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Abstract

We describe the results of analyzing the performance model of a retrial

queueing system with the probabilistic model checker PRISM. The system

has been previously analyzed with the help of the performance modeling en-

vironment MOSEL; we are able to accurately reproduce the results reported

in literature. Furthermore, we compare PRISM and MOSEL with respect to

their modeling languages and ways of specifying performance queries and

benchmark the executions of the tools.
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1 Introduction

The performance analysis of computing and communicating systems has always

been an important subject of computer science. The goal of this analysis is to

make predictions about the quantitative behavior of a system under varying con-

ditions, e.g. the expected response time of a server under varying numbers of ser-

vice requests, the average utilization of a communication channel under varying

numbers of communication requests, and so on. Today’s multitude of complex

but nevertheless quite well functioning Internet-based service and communication

infrastructures would not have been possible without an adequate performance

analysis accompanying their design and implementation.

To perform such an analysis, however, first an adequate mathematical model of

the system has to be developed which comprises the interesting aspects of the sys-

tem but abstracts away from details that are irrelevant to the questions addressed.

Originally, these models were developed purely by manual efforts, typically in for-

mal frameworks based on queuing theory, stochastic Petri networks, and the like,

which can be ultimately translated into continuous time Markov chains (CTMCs)

as the fundamental mathematical basis [15]. Since the manual creation of com-

plex models was tedious and error prone, then specification languages and corre-

sponding tools were developed that automated the model creation from high-level

system descriptions. Since the generated models can be typically not solved ana-

lytically, simulation-based techniques were applied in order to predict their quan-

titative behavior from a large number of sampled system runs. Later on, however,

the underlying systems of equations were solved (for fixed parameter values) by

iterative numerical calculations, thus deriving (mathematically exact but numer-

ically approximated) solutions for the long-term (steady state) behavior of the

system.

One tool of this kind is MOSEL (Modeling, Specification, and Evaluation Lan-

guage) [11, 3] with its latest incarnation MOSEL-2 [12]. The software has a high-

level specification language for modeling interconnected queue networks where

transitions execute with certain rates to move entities across queues. The environ-

ment supports various backends for simulating the model system or for computing

numerical solutions of the derived system of steady-state equations; in particular,

it may construct a stochastic petri net model as input to the SPNP solver [8].

While above developments emerged in the performance modeling and evaluation

community, also the formal methods community has recently produced theoretical

frameworks and supporting tools that are, while coming from a different direction,

nevertheless applicable to performance analysis problems. Originally, the only

goal of formal methods was to determine qualitative properties of systems, i.e.
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properties that can be expressed by formal specifications (typically in the language

of temporal logic) as “yes/no” answers such as “Will the system never run into

an invalid state?”, “Will every request eventually receive an answer?”, and so

on. Questions of this kind can be effectively decided for finite state systems (of

a certain size) by model checkers that investigate the underlying system models

(essentially non-deterministic finite-state automata) with respect to the specified

properties [5].

In the last couple of years, however, the formal methods community also got more

and more interested in systems that exhibit stochastic behavior, i.e. systems whose

transitions are executed according to specific rates (respectively probabilities); this

gives rise to continuous time (respectively discrete time) Markov chains as those

also used by the performance modeling community and to questions about quan-

titative rather than qualitative system properties. To pursue this new direction of

quantitative verification [9], model checking techniques were correspondingly ex-

tended to stochastic/probabilistic model checking [10] and the the accompanying

property specification languages were adapted to allow also the formulation of

questions like “What is the probability that a certain situation will arrive during

the system run?” or “What is the long term the expected value of a certain quan-

tity?”, i.e. questions that were originally the realm of the performance evaluation

community. Nevertheless, classical qualitative properties can be still queried in

this framework, e.g. asking “Is the probability 0 that an invalid state is reached?”

amounts to asking “Will the system never run into an invalid state?”.

A prominent tool in this category is the probabilistic model checker PRISM [13, 7]

which provides a high-level modeling language for describing systems that ex-

hibit probabilistic behavior, with models based on continuous-time Markov chains

(CTMCs) as well as discrete-time Markov chains (DTMCs) and Markov decision

procedures (MDPs). For specifying system properties, PRISM uses the proba-

bilistic logics CSL (continuous stochastic logic) for CTMCs and PCTL (proba-

bilistic computation tree logic) for DTMCs and MDPs, both logics being exten-

sions of CTL (computation tree logic), a temporal logic that is used in various

classical model checkers for specifying properties [5].

The fact that the previously disjoint areas of performance evaluation and formal

methods have become overlapping is recognized by both communities. While

originally only individual authors hailed this convergence [6], today various con-

ferences and workshops are intended to make both communities more aware of

each others’ achievements [4, 18]. One attempt towards this goal is to compare

techniques and tools from both communities by concrete application studies. The

present paper is aimed at exactly this direction.

The starting point of our investigation is the paper [16] which discusses various
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performance modeling tools; in particular, it presents the application of MOSEL

to the modeling and analysis of a retrial queuing system previously described

in [1] and later refined in [14]. The goal of the present paper is

• to construct PRISM models analogous to the MOSEL models presented

in [16],

• to construct CSL queries in PRISM that compute the performance measures

presented in above paper,

• to compare the results derived by PRISM with those from MOSEL,

• to evaluate the usability and expressiveness of both frameworks with respect

to these tasks,

• to benchmark the tools with respect to their efficiency (time and memory

consumption),

• and finally draw some overall conclusions about the suitability of PRISM

to performance modeling compared with classical tools in this area.

The rest of the paper is structured as follows: Section 2 describes the application

to be modelled and the questions to be asked about the model; Section 3 sum-

marizes the previously presented MOSEL solution; Section 4 presents the newly

developed PRISM solution; Section 5 gives the experimental results computed by

PRISM in comparison to those computed by MOSEL and also gives benchmarks

of both tools; Section 6 concludes and gives an outlook on further work.

2 Problem Description

2.1 Problem Overview

In this chapter we give a brief overview the model of the retrial queueing system

presented in [16]. The variable names used later in the model are indicated in

italics in the textual description. The model is represented by UML [17] class

diagram (static view) and state machine diagrams (dynamic behavior).

The system contains a single server and terminals (NT) (Figure 1). Their behavior

is as follows:
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Figure 1: Components of the system

• Intuitively, terminals send requests to the server for processing. If the server

is busy, the terminals retry to send the request later. More precisely, the

terminals can be in three different states (which are named in parentheses):

1. ready to generate a primary call (busy),

2. sending repeated calls (retrying) and

3. under service by the server (waiting).

• The server according to its CPU state (cpu) can be operational (cpu=cpu up)

or non-operational (cpu=cpu down): if it is operational we distinguish be-

tween two further states (cpu state): idle (cpu state=cpu idle) and busy

(cpu state=cpu busy).

• In the initial state of the system, the server is operational (cpu=cpu up) wait-

ing for requests (cpu stat=cpu idle) and all terminals are ready to generate

a primary call.

2.2 Finite State Model

The behavior of the system can be described by the state transitions of the termi-

nals and the server, which occur at different rates.

We extend the standard UML [17] state machine diagram notation and semantic to

present our model in an easy to read way. According to the standard, the diagram
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Figure 2: State machine representation of the server

contains states and transitions; the transitions in different swim-lanes can occur

independently. Our extensions are the followings:

• Every comments of a swim-lane contains a variable name which is changed

by the transition of that lane.

• Each transition is associated with a triple of a label, a guard (in square

brackets) and a rate(in parentheses); if there is no rate indicated than the

rate equals 1.

• A parallel composition semantics: the set of the states of the composed sys-

tem is the Cartesian product of the state sets of the two swim-lanes or state

machines. The composed state machine can make a transition whenever one

of the original state machine can make one, except if multiple transitions in

different original state machines have the same label: it that case, they must

be taken simultaneously.

In Figure 2 we show the state transitions of the server:

t1 (The server starts to serve a primary call) If the server is in operational

state and idle, it can receive a primary call and become busy.
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Figure 3: State machine representation of the terminals

t2 (The server rejects to serve a primary call) If the server is operational and

busy, it can reject a primary call.

t3 (The server starts to serve a retried call) If the server is in operational state

and idle, it can start to serve a repeated call.

t4 (The server finishes a call) If the server is operational and busy, it can finish

a processing of the call.

t5 (An idle server becomes inoperable) If the server is in operational state and

idle, it can become inoperable with rate δ .

t6 (A busy server becomes inoperable) If the server is in operational state and

busy, it can become inoperable with rate γ .

t7 (A server gets repaired) If the server is inoperable, it can become operable

again with rate τ .

The state transitions of the client are described in Figure 3:

t1 (The server starts to serve a primary call) The call of a terminal which is-

sues a primary call is accepted and it becomes a waiting terminal with prob-

ability λ .

t2 (The server rejects to server a primary call) The call of a terminal which is-

sues a primary call is rejected and it becomes a retrying terminal with prob-

ability λ .

t3 (The server starts to server a retried call) The call of a terminal which re-

tries a call is accepted and it becomes a waiting terminal with probability ν .
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t4 (The server finishes a call) The call of a terminal is finished and a it becomes

ready to generate a new primary call again with rate µ .

The system can be represented alternatively by merging the server and the termi-

nals into a single system as it was modelled in the original MOSEL model [16]:

the guard conditions of all transitions with the same label are logically conjoined

and their probability are multiplied.

2.3 Mathematical Model

In this section, we describe here the mathematical formulation of the queries.

The state of the system at time t can be described by the process X(t)=(cpu(t),

cpu state(t), waiting terminals(t)), where cpu(t)=0 (cpu up) if the server is oper-

able, cpu(t)=1 (cpu down) if the server is not operable, cpu state(t)=0 (cpu idle)

if the server is idle and cpu state(t)=1 (cpu busy) if the server is busy and retry-

ing terminals(t) describe the number of repeated calls at time t. The number of

the waiting terminals and busy terminals are not expressed explicitly in the math-

ematical model. Their values can be calculated according the following:

• waiting terminals=0 if cpu state=cpu idle,

• waiting terminals=1 if cpu state=cpu busy,

• busy terminals=NT-(waiting terminals+retrying terminals),

Because of the exponentiality of the involved random variables and the finite num-

ber of sources, this process is a Markov chain with a finite state space. Since the

state space of the process X(t), t ≥ 0 is finite, the process is ergodic for all rea-

sonable values of the rates involved in the model construction. From now on, we

assume that the system is in the steady-state.

We define the stationary probabilities by:

P(q,r, j) = lim
t→∞

P(cpu(t),cpu state(t),retrying terminals(t)),

q = 0,1,r = 0,1, j = 0, · · · ,NT −1,

The main steady-state system performance measures can be derived as follows:

• Utilization of the servers

cpuutil =
NT−1

∑
j=0

P(0,1, j)
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• Availability of the servers

goodcpu =
1

∑
r=0

NT−1

∑
j=0

P(0,r, j)

• Utilization of the repairman

repairutil =
1

∑
r=0

NT−1

∑
j=0

P(1,r, j) = 1−goodcpu

• Mean rate of generation of primary calls

busyterm = E[NT − cpu state(t)− retrying terminals(t);cpu(t) = 0]

=
1

∑
r=0

NT−1

∑
j=0

(NT − r− j)P(0,r, j)

• Utilization of the sources

termutil =
busyterm

NT

• Mean rate of generation of repeated calls

retravg = E[retrying terminals(t);cpu(t) = 0] =
1

∑
r=0

NT−1

∑
j=0

jP(0,r, j)

• Mean number of calls staying in the server

waitall = E[cpu state(t)] =
1

∑
q=0

NT−1

∑
j=0

P(q,1, j)

• Mean number of calls staying in the orbit

retrall = E[retrying terminals(t)] =
1

∑
q=0

1

∑
r=0

NT−1

∑
j=0

jP(q,r, j)

• Overall utilization

overallutil = cpuutil + repairutil +NT ∗ termutil

• Mean number of calls staying in the orbit or in the server

meanorbit = waitall + retrall

• Mean response times

E[T ] =
E[retrying terminals(t)]+E[cpu state(t)]

λ ∗busyterm
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2.4 Questions about the System

Our goal is to study various quantitative properties of the presented models to

get deeper understanding of the modelled systems. The following properties are

analyzed:

cpuutil The ratio of the time the server spends with serving calls compared to the

total execution time (0≤cpuutil≤1).

goodcpu The ratio of the time when the server is operable compared to the total

execution time (0≤goodcpu≤1).

repairutil The ratio of the time when the server is inoperable compared to the

total execution time (0≤repairutil≤1).

busyterm The average number of served terminals while the system is opera-

ble (0≤busyterm≤NT).

termutil The ratio of served terminals while the system is operable to the total

number of the terminals (0≤termutil≤1).

retravg The average number of retrying terminals while the system is opera-

ble (0≤retravg≤NT-1).

waitall The average number of the waiting terminals during the total system ex-

ecution time (0≤waitall≤1).

retrall The average number of the retrying terminals during the total system ex-

ecution time (0≤retrall≤NT-1).

overallutil The sum of the system average utilization, i.e. the sum of cpuutil,

repairutil and NT*termutil (0≤overallutil≤NT+1).

meanorbit The average number of the retrying terminals and waiting terminals

during the total system execution time (0≤retrall≤NT).

resptime The mean response time, i.e: the average waiting time till a call of a

terminal is successfully accepted.

2.5 Different Versions of the System

In [16], actually four slightly different systems were described:
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continuous The presented model.

non-continuous If the server becomes inoperable, than the call have to be retried

(the waiting terminal becomes retrying).

continuous, intelligent It can also reject a call if the server is inoperable (the

original model cannot handle a call if the server is inoperable.

non-continuous, intelligent The combination of the non-continuous and intelli-

gent model.

The later three variants are not formally described in the present paper. However,

they have been implemented and have been used for the experiments in Chapter 5.

3 Modeling and Analyzing in MOSEL

The MOSEL language (Modeling Specification and Evaluation Language) was

developed at the University of Erlangen. The MOSEL system uses a macro-like

language to model communication networks and computer systems, like stochas-

tic Petri Nets. The MOSEL tool contains some language features, like variables

and functions in the style of the C programming language. The MOSEL calls an

external tool after having translated the MOSEL code into the respective tool’s

format. For example the Petri Net analysis tool SPNP and the state analysis tool

MOSES can be used.

In this chapter we demonstrated how we translated the model described in the

problem section into a MOSEL model.

Now we present the full source code of the MOSEL model (in verbatim) sur-

rounded by detailed comments.

The MOSEL programs consist of four parts: the declarations, the node definitions,

the transition rules and the results.

The MOSEL source code begins with the declarations. In the model we use the

same notations and parameters as in the section PRISM.

• NT is the number of the terminals,

• λ is the rate of primary call generation,

• µ is the rate of the call servicing,

• ν is the rate of repeated call generation,

13



• δ is the failure rate in idle state of the CPU,

• γ is the failure rate in busy state of the CPU and

• τ is the repair rate of the CPU.

#define NT 6

VAR double lambda;

VAR double nu;

VAR double mu;

VAR double delta;

VAR double gamma;

VAR double tau;

The CPU can be in two states: in idle or in busy state, and it can be in opera-

tional (up) or non-operational (failed) in both states. We define the following

enumerations to describe these cases:

• cpu states represents the state of the CPU. It can be in two states: idle

and busy.

• cpu updown indicate whether the CPU is operational or not.

enum cpu_states {cpu_busy, cpu_idle};

enum cpu_updown {cpu_up, cpu_down};

The node part defines the nodes of the system. In our model there are five nodes:

one node for the number of busy, retrying, and waiting terminals, respectively, and

two nodes for the CPU. The CPU is idle and up and all the terminals are busy at

the starting time.

Each terminal can be in three states: generating a primary call, sending repeated

calls, and under service. These states are represented by the following variables:

• busy terminals is the number of terminals, which are capable to gen-

erate primary calls (they are busy with the local task and may generate calls

to the server;

• retrying terminals is the number of retrying terminals. If a gen-

erated call finds the CPU in busy state, than the terminal moves to state

retrying;
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• waiting terminals is the number of the waiting terminals. If a call

finds the CPU in idle state, than the terminal moves to state waiting, which

issued a successful call to the server and wait for the answer of the call.

• cpu state represent the state of the CPU. It can be idle and busy.

• cpu indicate whether the CPU is operational (up) or not (failed).

If cpu state is equal to cpu busy it means that that the operational CPU

serving of a call and when the cpu state is equal to cpu idle than the CPU

waiting a call.

In our model, server contains only one CPU, so the number of the waiting termi-

nals never be more than 1. Initially all terminals are busy terminals.

NODE busy_terminals[NT] = NT;

NODE retrying_terminals[NT] = 0;

NODE waiting_terminals[1] = 0;

NODE cpu_state[cpu_states] = cpu_idle;

NODE cpu[cpu_updown] = cpu_up;

The transition part describes how the system works.

The first transition rule defines the successful primary call generation: It the CPU

is operational then the CPU moves from the idle state to busy and the termi-

nal from busy to waiting. All busy terminal produce that call with rate λ , so the

rate is λ multiplied with the number of busy terminals. After that transition the

number of busy terminals decreases by one and the number of the waiting ter-

minals increases by one. Note that the MOSEL generates automatic conditions,

so that transition rule will occur when cpu state is cpu idle and number of

busy terminals are greater than 0.

IF cpu==cpu_up FROM cpu_idle, busy_terminals

TO cpu_busy, waiting_terminals W lambda*busy_terminals;

The second rule describes an unsuccessful primary call. It occurs if the CPU is

operational and the CPU is in busy state. After that transition the busy terminal

moves to state retrying. This means, the number of busy terminals decreases by

one and the number of the retrying terminals increases by one. All busy terminals

produce that call with rate λ , so the rate is λ multiplied by the number of busy

terminals.
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IF cpu==cpu_up AND cpu_state==cpu_busy

FROM busy_terminals

TO retrying_terminals W lambda*busy_terminals;

The third rule describes the scenario of a successful repeated call generation. It

occurs if the CPU is operational and the CPU is in idle state and there are some

retrying terminals. All retrying terminals produce the calls with ν rate, so the rate

is ν multiplied by the number of busy terminals. After that transition the CPU

moves from the idle state to busy and the terminal from retrying to waiting. That

means, the number of retrying terminals decreases by one and the number of the

waiting terminals increases by one.

IF cpu==cpu_up FROM cpu_idle, retrying_terminals

TO cpu_busy, waiting_terminals W nu*retrying_terminals;

The fourth rule describes the request service at the CPU. It occurs if the CPU is

operational and the CPU is in busy state. Of course that means, the number of

waiting terminals is one. Its rate is determined by the server call serving rate.

After that transition the CPU moves from the busy state to idle and the terminal

from waiting to busy. So, the number of waiting terminals decreases by one (will

be 0) and the number of the busy terminals increases by one.

IF cpu==cpu_up FROM cpu_busy, waiting_terminals

TO cpu_idle, busy_terminals W mu;

The fifth transition describes the scenario when an idle server becomes failed. It

occurs with rate δ if the server is up and idle. If a server becomes failed, it keeps

its state.

IF cpu_state==cpu_idle FROM cpu_up TO cpu_down W delta;

The sixth transition describes the scenario when a busy server becomes failed. It

occurs if the server is up and busy with rate δ .

IF cpu_state==cpu_busy FROM cpu_up TO cpu_down W gamma;

The last transition describes the scenario when a failed server will be repaired. It

occurs with rate τ if the server is failed. After it gets repaired, it continues the

processing if it was busy.
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FROM cpu_down TO cpu_up W tau;

The last section of a model description is the result part where the calculations of

the requested output performance measures are. The mathematical background of

the equations used in the result part is described in the previous section.

In the result part of the MOSEL code we used that equations to obtain the perfor-

mance measures of the system. In MOSEL we can calculate the probability of a

certain state or combinations of certain states by the PROB keyword.

The first result is defined the CPU utilization (cpuutil).

RESULT>> if(cpu==cpu_up AND cpu_state==cpu_busy)

cpuutil += PROB;

The goodcpu is the probability of the state where the CPU operational.

RESULT>> if(cpu==cpu_up) goodcpu += PROB;

The busyterm is the mean number of the busy terminals to all states where the

server is operational.

RESULT if(cpu==cpu_up) busyterm += (PROB*busy_terminals);

The termutil assigns the ratio of the mean number of busy terminals (busyterm)

over the total number of terminals (NT).

RESULT>> termutil = busyterm / NT;

The waitall is the mean number of the calls staying in the service.

RESULT if(waiting_terminals>0)

waitall += (PROB*waiting_terminals);

The retrall is the mean number of the calls staying in the orbit.

RESULT if(retrying_terminals>0)

retrall += (PROB*retrying_terminals);

The resptime is the mean response time.

RESULT>> resptime = (retrall + waitall) / NT /

/ (lambda * termutil);

Then the last result give us the overall utilization (overallutil).

RESULT>> overallutil = cpuutil + busyterm;
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4 Modeling and Analyzing in PRISM

In this chapter we describe how we translate the model described in Section 2

into a PRISM model. Further information about the PRISM system can be found

under [13]. In the first subsection we show the source-code of the PRISM model;

in the second subsection we formulate questions in the model. This section should

give a good overview respect to the capability of the PRISM system for modeling

and analysis a queueing system.

4.1 Translating the Model to PRISM

In this subsection and the following ones, we present the full source code of the

PRISM model (in verbatim) surrounded by detailed comments. The model

description has 4 main parts:

• the type of the model,

• the constant declarations,

• the module declarations and

• the reward specifications.

In our case, all models are represented in Continuous-time Markov chains model,

which is indicated by the keyword stochastic.

stochastic

Constants can be used in two manners:

• uninitialized constants denote parameters of the model and,

• initialized constants denote fixed values.

const int NT;

const double lambda;

const double mu;

const double nu;

const double delta;

const double gamma = delta;

const double tau;
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The parameters of that model are the following constants:

• NT denotes the number of the terminals NT,

• lambda denotes the rate λ of primary call generation,

• mu denotes the rate µ of the call servicing,

• nu denotes the rate ν of repeated call generation,

• delta denotes the failure rate δ in idle state of the server,

• gamma denotes the failure rate γ in busy state of the server and

• tau denotes the repair rate τ of the server.

In our simulation we do not distinguish between the failure rate in idle and busy

state, so we equal gamma with delta.

We define constants to represent the state of the server to make the model human-

readable. There are two pairs of constants, the two pairs used to assign value

for two different variables, namely cpu and cpu state. The first pair of the

constants cpu up and cpu down indicates whether the server is operable or not.

The second pair of constants cpu busy and cpu idle expresses that the server

is busy serving a call and that the server is idle waiting for a call, respectively.

const int cpu_up = 0;

const int cpu_down = 1;

const int cpu_busy = 0;

const int cpu_idle = 1;

The next fragment are the module definitions. A module definition is started with

the module keyword and is closed with the endmodule keyword. All modules

contain state variables and state transitions. We have two modules TERMINALS

and SERVER described in the following subsections,

4.2 Terminals

The module TERMINALS represents the set of the terminals. We keep track of

the number of the terminals in specific states, because in PRISM it is not possible

to have multiple instances of a module. Thus all variables range from 0 to the

maximal number of the terminals, which is denoted by the range indicator within

square brackets in the source code.
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module TERMINALS

busy_terminals : [0..NT] init NT;

retrying_terminals : [0..NT] init 0;

waiting_terminals : [0..NT] init 0;

We have the following variables in the model :

• busy terminals is the number of terminals, which are capable to gen-

erate primary calls (they are busy with local tasks and may generate calls to

the server);

• retrying terminals is the number of retrying terminals, i.e. terminals

which have generated an unsuccessful call and are retrying the same call;

• waiting terminals is the number of the waiting terminals, i.e. termi-

nals which have issued a successful call to the server and wait for the answer

of the call.

In the current model, we have only one server, therefore the number of the waiting

terminals never be more than 1. Initially all terminals are busy terminals.

The transitions are represented in form [l] g -> r : u. The transition with

label l occurs if the guard g evaluates to true; the rate of the transition is r,

the values of the state variables are updated according to u. The labels serve as

synchronization identifiers for parallel composition. Transitions with the same

label in different modules execute together, i.e. all guards of the transition must

be true and the total transition rate is the product of the individual transition rates.

We also have to notice that the transitions of the terminals have their counterparts

on the server side, which make the transition guards unique.

The transition with label t1 describes the scenario of a successful primary call:

[t1]

busy_terminals > 0 & waiting_terminals < NT ->

lambda*busy_terminals :

(busy_terminals’ = busy_terminals-1) &

(waiting_terminals’ = waiting_terminals+1);

The transition occurs if there are some busy terminals and the number of the

waiting terminals is lower than the number of the terminals. The second part

of the guard condition is purely technical to explicitly state that the value of
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waiting terminals is not greater than the maximally allowed value. (Ac-

cording to the model semantics we know that it never becomes greater than one,

because the server serves only one call at once.) All busy terminals produce that

call with rate λ , so the rate is λ multiplied with the number of busy terminals. Af-

ter that transition, the number of busy terminals decreases by one and the number

of the busy terminals increases by one.

The transition with label t2 describes the scenario of an unsuccessful primary

call:

[t2]

busy_terminals > 0 & retrying_terminals < NT ->

lambda*busy_terminals :

(busy_terminals’ = busy_terminals-1) &

(retrying_terminals’ = retrying_terminals+1);

The transition occurs if there are some busy terminals and the number of the

retrying terminals is lower than the number of the terminals. The second part

of the guard condition is also purely technical to explicitly state that the value of

waiting terminals is not greater than the maximally allowed value. (Ac-

cording the model semantics we know that it never becomes grater than maximal

number, because the sum of the terminal variables equals the number of the termi-

nals.) All busy terminals produce that call with rate λ , so the rate is λ multiplied

by the number of busy terminals. After that transition the number of busy termi-

nals decreases by one and the number of the busy terminal increases by one.

The transition with label t3 describes the scenario of a successfully repeated call:

[t3]

retrying_terminals > 0 & waiting_terminals < NT ->

nu*retrying_terminals :

(retrying_terminals’ = retrying_terminals-1) &

(waiting_terminals’ = waiting_terminals+1);

The transition occurs if there are some retrying terminals and the number of the

waiting terminals is smaller than the number of the terminals. All retrying termi-

nals produce the calls with rate ν , so the rate is ν multiplied with the number of

busy terminals. After that transition, the number of retrying terminals decreases

by one and the number of the waiting terminals increases by one.

The transition with label t4 describes the scenario of an answer for a waiting

terminal:
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[t4]

waiting_terminals > 0 & busy_terminals < NT ->

1 :

(waiting_terminals’ = waiting_terminals-1) &

(busy_terminals’ = busy_terminals+1);

The transition occurs if there are some waiting terminals and the number of busy

terminals smaller than the number of the terminals. Its rate is determined by the

call serving rate on the server side (see below). After that transition, the number

of retrying terminals decreases by one and the number of the waiting terminals

increases by one.

endmodule

4.3 Server

The second module represents the server by two binary state variables. The vari-

able cpu expresses the operability of the server by the values 0 and 1, which

are denoted by the constants cpu up and cpu down, respectively. The variable

cpu state the state of the server by values 0 and 1, which are denoted by the

constants cpu busy and cpu idle, respectively.

module SERVER

cpu : [cpu_up..cpu_down] init cpu_up;

cpu_state : [cpu_busy..cpu_idle] init cpu_idle;

The transition with label t1 describes the server side scenario of a successful

primary call. It occurs, if the server is operable and idle. After the transition, the

server becomes busy.

[t1]

cpu = cpu_up & cpu_state = cpu_idle ->

1 :

(cpu_state’ = cpu_busy);

The transition with label t2 describes the server side scenario of an unsuccessful

primary call. It occurs, if the server is operable and busy. After the transition, the

state of the server doesn’t change.
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[t2]

cpu = cpu_up & cpu_state = cpu_busy ->

1 :

(cpu’ = cpu) &

(cpu_state’ = cpu_state);

The transition with label t3 describes the server side scenario of a successful pri-

mary call. It is the same as the transition t1, because the server can’t distinguish

between a primary and a repeated call.

[t3]

cpu = cpu_up & cpu_state = cpu_idle ->

1 :

(cpu_state’ = cpu_busy);

The transition with label t4 describes the server side scenario of finishing a call

(a successful call served). It occurs with rate µ and the server becomes idle after

the transition.

[t4]

cpu = cpu_up & cpu_state = cpu_busy &

mu > 0 ->

mu :

(cpu_state’ = cpu_idle);

The transition with label t5 describes the scenario when an idle server becomes

inoperable. It occurs, if the server is operable and idle with rate γ . If a server

becomes inoperable, it keeps its state. After it gets repaired, it continues the pro-

cessing, if it was busy at the time of the failure.

[t5]

cpu_state = cpu_idle & cpu = cpu_up &

delta > 0 ->

delta :

(cpu’ = cpu_down);

The transition with label t6 describes the scenario when a busy server becomes

inoperable. It occurs, if the server is operable and busy with rate δ .
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[t6]

cpu_state = cpu_busy & cpu = cpu_up &

gamma > 0 ->

gamma :

(cpu’ = cpu_down);

The transition with label t7 describes the scenario when a server gets repaired. It

occurs, if the server is inoperable with rate τ .

[t7]

cpu = cpu_down &

tau > 0 ->

tau :

(cpu’ = cpu_up);

endmodule

4.4 Rewards

The last section of a model description is the declaration of rewards. Rewards

are numerical values assigned to states or to transitions. Arbitrary many reward

structures can be defined over the model and they can referenced by a label. We

use rewards to define the various question defined in Section 2.4.

The first reward is the server utilization (cpuutil). It assigns a value 1 to all states

where the server is operable and busy.

rewards "cpuutil"

cpu = cpu_up & cpu_state = cpu_busy : 1;

endrewards

The reward goodcpu assigns 1 to all states where the server is operable.

rewards "goodcpu"

cpu = cpu_up : 1;

endrewards

The reward repairutil assigns 1 to all states where the server is inoperable.
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rewards "repairutil"

cpu = cpu_down : 1;

endrewards

The reward busyterm assigns the number of the busy terminals to all states where

the server is operable.

rewards "busyterm"

cpu = cpu_up : busy_terminals;

endrewards

The reward termutil assigns the ratio of the busy terminals over the total number

of terminals to all states where the server is operable.

rewards "termutil"

cpu = cpu_up : busy_terminals/NT;

endrewards

The reward retravg assigns the number of the retrying terminals to all states where

the server is operable.

rewards "retravg"

cpu = cpu_up : retrying_terminals;

endrewards

The reward waitall assigns the number of the waiting terminals to states with such

terminals.

rewards "waitall"

waiting_terminals > 0 : waiting_terminals;

endrewards

25



The reward waitall assigns the number of the retrying terminals to states with such

terminals.

rewards "retrall"

retrying_terminals > 0 : retrying_terminals;

endrewards

The reward meanoribt assigns the number of the retrying and waiting terminals to

states with such terminals.

rewards "meanorbit"

retrying_terminals > 0 : retrying_terminals;

waiting_terminals > 0 : waiting_terminals;

endrewards

The reward resptime comp assigns a number needed for the mean response time

calculation to the states. It doesn’t have any intuitive meaning and the reason to

calculate is simply technical.

rewards "resptime_comp"

retrying_terminals > 0 : retrying_terminals/(NT*lambda);

waiting_terminals > 0 : waiting_terminals/(NT*lambda);

endrewards

The reward overallutil assigns to the all states the total number of all busy ele-

ments, i.e. the server, if it is busy or is under repair (a repair unit is busy with its

repair), and all busy terminals.

rewards "overallutil"

cpu = cpu_up & cpu_state = cpu_busy : 1;

cpu = cpu_down : 1 ;

cpu = cpu_up : busy_terminals;

endrewards
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4.5 Questions about the System in PRISM

As we mentioned in the introduction, in PRISM the queries about the CTMC mod-

els can be formulated in CSL (Continuous Stochastic Logic). CSL is a branching-

time logic similar to CTL or PCTL [2]. It is capable to express queries about

both transient and steady-state properties. Transient properties refers to the values

of the rewards at certain times and the steady-state properties refer to long-run

rewards.

The PRISM system support not only evaluating predicates about the rewards, but

also queries about the rewards. In our experiments we used only the following one

CSL construction: R{"l"}=? [ S ]. This query ask for the expected long-run

reward of the structure labelled with l. Most questions about the model described

in Section 2.4 can be formulated as CSL expressions.

R{"cpuutil"}=? [ S ]

R{"goodcpu"}=? [ S ]

R{"repairuti"}=? [ S ]

R{"busyterm"}=? [ S ]

R{"termutil"}=? [ S ]

R{"retravg"}=? [ S ]

R{"waitall"}=? [ S ]

R{"retrall"}=? [ S ]

R{"overallutil"}=? [ S ]

R{"meanorbit"}=? [ S ]

R{"resptime_comp"}=? [ S ]

The response time (resptime) cannot be expressed as a single query, because

the cross-referencing between the reward structures not allowed. As a workaround

we calculated resptime during the post processing of the results according the

relationship resptime=resptime comp/termutil.

4.6 Additional Queries about the PRISM Model

As we mentioned in the previous subsection, the CSL language in PRISM is ca-

pable to formulate more sophisticated questions. For example:

”What is the probability that the server is busy at time T?”.

The question below can be formulated as:
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P=? [true U[T,T]

(cpu=cpu up & cpu state=cpu busy)].

We can also ask standard qualitative question about the integrity of the model like:

”Is it always true that if the server is busy, then there is one waiting

terminal?”

This question can be formulated in PRISM as:

(cpu state=cpu busy)=>(waiting terminals=1).

The model checker will determine whether this property is true in all states of the

system; it is thus able to check classical safety properties. One may also formulate

a classical liveness property such as

“Will the cpu always become busy again?”

by the query

P>=1[true U cpu_state=cpu_busy]

which asks whether in every state with probability 1 (true holds until) eventually

the property cpu state=cpu busy holds.

5 Experimental Results

In this section, we show the result of the experiments carried through with PRISM.

The parameters used for the experiments are listed in Figure 5; they are the same

as published in [16]. The results of the experiments with PRISM are presented in

diagrams (Figure 6, 7, 8, 9, 10, 11) and in tables (Figure 12, 13, 14, 15, 16, 17).

The experiments was performed in two main steps: the execution of the experi-

ments through the GUI of PRISM and the post-processing of the results. We se-

lected the appropriate CSL query according the Figure 4 and set up the parameters

according the Figure 5; after the execution of PRISM the results were exported

to CSV files for further processing. The post processing happened with a help of

Python scripts.
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Nr. of the experiment used reward(s)

1 resptime comp and termutil

2 overallutil

3 meanorbit

4 resptime comp and termutil

5 overallutil

6 meanorbit

Figure 4: Rewards calculated in the experiments

Exp. Nr. NT λ µ ν γ /δ τ X axis

1 6 0.8 4 0.5 X axis 0.1 0. 0.01. ..., 0.12

2 6 0.1 0.5 0.5 X axis 0.1 0. 0.01. ..., 0.12

3 6 0.1 0.5 0.05 X axis 0.1 0. 0.01. ..., 0.12

4 6 0.8 4 0.5 0.05 X axis 0.5. 1.0. ..., 4.0

5 6 0.05 0.3 0.2 0.05 X axis 0.5. 1.0. ..., 4.0

6 6 0.1 0.5 0.05 0.05 X axis 0.5. 1.0. ..., 4.0

Figure 5: Parameters of the experiments

5.1 Analysis Results

The diagrams compared with the ones presented in [16] clearly show that the two

models (MOSEL and PRISM) produce identical results for the same parameters.

Comparing the raw results of the experiments, it shows that they are differ only

after the 5th decimal digit. The quality of the results produced with PRISM is this

the same as the ones produced in MOSEL.

5.2 Tool Benchmarks

A benchmark was carried through to compare the efficiency of the two tools. The

parameters of the machine that was used for the benchmark: P4 2.6GHz with

512KB L2 Cache and 512MB of main memory. Unfortunately MOSEL is not

capable to handle models where the number of terminals (NT) is greater than 126,

such that the runtime of the benchmarks (which in PRISM especially depend on

NT) remain rather small.

Both of the tools were tested with the described model using the following pa-

rameters: λ =0.05, µ =0.3, ν =0.2, γ = δ =0.05, τ =0.1. The comparison of
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Figure 6: Results of the 1st experiment

Figure 7: Results of the 2nd experiment
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Figure 8: Results of the 3rd experiment

Figure 9: Results of the 4th experiment
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Figure 10: Results of the 5th experiment

Figure 11: Results of the 6th experiment
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γ /δ Continuous Non-continuous Cont., Int. Non-cont., Int.

0 1.79923998 1.79923998 1.79923998 1.79923998

0.01 1.97916409 1.98417556 2.10889048 2.11433520

0.02 2.15908820 2.17002377 2.41929207 2.43117323

0.03 2.33901212 2.35678481 2.73042432 2.74973388

0.04 2.51893602 2.54445919 3.04226501 3.06999556

0.05 2.69886017 2.73304753 3.35479330 3.39193553

0.06 2.87878407 2.92254971 3.66798924 3.71553851

0.07 3.05870823 3.11296631 3.98183309 4.04078291

0.08 3.23863212 3.30429798 4.29630644 4.36765061

0.09 3.41855599 3.49654449 4.61139161 4.69612416

0.1 3.59848018 3.68970646 4.92707122 5.02618660

0.11 3.77840404 3.88378462 5.24332875 5.35782147

0.12 3.95832788 4.07877860 5.56014834 5.69101349

Figure 12: Results of the 1st experiment

γ /δ Continuous Non-continuous Cont., Int. Non-cont., Int.

0 4.21273611 4.21273611 4.21273611 4.21273611

0.01 3.92066869 3.90817470 3.96280050 3.95206434

0.02 3.67727900 3.65447477 3.75121400 3.73129996

0.03 3.47133449 3.43989801 3.56946493 3.54161033

0.04 3.29481062 3.25605905 3.41143189 3.37663985

0.05 3.14182326 3.09680955 3.27259315 3.23169038

0.06 3.00795933 2.95753788 3.14953062 3.10320864

0.07 2.88984386 2.83471677 3.03961005 2.98845396

0.08 2.78485256 2.72560416 2.94076485 2.88527499

0.09 2.69091297 2.62803465 2.85134984 2.79195784

0.1 2.60636714 2.54027531 2.77003780 2.70711840

0.11 2.52987349 2.46092472 2.69574429 2.62962623

0.12 2.46033381 2.38883492 2.62757459 2.55854660

Figure 13: Results of the 2nd experiment

33



γ/δ Continuous Non-continuous Cont., Int. Non-cont., Int.

0 3.66755364 3.66755364 3.66755364 3.66755364

0.01 3.66755370 3.69889761 3.89985974 3.92983315

0.02 3.66755363 3.72951191 4.09163980 4.14513526

0.03 3.66755356 3.75941838 4.25248179 4.32468088

0.04 3.66755350 3.78863777 4.38919456 4.47642403

0.05 3.66755344 3.81719030 4.50674237 4.60615262

0.06 3.66755338 3.84509556 4.60882671 4.71817419

0.07 3.66755333 3.87237240 4.69826213 4.81575728

0.08 3.66755327 3.89903942 4.77722524 4.90142454

0.09 3.66755322 3.92511430 4.84742498 4.97715239

0.1 3.66755317 3.95061423 4.91022096 5.04450991

0.11 3.66755313 3.97555575 4.96670805 5.10475791

0.12 3.66755308 3.99995523 5.01777728 5.15892033

Figure 14: Results of the 3rd experiment

τ Continuous Non-continuous Cont., Int. Non-cont., Int.

0.5 3.59848019 3.64406334 4.89208289 4.94183266

1 2.69886017 2.73304753 3.35479330 3.39193553

1.5 2.39898683 2.42937560 2.84173680 2.87461798

2 2.24905016 2.27753963 2.58480692 2.61551916

2.5 2.15908816 2.18643805 2.43037214 2.45975650

3 2.09911350 2.12570367 2.32721545 2.35569575

3.5 2.05627445 2.08232197 2.25338240 2.28120259

4 2.02414516 2.04978550 2.19789281 2.22520681

Figure 15: Results of the 4th experiment

τ Continuous Non-continuous Cont., Int. Non-cont., Int.

0.5 2.69564779 2.62234687 2.89542691 2.82177740

1 3.26086371 3.16312917 3.46359054 3.36463595

1.5 3.54347167 3.43352032 3.72781517 3.61624283

2 3.71303645 3.59575502 3.87814557 3.75909007

2.5 3.82607964 3.70391149 3.97435645 3.85038104

3 3.90682477 3.78116612 4.04088636 3.91344348

3.5 3.96738362 3.83910677 4.08948305 3.95947336

4 4.01448495 3.88417197 4.12646007 3.99447680

Figure 16: Results of the 5th experiment
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τ Continuous Non-continuous Cont., Int. Non-cont., Int.

0.5 3.66755341 3.81719027 4.89175171 4.96603982

1 3.66755344 3.81719030 4.50674237 4.60615262

1.5 3.66755346 3.81719032 4.30837214 4.42041925

2 3.66755348 3.81719033 4.18667875 4.30632270

2.5 3.66755349 3.81719034 4.10416726 4.22887530

3 3.66755350 3.81719035 4.04444600 4.17276746

3.5 3.66755351 3.81719024 3.99917812 4.13020524

4 3.66755351 3.81719025 3.96366334 4.09679127

Figure 17: Results of the 6th experiment

Figure 18: Results of the 2nd experiment

the two tools can be seen in the Figure 19 and Figure 18. In Figure 20, we can

see a more detailed description of the PRISM benchmark (the times of the model

construction and model checking are indicated separately).

The following preliminary conclusions can be drawn from benchmark:

• The execution times of the MOSEL system almost stay constant indepen-

dently of NT;

• The execution times of the PRISM system increase rapidly with the increase

of NT.

• The model construction time in PRISM dominates the execution time (rather

than the model checking time).

35



NT MOSEL PRISM

5 0.7125 0.025

10 0.7135 0.047

20 0.715 0.094

50 0.719 0.219

100 0.725 0.596

120 0.728 0.938

150 - 1.550

200 - 2.377

Figure 19: Total execution times of the MOSEL and the PRISM in seconds

NT Model const. Model checking Total

5 0.015 0.01 0.025

10 0.031 0.016 0.047

20 0.047 0.047 0.094

50 0.141 0.078 0.219

100 0.391 0.205 0.596

120 0.594 0.344 0.938

150 1.071 0.479 1.550

200 1.609 0.768 2.377

Figure 20: Execution times in seconds
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While MOSEL is thus more efficient for smaller models, with PRISM also larger

models can be analyzed. Furthermore, once a PRISM model is constructed, it can

be arbitrarily often model checked with different parameter values (the PRISM

“Experiments” feature). For such scenarios, the model checking time is more

relevant than the model construction time.

6 Conclusions

Probabilistic model checkers like PRISM are nowadays able to analyze quantita-

tive behaviors of concurrent systems in a similar way that classical performance

analysis tools like MOSEL are. In this paper, we reproduced for the particular

example of a retrial queuing system the results of an analysis that were previously

generated with the help of MOSEL. The numerical results were virtually identical

such that we can put confidence on the quality of the analysis. The construction of

the models and the benchmarks of the tools demonstrate the following differences

between both tools:

• The PRISM modeling language allows us to decompose a system into mul-

tiple components whose execution can be synchronized by combined state

transitions; this makes the model more manageable than the monolithic

MOSEL model. However, the decomposition can be only based on a fixed

number of components such that NT terminals must be still represented by

a single PRISM module.

• The state transitions in PRISM are described on a lower level than those in

MOSEL: all guard conditions have to be made explicit (while the MOSEL

FROM part of a rule imposes implicit conditions on the applicability of the

rule) and all effects have to be exposed (while the MOSEL TO part of a

rule imposes implicit effects); on the other side, this makes the PRISM

rules more transparent than the MOSEL rules. In any case, the difference is

syntactic rather than fundamental.

• Several kinds of analysis can be expressed in the property specification lan-

guage of PRISM (by the definition of “rewards” and CSL queries for the

long-term values of rewards) on a higher level than in MOSEL (where ex-

plicit calculations have to be written); on the other side, not every kind of

analysis can be apparently directly expressed in PRISM (because different

reward values can not be combined in a query); it is thus necessary to com-

bine different results by external calculations.
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• PRISM is also able to answer questions about qualitative system properties

such as safety or lifeness properties and other questions that are beyond the

scope of MOSEL.

• The time for an analysis depends in PRISM on the size of the state space

of the system while it essentially remains constant in MOSEL, which on

the other side puts a rather small limit on the ranges of state variables; the

time growth factor in PRISM is super-linear, at least quadratic, and perhaps

exponential (this remains to be investigated). While we were thus able to

analyze larger systems with PRISM than with MOSEL, it is thus not yet

clear whether the analysis will really scale to very large systems.

• As documented by the PRISM web page, the tool is actively used by a large

community in various application areas; PRISM is actively supported and

further developed (the current release version 3.1.1 is from April 2006, the

current development version is from December 2007). On the other hand,

the latest version 2.0 of MOSEL-2 is from 2003; the MOSEL web page has

not been updated since that time.

The use of PRISM for the performance analysis of systems thus seems a promis-

ing direction; we plan to further investigate its applicability by analyzing more

systems with respect to various kinds of features.
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