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Abstract

We proposed to participate in the Austrian Grid Phase 2 within
the frame of the activity “Grid Research”. We intend to deal with
development of a distributed programming tool for grid computing
which shall empower applications to perform scheduling decisions on
their own, utilizing the information about the grid environment in or-
der to adapt the algorithmic structure to the particular situation. Our
goal is to design and implement an API that can be used for develop-
ing grid-distributed parallel programs without leaving the level of the
language in which the core application is written (C/Fortran/Java).
This API will be able to eliminate lots of the algorithmic challenges of
nowadays grid programming. In this paper, we summarize our expe-
riences concerning the existing programming tools on the area of the
multi-cluster and grid environments.

1 Introduction

We proposed to participate in the Austrian Grid Phase 2 [1] within the frame
of the activity “Grid Research”. We intend to deal with development of a
distributed programming API for grid computing. This work shall in partic-
ular assist applications whose algorithmic structures do not lend themselves
to a decomposition into big sequential components whose only interactions
occur at the begin and the end of the execution of a component and that
can be scheduled by a meta-level grid workflow language that implements
communication between components by file-based mechanisms. Rather the
API shall empower applications to perform scheduling decisions on their own,
utilizing the information provided by the API about the grid environment at
hand in order to adapt the algorithmic structure to the particular situation.

However, no application can execute efficiently in the grid that is not
aware of the fact that it does not run in a homogeneous cluster environment



with high-bandwidth connectivity between all pairs of nodes but in an envi-
ronment with heterogeneous nodes and bandwidths that dramatically vary
between (at least) three different levels: the processors within a grid node,
the grid nodes within the same network, and grid nodes in different networks
linked by wide-area connections. Correspondingly, the API shall not hide
this fact from the application but reflect the information provided by the
grid management and execution environment to the programming language
level such that the application can utilize this information and adapt its be-
havior to it, e.g., by mapping closely interacting activities to nodes within
a network and minimizing communication between activities executing on
nodes in different networks.

The proposed API shall however hide low-level execution details from
the application by providing an abstract execution model that in particular
allows to initiate activities and communicate between them independent of
their physical location. The execution engine has to map these abstract
model features to the appropriate underlying mechanisms: to initiate an
activity on a local machine or on a machine within the same administrative
authority, simply a process may be started, to initiate an activity on a remote
node may mean to contact a corresponding service on that machine, provide
the appropriate credentials, and ask the service to start the activity. Likewise,
communication with another processor or with another machine in the local
network may be performed on the basis of MPI, while communication across
the grid may mean the exchange of SOAP messages with web services, or (in
the case of large messages) even the shipping of files using GridFTP.

The proposed API thus not at all compete with the “grid workflow”
principle or the “service-oriented” approach of grid computing, but simply
adds another layer of abstraction to it. The API reflects into the application
program the information provided by the available services and utilized by
an workflow execution environment, and provides a high-level interface to
the underlying mechanisms, making them more amenable to (some classes
of) application programs.

In this paper, we summarize our experiences concerning the existing pro-
gramming tools on the field of the multi-cluster and grid computing. The
State of the Art is presented in Section 2. Section 2.4 deals with the topology
aware structures of the MPICH-G2 system, which we would like to utilize
in our work. Finally, the goals and tasks of the project are outlined in Sec-
tion 3.
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Figure 1: Traditional and Advanced Programming of the Grid

2 State of the Art

To execute efficiently nowadays advanced grid applications, the fundamental
grid middleware services (e.g.: security, resource allocation, etc.) are not
sufficient anymore, but some additional grid service layers are required to
introduce like performance prediction (see Figure 1). The term performance
prediction in the context of grid denotes a group of grid services which pro-
vide assessment for the performance of various grid resources in advance
for a limited period of time. There are many ways how applications can
make a profit on this information, e.g.: applying some heuristic models in
the scheduling mechanism or optimizing the communication among the grid
nodes.

A typical performance prediction service is the Network Weather Service
(NWS) [34] software system, which became a de facto standard in the grid
community as it is used by major Grid middlewares like Globus, to gather
qualitative information about the current state of a platform (both network
and CPUs) and to predict its short-term performance.

For instance, the NetSolve [6] software system which is an implementation
of the Grid Remote Procedure Call (GridRPC) [25] API of the OGF applies
NWS for performance prediction, too.

2.1 Performance Prediction — Scheduling

An example for the applying of performance prediction is the ASKALON
project [13, 29, 28] that develops integrated environments under the WSRF
framework of Globus Toolkit 4 to support the development and execution
cycle of scientific workflows on dynamic grid environments. ASKALON em-
ploys its own prediction model based on historical data collected through



a well-defined experimental design and training phase. The output of this
prediction service is used in scheduling mechanisms enhanced with global
optimization heuristics (ASKALON applies some full-graph heuristics such
as genetic or Heterogeneous Earliest Finish Time (HEFT) [35] algorithms)
to find good mappings onto the grid that minimize the execution time.

2.2 Performance Prediction — Topology Discovery in
Grid Computing

Unlike classical parallel machines, grids present heterogenous and sometimes
even non-dedicated capacities.

Indeed, the efficient use of the Grid resources can only be achieved from a
parallel program through the use of accurate network information. Qualita-
tive information such as the network topology is crucial to achieve tasks such
as running network-aware applications [22], efficiently placing servers [11], or
predicting and optimizing collective communications performance [19].

However, the description of the structure and characteristics of the net-
work interconnecting the different Grid resources is usually not available to
users. This is mainly due to security (fear of Deny Of Service attacks) and
privacy reasons (hiding bottlenecks). Hence there is a need for tools which
automatically construct models of network platforms.

Network discovery tools have received a lot of attention in recent years.
However, most of them are not suitable for usage on the grid. Because of it is
necessary to rely on tools that only use application-level measurements, i.e.,
measurements that can be done by any application running on a comput-
ing grid without any specific privilege. This should comprises the common
end-to-end measurements, like bandwidth and latency, but also interference
measurements (i.e., whether an interaction between a pair of machines has
non-negligible impact on the interaction of another pair of machines, namely
they may use the same physical link). For security reasons, these measure-
ments are usually performed using the most basic tools, namely ping for
latency and scp of bandwidths.

Although, topology discovery is not part of the performance prediction
conventionally, but as was mentioned network topology discovery tools for
the grid must rely on only application-level measurements that are typically
provided by performance prediction services as NWS. (NWS is able to re-
port end-to-end bandwidth, latency and connection time, which are typical
application-level measurements.)

However, the NWS project focuses on quantitative information and does
not provide any kind of topological information. This provided information



is necessary but not sufficient. With more than two participating sites, si-
multaneous transmissions may collide with each other on shared links of the
wide-area network. Therefore, the predictions of NWS is often too optimistic,
because it lacks topology information and thus cannot know which links are
shared. This problem is especially important for applications that use collec-
tive communication (e.g.: MPI), where many sites communicate with each
other simultaneously.

TopoMon [10] is a ping-based tool which extends NWS with additional
sensors for the routes between the sites of a grid environment. It provides
active topology discovery (in run-time) such that its sensors are implemented
as wrapper processes around the locally available traceroute [32] programs
on the grid sites.

Another tool that attempts to discover automatically the network topol-
ogy is the Application-Level Network Mapper (ALNeM) [21]. Tt is able to
apply the most common application-level network model builder algorithms
(e.g.: spanning tree related algorithms with minimal latencies, etc.) respec-
tively and its goal is to assess the performance of concurrent transfers (for
example to improve collective communications) and not to discover the phys-
ical machines interconnection scheme (for administration purposes).

[12] defines a metholodology to compare fairly the various the topology
discovery (or network model building) algorithm built in the ALNeM software
system and to evaluate their quality. This work shows, that none of the main
existing techniques are enable to predict accurately the execution time of
simple parallel application running on the actual grid environments.

2.3 Programming Models for the Grid

A grid environment is inherently parallel, distributed, heterogeneous and
dynamic, both in terms of involved resources and their performance [15].
Furthermore, grid applications want to use resources and services dynami-
cally and flexibly across that dynamic architecture. While it may be possible
to build grid applications using existing programming tools, they are not
particularly well-suited for developing and managing flexible compositions
or deal with heterogeneous hierarchies of machines, data and network with
heterogeneous performance [14].

[20] investigates what properties and capabilities grid programming tools
should possess to support not only efficient grid codes, but their effective
development. Obviously there is not any tool that addresses all requirements
in all situations. The most frequent programming principles applied on the
grid are:



Scientific workflows: Scientific workflows emerged as one of the most at-
tractive paradigm for programming grid infrastructures. Roughly, a
workflow on the grid is a repeatable pattern of activities, which is
enable systematic allocation and organization of grid resources. Work-
flows are usually represented with directed graphs, where the nodes
represent discrete computational components, and the edges represent
paths along which data can flow between components. The ASKALON
project [13, 29, 28] develops integrated environments under the WSRF
framework of Globus Toolkit 4 to support the development and exe-
cution cycle of scientific workflows on dynamic grid environments. In
ASKALON, the workflows are expressed at a high-level of abstraction
using a graphical tool based on the UML modeling standard and ad-
vanced constructs such as parallel and sequential loops. This system
also contains a scheduling service that uses global optimization heuris-
tics to find good mappings onto the grid that minimize the execution
time.

high-performance computing: Grid is also employed for large-scale, high-
performance computing. Obtaining high-performance requires a bal-
ance of computation and communication among all involved resources.
Currently this is done by manually managing computations, communi-
cations and data locality using message-passing (e.g.: MPI) or remote
method invocation (e.g.: GridRPC'), since they require the program-
mer to be aware of the arrangement of arguments and their transfers
from particular sources to particular destinations.

While MPI addresses some of the challenges in grid computing, it has
not addressed them all. Some issues (e.g.,algorithm design, communication
patterns) can only be addressed by the MPI application developer. Local-
and wide-area networks inject significantly higher latencies and lower band-
widths, and therefore MPI applications that expect to run efficiently in grid
environments must be written with respect to this disparity in communica-
tion paths.

There are several projects for the realization of MPI libraries for hetero-
geneous multi-cluster environments: MPICH-G2, Stampi, MetaMPI, PACX-
MPI, etc. The most complete and remarkable libraries are:

PACX-MPI [9] is a complete MPI-1 standard implementation extended
some routines of the MPI-2 standard. It implements two-level commu-
nication approach for multi-cluster systems. It also supports parallel
computers with private networks by daemon processes executing on the
front-end nodes of cluster for intermachine communication.



MPICH-G2 [3, 18] is a grid-enabled implementation of the MPI-1 standard
which based on the MPICH [5] library and which uses grid services pro-
vided by the Globus Toolkit pre-Web Service (pre-Web Service) archi-
tecture for user authentication, resource allocation, I/O management,
process control and monitoring. MPICH-G2 implements topology-
aware collective operations that minimize the communication via the
slowest channels.

MPICH-G2 describes a topology with a four levels array where each
level represents a communication channel: TCP over WAN (level 0),
TCP over LAN (level 1), TCP over machine networks (clusters, level
2) and vendor MPI library over high performance network (level 3).
MPICH-G2 assigns to every process at each level a non-negative integer
named color; processes with same colors can communicate over the
corresponding channel.

MPICH-VMI [27] is a grid-enabled MPI implementation. It is also based
on MPICH [5] and utilizes the Virtual Machine Interface (VMI) [26],
which is a middleware communication layer that addresses the issues of
availability, usability, and management within heterogeneous wide-area

grids. The most important difference between the support of topology
aware MPI collectives in MPICH-VMI and in MPICH-G2 that

e MPICH-G2 requires the user to manually provide the physical
topology of the network using Resource Specification Language
(RSL), while

e MPICH-VMI constructs a limited (2 levels) network topology at
runtime using the Grid Cluster Resource Manager (GCRM) which
is an external service on the TeraGrid.

2.3.1 Extension Of MPICH-G2
MPICH-GQ [30] The GARA Quality of Service system is integrated with

MPICH-G2 in order to reduce communication latency and to optimize
the flows of messages.

MPICH-G2/SCore [24] The MPICH-SCore low level high performance
communication library for cluster computing is integrated into the
MPICH-G2 library in order to optimize the intra-communication within
the parallel machines. MPICH-SCore exchanges the vendor MPI in
MPICH-G2. The integrated library is called MPICH-G2/SCore.



MPI Globus Forwarder (MGF) [16, 17] extends the topology descrip-
tion provided by the MPICH-G2 with information about existing pri-
vate networks. MPICH-G2 usage becomes complicated for application
developers in presence of clusters where only the front-end node is
provided with a public IP address. As a matter of fact MPICH-G2
does not provide any routing mechanism among networks like PACX-
MPI; therefore MPI processes started on computing nodes belonging
to different private networks are unable to contact each another. This
prevents the transparent porting of MPI application to grids where
clusters with private networks ares used. MGF uses communication
daemons as PACX-MPI. These processes are called forwarders in MGF
and executed on the front-end nodes.

MPICH-GX [4] extends MPICH-G2 library with private IP support (sim-
ilarly to MGF) and checkpointing.

A new version of MPICH-G2 is under development. The name of this
version is mpiG, and it uses Globus Web service interfaces rather than pre-
Web service interfaces.

2.3.2 Grid Remote Procedure Call (GridRPC)

GridRPC [25] is a remote procedure call API for grid Computing based on the
Client-Server model. The concept was proposed for providing a standardized
parallel programming interface for the grid. GridRPC specification is the
first OGF document that achieved “Grid Recommendation” status.

There are necessary features of GridRPC systems such as dynamic re-
source discovery, dynamic load balancing, fault tolerance, security (multi-site
authentication, delegation of authentication, adapting to multiple security
policies, etc.), easy-to use client/server management, firewall and private ad-
dress considerations, remote large file and I/O support etc. All these features
are essential for executing the GridRPC systems efficiently on the Grid.

However, some systems based on the GridRPC concept have already ex-
isted nowadays, but the interoperability among them is still an essential open
issue, since each such a implementation employs its own protocol. Web Ser-
vices, where XML-based standards such as SOAP and WSDL are expected,
could yield a solution for this problem. However, it is not clear and evident,
whether:

1. XML-based schemas have sufficient expressive power for GridRPC and

2. performance of the communication could be made sufficient.



[31] evaluates the XML (SOAP, WSDL) based communication and states
that Web technologies are promising for GridRPC systems. Nevertheless,
this work also presents that encoding of various features of GridRPC is not
feasible due to limitations of the existing WSDL standard. Therefore, the
existing XML-based web protocols must be extended in order to apply them
for GridRPC.

Major implementations are Ninf-G [7, 33|, NetSolve [6], OnmiRPC [§]
and DIET [2]:

Ninf/Ninf-G is a Japanese project developing programming middleware
which enables users to access various resources such as hardware, soft-
ware and scientific data on the grid with an easy-to-use interface. Ninf-
G is an open source software which supports development and execution
of Grid-enabled applications using GridRPC on distributed computing
resources.

The Ninf-G software system is a reference implementation of GridRPC
system using some services of Globus Toolkit 2 (pre-Web Service ar-
chitecture), e.g.: GSI, GRAM, MDS (for resource discovery), GASS
and Globus I/O (for effective, secure, platform independent commu-
nication). The new version called Ninf-G4 is already compatible the
some WSRF services of Globus 4.

Furthermore, Ninf-G comprises some interesting and useful features
(e.g. stateful server-side objects) which have not been part of the
GridRPC API recommendation yet.

NetSolve/GridSolve is one of the middleware that implements GridRPC
and is developed by Jack Dongarra at University of Tennessee. Net-
Solve consists of three elements, client, agent and computational server.
In NetSolve system, the agent is the most important element because
of its role. The roles of the agent are resource discovery and alloca-
tion, maintaining of load balance and fault tolerance, and so on. This
enables a client to perform the request of GridRPC by knowing only
the place of the agent. NetSolve uses the Network Weather Service and
Heart Beat Monitor of the Globus Project.

OmniRPC is thread-safe GridRPC system, which inherited from Ninf Project
and which contains support for clusters with private IP networks. It
uses OpenMP (Open Multi-Processing) for programming multi-threaded
GridRPC clients and remote executables (even in a single processor by
POSIX threads). However its API still does not contain tools for com-
municating between the threads.



2.4 Topology-Aware Structures in MPICH-G2

A large number of vendor MPI implementations reside the Abstract Device
Interface (ADI) [23] layer so do most of the topology-aware MPICH imple-
mentation, e.g.: MPICH-VMI and MPICH-G2 (globus2 device). ADI is a
portable communication layer in MPICH. The ADI calls such as broadcast
or barrier are implemented in terms of point to point calls in the underlying
channel interface layer.

The common features of the existing topology-aware programming tools
are the following:

e they either attempt to discover a limited (2 levels) network topology
or expect a description of a (max. 4 levels) topology as an input,

e they forward and make available the given topology information on the
level of their programming API and

e they optimize the collective communication operations (e.g.: broad-
cast) with the help of the topology information such that they mini-
mize the usage of the slow communication channels (only in the case
of collective operations).

But they are still not able to adapt the point-to-point communication
structure of a parallel programs to network topologies such that they achieve
a nearly optimal execution time on the grid.

2.4.1 Accessing Topology Information in MPICH-G2

If the network topology is known by the user (or discovered some software
tool) another problem is how to implement parallel programs which exploit
this knowledge. In MPICH-G2, the user has the accurate information about
the topology and predefines this information as input for the software system
via Globus RSL scripts.

The topology-aware data structures of MPICH-G2 described in this sec-
tion works directly only from C/C++. MPICH-G2 communicates over TCP
or a vendor-supplied MPI (vMPI). Some of MPT’s collective operations are
implemented in MPICH-G2 by making a distinction between WAN-TCP,
LAN-TCP, and intra-machine TCP. MPI applications could make use of this
TCP stratification by creating communicators (e.g., MPI_Comm split) that
cluster processes based on this topology information. MPICH-G2 exports
information on system topology to grid applications programs through at-
tributes (associated with every communicator) [18]:
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e MPICHX_TOPOLOGY_DEPTHS is a vector (length = communicator
size) of integers in which the i element is the topology depth/network
level of the i"-ranked process in the communicator.

e MPICHX_TOPOLOGY_COLORS is a vector (length = communicator
size) of integer pointers in which the i element is, in turn, a pointer
to a vector of integers (length = MPICHX_TOPOLOGY_DEPTHS]i])
and MPICHX_TOPOLOGY_COLORS]i][j] is the color of the i*"-ranked
process at level j (note that those processes that cannot communicate
over vMPI have a topology-depth=3, and therefore, do not have a color

defined at MPICHX_TOPOLOGY _COLORS]|[3]).

After the processes have started on the grid, MPICH-G2 uses information
specified in the Resource Specification Language (RSL) script to create mul-
tilevel clustering of the processes based on the underlying network topology.
Processes that communicate using only TCP are assigned topology depths
of 3 (to distinguish between wide area, local area and intramachine TCP
messaging), and processes that can also communicate using vMPI have a
topology depth of 4. Using these topology depths MPICH-G2 groups pro-
cesses at a particular level through the assignment of colors. Two processes
are assigned the same color at a particular level if they can communicate
with each other at that network level.

Using these ordered lists of multi-method communication we can ask the
question “Can process A commumnicate with process B at multi-protocol level
i?”. For example, any two processes can communicate with each other at
WAN-TCP. Processes can communicate at LAN-TCP if and only if they are
in the same LAN cluster, they can communicate at intramachine TCP if
and only if they are in the same RSL subjob, and they can communicate
at vMPI if and only if they are in the same RSL subjob and that subjob
specifies (jobtype=mpi).

3 Goals and Plans

Our goal is to design and implement, on the basis of the grid execution engines
and management mechanisms of Globus (as developed in the Austrian Grid
Phase 1 by the groups Fahringer and Benkner) and of the existing MPICH-
G2 framework an API that can be used for developing grid-distributed par-
allel programs without leaving the level of the language in which the core
application is written (C/Fortran/Java).

This API should be able to eliminate lots of the algorithmic challenges of
grid programming, such that:

11



e First of all, API will contain built-in scenarios for different distributed
programming situations. These libraries will be based on the topol-
ogy aware information provided by MPICH-G2 and will take care of
the arrangement of the processes/jobs among the allocated resources in
order to minimize the communication latencies and to achieve an opti-
mal performance for some kind of grid applications on a geographically
distributed and heterogeneous grid architecture.

e Then, we plan to extend the previously mentioned scenarios with re-
source allocation strategies to determine the optimal pool of the avail-
able resources for each an application on a dynamic grid environment.

e Finally, we intend to add some services to our libraries which support
SOAP-based communication on the highest topology level (via WAN)
on the one hand and which also allows to use GridFTP service (for
supporting big data transfer) among the nodes on the other hand.
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