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Abstract

Equilibrated residual error estimators applied to high order finite

elements are analyzed. The estimators provide always a true upper

bound for the energy error. We prove that also the efficiency estimate

is robust with respect to the polynomial degrees. The result is com-

plete for tensor product elements. In the case of simplicial elements,

the theorem is based on a conjecture, for which numerical evidence is

provided.
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1 Introduction

Various a posteriori error estimates for numerical solutions with finite ele-
ments of low order are known to be reliable and efficient [13]. They are used
to create locally refined meshes in an adaptive way that fit to the elliptic
problem under consideration. Many theoretical and practical aspects have
been considered in the literature.

The situation is less satisfactory for the p-version and the hp-version of
the finite element method. Recently, Melenk and Wohlmuth [9] have shown
for triangular and quadrilateral meshes that the efficiency of residual error
estimators decrease only as p−1 if the polynomial degree p increases. They
reported also, however, that numerical results do not admit to expect better
theoretical results.
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In this paper we will turn to a posteriori error estimates for the p-method
and the hp-method by the hypercircle method that may be traced back to
Prager and Synge [10]. There is actual interest in this technique, since one
obtains reliable bounds without generic constants in the dominant term and
cheap implementations have been described recently; see, e.g., [4, 8]. Merely
local problems have to be solved; they are organized on local patches around
nodes of the mesh, while local problems for other classical error estimators
are oriented to elements of the triangulation.

Numerical examples show that the new estimators do not suffer from a
loss of efficiency for large p. There is a complete proof for rectangular and
quadrilateral meshes while a conjecture for an ingredient has to be built in
in the case of simplicial meshes. A crucial tool is a result on the right inverse
of the divergence operator. It can be proven for rectangles and will be left as
a conjecture for triangular partitions of the domain. The advantage of the
estimator by the hypercircle method is certainly that it reflects the H−1-norm
of the residues while the well-known residual estimators refer to weighted L2

norms of them. Of course, we have to pay for it in the analysis, and we have
to deal with distributional forms of the differential operators.

The outline of the paper follows. Section 2 describes the postprocessing
which yields the error estimate. Its reliability is an immediate consequence
of Prager and Synge’s theorem. Section 3 is concerned with the proof of
the efficiency, which emphasizes the difference to residual error estimators.
It contains a result on the right inverse of the divergence operator when
distributional terms are included, and it may be of independent interest.
A projector on univariate polynomials that is uniformly bounded in p with
respect to two norms is the topic of Section 4. The paper concludes with
numerical examples.

2 Formulation of the method

Let Ω be a polygonal or polyhedral domain in R
2 or R

3. The variational
formulation of an elliptic differential equation of second order in divergence
form is written as

a(u, v) = f(v) ∀ v ∈ V

with

a(u, v) =

∫

Ω

a∇u · ∇v dx f(v) =

∫

Ω

fv dx.
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We consider the finite element approximation with polynomials of higher
order on a quasi-uniform triangulation of Ω with simplicial, rectangular or
hexahedral elements T . Since the notation for the finite element spaces differ
for the triangulations above, we will focus on triangular meshes throughout
the paper unless otherwise stated. The finite element solution is given by

a(uN , v) = f(v) ∀ v ∈ VN ,

and in this case we have

VN = {v ∈ V : v|T ∈ P p+1(T )}.

We assume that f is a piece-wise polynomial of degree p. Otherwise, f
is assumed to be the piecewise approximation of the exact fex. As usual,
this additional approximation is left to the user, and the effect of the data
oscillation f − fex is assumed to produce an extra error of higher order, in
particular, if

∫
T
(f − fex)dx = 0 for each element T .

We assume that a is piece-wise constant and for simplicity a ≈ 1. The
analysis could be extended to a highly varying coefficient a satisfying the
quasi-monotonicity condition.

We will establish a postprocessing algorithm which provides an equili-
brated flux σ ∈ ΣN ⊂ H(div), i.e., the flux satisfies pointwise

− div σ = f. (1)

The difference between the discrete flux a∇uN and the postprocessed one
provides a true upper bound without generic constant to the error measured
in energy error. Specifically, by the theorem of Prager and Synge,

‖u − uN‖a ≤ ‖a∇uN − σ‖a−1,L2
; (2)

cf. [10] or [3, Theorem III.5.1]. In the literature, also the names hypercircle
method or two-energies principle are found.

Computations have shown that the overestimation of the error is bounded
uniformly in the mesh-size as well as the polynomial degree. This means that
the resulting estimator is efficient, and we will prove it in this paper.

The hypercircle method is the general framework. We propose the fol-
lowing specific construction for the flux σ: Following [4] the residual r ∈ V ∗

defined as
〈r, v〉 := f(v) − a(uN , v) (3)
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is written as
〈r, v〉 =

∑

T

(rT , v)0,T +
∑

E

(rE, v)0,E. (4)

The well known element and edge residuals are

rT = f + div(a∇uN),
rE = [a ∂nuN ] .

(5)

Here the divergence is taken pointwise on each element. Let φi denote the
hat basis function associated with the vertex xi. Its support is ωi = ∪{T :
xi ∈ ∂T}. We decompose the residual by this partition of unity, i.e.,

〈rωi
, v〉 := 〈r, φiv〉 .

Recalling (??) we get the element and edge terms of the local residual:

rT
ωi

= φi{f + div(a∇uN)},
rE
ωi

= φi [a∂nuN ] .
(6)

The Galerkin orthogonality of the hat basis functions yields

〈rωi
, 1〉 = 〈r, φi〉 = 0, (7)

i.e., the local residuals are bi-orthogonal to constant functions.
The element terms as well as edge terms in (6) are polynomials of degree

at most p + 1. We construct a vector function σωi
in the broken Raviart–

Thomas space RT p+1(ωi) [1],

RT p
−1(ωi) := {τ ∈ L2(ωi) : τ |T ∈ RT p(T ), T ⊂ ωi}

with RT p(T ) := {τ : τ(x) = qT + sT x, qT ∈ (P p)2, sT ∈ P p}

such that
div σωi

= rωi
.

The divergence is understood in distributional sense and is consistent with (4).
Combining this with the bounding condition, it translates into

divT σωi
= rT

ωi
in T ⊂ ωi ,

[σωi
· n] = rE

ωi
at E ⊂ ωi ,

σωi
· n = 0 on ∂ωi .

(8)
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The vector function σωi
with minimal L2-norm corresponds to the gradi-

ent that minimizes the complementary energy and is given by the solution of
a mixed method. Specifically, we can use the implementation of the Raviart–
Thomas element by Arnold and Brezzi [1]. The implementation refers to the
broken Raviart–Thomas space; we have only to insert the inhomogeneous
condition (8)2 instead of the homogeneous one: [σωi

· n] = 0. The stability
is independent of the right hand side of the equations and has been proven
in [1]. We refer to [5] for elements of Raviart–Thomas type or BDM elements
on quadrilateral grids or for three-dimensional domains.

The computation of these local fluxes is the crucial step of the equilibra-
tion. By adding up all the fluxes we obtain the global correction

σ∆ =
∑

σωi

as a solution of
div σ∆ = r.

The postprocessed flux is σ := a∇uN + σ∆, and from (2) it follows that

‖σ∆‖2
a−1

is an error estimate without a generic constant.
The main result of the present paper is to prove the p-robust efficiency

of the error estimate.

Theorem 1 (p-robust efficiency). If the mesh consists of

• affine quadrilateral or hexahedral elements

• or triangular or tetrahedral elements and Conjecture 6 is valid

then the error estimator is locally efficient, i.e.,

‖σωi
‖ ≤ c ‖∇u −∇uN‖a,ωi

(9)

holds with a constant c that is independent of h and p.

Remark 2. A global correction with the same divergence as div σ∆ can be
constructed by fluxes in RT p instead of RT p+1. Since

∑
i φi = 1, the sums
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∑
i r

T
ωi

and
∑

i r
E
ωi

are polynomials of maximal degree p. Therefore we can
replace the local residuals by the orthogonal projections onto P p and setting

rT
ωi

= Πp(φi{f + div(a∇uN)}),
rE
ωi

= Πp(φi [a∂nuN ]).

Numerical experiments show that the efficiency is reduced only slightly in this
way. Similarly, the use of the BDM elements slightly improves the efficiency
due to the larger number of local degrees of freedom.

3 Proof of the efficiency

First we note that the H−1(ωi)-norm of the local residual is bounded by the
local error:

‖rωi
‖H−1(ωi) = sup

v∈H1
0 (ωi), ‖v‖1≤1

〈rωi
, v〉

= sup
v

〈r, φiv〉 = sup
v

a(u − uN , φiv)

≤ ‖u − uN‖a sup
v∈H1

0

‖φiv‖a

‖∇v‖L2(ωi)

≤ c ‖u − uN‖a.

The last inequality follows from

‖φiv‖a ≤ c ‖∇(φiv)‖0 ≤ ‖∇v‖2
0 + ‖∇φi‖2

0 ‖v‖2
0 ≤ c ‖v‖H1

for v ∈ H1
0(ωi). Here we used an inverse inequality for ∇φi and the properly

scaled Friedrichs inequality on the element patch.
We will get at our aim, i.e., the efficiency as stated in inequality (9), when

we show the existence of a σωi
on the patch such that

div σωi
= rωi

and ‖σωi
‖0,ωi

≤ C‖rωi
‖H−1 .

This means that we have to find a continuous right inverse of the divergence
that applies to distributions of the form (4) on the patch.

The constructive proof will differ from the construction given in the pre-
vious section for the use in actual computations. The estimates are based on
two ingredients: One is the right-inverse of the divergence on one element,
the other one is the extension of normal-traces from edges to elements that
has been treated in [7] and is given in the following lemma.
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Lemma 3 (Polynomial extension operators).
Let γ ⊂ ∂T be the union of one, two, or three edges of T . Let gn ∈ L2(γ) be
given such that gn|E ∈ P p(E). If γ = ∂T we additionally assume

∫
γ
gn = 0.

Then there exists an extension σp ∈ RT p(T ) such that

div σp = 0 and trn,γ σp = gn,

and
‖σp‖0 � inf

σ∈L2(T )
div σ=0, trn,γ=gn

‖σ‖0 .

A major contribution of this paper is to construct a right inverse of the
divergence on quadrilateral and hexahedral elements. An essential tool is a
projection operator onto univariate polynomials that is uniformly bounded
in p for two norms.

Lemma 4. Let I = (−1, 1). There exist projection operators Qp : L2(I) →
P p which are uniformly bounded in p with respect to L2 and simultaneously
the H1-norm.

The proof of the lemma is postponed to the next section.
We turn to rectangular grids. Here P k,ℓ contains the polynomials of degree

k in the first variable and degree ℓ in the second one. The Raviart–Thomas
elements on rectangular grids build the spaces RT [k] := P k+1,k × P k,k+1.

Theorem 5 (right inverse on tensor product elements).
Let T be a square or a cube. Let rT ∈ P p,p(T ). Then there exists a σT ∈
RT [p](T ) such that

div σT = rT and ‖σT‖0,T ≤ c ‖rT‖H−1(T ) .

Proof. We restrict ourselves to the 2D-case and consider the Dirichlet prob-
lem

∆w = rT in T,

w = 0 on ∂T.

The flux σ := ∇w satisfies div σ = rT and ‖σ‖0 = ‖rT‖−1. We have to
project σ into the polynomials. Take the projector Q = Qp+1 from Lemma 4
and define another projector onto P p by

Q̃v := (QIv)′
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H1 d/dx−−→ L2

Q

y

y Q̃

P p+1 d/dx−−→ P p

H(div)
div−−→ L2

QΣ

y

y Q̃x ⊗ Q̃y

RT [p] div−−→ P p,p

Commuting diagram properties of projectors

with Iv(x) :=
∫ x

−1
v(s) ds. The relation

‖Q̃v‖0 = ‖(QIv)′‖0 ≤ ‖(Iv)′‖0 = ‖v‖0

shows that Q̃ is bounded in the L2-norm. The two operators have the com-
muting diagram property

Q̃u′ = (Qu)′.

The tensor product projector

QΣ = (Qx ⊗ Q̃y) × (Q̃x ⊗ Qy) : L2(T ) → RT [p](T )

is bounded in L2(T ), and it has the commuting diagram property with the
divergence, i.e.,

div QΣ = (Q̃x ⊗ Q̃y) div .

We set σT = QΣσ to complete the proof of the lemma.

The corresponding result for BDM elements is obvious.
At the moment, an analogous result for the right inverse on simplicial

elements can be posed only as a conjecture. Numerical computations with
finite elements of high order and, of course, the result for rectangles support
this conjecture.

Conjecture 6 (right inverse on simplicial elements).
Let T be a triangular or tetrahedral element. Let rT ∈ P p(T ). Then there
exists a σT ∈ RT p(T ) such that

div σT = rT and ‖σT‖0,T � ‖rT‖[H1
0 (T )]∗ .

For a further support of the conjecture we have computed the constants
Cp,q in Table 1 such that the inequalities

min
σT ∈BDMp+1

div σT =rT

‖σ‖2
0 ≤ Cp,q sup

v∈P p+q∩H1
0 (T )

(v, rT )2

‖v‖2
H1

(10)
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hold for all rT ∈ P p. The constants can be computed by finding the largest
eigenvalue of generalized eigenvalue problems. The discrete H−1-norms in (10)
approaches the H−1-norm from below. Hence,

min
σT ∈BDMp+1

div σT =rT

‖σ‖2
0 ≤ Cp ‖rT‖2

[H1
0 (T )]∗

with Cp ≤ Cp,q. The results indicate that Cp is bounded in p.

Table 1: Coefficients Cpq in (10).

p q = 3 q = 5 q = 8

1 1.81 1.76 1.76
2 2.05 1.92 1.92
4 2.43 1.99 1.99
8 3.23 2.00 2.00
16 4.92 2.38 2.00

Now we turn to the main theorem of the paper that guarantees the ef-
ficiency of the a posteriori error estimate for large polynomial degrees and
may be also of independent interest. Here we will focus on triangular grids
although we have to base the analysis now on the conjecture above.

Theorem 7. Let ω be the patch of elements around the vertex V . Let r be
the residual

〈r, v〉 =
∑

T⊂ω

∫

T

rT v +
∑

E⊂ω

∫

E

rEv (11)

with rT ∈ P p(T ) and rE ∈ P p(E). Moreover assume that 〈r, 1〉 = 0. Then
there holds

inf
σ∈RT

p
−1,0

div σ=r

‖σ‖0 ≤ C ‖r‖[H1(ω)]∗ ,

and the constant C is independent of p.

Proof. Step 1. Elimination of element residuals.
For each element T ⊂ ω we construct σT ∈ RT p(T ) such that divT σT =

−rT . By Theorem 5 this is possible with

‖σT‖0,T � ‖rT‖H1
0 (T )∗ . (12)
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Now we estimate ‖rT‖H1
0 (T )∗ , and the non-locality of negative norms will

be no problem. Given v ∈ H1
0(T ) with ‖v‖1,T ≤ 1, there is an extension

by zero to ṽ ∈ H1(ω) and (rT , v)0,T = 〈r, ṽ〉 ≤ ‖r‖H1(ω)∗‖ṽ‖1,ω. Hence,
‖rT‖H1

0 (T )∗ ≤ ‖r‖H1(ω)∗ and

‖σT‖0,ω � ‖r‖H1(ω)∗ . (13)

Let σ(1) :=
∑

σT and

r(1) := r − div
∑

T

σT , (14)

with the divergence operator understood in the distributional sense. The
new residual r(1) contains only edge terms including the edges on ∂ω. Since
we have ‖ div s‖H1(ω)∗ ≤ ‖s‖0,ω for all s ∈ L2(ω)2, it follows from (13) that
the modified functional is bounded

‖r(1)‖H1(ω)∗ � ‖r‖H1(ω)∗ .

Moreover, recalling that (14) is understood in the distributional sense, we
have

〈div σT , 1〉 = −
∫

∂T

σT · n 1 +

∫

T

divT σT 1 = −
∫

T

σ∇1 = 0

and again
〈
r(1), 1

〉
= 0.

Step 2. Elimination of boundary edge residuals.
For each triangle T consider the boundary-value problem

−∆w = 0,

w = 0 on internal edges,

∂nw = r
(1)
E for edges on ∂T ∩ ∂ω,

or in weak form with w ∈ VT := {v ∈ H1(T ) : v = 0 on internal edges},

(∇w,∇v) =

∫

E⊂∂ω

r
(1)
E v. (15)
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Set σT = ∇w in this step (without changing the symbol). From (15) it
follows that

‖σT‖0,T = ‖∇w‖0,T = sup
v∈VT

∫
E⊂∂ω

r
(1)
E v

‖∇v‖ = sup
v∈ṼT

〈
r(1), v

〉

‖∇v‖
≤ ‖r(1)‖H1(ω)∗ ,

where ṼT contains the extension of functions in VT onto ω by zero.
Since r

(1)
E is a polynomial, by Lemma 3 there exists a polynomial σ

(2)
T such

that
trn,E σ

(2)
T = r

(1)
E

on E ⊂ ∂ω, and ‖σ(2)
T ‖0,T � ‖σT‖0,T � ‖r‖H1(ω)∗ . This construction can be

done independently triangle by triangle. Next we subtract the divergences
of σ(2) :=

∑
T σ

(2)
T to obtain

r(2) = r(1) − div
∑

T

σ
(2)
T .

By construction, r(2) contains only edge residuals on internal edges. More-
over,

〈
r(2), 1

〉
= 0, and

‖r(2)‖H1(ω)∗ � ‖r‖H1(ω)∗ .

Step 3. Elimination of internal edge residuals.
We will circle around the patch: E1, T1, E2, T2, . . . , En, Tn, E1; cf. Fig-

ure 1. We start with triangle T1. Choose

VT = {v ∈ H1(T ) : v = 0 on E2}.

We pose the problem for w ∈ VT

(∇w,∇v) =

∫

E1

r
(2)
E1

v .

A function v ∈ VT can be extended to ṽ ∈ H1(ω) with supp ṽ ⊂ T1 ∪ Tn

and ‖ṽ‖1,ω ≤ c‖v‖1,T , where c depends only on the shape parameter. By
construction, ∫

E1

rE1v =
〈
r(2), ṽ

〉
.
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•

T1
T2

Tn

E1E2

E3

Figure 1. Enumeration of triangles and edges in the patch ω with n
triangles.

We set σT = ∇w, and conclude as above

‖σT‖0 � ‖r(2)‖H1(ω)∗ ,

div σT = 0,

trn,∂ω σT = 0 on ∂T1 ∩ ∂ω,

trn,E1 σT = rE,1 .

By Lemma 3 there exists a polynomial σ3
T1

with the same properties, and
bounded as σT . By subtracting, we obtain the new residual

r(3,1) = r(2) − div σ3
T1

.

It vanishes also on edge E1.
We can now proceed with this procedure for all triangles in the patch

except the last one. On the last triangle the residual is reduced to the
edge terms on the two adjacent edges in ω. Here, we pose a pure Neumann
problem. It is solvable, since

〈
r(3,n−1), 1

〉
= 0.

We have decomposed the residual as a sum of divergences of piecewise
polynomials that are bounded as stated in the theorem.
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4 A one dimensional projection operator

In order to prove Lemma 4 we start with Legendre polynomials Pi which are
L2-orthogonal on (−1, +1):

(Pi, Pj) := (Pi, Pj)L2(−1,1) = δi,j
2

2i + 1
.

We define the projection operator

(Tiu)(x) =
2i + 1

2

∫ 1

−1

Pi(y)u(y) dyPi(x),

which sends a function u ∈ L2(−1, 1) to the ith term of its Legendre expan-
sion. Hence,

‖Tiu‖2
0 =

(
2i + 1

2

)2

(Pi, u)2

∫ 1

−1

Pi(x)2 dx =
2i + 1

2
(Pi, u)2 (16)

and, for u ∈ L2(−1, 1)
∞∑

i=0

‖Tiu‖2
0 = ‖u‖2

0.

The following quasi-projection operator into the space of polynomials of de-
gree 2p − 1 was introduced by de la Vallée-Poussin [6]:

Sp =

2p−1∑

i=0

ci Ti with ci =

{
1, i ≤ p,

(2p − i)/p, p < i ≤ 2p − 1.

Lemma 8. The smoothing operators Sp satisfy
(i) Sp reproduce polynomials up to the order p.
(ii)The operators Sp are uniformly bounded in p, i.e.,

‖Sp‖L2 = 1 and ‖Sp‖H1 ≤ 3.

Proof. The first assertion follows from the fact that (Tiu)(x) gives the ith
term in the Legendre expansion of u(x). So, if u is a polynomial of degree
less or equal p, then (Tiu)(x) = 0 for all i > p and we have (Spu)(x) = u(x).
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Next we estimate the L2-norm of Sp. Note that ci ≤ 1. Exploiting the
L2-orthogonality of Legendre polynomials and identity (16) we calculate

‖Spu‖2
0 =

2p−1∑

i,j=0

cicj
2i + 1

2

2j + 1

2
|(Pi, u)||(Pj, u)| (Pi, Pj)

=

2p−1∑

i=0

c2
i ‖Tiu‖2

0 ≤
2p−1∑

i=0

‖Tiu‖2
0 = ‖u‖2

0 .

In the course of estimating the H1 seminorm of Spu we will use a well-
known relation between Legendre polynomials and their derivatives [12]

Pn(x) =
1

2n + 1
(P ′

n+1(x) − P ′
n−1(x)), (17)

and perform partial integration

∫ 1

−1

Pi(y)u(y) dy = − 1

2i + 1

∫ 1

−1

(Pi+1(y) − Pi−1(y))u′(y) dy. (18)

The boundary terms above vanish since Pn(1) = 1 and Pn(−1) = (−1)n.
Another identity we will need is

(P ′
i , P

′
j) =

{
0, i − j ≡2 1,

l(l + 1), i − j ≡2 0 where l = min{i, j}.
(19)

Now we are in the position to start calculating

‖Spu‖2
1 =

2p−1∑

i,j=1

cicj
(2i + 1)(2j + 1)

4
(P ′

i , P
′
j)(Pi, u)(Pj, u)

=
1

4

2p−1∑

i,j=1

cicj (P ′
i , P

′
j)(Pi+1 − Pi−1, u

′)(Pj+1 − Pj−1, u
′)

=:
1

4

2p∑

i,j=0

Mi,j(Pi, u
′)(Pj, u

′).

With this reordering performed in the last step we defined a symmetric matrix
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M and we continue estimating,

4‖Spu‖2
1 ≤

2p∑

i,j=0

|Mi,j||(Pi, u
′)| |(Pj, u

′)|

=

2p∑

i,j=0

2|Mi,j|√
2i + 1

√
2j + 1

‖Tiu
′‖0‖Tju

′‖0.

Let M (0) be the normalized matrix with entries M
(0)
i,j = 1√

2i+1
√

2j+1
|Mi,j| and

let t = (‖Tiu
′‖0)

2p
i=0. Then we have

2‖Spu‖2
1 ≤ tT M (0)t ≤ ρ(M (0))‖t‖2

2 = ρ(M (0))

2p∑

i=0

‖Tiu
′‖2

0 ≤ ρ(M (0))‖u′‖2
0.

Thus it remains to show that the spectral radius of M (0) is bounded by a
constant. Therefore we will estimate the row-sum norm of M (0) which is an
upper bound for ρ(M (0)).

We omit the lengthy computations of the coefficients of M and will merely
state the resulting expressions. Furthermore, because of identity (19) only
the coefficients Mi,j with i ≡2 j are nonzero.

We list the results for M starting with the diagonal entries,

Mi,i = 2(2i + 1), 0 ≤ i ≤ p − 1,

Mp,p =
1

p2
(p − 1)(4p2 − p − 2),

Mi,i =
1

p2
[(2p − i − 1)2(4i + 2) + 4i(i − 1)],

p + 1 ≤ i ≤ 2p − 1,

M2p,2p =
2

p
(2p − 1).

Since M is symmetric, we will only consider the upper right triangular matrix.
So from now on we assume i ≤ j − 2. First, we have in the upper left block

Mi,j = 0, for i < j ≤ p − 1.

Since also Mi,j = 0 if i−j is odd, we silently assume in the following formulas
that i − j is even. In order to deal with a special factor in the last row, we
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introduce the factor

θj =

{
1, j ≤ 2p − 1,
1
2
, j = 2p.

The nonzero off-diagonal entries are now given by

Mi,p = −2

p
(2i + 1), i < p,

Mi,j = −4

p
(2i + 1) θj, i < p < j,

Mp,j = − 2

p2
(p − 1)(3p + 2) θj , p < j,

Mi,j =
4

p2
(1 + 2i + 3i2 − 2p(2i + 1)) θj, p < i < j.

Now we can verify by inspection that

Mi,i ≤ 2(2i + 1) and |Mi,j| ≤
4

p

√
2i + 1

√
2j + 1, i 6= j.

Since there are at most p nonzero off-diagonal entries in each row, it follows
that the rowsum of M (0) does not exceed 6, and the proof is complete.

It remains to find a projector from P 2p−1 to P p. This will be done by
separating polynomials with zero boundary values. To this end we define
extension operators that provide polynomials of low Hs norm, s = 0, 1, to
given boundary data:

E(s)
p u(x) = argmin

v∈Pp(−1,1),
v(−1)=u(−1), v(1)=u(1)

‖v‖s, s = 0, 1.

The operators have the following properties:

Lemma 9. There is a constant C independent of p such that

‖E(s)
p u‖s ≤ C ‖u‖s , ∀u ∈ P 2p−1, s = 0, 1.

Proof. We restrict ourselves to p ≥ 2, since we may choose E
(s)
p u = u if p = 0

or p = 1.
For s = 1 the minimal energy extension is given by

E(1)
p u(x) = u(−1)

1 − x

2
+ u(1)

1 + x

2
.
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The norm estimate follows by the trace theorem, so we have

‖E(1)
p u‖1 ≤ |u(−1)| + |u(1)| ≤ C‖u‖1.

In order to determine the L2-extension we consider the minimization for
left and right endpoint separately,

w± = argmin
v∈P p(−1,1),v(±1)=1,v(∓1)=0

‖v‖2
0.

It will be crucial that the estimate in [11, Lemma 9.1] is sharp. The ansatz
v(x) =

∑p
i=0 v±,iPi(x) transforms the constraint minimization problems into

algebraic ones,
min vT Av,

with the diagonal matrix A = diag
(

2
2i+1

)p
i=0

. The constraints are now∑p
i=0(−1)iv−,i = 1 and

∑p
i=0 v−,i = 0 for the left endpoint, respectively∑p

i=0 v+,i = 1 and
∑p

i=0(−1)iv+,i = 0 for the right endpoint. Obviously the
solutions are

v+,i =
2i + 1

p(p + 2)

[
1 +

(−1)i+p+1

p + 1

]
and v−,i = (−1)iv+,i.

The total extension operator is then given by

E(0)
p u(x) = w−(x) + w+(x) =

p∑

i=0

[(−1)iu(−1) + u(1)]v+,iPi(x).

Exploiting the L2-orthogonality of Legendre polynomials a simple summation
shows that

‖E(0)
p u‖2

0 =
2

(p + 1)(p + 2)
[u(−1)2 + u(1)2]

+
2

p(p + 1)(p + 2)
[u(1) − (−1)pu(−1)]2.

(20)

Examining (20) we find that ‖E(0)
p u‖0 ≤ 3‖E(0)

2p−1u‖0. The L2-norm of the
given function is certainly not smaller than the minimal one in P 2p−1 and
thus we obtain

‖E(0)
p u‖0 ≤ 3‖E(0)

2p−1u‖0 ≤ 3‖u‖0. (21)
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We note that it is necessary to restrict the domain of the extension op-
erators in Lemma 8, e.g., to P 2p−1. Otherwise we have no bound like (21).
For this reason the map Sp will enter into the analysis.

Now we define projection operators for functions with zero boundary
values. Let

Li(x) = ci

∫ x

−1

Pi−1(s) ds, i ≥ 2,

where ci = 1
2

√
(2i − 3)(2i − 1)(2i + 1), be the ith integrated Legendre poly-

nomial. These polynomials are orthogonal with respect to the H1 norm and
have zeros at x = ±1. The normalization has been chosen according to [2],
where the the following norm estimates for u =

∑M
i=2 uiLi have been shown:

‖u′‖2
0 ≈

M∑

i=2

i2u2
i , ‖u‖2

0 ≈
M∑

i=2

[
1

i2
u2

i + (ui − ui+2)
2

]
. (22)

We set P k
0 = P k ∩ H1

0 and define the projection operators

Rp : P 2p−1
0 → P p

0

u =

2p−1∑

i=2

uiLi 7→ Rpu =

p∑

i=2

(ui −
i

p
u2p−i+1)Li .

Lemma 10. The norms ‖Rp‖0 and ‖Rp‖1 of the projection operators are
uniformely bounded in p.

Proof. Recalling (22) we obtain by a straight forward calculation

‖Rpu‖2
1 ≈

p∑

i=2

i2(ui −
i

p
u2p−i+1)

2

≤ 2

(
p∑

i=2

i2u2
i +

p∑

i=2

i4

p2
u2

2p−i+1

)

≤ 2

(
p∑

i=2

i2u2
i +

p∑

i=2

(2p − i + 1)2u2
2p−i+1

)

= 2

2p−1∑

i=2

i2u2
i ≤ C‖u‖2

1.
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The boundedness in the L2-norm follows the same lines. We first use (22) to
express ‖Rpu‖0 , and then basic estimates yield

‖Rpu‖2
0 �

p∑

i=2

1

i2
u2

i +

p∑

i=2

1

p2
u2

2p−i+1

+

p∑

i=2

(ui − ui+2)
2 +

p∑

i=2

i2

p2
(u2p−i+1 − u2p−i+3)

2

�
2p−1∑

i=2

1

i2
u2

i + (ui + ui+2)
2 ≈ ‖u‖2

0.

Now we are in the position to define the composite projection operators

R̃(s)
p = Rp(I − E(s)

p ) + E(s)
p , s = 0, 1.

Since (E
(1)
p − E

(0)
p )v is a polynomial of degree less or equal p for v ∈ P 2p−1,

the operators R̃
(0)
p and R̃

(1)
p coincide. Indeed,

R̃(1)
p v = [Rp(I − E(1)

p ) + E(1)
p ]v

= [Rp(I − E(0)
p ) + E(0)

p ]v + (I − Rp)(E
(1)
p − E(0)

p )v

= R̃(0)
p v.

Hence, the norm estimates of the individual operators prove the estimate for
R̃

(0)
p = R̃

(1)
p .

Finally we set Qp := R̃
(0)
p Sp = R̃

(1)
p Sp to complete the proof of Lemma 4.

5 Numerical example

The Poisson equation −∆u = 1 is considered on the L-shaped domain
Ω := (−1, +1)2\[0, 1) × (−1, 0]. We assume homogeneous Neumann bound-
ary conditions on ΓN := (0, 1) × {0} and homogeneous Dirichlet boundary
conditions on ΓD := ∂Ω\ΓN .

We have computed finite element solutions for p = 1, 2, 4, and 8 with
h-adaptive codes. Moreover, a reference solution was obtained by compu-
tations with even higher order polynomials. The equilibrated fluxes for the
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a posteriori error estimates have been determined with BDMp and BDMp+1

elements. There are only small differences between the two variants. The
efficiency was measured by the quotients

eror estimator

real eror
.

They were smaller than 1.6 in all cases depicted in Figures 2 and 3. A
selection is listed in Tables 2 and 3.

Table 2: Error of finite elements of degree 4 via BDM5.

unknowns estimator real error quotient
45 1.165 0.8502 1.371
97 1.011 0.7576 1.334

191 0.9728 0.7491 1.299
779 0.5313 0.4056 1.310

1563 0.2139 0.1621 1.329
3131 0.03393 0.02576 1.317
4307 0.009050 0.007139 1.268

Table 3: Error of finite elements of degree 8 via BDM9.

unknowns estimator real error quotient

153 0.7873 0.5684 1.385
353 0.6779 0.5047 1.343

1009 0.5618 0.4253 1.321
2561 0.3579 0.2695 1.328
4113 0.2265 0.1701 1,331
6441 0.1135 0.08516 1.332
8769 0.05677 0.04259 1.333

10321 0.03577 0.02683 1.333
12649 0.01789 0.01342 1.333
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