Rebhi Baraka, A Framework for the Registration and Discovery of Mathematical Services,
Ph.D. thesis in progress (completion expected in 2006).

[13] OWL-S 1.1 Release, November 2004. http://www.daml.org/services/owl-s/1.1/

[14] Ste�en Balzer, Thorsten Liebig, and Matthias Wagner, Pitfalls of OWL-S: a practical se-
mantic web use case, in Proc. of the 2nd Intl. Conf. on Service Oriented Computing, pp.
289-298, New York, NY, USA, December 2004.

[15] Andreas Duscher, Technical Report, October 2006.

[16] Walton C., Multi-Agent Dialogue Protocols. Proceedings of the 8th International Symposium
on Arti�cial Intelligence and Mathematics, Ft. Lauderdale, Florida, USA, January 2004.

[17] Walton C. and Barker A., An Agent-based e-Science Experiment Builder, Proceedings of the
1st International Workshop on Semantic Intelligent Middleware for the Web and the Grid,
Valencia, Spain, August 2004.

[18] Singh M., Chopra A., Desai N. and Mallya A., Protocols for processes: programming in the
large for open systems, ACM SIGPLAN Notices 39(12):73-83pp, 2004.

[19] Walton C., Protocols for Web Service Invocation, 2005.

[20] Sycara K., Towards a Formal Veri�cation of OWL-S Process Models

[21] Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, Gary Brown, Steve
Ross-Talbot, A Theoretical Basis of Communication-Centred Concurrent Programming,
http://www.dcs.qmul.ac.uk/ carbonem/cdlpaper/workingnote.pdf

28

[22] Gero Decker and Frank Puhlmann, Formalizing Service Interactions, Extended version of a
paper to be published in the 4th International Conference on Business Process Management
(BPM'2006), Vienna, Austria, September 2006.

[23] Milner R., Calculus of Communicating Systems

[24] David A. Schmidt., Denotational Semantics. A Methodology for Language Development.
Allyn and Bacon, Boston, 1 edition edition, 1986.

[25] Web Services Description Language (WSDL) Version 2.0: Additional MEPs, June 2007.
http://www.w3.org/TR/wsdl20-additional-meps/

[26] ANTLRv3 (ANother Tool for Language Recognition), March 2008. http://www.antlr.org/

29

