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Abstract — The dynamics of nonlinear atmospheric planetary waves is determined by a small
number of independent wave clusters consisting of a few connected resonant triads. We classified
the different types of connections between neighboring triads that determine the general dynamics
of a cluster. Each connection type corresponds to substantially different scenarios of energy flux
among the modes. The general approach can be applied directly to various mesoscopic systems
with 3-mode interactions, encountered in hydrodynamics, astronomy, plasma physics, chemistry,

medicine, etc.

Copyright © EPLA, 2008

Introduction. — Planetary-scale motions in the ocean
and atmosphere are due to the shape and rotation of the
Earth, and play a crucial role in the problems of weather
and climate prediction [1]. Oceanic planetary waves affect
the general large-scale ocean circulation, can intensify the
ocean currents such as the Gulf Stream, as well as push
them off their usual course. For example, a planetary wave
can push the Kuroshio Current northwards and affect
the weather in North America [2]. Atmospheric planetary
waves detach the masses of cold, or warm, air that
become cyclones and anticyclones and are responsible for
day-to-day weather patterns at mid-latitudes [3]. Recently
a novel model of intra-seasonal oscillations in the Earth
atmosphere has been developed [4] in terms of isolated
resonant triads of planetary waves (for wave numbers
m, €< 21). The complete cluster structure depends on
the spectral-domain size, both for atmospheric [5] and
oceanic [6] planetary waves. In particular, an enlargement
of at least some of the clusters is possible, with growing of
the spectral domain. In some cases this yields the energy
flux between previously isolated clusters. To justify the
basic model [4] one has to understand whether or not
existing clusters are capable to adopt external energy
via this mechanism. In [7] the isomorphism (one-to-one
correspondence) between clusters of similar structure and
corresponding dynamical systems has been established.

(3)E-mail: Lena@risc.uni-linz.ac.at
(P)E-mail: Victor.Lvov@weizmann.ac.il

This allows for the study of the dynamical behavior of
similar clusters. It is shown both in numerical simula-
tions [8,9] and in laboratory experiments [10] that the
dynamics of mesoscopic wave systems does not obey the
statistical description (wave kinetic equations). It rather
needs a special investigation.

In this letter we show that the general dynamics of big
clusters in mesoscopic systems with 3-mode interactions
is determined by the connection types between neighbor
triads. In particular, we analyzed clusters of atmospheric
planetary waves in the spectral domain m, ¢ < 1000 which
allowed us to justify the model suggested in [4].

Triad dynamics. — Counsider three planetary (Rossby)
waves with frequencies wi, wo and wsz, which satisfy the
conditions of time and space synchronism:

w1 + w2 = w3,

mi +mg =msg,

[0y —la| <3 <y + L,
m; <l;, j=1,2,3,
bi#Ll, 1#7], 1,]=1,2,3,
{1+ 05+ L3 is odd,

and w oc m/[€(£ 4 1)]. The first three equations correspond
to a three-wave resonance on a sphere while the two last
equations provide a nonzero coupling coefficient in the
corresponding dynamical system (see [4] for more details).
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This is the simplest possible cluster that is described by
the dynamical system

By =ZB}Bs, By=ZB;Bs, Bs=—-ZBiBy. (2)
Here Bj =dB,/dt, B; = a;A; is a time derivative with «;
being explicit functions of the longitudinal wave numbers
¢, A are modes amplitudes, and Z is the interaction coef-
ficient which is also some function of the wave numbers.
Equations (2) are symmetric with respect to the exchange
of two low-frequency modes 1< 2. The mode with the
highest frequency (which in this paper will be denoted by
the subscript “3”) is a special mode. The system eq. (2)
has two independent conservation laws

123 - |BQ|2 + ‘B3|2 = (EN1 — H)Ngg/NlNgNg R
I3=|B1|?+|Bs|? = (E Ny — H)Ny3/N1No N3,
Iio =13 —Ios =|B1|> — |B|?,

3)

which are linear combinations of the energy F and enstro-
phy H, defined as

E=E1+Ey+E3, H=NEi+NyEy+NsEs;. (4)
Here Ej; is the energy of the j-mode and N; =¢;(¢; +1).
The solutions of eqs. (2) are Jacobian elliptic functions,
and whether or not its dynamics is periodic is determined
by the energy in the ws-mode (for details see [4]).

To understand the dynamics of the energy flow within a
cluster, the first step would be to initiate a small amount
of chosen modes and to study afterwards the energy
exchange within a cluster. Thus, we begin with discussing
the evolution of the triad amplitudes with special initial
conditions, when only one mode is substantially excited.
If Bi(t=0)> By(t=0) and B1(t=0)>> B3(t=0), then
Iy3(t=0) > I13(t=0). The integrals of motion are
independent of time, therefore I;3> I3 at each
instant of time and hence |By(t)|? > |B2(t)|?. Moreover,
|B1(t)|? > | B3(t)|* at every instant. Indeed, the assump-
tion |Bi(t)|? <|Bs(t)|* yields I3~ I3, which is not
the case. This means that the w;-mode, being the only
substantially exited at ¢ =0 cannot share its energy with
the two other modes in a triad. The same is true for the
wo-mode. In this context we call the modes with frequen-
cies w; <ws and wy < ws passive modes, or P-modes.

The conservation laws (3) cannot restrict the growth
of the P-modes from initial conditions when only the
wz-mode is exited. In this case the P-mode amplitudes will
grow exponentially: |Bi(t)|,|B2(t)| « exp||ZBs(t =0)|t]
until all the modes will have comparable magnitudes of the
amplitudes. Therefore we call the w3-mode an active mode,
or A-mode. The A-mode, being initially excited, is capable
to share its energy with two P-modes within a triad.

Connection types within a cluster. — An arbitrary
cluster in our wave system is a set of connected triads.
A cluster consisting of two triads that are connected
via one common mode is called a butterfly; a cluster of

three triads with one common mode is called a triple
star. The general dynamics of a cluster depends on the
type of the connecting mode, which is common for the
neighbor triads. Correspondingly, we can distinguish three
types of butterflies (with PP-; AP- and A A-connections),
four triple stars (with PPP-, PPA-; PAA- and AAA-
connections), etc. We begin with considering the butterfly
and the triple star dynamics; we then discuss an actual
dynamics of the more involved but concrete topology of
connected triads in atmospheric planetary waves.

A PP-butterfly consists of two triads a and b, with wave
amplitudes Bjq, Bjp, j = 1,2, 3, that are connected via one
common mode, By, = B1p which is passive in both triads.
The equations of motion for this system read

Bla =ZoB3,B3a + Zb,B;bBi%b’ Bia = B,
Boa = ZaBi,Bsa, Bay=ZyBi,Bss,
B?)a = _ZaBlaB2a 5 B3b = _ZbBlaBZb'

()

An examination of egs. (5) shows that they have three
integrals of motion:

{IZBa: |Bza|2 + |BSa|2 y oz = |sz\2 + |B3b|2 )

6
Iy = |Bial? + | Baa|? + | Bay |- (6)

The first two, Is3, and I35, do not involve the common
mode Bi, = Bjp, and are similar to the integral Io3,
eq. (3), for an isolated triad. Similarly to the case of
the evolution of a triad from the initial conditions with
an excited passive mode, the following conclusion can be
made. If at ¢ =0 the amplitudes of one triad substantially
exceed two remaining amplitudes of the butterfly, that
is, if |Bial, |B2al, |B3al > |B2al,|B3sal, then this relation
persists. In other words, in a PP-butterfly any of two
triads, a or b, having initially very small amplitudes, will
be unable to adopt energy from the second triad during
its nonlinear evolution.

An AP-butterfly consists of two triads a and b, with
wave amplitudes that are connected via the common mode
Bs;, = By, which is active in one triad (a for concreteness)
and is passive in the second triad (b). In this case equations
and integrals of motion are:

Bio=Z.B3,Bsa, Bsy=—2Z,B3,Bap,

Boy = Z4BtyBsa, Boy=ZyB3,Bay,
B3a - _ZaBlaBZa + ZbB;bBle )

(7)

{I12a: |Bia|? — |Baal?,  Iasp = |Bab|? + | Bas|?, (8)

Iab = |Bla|2 + |Bga|2 + |ng|2.

The integrals 115, and I535, do not involve a common mode
Bs, = B1p; they are similar to the corresponding integrals
I15 and I3, for the isolated triad. In the case, when the
triad a is excited at ¢ = 0 much stronger then the b-triad (in
which case I12, > I>3) then the smallness of the positively
definite integral of motion I3, prevents the triad b from
adopting energy from the triad a during all the evolution.
The situation is different, when triad b is excited initially
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and Io3p > [194. In this case the initial energy of the triad
b can be shared with the triad a. The smallness of I,
only required that during the evolution |Bi,| & |Bag|-

For an A A-butterfly with a common active mode in both
triads (Bs, = Bsp) we have:

Bla = ZaB;aB3a ’ Blb = 7ZbB;bB3a )
By, = ZanaB?;a , Bay= ZbebBBa )

B3y = —Z4B14B2y — ZyB1yBay.

(9)

{Ima = |B1a|* = |Baal?, Ti2p=|B1|* — |Bas|?,
Iab = |B1a‘2+ |B3a|2+ |B?)b|2-

Again, the integrals I, and 119, do not involve a common
mode Bs, = By and are similar to Ija, egs. (3), for an
isolated triad. A simple analysis of these integrals of
motion shows that the energy that is initially held in one of
the triads will be dynamically shared between both triads.

Finally, we consider one of the triple-star clusters, e.g.
the APP-star, in which a common mode is active in the
a-triad and passive in the b- and c-triad: Bz, = B1p = Bi..
This system has four integrals of motion:

(10)

I12a - |Bla‘2 - |B2a‘2 )
Iz = \B2b|2 + |B3b|2 , Iz = |Bzc\2 + |B3c|2 )
Iabc - |-Bla|2 + |B3a|2 + |BSb|2 + ‘B3c|2'

(1)

Similarly to butterflies, there exists one integral of motion
for each connected triad, that does not involve the
common mode: these are the integrals Iis,, o3y, and
I>3., which are the same as the corresponding integrals
in the isolated triad. The integrals Is3; and Is3. prevent
the b- and c-triads (which are connected via a P-mode)
from adopting energy from the initially excited a-triad.
In those cases when the b- and/or c-triads are initially
exited, the a-triad can freely adopt their energy via the
connecting A-mode.

Any triad that is connected to a cluster (no matter
how big the cluster would be) via its passive mode cannot
adopt energy from the cluster, if the triad is not excited
initially. On the other hand, a triad that is connected to
any cluster via an active mode can adopt energy from the
cluster during its nonlinear evolution.

Topology and cluster dynamics for atmospheric
planetary waves. — The frequencies of atmospheric
planetary waves are

wj=—2ﬂmj/€j(€j+1). (12)
The negative sign indicates wave propagation opposite to
the rotation of the Earth (east to west with frequency ).
The integers ¢; with and m; < /{; describe the eigen-mode
structure, which is j-spherical harmonics with ¢; and
¢; —m; zeros in the longitudinal and latitudinal direc-
tions, correspondingly. The Diophantine egs. (12) and
w1 + ws = w3, have many solutions, each of them describ-
ing an exact resonance of ideal planetary waves (ignoring

Table 1: In the first 3 columns the following data in the domain
m, ¢ <21 are given: cluster’s form, triad numbers and modes
within a cluster; in the last two —numbers of connecting
triads and their modes are given that enlarge the corresponding
cluster when the spectral domain m, ¢ <1000 is regarded.

Clust. [N Modes [m, ¢] N Connecting triads
AL | 1] 412 5,14 [9,13] | - -
N> | 2| [3,14] [1,20] [4,15] | 2.1| [4,15] [10,24] [14,20
2.2| [1,20] [14,29] [15,28
2.3| [1,20] [15,75] [16,56
As | 3([6,18] [7, 20] [13,19]| 3.1 [2,15] [5,24] [7,20]
A, | 4|[1,14] [11,21] [12,20]] 4.1| [L,14] [9,27] [10,24]
>Ms56 | O [2,6] [3,8] [5,7] 5.1] [4,14] [9,27] [13,20]
6| [2,6] [4,14] [6,9]
7| [6,14] [2,20] [8,15] | 7.1| [2,20] [11,44] [13,35
78 | 8| [3,6] [6,14] [9,9] 7.2| [2,20] [30,75] [32,56
7.3([32,56] [26,114] [58,69]
X910 | 9] [3,10] [5,21] [8,14] | - =
10 | [8,11] [5,21] [13,13]
11 [[2,14] [17,20] [19,19]]11.1] [2,14] [18,27] [20,24
12| [1,6] [2,14] [3,9] |11.2| [6,44] [14,21] [20,24
13| [3,9] [8,20] [11,14] |11.3| [9,35] [11,20] [20,24
Mi1-16| 14 | [1,6] [11,20] [12,15] | 11.4| [3,20] [45,75] [48,56
15 | [9,14] [3,20] [12,15]
16 | [2,7) [11,20] [13,14]

the real Earth topography, etc.). In this approximation
we can describe all important resonant triads in the Earth
atmosphere, see table 1. First we restricted ourself to
the so-called meteorologically significant spectral domain
with wave numbers ¢, m <21 [4]. In this domain we have
found in [4] four isolated triads, denoted as Aj,..., Ay,
three PP-butterflies p<5 6, 7,8, and g 19, involving six
triads As,...,Aj9 and one, further called caterpillar,
X116, consisting of six triads Aqq,..., A1 with three
PP-, one AP- and one AA-connection.

In this letter we show that the topological structure of
clusters in the extended spectral domain m, ¢ <1000 is
richer, in particularly, some clusters are enlarged by new
resonances formed by modes with m, ¢ > 21. To illustrate
this mechanism, we introduced the following rows in
table 1: 1) N7 —the number of clusters in the spectral
domain m, ¢ <21, with the same numeration as given
in [4]; 2) Modes —resonance clusters belonging in the
same spectral domain as in 1); 3) Ay —the number of
the additional clusters in the spectral domain m, ¢ < 75;
4) Connecting triads —additional resonance clusters
which appeared in the spectral domain as in 3). The
topological structure of resonance clusters in the spectral
domain m, £ < 75 is shown in fig. 1, where numbers inside
of triangles correspond to the numeration Ni, N3 in
table 1.

There exist altogether 1965 isolated triads and 424
clusters consisting of 2 to 3691 connected triads, among
them 235 butterflies, 95 triple-triad clusters, etc. —see
the histogram in fig. 2. The three largest clusters consist
of 14, 16 and 3691 connected triads. For the clarity of
presentation we did not display on the histogram the
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] RN
SRR,

Fig. 1: (Color online) Triads belonging to butterfly <z (left)
and to caterpillar (right) are drawn by bold (red) lines while
new, connected to them, triads appearing in the spectral
domain m, £ <1000 are drawn by thin lines. (Red) arrows
are coming from an active mode and show directions of the
energy flux. The numbers inside each triangle correspond to
the numeration in table 1.

100 - 95 L
% ] § b
2 41
1))

2 N
5 8 18 12
g 1047 N I
S ] 6
=] 5
z \
2
14 S N
T T T

2 4 6 8 10 12 14 16
Size of cluster

Fig. 2: (Color online) Horizontal axes denotes the number of
triads in the cluster while vertical axes shows the number of
corresponding clusters.

largest 3691-cluster, which we will call further the
monster.

It can be seen that 82.2% of all clusters are isolated
triads. Their dynamics has been investigated in [4] in all
details. The energy oscillates between three modes in the
triads, the period of this oscillation being much larger than
the wave period. It was found to be inversely proportional
to the root mean square of the wave amplitude.

235 clusters (~10.5%) are butterflies. Among them
there are 131 PP-; 69 AP- and 35 AA-butterflies. The
butterfly dynamics is restricted by three integrals of
motion, and it can be shown that the phase space of
butterflies is four-dimensional. In [4] only PP-butterflies
have been considered. For the initial conditions studied in
this letter their dynamics is similar to that of two isolated
triads.

Preliminary numerical simulations show that only in the
case when the initial levels of excitation in both triads are
compatible, a periodic energy exchange is observed not
only within a triad but also between two connected triads.

The 95 triple-triad clusters include 66 linear clusters
with two pair connections, 25 “3-stars” with triple
connections and 4 triangles (with three pair connections).
A similar classifications can be performed for all the
remaining clusters. For example, the monster includes one
mode (218,545), participating in 10 triads, three modes,
participating in 9 triads, 5 modes —in 8 triads, 23 —in
7, 50 —in 6, 90 —in 5, 236 —in 4, 550 —in 3, and 1428
modes —in 2 triads (butterflies). The analysis of their
dynamical behavior depends critically on the type of
connection, as was shown above.

For example, the 16-triad cluster can be divided
into “almost separated” parts (connected through
PP-connections) parts: 5 triads, one AA- and one AP-
butterfly, one AAP-star and one AAA-star with an
AP-connected triad. The overall qualitative conclusion is
that even big clusters are dynamically not very different
from separated small clusters with active connections,
AA-butterflies, AAA-stars, etc.

To clarify the dynamics of the first sixteen triads
Ay, ..., A6, it is important to establish their (possible)
connection to the clusters in a bigger spectral domain.
We have found that the triad A; remains isolated, Ag
turned into an isolated PA-butterfly. It can be proven [11]
that these objects remain “forever” isolated, even if the
size of the bigger domains goes to infinity. The triads A,
and A4 became parts of the monster but are connected
with it via P-modes; in this sense they are practically
separated. Three initial butterflies, 05 g, ><7 8, g 10 have
PP-connections and thus their dynamics does not differ
much from the dynamics of an isolated triad. Moreover,
an increase of the spectral domain to m,¢ <1000 does
not change the situation substantially: the butterfly g 10
remains isolated in an arbitrarily large (even infinite)
domain, 7 g became part of a 5-triad cluster, also with
PP- and PPP-type of connections (see fig. 1), b5 ¢ is now
part of the monster but only via PP-connections. The
caterpillar gains one P-connected triad (11.4 in table 1)
and one AAA-star (11.1, 11.2 and 11.3 triads) with two
P-connections, see fig. 1. Therefore almost all 16 triads,
(except of the AA-butterfly b<i516) can be considered as
completely or as almost separated from the rest of the
system.

Conclusions. — In the physically relevant domain of
atmospheric planetary waves (m , £ < 1000, when the mode
scale is larger than the height of the Earth atmosphere)
we have determined and described the topology of all clus-
ters that are formed by resonantly interacting planetary
modes. The cluster set contains isolated triads and sets of
2-, 3-, ..., 16 and 3691 connected triads, with 2- 3-, ...,
9-mode and (maximum) 10-mode connections.

Analyzing the integrals of motion we suggested a classi-
fication i) of triad modes into two types —active (A) and
passive (P), and ii) of connection types between triads —
AA, AP and PP. We have shown that in AA-butterflies the
energy can flow in both directions, in AP-butterflies only
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from one triad to the second one (and not vice versa),
while in PP-butterflies the triads are “almost isolated”.
We have also shown that the dynamical behavior of bigger
clusters can be similarly characterized by connection types
like AAA, AAP,..., etc.

As a first approximation, almost all triads in the mete-
orologically significant domain of table 1, can be consid-
ered as completely or almost separated from the rest of
atmospheric planetary waves, and therefore energy oscil-
lations within them can lead to intra-seasonal oscillations
in the Earth’s atmosphere, as suggested in [4].

Our analysis is based on the structure of the dynamical
system (2) and has two advantages: i) it does not need to
exploit the explicit form of the interaction coefficients Z;
ii) it is completely analytical without using numerics
(which will be required for more general initial conditions).
Thus our results can be used directly for arbitrary reso-
nant 3-wave systems governed by these equations, e.g. drift
waves, gravity-capillary waves, etc.

A touchstone of any theory is, of course, an experiment.
Numerical experiments with resonance clusters described
by barotropic vorticity equation are now on the way,
preliminary results confirm our theoretical conclusions.
The next step of utmost importance would be to study
some physical mechanisms that might destroy clusters.
Mathematically speaking, one can always introduce a big
enough resonance width

Q=w;+wy—w3>0

such that a substantial part of the cluster’s energy will be
re-distributed among other waves via nonresonant interac-
tions (see fig. 2 [12]). From the physical point of view, the
source of the resonance broadening might have substan-
tially different reasons —from baroclinic instabilities due
to the effects of the free surface at large scales, to the
effects due to the Earth topography at smaller scales, to
the increasing the level of turbulence, say, in summer due
to increasing sun activity, and thus going into the regime of
fully developed wave turbulence, to the inclusion of dissi-
pation and forcing. These effects can also be combined, of
course. The problem of the utmost importance is therefore
to study the resonance clusters behavior in the situation
when at least some of these effects are included. The analy-
sis applied to climatic variations on geological scales “typi-
cally give indications of low dimensionality and (...) the
hope of justifying the modelling of weather or climate in
terms of a small set of ordinary differential equations” [13].
But it does not mean, of course, that the overall energy
flux will stay nicely regular. Indeed, as was shown in [13],
a special choice of instabilities included into (2) will cause
appearance of strange attractors. The study of this tran-
sition from regular to chaotic regimes in resonant clusters
and mutual interrelations of relevant physical parameters
is the subject of our further research.

Last but not least. Whereas it is quite difficult to check
experimentally the theory for planetary waves, it can be

done much easier within a framework of laboratory experi-
ments with some water waves, e.g. gravity-capillary waves.
Some preliminary program of laboratory experiments
with this type of waves has been worked out in [14] but
only for simplest triad’s clusters for at that time the algo-
rithms of cluster computing [15,16] were not developed
yet. Presently this program can easily be elaborated for
clusters of some more complicated structure. Considerably
more sophisticated preliminary work is needed for plan-
ning laboratory experiments with gravity water waves.
As was shown in [17], a 3-wave resonance system differs
principally from wave systems in which 4- and more wave
resonances are allowed. Indeed, in a 3-wave resonances
system, each nonlinear resonance generates a new scale,
while already in a 4-wave system this is not necessarily
true. Indeed, beginning with 4-wave resonances, different
types of energy fluxes have been pointed out: scale reso-
nances (as in a 3-wave system), angle resonances (formed
by two couples of wave vectors with pairwise equal
lengths) and mixed cascades. In this case, clusters have
more complicated structures presented explicitly in [18] for
4-wave interactions of gravity water waves. The qualitative
dynamics of small clusters formed by resonant quartets is
briefly as follows: “One wave mode may typically partic-
ipate in many angle resonances and only one scale reso-
nance. Thus, one can split large clusters into “reservoirs”,
each formed by a large number of angle quartets in quasi-
thermal equilibrium, and which are connected with each
other by sparse links formed by scale quartets.” (see [18]).
This means, in particular, that scale resonances cause
spectrum anisotropy. On the other hand, one can easily
compute what ratio aspect of the sides of a laboratory tank
should be chosen in order to suppress scale resonances. In
this case, regular patterns on the water surface are to be
expected, similar to what was observed in [19-21]. It would
be interesting to study these experimental data in order to
establish these nearly permanent patterns observed, which
can be attributed to some specific resonance clusters. The
existence of independent resonance clusters can shed some
light on the origin of the Benjamin-Feir instability [22] or
the McLean instability [23] (see also Discussion in [18]).
Another interesting and even more complicated area of
further investigations would be the study of the dynamical
behavior of resonant quintets, sextets and so on. The
methods developed in [15,16] allow to compute the clusters
and corresponding wave frequencies. This information can
be afterwards used, for instance, for investigating some
special types of shallow water instabilities [24]. In systems
containing simultaneously quartets and quintets [25], the
explicit construction of clusters can possibly yield the
explanation of the competing regimes between these two
types of instabilities. We point out here three possible
scenarios due to the change of 1) boundary conditions,
2) the frequency range under the study, and 3) the initial
distribution of energies among the modes of a cluster.
In the first two cases, some quartets can be suppressed,
thus turning the quintets into the principal clusters (and
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vice versa, of course). In the third case, a lot of different
sub-scenarios are possible: quartet and quintet connected
via one common mode can become “independent” if the
energy in the common mode is too small; a quartet can
“die out” if its initial energy is not enough for nonlinear
interactions; the same for the quintet; the energy can flux
from the quartet to the quintet via the common mode, in
dependence on the energy distribution among the other
modes in the quartet thus yielding the dying out of the
quartet; the same for the quintet; etc. Combining the
methods [15,16] and results of [25] will help to single out
some of the possibilities immediately. For instance, one
can compute wave numbers corresponding to a resonant
cluster, put them into the eq. (2.11) from [25] and check
whether coupling coefficient(s) in this cluster is (are)
nonzero. Another advantage would be the construction
of the topological structure of the complete cluster set
as is done in [18] instead of resonance curves: it gives a
general overview of the nonlinear dynamics rather than a
(possible) subset of resonances formed with a fixed wave
vector (in particular cases this subset can be empty, of
course). One more advantage would be the following.
As was shown in [25], instability analysis is based on
the properties of the roots of the polynomial given by
eq. (3.10) (see also fig. 3a—d therein). In some cases a qual-
itative instability analysis can help but “to get qualitative
results in general case one should solve (3.10)” (ref. [25],
p. 313). This computations are very involved while the
polynomial has degree 4 and its coefficients depend on
the dynamical coupling coefficients. On the other hand,
the knowledge of explicit wave numbers for modes forming
a resonance cluster will turn the coefficients of (3.10)
into known constants and the problem can be easily
solved.
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