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We study exact four-wave resonances among gravity water waves in a square box with periodic boundary
conditions. We show that these resonant quartets are linked with each other by shared Fourier modes in such
a way that they form independent clusters. These clusters can be formed by two types of quartets: �1� Angle
resonances which cannot directly cascade energy but which can redistribute it among the initially excited
modes and �2� scale resonances which are much more rare but which are the only ones that can transfer
energy between different scales. We find such resonant quartets and their clusters numerically on the set of
1000�1000 modes, classify and quantify them and discuss consequences of the obtained cluster structure for
the wave-field evolution. Finite box effects and associated resonant interaction among discrete wave modes
appear to be important in most numerical and laboratory experiments on the deep water gravity waves, and our
work is aimed at aiding the interpretation of the experimental and numerical data.
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I. INTRODUCTION

Weakly nonlinear systems of random waves are usually
studied in the framework of wave turbulence theory �WTT�
�for introduction to WTT see �1��. Besides weak nonlinearity
and phase randomness, this statistical description is based on
the infinite-box limit. This approach yields wave kinetic
equations for the wave spectrum which have important sta-
tionary solutions, Kolmogorov-Zakharov �KZ� spectra �1�.
Importance of KZ spectra is in that they correspond to a
constant flux of energy in Fourier space and, therefore, they
are analogous to the Kolmogorov energy-cascade spectrum
in hydrodynamic turbulence. WTT approach can also be used
to study evolution of higher momenta of wave amplitudes
and even their probability density function, and, therefore, to
examine conditions for deviation from Gaussianity and onset
of intermittency �2–5�. Significant effort has been done in the
past to test WTT and its predictions numerically �3,6–9� as
well as experimentally �10–13�. It has been noted however
that in both the numerical and the laboratory experiments the
domain boundaries typically play a very important role and
the infinite-box limit assumed by WTT is not achieved. In-
deed, as mentioned in �9�, to overcome the wave-number
discreteness associated with the final box one needs at least
10 000�10 000 numerical resolution which is presently un-
available for this type of problem. On the other hand, as
shown in �10�, even in a 10 m�6 m laboratory flume the
finite-box effects are very strong. It is important to under-
stand that WTT takes the infinite-box limit before the weak-
nonlinearity limit, which physically means that a lot of
modes interact simultaneously if they are in quasiresonance,
i.e., satisfy the following conditions:

���k1� � ��k2� � ¯ � ��ks�� � � ,

k1 � k2 � ¯ � ks = 0 �1�

with some resonance broadening ��0 which is a monotoni-
cally increasing function of nonlinearity �mean wave ampli-

tude�. Here k and ��k� are wave vector and dispersion func-
tion �frequency� which correspond to a general wave form
�exp i�kx−�t�. WTT is supposed to work when the reso-
nance broadening � is greater than the spacing �� between
the adjacent wave modes

� � ���/�k�2�/L , �2�

where L is the box size. For some types of waves, for ex-
ample, for the capillary water waves, this condition is easy to
satisfy, and therefore to achieve WTT regime �14�. However,
this condition is often violated for some other types of
waves, in particular for the surface gravity waves which will
be the main object of this paper. This occurs in numerical
simulations, due to limitations on the numerical resolution
�7,9� and in laboratory experiments, due to an insufficient
basin size �10,11�. In these cases, the Fourier space discrete-
ness �which is due to a finite-box size� leads to significant
depletion of the number of wave resonances with respect to
the infinite-box limit. In turn, this results in a slowdown of
the energy cascade through the k space with respective steep-
ening of the wave spectra �10,15�. In addition, the wave-
number grid will cause the wave spectra to be anisotropic in
this case.

What happens when the condition �2� is so badly violated
that only waves which are in exact resonance �i.e., �=0� can
interact? In this case, the mechanism of the wave-phase ran-
domization based on many quasiresonant waves interacting
simultaneously will be absent and, therefore, one should ex-
pect less random and more coherent behavior. In �16� it was
shown that in many wave systems, resonantly interacting
waves in finite domains are partitioned into small indepen-
dent clusters in Fourier space, such that there cannot be an
energy flux between different clusters. In particular, in �17�
some examples of wave systems were given in which no
resonances exist �capillary water waves, �= �k�3/2�, as well as
systems with an infinite number of resonances �oceanic plan-
etary waves, �= �k�−1�. Both of these examples are three-
wave systems �i.e., s=3 in �1��. In the present paper we will*lena@risc.uni-linz.ac.at
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concentrate on finding resonances for the deep water gravity
waves, which is a four-wave system.

The problem of computing exact resonances in a confined
laboratory experiment is highly nontrivial because the wave
numbers are integers and �1� is a system of Diophantine
equations on many integer variables in large powers. Com-
putational time of solving this system by a simple enumera-
tion of possibilities in this case grows exponentially with
each variable and the size of spectral domain under consid-
eration. A specially developed q-class method �18–20� has
allowed us to accelerate the computation and find all the
resonances among waves in large spectral domains, in a mat-
ter of minutes. In this paper we use q-class method to con-
struct resonant wave clusters formed by four-wave reso-
nances among water gravity waves covered by the kinematic
resonance conditions in the form

�k1�1/2 + �k2�1/2 = �k3�1/2 + �k4�1/2,

k1 + k2 = k3 + k4 �3�

with ki= �mi ,ni� and integer �mi� , �ni�	1000. Our main aim is
to understand how anisotropic resonance clusters influence
the general dynamics of the complete wave field.

II. CONSTRUCTION OF q CLASSES

We adopt the general definition of a q class given in �18�
for the dispersion function �= �k�1/2 in the following way.
Consider the set of algebraic numbers R= �k1/4. Any such
number k has a unique representation,

k = 
q1/4, 
 � Z ,

where q is a product

q = p1
e1p2

e2
¯ pn

en,

while p1 , . . . , pn are all different primes and the powers
e1 , . . . ,en�N are all smaller than 4. Then the set of numbers
from R having the same q is called a q class Clq. The number
q is called a class index. For a number k=
q1/4, 
 is called
the weight of k. For instance, wave vector k= �160,40� be-
longs to the q class with q=1700. Obviously, for any two
numbers k1 ,k2 belonging to the same q class, all their linear
combinations with integer coefficients belong to the same
class q.

It can be shown that systems �3� have two general types
of solutions:

Type I. All four wave vectors belong to the same class
Clq, in which case the first equation of the systems �3� can be
rewritten as


1
�4 q + 
2

�4 q = 
3
�4 q + 
4

�4 q �4�

with integer 
1 ,
2 ,
3 ,
4.
Type II. All four wave vectors belong to two different

classes Clq1
,Clq2

; in this case the first equation of the sys-
tems �3� can be rewritten as


1
�4 q1 + 
2

�4 q2 = 
1
�4 q1 + 
2

�4 q2 �5�

with integer 
1 ,
2.

Notice that �5� is not an identity in the initial variables
mi , ni because an integer can have several different presen-
tations as a sum of two squares, for instance, 4-tuple
��−1,4	 , �2,−5	 , �−4,1	 , �5,−2	� is an example of II-type so-
lution, with all weights 
i=1 and q-class indexes q1
=17, q2=29.

The I- and II-type of solutions describe substantially dif-
ferent energy exchanges in the k space. The II-type reso-
nances are called angle resonances �23� and consist of wave
vectors with pairwise equal lengths, i.e., �k1�= �k3� and �k2�
= �k4� or �k1�= �k4� and �k2�= �k3�. Thus, these resonances do
not transfer energy outside of the initial range of �k� and,
therefore, cannot provide an energy cascade mechanism.
However, these resonances can redistribute energy among
the initial wave numbers, in both the direction k / �k� and the
scale �k�. Since the initial support of energy in �k� cannot
change, the II-type resonances alone would form a finite-
dimensional system, and it would be reasonable to expect a
relaxation of such a system to a thermodynamic Rayleigh-
Jeans distribution determined by the initial values of the mo-
tion integrals �the energy and the wave action in the this
case�. Note that such a thermalization could happen only
among the resonant wave numbers, and many modes which
are initially excited but not in resonance would not evolve at
all. �Such an absence of the evolution was called “frozen
turbulence” in �6� where the capillary waves were studied for
which there are no exact resonances.� Whether the thermali-
zation does occur in finite clusters and under what conditions
�e.g., the cluster size, etc.� are interesting questions that re-
main to be studied in the future.

On the other hand, the I-type resonances are called scale
resonances �23�, and they can generate new wavelengths—
this corresponds to three or four different weights 
 in �4�
�23�. Thus, they are the only kind of resonances that can
transfer energy outside of the range of initial �k�.

Before studying the structure of resonances let us notice
the following simple but important fact. Suppose a quartet

�k̃1,k̃2,k̃3,k̃4	 �6�

is a solution of �3�, then each permutation of indexes
1↔2,3↔4 or simultaneous 1↔3 and 2↔3 will generate a
new solution of �6�; in general case, all together eight differ-
ent symmetry generated solutions. Of course, in some par-
ticular cases, when some of the vectors belonging to a quar-
tet coincide, the overall number of symmetry generated
solutions can be smaller. For instance, the quartet
��0,−54	 , �0,294	 , �90,120	 , �−90,120	� is part of the cluster
of eight symmetry generated solutions, while the quartet
��17,31	 , �−153,−279	 , �−68,−124	 , �−68,−124	� belongs to
the cluster of four such solutions. In Fig. 1 the smallest tri-
dents cluster is shown, with and without multiedges. Graphi-
cal presentation of a cluster as a graph with multiedges is of
course mathematically correct but would make the pictures
of bigger clusters somewhat nebulous �see Fig. 1, left-hand
panel�. Notice that although formally we have solutions with
multiplicities due to the symmetries, physically all of these
solutions correspond to the same quartet, and therefore we
count them as one. Therefore, further on we omit multiedges
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in our graphical presentations as it is shown in Fig. 1, right-
hand panel.

In the next sections, in all of the figures, the structure of
resonance clusters in the spectral space is shown as follows:
Each wave vector is presented as a node of integer lattice and
nodes belonging to one solution are connected by lines.

III. SCALE RESONANCES

We have studied the cluster structure of the scale reso-
nances in the spectral domain �m� , �n�	1000. In our compu-
tational domain we have found 230 464 such resonances,
among them 213 760 collinear �i.e., all four wave vectors are
collinear� and only 16 704 �7.25%� noncollinear resonances.
However, the nonlinear interaction coefficient in collinear
quartets is equal to zero and, therefore, they have no dynami-
cal significance �24�. On the other hand, for mathematical
completeness we will consider these solutions too, because
there may exist four-wave systems with the same dispersion
law but with different forms of interaction coefficients such
that are not necessarily zero on the collinear quartets.

In Table I the structure of all clusters is presented while in
Table II the structure of noncollinear is given; cluster length

is the number of quartets belonging to one cluster.
In Fig. 2 structure of collinear and noncollinear quartets is

shown in a smaller domain �mi
2+ni

2	100.

A. Collinear quartets

First, let us make an important remark. If a 4-tuple
��m1 ,n1	 , �m2 ,n2	 , �m3 ,n3	 , �m4 ,n4	� consists of all collinear
wave vectors, then the ratio �mi� / �ni� is the same for all four-
wave vectors. Let us assume that mi , ni�0, then

0 � �ni�/�mi� = c, ∀ i = 1,2,3,4, �7�

where c is an arbitrary finite rational constant and

�ki�1/2 = �mi
2 + ni

2�1/4 = mi
1/2�1 + c2�1/4, �8�

and systems �3� take the form


m1
1/2 + m2

1/2 = m3
1/2 + m4

1/2

m1 + m2 = m3 + m4
� ⇒ �m1m2�1/2 = �m3m4�1/2

⇒ �m1� = �m3m4�/�m2� .

Now we can compute m1 taking arbitrary integer m2 ,m3 ,m4
provided that �m3m4� is divisible on �m2�, and keeping in
mind that ni=cmi, we can find all collinear solutions with c
�0. Obviously, a rational number c defines a line in the

TABLE I. Clustering in the entire set of quartets in the domain
1000�1000 �symmetrical solutions are omitted�.

Cluster
length

Number of
clusters

Cluster
length

Number of
clusters

1 43136 56 3

2 1256 60 6

8 452 72 1

10 184 80 1

12 20 92 2

16 14 128 1

20 10 152 1

40 7 176 1

48 2 208 1

TABLE II. Clustering in the noncollinear subset of quartets in
the domain 1000�1000 �symmetrical solutions are omitted�.

Cluster
length

Number of
clusters

Cluster
length

Number of
clusters

1 1312 10 18

2 48 12 6

3 8 16 8

6 14 34 2

8 4 46 2

0
-54

0
294

90
120

-90
120

0
-54

0
294

90
120

-90
120

(b)(a)

FIG. 1. �Color online� Wave numbers m ,n are shown in the
rectangles as upper and lower numbers. The smallest tridents cluster
formed by eight symmetry generated solutions, two presentation
forms are given: With multiedges �left-hand panel� and without
multiedges �right-hand panel�.
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FIG. 2. �Color online� Structure of collinear resonances in the
spectral domain m ,n such that �k�= ��m2+n2�	100 �left-hand
panel� and of noncollinear resonances in the same domain �right-
hand panel�. Wave vectors belonging to different resonance quartets
are shown in different colors.
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spectral space and not all of the lines are allowed. Case c
=0 corresponds to the solutions lying on the axes X �ni
=cmi� and Y �mi=cni�, i.e., with all mi=0 or ni=0 corre-
spondingly, e.g., 4-tuple ��4,0	 , �−49,0	 , �−36,0	 , �−9,0	�.
Parametrization of the resonances in this case was first given
in �24�. As we have already mentioned before, these quartets
are dynamically irrelevant because there is no nonlinear in-
teraction within these quartets �24�.

B. Noncollinear quartets

1. Tridents

Noncollinear scale resonances have been studied first in
�9,15� in the spectral domain �mi

2+ni
2	100 and a special

type of quartets named tridents have been singled out. By
definition, a wave quartet is called a trident if:

�1� There exist two vectors among four in a quartet, say
k1 and k2, such that k1↑ ↓k2, thus they satisfy �k1 ·k2�
=−k1k2.

�2� Two other vectors in the quartet, k3 and k4, have the
same length, k3=k4.

�3� k3 and k4 are equally inclined to k1, thus �k1 ·k3�
= �k1 ·k4�.

The following presentation for a trident quartet has been
suggested in �9,15�,

k1 = �a,0�, k2 = �− b,0�, k3 = �c,d�, k4 = �c,− d� ,

�9�

and two-parametric series of solutions are written as

a = �s2 + t2 + st�2, b = �s2 + t2 − st�2,

c = 2st�s2 + t2�, d = s4 − t4, �10�

with arbitrary integer s , t. It is easy to check that vectors
k1 , k2 , k3 , k4 belong to the same class Cl1, with weights


1 = s2 + t2 + st, 
2 = s2 + t2 − st, 
3 = 
4 = s2 + t2,

and obviously 
1+
2=
3+
4 , ∀ s , t�Z.
Parametrization �9� corresponds to the tridents oriented

along the X axis with its vectors k1 and k2 and, therefore,
we will call them axial tridents. There exist also non-
axial tridents, for instance, the quartet ��49,49	 ,

�−9,−9	 , �5,35	 , �35,5	�. As mentioned in �9,15�, all the
nonaxial tridents can be obtained from the axial ones, �9�, via
a rotation by angles with rational values of cosine combined
with respective rescaling �to obtain an integer-valued solu-
tion out of rational-valued ones�.

In the computational domain �m� , �n�	1000, we have
found 13 888 nonaxial tridents, the first nonaxial trident is
shown in Fig. 3. Among 13 888, 13 504 tridents have no
vectors on any axis and 384 tridents have just one vector on
an axis �for instance, ��180,135	,�0,64	,�120,119	,�60,80	��.
The total amount of all possible tridents is 14 848, thus only
960 are axial �6.5% of the total number�. The data on tri-
dents’ clustering are given in Table III.

2. Nontridents

Our study of the resonance solution set in the spectral
domain �mi� , �ni�	1000 shows that not all noncollinear cas-
cading quartets are tridents. They are called further non-
tridents, e.g., a quartet ��990,180	,�128,256	,�718,236	,
�400,200	� is a nontrident quartet �Fig. 4�.

The overall number of tridents is 14 848 while the num-
ber of nontridents is 1856. Notice that the first nontrident
quartet ��180,135	,�0,64	,�120,119	,�60,80	� lies in the spec-
tral domain �k�	225. This means, that if we are interested
only in the large-scale quartets, say, quartets with �k�	100,
the complete set of scale resonances consists of 1728 quar-
tets, among them 1632 collinear quartets and 96 tridents, but
no nontridents yet.

TABLE III. Clustering in the subset of tridents in the domain
1000�1000 �symmetrical solutions are omitted�.

Cluster length Number of clusters

1 1320

2 48

6 40

12 10

18 2

22 2
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FIG. 3. �Color online� Wave vectors are shown which form first
nonaxial trident �nonaxial trident with the smallest possible wave
numbers m ,n�.
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FIG. 4. �Color online� Wave vectors are shown which form first
nontrident �nontrident with the smallest possible wave numbers
m ,n�.
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C. Clusters

In the preceding section we have shown that there are
three different types of scale resonances: Collinear quartets,
tridents, and nontridents. There are also clusters formed by
different types of scale resonances, for instance, clusters con-
taining tridents and nontridents �Fig. 5, left-hand panel� or
collinear and noncollinear quartets �Fig. 5, right-hand panel�.
Notice that, since collinear quartets of gravity water waves
have zero interaction coefficients �24�, the cluster shown on
the right-hand panel can dynamically be regarded as two
independent quartets.

One of the most important characteristics of the resonance
structure is the wave-vector multiplicity �introduced in �20��,
which describes how many times a given wave vector is a
part of some solution. In Table IV the wave-vector multi-
plicities are given for noncollinear quartets. It turned out that
91% of all these wave vectors �6720 from overall amount
7384� have multiplicity 1 �counting the eight symmetry gen-
erated solutions as the same quartet�.

In Fig. 1, we see an example of such a simple cluster
consisting from just one physical quartet. In Fig. 6 the cluster
of four connected quartets is shown �the symmetry generated
solutions are omitted�, with all together only seven different
wave frequencies.

Obviously, the cluster structure defines the form of dy-
namical system corresponding to the cluster. The main mo-
tivation of our detailed study of clusters is, of course, in
constructing an isomorphism �i.e., one-to-one correspon-
dence� between a cluster and a dynamical system. In �21�
this construction has been presented for an arbitrary three-
wave resonance system, with triads as primary elements of
the planar graph. Its implementation in Mathematica was
given in �22�, where interaction coefficients similar to Z in
�18� were also computed. To construct this isomorphism, the
following two facts were used: �1� In a three-wave resonance
system only scale resonances exist, and �2� if we add an
arbitrary triad to a cluster, in general we always add some
new wave frequencies as well �the only exception is identi-
fied in �21��. A four-wave resonance system does not possess
these nice properties; on the contrary, there exist scale and
angle resonances, and most of the quartets are parts of sym-
metry generated solution sets. It would be a challenge to
develop a general approach to construct dynamical systems
for resonance clusters in an arbitrary four-wave system.

IV. ANGLE RESONANCES

Until now we have studied the structure of the scale reso-
nances which are described by �4� and which generate new
scales �i.e., new values of �k�, thereby providing the energy
cascade mechanism�. The angle resonances represented by
�5� do not generate new scales but they can redistribute en-
ergy among the modes which were excited initially �or which
are forced externally�. Taken on their own, these resonances
could lead to the thermal equilibrium distribution of the en-
ergy and the wave action among the �initially excited� reso-
nant waves, if the number of such waves is large, or they
could lead to a periodical behavior or a strange attractor, if
the number of the initially excited modes is small. The im-
portant fact, however, is that the scale and the angle reso-
nances are not independent and can form a mixed cluster
containing both types of these resonances �23�. The energy
cascade mechanism in such a mixed cluster is presented
schematically in Fig. 7 where the quadrangles S1 and S2 de-
note scale resonances so that 4-tuples �V1,1 , . . . ,V1,4� and
�V2,1 , . . . ,V2,4� represent scale resonances and squares
A1 , . . .Ai , . . . ,An represent angle resonances.

TABLE IV. Wave-vector multiplicity computed for the noncol-
linear quartets in the spectral domain �mi� , �ni�	1000 �symmetrical
solutions are omitted�.

Multiplicity Amount of vectors

1 6720

2 424

3 192

4 36

5 8

6 4
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k-space
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-200
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600
k-space

m
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(b)(a)

FIG. 5. �Color online� Wave vectors belonging to one resonant
quartet are depicted in the same color. Left-hand panel: A shortest
cluster formed by both tridents and nontridents; cluster length is 8
�64 with eight symmetries�, among them six �48 with eight symme-
tries� tridents and two �16 with symmetries� nontridents. Right-hand
panel: A shortest cluster formed by both collinear and noncollinear
quartets; cluster length is 8 �48 with eight and four symmetries�,
among them six �32 with eight and four symmetries� collinear and
two �16 with eight symmetries� noncollinear quartets. No multi-
edges are shown.

784
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401

FIG. 6. �Color online� Example of a nontrident cluster of length
4. Wave numbers m ,n are shown in the circles as upper and lower
numbers. Solid black, dashed blue, dotted-dashed red, and dotted
green lines connect the wave vectors forming first, second, third,
and fourth quartets of the cluster correspondingly.
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If a wave takes part simultaneously in angle and scale
resonances, corresponding nodes of S1, S2, and Aj are con-
nected by �red� dashed arrows so that V1,1=Vn,2 and Vn,1
=V2,3. We have found many examples of such mixed clusters
in our solution set, for instance,

S1 = ��− 64,− 16	,�784,196	,�144,36	,�576,144	� ,

An = ��− 64,− 16	,�4,16	,�− 64,16	,��4,− 16�	� ,

with V1,1=Vn,2= �−64,−16�,

S2 = ��− 49,− 196	,�4,16	,�− 36,− 144	,�− 9,− 36	� ,

which is further on connected with an angle resonance

Añ = ��− 49,− 196	,�784,196	,�− 49,196	,�784,− 196	� ,

�not shown in Fig. 7� via a node vector �−49,−196�.
The energy flux over scales due to the mixed cluster is

weak: One wave can participate in a few dozen of angle
resonances �see Fig. 8�, which means that only a small part
of its energy will go to a scale resonance. Moreover, even
this weak energy cascade may terminate at finite wave num-
ber if it happens to move along a finite cluster which termi-
nates before reaching the dissipation range �or before reach-
ing the range of high frequencies where the nonlinearity gets
large enough for the quasiresonances to take over the energy
flux from the exact resonances�.

The number of angle resonances in the spectral domain
�mi� , �ni�	1000 is of order of 6�108 while the number of

scale resonances in the same domain is of order of 8�105,
among them less than 2�104 are noncollinear and do play a
role in the energy exchange among the modes within the
quartets �see the next section�. It is easy to see that an arbi-
trary wave vector �m ,n� takes part in infinite number of reso-
nances if spectral domain is unbounded. Indeed, let us fix m
and n, then a quartet

�m,n��t,− n� → �m,− n��t,n� �11�

a scale resonance with arbitrary t=0, �1, �2, . . .. More in-
volved 5-parametric series of angle resonances were found
from the following considerations. For angle resonances of
four-wave vectors �a ,b��c ,d�→ �p ,q��l ,m�, Eqs. �3� can be
rewritten as

a2 + b2 = p2 + q2, c2 + d2 = l2 + m2,

a + c = p + l, b + d = q + m . �12�

Simple algebraic transformations and known parameteriza-
tions of the sum of two integer squares �e.g., for a circle or
for the Pythagorean triples� yield

a = �s2 − t2�/�s2 + t2�, b = 2st/�s2 + t2� ,

p = �f2 − g2�/�f2 + g2�, q = 2fg/�f2 + g2� ,

d = �a2 + b2 + ac − ap − cp − bq�/�q − b� . �13�

This is an easy task to check then that the solutions of �12�
can be written out �perhaps with repetitions� via five integer
parameters s , t , f , g , c �rational solutions should be
renormalized to integer�. Notice that �11� degenerates to
trivial resonances

�m,0��t,0� → �m,0��t,0� , �14�

if n=0, i.e., it does not include any resonances of wave vec-
tors of the form �m ,0�, for instance �1,0�. In this case the
choice f =1, g=1 in �13� gives

�1,0��c,1 + c� → �0,1��1 + c,c� . �15�

Analytical series are very helpful not only for computing
resonance quartets and clusters structure but also while in-
vestigating the asymptotic behavior of interaction coeffi-
cients.

The multiplicity histogram for the angle resonances is
shown in Fig. 9. On the axis X the multiplicity of a vector is
shown and on the axis Y the number of vectors with a given
multiplicity. This graph has been cut off—multiplicities go
very high, indeed the vector �1000,1000� takes part in 11 075
solutions. All this indicates that the angle resonances play an
important role in the overall dynamics of the wave field.

V. DYNAMICS

A. Wave field

Once the clusters are found, one can consider an evolution
of amplitudes of waves that belong to each individual cluster
by considering a respective reduction of the dynamical equa-
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V1,2
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V2,3

V2,2

V2,1
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= =

FIG. 7. �Color online� Schematic presentation of mixed reso-
nance cascade.
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FIG. 8. �Color online� Wave numbers m ,n are shown in the
circles as upper and lower numbers. Wave �64,0� takes part in two
scale resonances, both nontridents. The upper number in the circle
is m, the lower is n, and �red� thick lines drawn between vectors on
the same side of Eqs. �3�. Wave �119,120� takes part in one scale
resonance and in 12 angle resonances.
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tion. For the gravity wave case, the appropriate dynamical
equation is the Zakharov equation for the complex amplitude
ak�t� corresponding to the k mode,

i
dak

dt
= �

k1,k2,k3

k+k1=k2+k3

Tk2,k3

k,k1 ak1

� ak2
ak3

ei��k+�k1
−�k2

−�k3
�t, �16�

where Tk2,k3

k,k1 T�k ,k1 ,k2 ,k3� is an interaction coefficient for
gravity water waves which can be found in �25�.

For very weak waves, amplitudes ak�t� vary in time much
slower than the linear oscillations. The factor
ei��k+�k1

−�k2
−�k3

�t on the right-hand side will rapidly oscillate
for most waves except for those in an exact resonance for
which this factor is 1. Thus, only the resonant modes will
give a contribution to the dynamics in this case and the os-
cillating contributions of the nonresonant terms will average
out in time to zero and will not give any contribution to the
cumulative change of ak�t�. Leaving only the resonant terms,
we have

i
dak

dt
= �

k1,k2,k3

R

Tk2,k3

k,k1 ak1

� ak2
ak3

, �17�

where �R means a summation only over k1, k2, and k3
which are in resonance with k. Obviously, we should con-
sider k’s from the same cluster only �i.e., solve the problem
for one cluster at a time�. Note that the fast time scale of the
linear dynamics completely disappeared from this equation.
Thus, paradoxically, the dynamics of very weak waves in
finite boxes is strongly nonlinear: It is more nonlinear than in
WTT which works for larger amplitudes and where qua-
siresonances ensure phase randomness. This explains the fact
found in the three-wave example that even relatively large
clusters often exhibit a periodic or quasiperiodic behavior
�26�.

A study of the system �17� is possible analytically for
small clusters �perhaps even integrating the system in some
lucky cases� and numerically for large clusters, which is an
interesting subject for future research. Some properties, how-
ever, can already be seen in the example of a single quartet
which has been studied before �27�. Let us briefly discuss
these properties.

B. A quartet

The dynamical system describing slowly changing ampli-
tudes of a quartet has the form �27�

iȧ1 = 2Za2
�a3a4,

iȧ2 = 2Za1
�a3a4,

iȧ3 = 2Z�a4
�a1a2,

iȧ4 = 2Z�a3
�a1a2, �18�

and Z=Tk3,k4

k1,k2. The mathematical analysis of the system �18�
can be performed similar to what has been done in �28� for
an integrable three-wave system of resonantly interacting
planetary waves, though computations of the modulus of el-
liptic integral are more involved and a variety of different
dynamical scenarios is substantially richer �see �27� for de-
tails�. The general answer can be given in terms of Jacobean
elliptic functions.

Obviously, the quartets with interaction coefficient Z=0
do not influence the general dynamics of the wave field at the
corresponding time scale. As it was shown in �24�, for all
collinear quartets Z0, and therefore they can be excluded
form consideration.

On the other hand, in �29� so-called “degenerate quartets”
�tridents in our terminology� have been studied and it was
established numerically that they have strictly periodic be-
havior: After appropriate translation in the horizontal plane,
two snapshots of the free surface taken at t=0 and t=T are
identical.

For a general quartet and for arbitrary and arbitrary initial
conditions, the system �18� “does not exhibit strict periodic-
ity” in numerical simulations �27�. Thus, the general formu-
las for the solutions of �18� must be studied in more details
in order to distinguish periodic and nonperiodic dynamics of
an arbitrary quartet. On the other hand, since our main inter-
est in this paper is the large-scale dynamics, all scale reso-
nances with nonzero interaction coefficient are tridents and
therefore demonstrate a periodic time behavior. Of course, if
a trident is involved into a cluster with some other quartets
then one should be cautious about the predictions obtained
for an isolated quartet.

VI. SUMMARY AND DISCUSSION OF RESULTS

In this paper, we studied properties of deep water gravity
waves bounded by a square periodic box. At very small wave
amplitudes, when the nonlinear resonance broadening is less
than the k-space spacing, WTT fails and only the waves
which are in exact four-wave resonance can interact. This
situations appears to be typical for all existing numerical
simulations �9� and laboratory experiments �10�. Thus, to
understand the wave behavior in laboratory experiments and
in numerical simulations it is crucial to study exact reso-
nances among discrete wave modes, which was the focus of
the present paper. Of course, the notation of “very small
amplitudes” must be worked out explicitly for interpreting
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FIG. 9. �Color online� The multiplicities histogram for angle
resonances.

RESONANT INTERACTIONS OF NONLINEAR WATER … PHYSICAL REVIEW E 78, 016304 �2008�

016304-7



the results of laboratory experiments. The smallness of am-
plitudes is defined by the choice of a small parameter 0��
�1 and depends on the intrinsic characteristics of the wave
system, for instance, for atmospheric planetary waves it is
usually taken as the ratio of the particle velocity to the phase
velocity which allows us to obtain explicit estimation �30�
for a wave amplitude a�m ,n� �corresponding to the weakly
nonlinear regime� as a function of m and n. For the water
surface waves, the wave steepness, �a�m ,n�� / �m2+n2�1/2L, is
usually taken as a small parameter � and ��0.1 corresponds
then to the weakly nonlinear regime. For such weakly non-
linear waves to feel discreteness of the k space, their nonlin-
ear frequency broadening must be less than the distance be-
tween adjacent k modes. In terms of the wave steepness this
condition reads as �� �m2+n2�−1/8, see �9,15�.

We found numerically all resonant quartets on the set of
1000�1000 modes making use of the q-class method origi-
nally developed in �18�. We found that all resonant quartets
separate into noninteracting with other clusters. Each cluster
may consist of two types of quartets: Scale and angle reso-
nances. The angle resonances cannot transfer energy to any k
modes which are not already present in the system. They
cannot carry an energy flux through scales and their main
role is to thermalize the initially excited modes. The scale
resonances are much more rare than the angle ones and yet
their role is important because they are the only resonances
that can transfer energy between different scales. Most of the
scale resonances, but not all, are of the trident type, for
which a partial parametrization can be written explicitly. If
one is interested in large-scale modes only, say 100�100
domain, then the tridents are the only scale resonances,
which is very fortunate due to the available parametrization.

Even though the angle resonances cannot cascade energy,
they are important for the overall cascade process because
they are involved in the same wave clusters with the scale
resonances. One wave mode may typically participate in
many angle resonances and only one scale resonance. Thus,
one can split large clusters into “reservoirs,” each formed by
a large number of angle quartets in quasithermal equilibrium,
and which are connected with each other by sparse links
formed by scale quartets. This structure suggests a significant
energy cascade slowdown and anisotropy with respect to the
infinite-box limit. Further study is needed to examine the
structure of such large clusters and possible energy cascade
routes from the region of excitation at low wave numbers to
the dissipative large k range. In the essentially finite domain
the situation is opposite. Quite recently results of the labora-
tory experiments with surface waves on deep water were
reported �31–33� in which regular, nearly permanent patterns
of the water surface have been observed. A feasible way to
interpret these results would be �1� to establish that the con-
ditions of the experiments correspond to the weakly nonlin-
ear regime; if yes, to proceed as follows: �2� to compute all
exact resonances in the wavelengths range corresponding to
those in the experiments; �3� to demonstrate that for chosen
wavelengths and the size of laboratory tank no scale reso-
nances appear; �4� to attribute the regular patterns to the
corresponding angle resonances. Obviously, the scale reso-
nances would produce the spectrum anisotropy and disturb
the regular patterns.

We also discussed consequences of the cluster structures
for the dynamics, and argued that one should expect a less
random and more regular behavior in the case of very low
amplitude waves with respect to larger �but still weak� waves
described by WTT. More study is needed in the future both
analytically, for small clusters, and numerically, for large
clusters. A particularly interesting question to answer in this
case is about any possible universal mechanisms of transition
between the regular dynamics to chaos and possible coexist-
ence of the regular and chaotic motions.

Last, the knowledge of the two-dimensional �2D� reso-
nance structure might yield new insights into the origin of
some well-known physical phenomena, for instance,
Benjamin-Feir �BF� instability �34� or McLean instability.
This is “a modulational instability in which a uniform train
of oscillatory waves of finite amplitude loses energy to a
small perturbation of waves with nearly the same frequency
and direction” �35�. As it was shown recently in �35–37�, the
modulational instability, though well established not only by
water waves theory but also in plasmas and optics, must be
seriously reconsidered. It turned out that �1� it can be shown
analytically that arbitrary small dissipation stabilizes the BF
instability, and �2� results of laboratory experiments show
that BF theory generally over predicts the growth rate. More-
over, the growth rate changes with the time �35�. Some re-
searchers state even that “... this effect is far less significant
than was believed and should be disregarded” �38�. The other
way to treat the problem would be to try and explain the
modulational instability through noncollinear �that is, essen-
tially two dimensional� exact resonances �39�. Similar ques-
tions arise in the study of McLean instabilities defined by the
magnitudes of the water depth on which surface waves are
studied. For instance, as it was demonstrated in �40�, in some
regimes of shallow water the instabilities are due to higher
order resonances among five to eight waves. It would, there-
fore, be interesting to see how the BF and McLean instabili-
ties are modified by the finite flume effects and the corre-
sponding discreteness of the wave resonances, and to see
what role this could have played in the past laboratory and
numerical experiments. Results presented in our paper can be
regarded as a necessary first step for such an investigation,
and the future work would involve application of the q-class
method to computing the higher order resonances which may
be involved in modulational instabilities.
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