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Zusammenfassung

Diese Arbeit behandelt Algorithmen zur Berechnung von parametrischen Gröbnerbasen
und parametrischen Gröbnersystemen in verschiedenen algebraischen Strukturen: in
kommutativen Ringen, in Ringen von Differentialoperatoren, in Polynomringen über
kommutativen von-Neumann-regulären Ringen und über Moduln. Sowohl bezüglich Zeit-
als auch bezüglich Speicherkomplexität ist unser neuer Algorithmus effizienter als andere
existierende Algorithmen.

Wir definieren reduzierte Gröbnerbasen für Polynomringe über Polynomringe und führen
Algorithmen zu ihrer Berechnung ein. Es sind bereits Algorithmen zur Berechnung von
Gröbnerbasen in Polynomringen über Polynomringen angegeben worden. Diese liefern
jedoch keine reduzierten Gröbnerbasen. Wir schlagen eine neue Definition für reduzierte
Gröbnerbasen in diesen Ringen vor.

Algorithmen zur Berechnung von Gröbnerbasen in Ringen von Differentialoperatoren
mit polynomiellen Koeffizienten sind bereits vorgeschlagen worden. In der vorliegenden
Arbeit geben wir einen viel effizienteren und einfacheren Algorithmus für diese Situation
an, der auf der Beziehung zweier Arten von Gröbnerbasen in Ringen von Differential-
operatoren beruht. Weiters geben wir Algorithmen zur Berechnen von parametrischen
Gröbnerbasen in diesen Ringen an. Das heißt, wir beschreiben nicht-kommutative
parametrische Gröbnerbasen in Ringen von Differentialoperatoren.

Verschiedene Algorithmen zur Berechnung parametrischer Gröbnerbasen in Polynom-
ringen sind bekannt. Jedoch wurde die Erweiterung von parametrischen Gröbnerbasen
auf Moduln noch nicht untersucht. Wir verallgemeinern die Theorie der parametrischen
Gröbnerbasen auf Moduln.

Teil dieser Arbeit ist eine Implementierung der vorgestellten Algorithmen in Form eines
Software-Pakets für das Computeralgebrasystem Risa/Asir.

Stichwörter Parametrische Gröbnerbasen, Weyl-Algebra, Moduln.
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Abstract

This thesis presents algorithms for computing comprehensive Gröbner bases and com-
prehensive Gröbner systems in various domains: commutative polynomial rings, rings of
differential operators, polynomial rings over a commutative von Neumann regular ring and
modules. In both space and time complexity, our new algorithm is much more efficient
than other existing algorithms.

We define reduced Gröbner bases for polynomial rings over a polynomial ring, and intro-
duce algorithms for computing them. There exist some algorithms for computing Gröbner
bases in polynomial rings over a polynomial ring. However, we cannot obtain the reduced
Gröbner bases by the algorithms in these rings. We propose a new notion of reduced
Gröbner bases in these rings.

Algorithms for computing Gröbner bases in rings of differential operators with coefficients
in a polynomial ring, have been proposed in the literature. In this thesis, we present a
much more efficient and simpler algorithm than these algorithms by using the relations
of two kinds of Gröbner bases in rings of differential operators. Moreover, we introduce
algorithms for computing their comprehensive Gröbner bases. Namely, we describe non-
commutative comprehensive Gröbner bases in rings of differential operators.

Several algorithms are known for computing comprehensive Gröbner bases in polynomial
rings. However, the extension of comprehensive Gröbner bases to modules has not been
studied yet. We generalize the theory of comprehensive Gröbner bases to the modules.

Part of the thesis is an implementation of the presented algorithms in form of a software
package for the computer algebra system Risa/Asir.

Keywords comprehensive Gröbner bases, Weyl algebra, modules.
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Chapter 1

Introduction

I know nothing except the fact of my ignorance.
Socrates (470 BC- 399 BC)

Nowadays it is common knowledge that Gröbner bases and Buchberger’s algorithm are
key ingredients in computational commutative algebra, and are hence fundamental tools
for applications in several fields both inside and outside mathematics (see [Buc85, BW98]).
For every concept and construction in computer algebra the question of uniformity in the
input parameters is crucial both from a theoretical and a practical viewpoint. This applies
in particular to the concept of Gröbner bases.

Parametric polynomial systems have been studied by many researchers. Mainly, we
have two kinds of parametric polynomials

(1) polynomials with parametric coefficients, and
(2) polynomials with parametric exponents.

Recently, Gröbner bases for parametric polynomials have been actively investigated. For
example, one can see several papers for Gröbner bases of a polynomial ideal with paramet-
ric coefficients in [Mon02, MM06, Wei92, SS02, SS06, Wei06], and for Gröbner bases of a
polynomial ideal with parametric exponents in [Yok04, Yok07, Wan05, PW06, Wei04].

In this thesis, we treat the theory of Gröbner bases for a polynomial ideal with para-
metric coefficients, i.e., the case (1). In general, these Gröbner bases are called “com-
prehensive Gröbner bases”. Comprehensive Gröbner bases for parametric ideals were
introduced, constructed, and studied by Weispfenning [Wei92] in 1992. Since then com-
prehensive Gröbner bases were studied by several researchers and implemented in several
computer algebra systems. A comprehensive Gröbner basis is a finite subset G of a para-
metric polynomial ideal I such that σ(I) constitutes a Gröbner basis of the ideal generated
by σ(F ) under all specialization σ of the parameters. As we said above, the theory of
Gröbner bases is a fundamental tool in several fields. Therefore by studying comprehen-
sive Gröbner bases in various domains, we are able to solve a lot of parametric problems
in these domains. That is, the number of applications of comprehensive Gröbner bases
is large and manifold; it comprises most basic parametric problems in polynomial alge-
bra and algebraic geometry that have been inaccessible to Gröbner basis methods so far
[Wei92]. For example:

1. Parametric ideal membership and parametric modules of syzygies.
2. The study of parametric varieties, their size and their dimension functions; in par-

ticular one-parameter varieties and algebraic bifurcation problems.
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In this thesis, we give new algorithms for computing parametric Gröbner bases, and
generalize the theory of parametric Gröbner bases to various domains. The plan of this
thesis is as follows:

We give basic concepts used in this thesis in chapter 2.

In chapter 3 we describe algorithms for computing Gröbner bases in polynomial rings
over a polynomial ring. These algorithms are applied for constructing algorithms for
computing parametric Gröbner bases. Moreover, we define reduced Gröbner bases in
polynomial rings over a polynomial ring and introduce algorithms for computing them.
That is, we propose a new notion of reduced Gröbner bases in polynomial rings over a
polynomial ring and we show that every ideal has a unique reduced Gröbner basis.

Chapter 4 presents comprehensive Gröbner bases and comprehensive Gröbner systems.
Furthermore we describe the history and recent trend. In this chapter we introduce the
Suzuki-Sato algorithms for computing comprehensive Gröbner bases and comprehensive
Gröbner systems, because these algorithms are faster then other existing algorithms. We
also introduce the existing software for computing comprehensive Gröbner bases and com-
prehensive Gröbner systems.

Chapter 5 treats a new algorithm for computing comprehensive Gröbner systems.
Roughly speaking, a comprehensive Gröbner system is a parametric Gröbner basis with
parameter spaces. If we take a parameter space P and its set of parametric polynomials
G from a comprehensive Gröbner systems for a parametric polynomial ideal I, then σ(G)
constitutes a Gröbner basis of the ideal generated by σ(I) under the specialization σ with
respect to the parameter space P of the parameters. Comprehensive Gröbner systems are
also important ingredients for solving problems of parametric polynomials. Actually, our
algorithm is much faster and more efficient than other existing algorithm.

Chapter 6 describes the relations between comprehensive Gröbner bases and non-
parametric Gröbner bases over commutative von Neumann regular rings. Actually,
there is a surprisingly close relationship between them. Thus, the Gröbner bases over a
commutative von Neumann regular ring can be viewed as an alternative to comprehensive
Gröbner bases. (Therefore, this Gröbner basis is called an “alternative comprehensive
Gröbner basis (ACGB)”.) In the second part of the chapter, we describe the special type
of comprehensive Gröbner bases which is called alternative comprehensive Gröbner bases
on varieties (ACGB-V).

In chapter 7 and chapter 8, we present relations of two kinds of Gröbner bases in rings
of differential operators, and algorithms for computing their comprehensive Gröbner bases
and comprehensive Gröbner systems. In 1998, Insa and Pauer studied an algorithm for
computing Gröbner bases in rings of differential operators with coefficients in a polynomial
ring. This algorithm is very complicated and expensive. In chapter 7, we present a much
more efficient and simple algorithm than the Insa-Pauer algorithm by using the relations
of two kinds of Gröbner bases in rings of differential operators. Moreover, in chapter 8, we
introduce algorithms for computing their comprehensive Gröbner bases and comprehensive
Gröbner systems. Namely, we describe non-commutative comprehensive Gröbner bases
in rings of differential operators.

In chapter 9, we present an algorithm for computing comprehensive Gröbner bases and
comprehensive Gröbner systems for modules. Several algorithms are known for computing
comprehensive Gröbner bases in polynomial rings. However, nobody has studied the
extension of comprehensive Gröbner bases to modules. We present a generalization of the
Suzuki-Sato algorithm.

In chapter 10, we describe our software package sf PGB in which almost all the algo-
rithms of this thesis are implemented. The purpose of this chapter is to illustrate how
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to use the package and solve problems using the package in the computer algebra system
Risa/Asir.

In summary, the main achievements of this thesis are:

• defining reduced Gröbner bases in polynomial rings over a polynomial ring,
• presenting a new algorithm for computing comprehensive Gröbner systems which

is more efficient than other existing algorithms,
• presenting a computation method for ACGB-V,
• presenting an efficient algorithm for computing Gröbner bases in rings of differential

operators with coefficients in a polynomial ring,
• extending the theory of comprehensive Gröbner bases to the rings of differential

operators and modules, and
• developing the software package PGB for computing parametric Gröbner bases in

various domains.
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Chapter 2

Preliminaries

This chapter contains a collection of well-known definitions and facts, which are needed
later. Its main purpose is to fix the notation and provide labels for certain general theo-
rems. The advanced reader may securely skip this chapter and proceed directly to Chapter
3.

Throughout this text, we assume that K and L are fields such that L is an extension
of K. If K and L appear in the description of an algorithm, it is also assumed that K
and L are computable. N, Z, Q, R and C denote as the set of natural numbers, the set of
integers, the field of rational numbers, the field of real numbers and the field of complex
numbers, respectively. Note that in this thesis, the set of natural number N includes zero
0.

2.1 Ideals, varieties and term orders

This section presents some well-known basic notions. It is sufficient for most of this text
if the reader is familiar with the most basic facts about commutative algebra as they are
presented, for instance, in the introductory book of Cox et al. [CLO92].

We will need to discuss polynomials in n variables x1, . . . , xn with coefficients in an
arbitrary field K. We start by defining power products and polynomials.

Definition 2.1.1. Let x1, . . . , xn be n variables.

1. A power product (or term) in x1, . . . , xn is a an expression of the form Xα :=
xα1

1 xα2
2 · · · x

αn
n for some exponent vector α = (α1, . . . , αn) ∈ Nn. When α =

(0, . . . , 0) note that Xα = 1. The total degree of this power product (written:
deg(Xα)) is the sum α1 + · · · + αn. The set of all power products in x1, . . . , xn is
denoted by pp(x1, . . . , xn).

2. A polynomial f in x1, . . . , xn with coefficients in K is a finite linear combination
(with coefficients in K) of power products. We write a polynomial f in the form

f = a1X
α1 + · · ·+ arX

αr ,

where a1, . . . , ar ∈ K and pairwise different α1, . . . , αr ∈ Nn. The total degree of
f , denoted deg(f), is the maxr

i=1 deg(Xαi) such that the coefficient ai is non-zero.
3. The set of all polynomials in x1, . . . , xn with coefficients in K is denoted
K[x1, . . . , xn].

Definition 2.1.2. Let f =
∑

α aαX
α be a polynomial in K[x1, . . . , xn].

1. We call aα the coefficient of the power product Xα.
2. If aα 6= 0, then we call aαX

α a monomial of f .
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Hereafter the notation X̄ will be used as an abbreviation for the set of n variables
{x1, . . . , xn}. (I.e., K[X̄] := K[x1, . . . , xn]. ) The notation pp(X̄) denotes the set of
power products of X̄ . We define the basic geometric and algebraic object of this thesis.

Definition 2.1.3. Let f1, . . . , fs be polynomials in K[X̄]. Then we set

V(f1, . . . , fs) = {(a1, . . . , an) ∈ Kn | fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s} .

We call V(f1, . . . , fs) the affine variety defined by f1, . . . , fs over K.

Definition 2.1.4. Let R be a commutative ring. A set I ⊆ R is called an ideal in R if
it satisfies:

1. If f, g ∈ I, then f + g ∈ I.
2. If f ∈ I and h ∈ R, then hf ∈ I.

Let f1, . . . , fs ∈ R. Then we set

〈f1, . . . , fs〉 =

{

s
∑

i=1

hifi

∣

∣

∣

∣

∣

h1, . . . , hs ∈ R

}

.

The crucial fact is that 〈f1, . . . , fs〉 is an ideal in R. We call 〈f1, . . . , fs〉 the ideal generated
by f1, . . . , fs.

Definition 2.1.5. An ideal I is radical if fm ∈ I for some integer m ≥ 1 implies that
f ∈ I.

Definition 2.1.6. Let R be a commutative ring and I ⊂ R an ideal. The radical of I,
denoted rad(I), is the set

{f | fm ∈ I for some integer m ≥ 1} .

Definition 2.1.7. A total (linear) order � on the set of power products pp(X̄) is called
a term order (also called an admissible order) if and only if it satisfies the following
two additional properties.

1. t � 1 for all t ∈ pp(X̄)\{1}, and
2. t1 � t2 =⇒ t1s � t2s for all t1, t2, s ∈ pp(X̄).

Below are some examples of term orders. Some of them are the most frequently used
in the literature and in computer algebra systems.

Example 2.1.8. The commonly used term orders are defined as follows for arbitrary

power products (or terms) t1 = xα1
1 · x

α2
2 · · · x

αn
n and t2 = xβ1

1 · x
β2

2 · · · x
βn
n .

1. The lexicographic order �lex.

t1 �lex t2 :⇐⇒ ∃1 ≤ k ≤ n such that αi = βi for all 1 ≤ i < k and αk > βk.

2. The reverse lexicographic order �rlex.

t1 �rlex t2 :⇐⇒ ∃1 ≤ k ≤ n such that αi = βi for all k < i ≤ n and αk < βk.

3. The graded lexicographic order �glex.

t1 �glex t2 :⇐⇒ deg(t1) > deg(t2) or (deg(t1) = deg(t2) and t1 �lex t2).
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4. The graded reverse lexicographic order �grlex.

t1 �grlex t2 :⇐⇒ deg(t1) > deg(t2) or (deg(t1) = deg(t2) and t1 �rlex t2).

Throughout this text, we will use the notations �lex, �rlex, �glex and �grlex for these
orders. In this text, we often use the following special term order “block order”. Further-
more, in chapter 10, we will see matrix orders and weight orders. Therefore, we introduce
these special orders in the following.

Definition 2.1.9 (Block orders). Let �1 and �2 be term orders on pp(X̄) and pp(Ā),
respectively, and t1, s1 ∈ pp(X̄), t2, s2 ∈ pp(Ā),

t1t2 �X̄,Ā s1s2 ⇐⇒ t1 �1 s1 or (t1 = s1, and t2 �2 s2) .

This type of order �X̄,Ā is called a block order on pp(X̄, Ā). This order is written as
�X̄,Ā:= (�1,�2).

Definition 2.1.10 (Matrix orders). Let A be a matrix in GL(n,R). The matrix M
satisfies the following

1. M · v = 0 ⇐⇒ v = 0, where v ∈ Nn and · denotes the usual matrix-by-vector
product,

2. the first non-zero coordinate of the vector M · v is positive for all v ∈ Nn.

Then, for u, v ∈ Nn,

u �M v :⇐⇒ the first non-zero coordinate of the vector M(u− v) is positive.

This order is a term order. We call the order �M matrix order.

Definition 2.1.11 (Weight order). Let u = (u1, . . . , un) be a vector in Rn. We say
that u is a weight vector. Then, for α, β ∈ Nn, define

α �u β ⇐⇒ u · α > u · β

where the centered dot is the usual dot product of vector. We call �u the weight order
determined by u.
Note that in this thesis, we treat only “term orders (admissible orders)”. If we have a
vector u = (u1, . . . , un) such that some of {u1, . . . , un} are negative, then this order �u

does not hold Definition 2.1.7. Therefore, in this thesis we assume that u1, . . . , un are
positive.

The following proposition is the famous relation between term orders and matrix orders.

Proposition 2.1.12 (Robbiano [Rob85]). An arbitrary term order can be defined by
a matrix order.

Example 2.1.13. We define well-known orders by matrices

Mlex =







1 0
. . .

0 1






, Mrlex =





0 −1

..
.

−1 0



 ,

Mglex =











1 · · · 1 1
1 0 0

. . .
...

0 1 0











, Mgrlex =











1 1 · · · 1
0 0 −1
... ..

.

0 −1 0











.
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The matrices Mlex,Mrlex,Mglex and Mgrlex are matrix orders for the lexicographic order
�lex, the reverse lexicographic order �rlex, the graded lexicographic order �glex and the
graded reverse lexicographic order �grlex, respectively.

The following matrix is for a graded weight order with lexicographic order.

Mwlex =











w1 · · · wn−1 wn

1 0 0
. . .

...
0 1 0











This matrix defines the term order as follows.
For t1 = xα1

1 · x
α2
2 · · · x

αn
n and t2 = xβ1

1 · x
β2

2 · · · x
βn
n in pp(x1, . . . , xn),

t1 �Mwlex
t2 ⇐⇒

n
∑

i=1

wiαi >
n
∑

i=1

wiβi or

(

n
∑

i=1

wiαi =
n
∑

i=1

wiβi and t1 �lex t2

)

.

Example 2.1.14. The block orders can also be defined by matrices.

Mblock =







M1 0
. . .

0 Ml






.

Each Mk is a matrix which defines the term order on each block where 1 ≤ k ≤ l.

2.2 Gröbner bases

In this section, we describe the method of Gröbner bases, which allow us to solve problems
about polynomial ideals in an algorithmic or computational fashion. The method of
Gröbner bases is also used in several powerful computer algebra systems to study specific
polynomial ideals that arise in applications.

Definition 2.2.1. Let f and g be non-zero polynomials in K[X̄] and � be an arbitrary
term order on the set pp(X̄).

• The set of power products of f that appear with a non-zero coefficient, is written
pp(f).
• The biggest power product of pp(f) with respect to � is denoted by lpp(f) and is

called the leading power product of g with respect to �.
• The coefficient corresponding to lpp(f) is called the leading coefficient of f with

respect to � which is defined by lc(f).
• The product lc(f) lpp(f) is called the leading monomial of f with respect to �

which is defined by lm(f).
• The least common multiple (LCM) of lpp(f) and lpp(g) is denoted by

LCM(lpp(f), lpp(g)).
• The set of monomials of f is denoted by Mono(f).

• If lpp(f) = Xβ1

1 · · ·X
βn
n ∈ pp(X̄), then deg(f) := (β1, . . . , βn) ∈ Nn. The degree of

lpp(f) in the variables xi is defined by degxi
(lpp(f)) = βi.

We define a reduction and an S-polynomial which we need to construct an algorithm
for computing Gröbner bases.
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Definition 2.2.2 (reduction1). Fix a term order. Let f = aα+ f1, g = bαβ + g1 with
lm(f) = aα in K[X̄] where a, b ∈ K, α, β ∈ pp(Ā, X̄) and f1, g1 ∈ K[X̄ ] such that α does

not occur in f1. Then a reduction
r1
−→f is defined as follows:

g
r1
−→f bαβ + g1 − ba

−1β(aα + f1),

where bαβ need not be the leading monomial of g. In this thesis we call this reduction “
Reduction1 ”.
Of course, we can continue this reduction step until we have a polynomial which can not
be reduced by f . (Since K[X̄ ] is a Noetherian ring, a number of reduction steps is always

finite.) In this case, we use the notation
r1∗
−→f , i.e., g

r1∗
−→f h means that for all p ∈ pp(h),

α does not divide p.

A reduction
r1
−→F by a set F of polynomials is also natural defined [BW93, CLO92, Win96].

For the same reason, we also use the notation
r1∗
−→F .

Example 2.2.3. Let f = x2y − y2 and g = x5y in R[x, y]. Then,

f
r1
−→g f − x

3 · g = x3y
r1
−→g x

3y − xy · g = xy3.

That is, f
r1∗
−→g xy

3.

In the next section, we will see another special reduction “Reduction2” in polynomial

rings over a polynomial ring. Therefore, we numbered the notation Reduction and
r
−→

“1”. For the same reason, in this section we define an (normal) S-polynomial as Spoly1,
and in the next section we define a special S-polynomial as Spoly2.

Definition 2.2.4 (S-polynomial1). Fix a term order. Let f, g ∈ K[X̄] be non-zero
polynomials. The S-polynomial of f and g is the following

Spoly1(f, g) =
LCM(lpp(f), lpp(g))

lm(f)
f −

LCM(lpp(f), lpp(g))

lm(g)
g.

In this text, we define this S-polynomial as “ Spoly1 ”.

Example 2.2.5. Let f = x3y2 − x2y3 + x and g = 3x4y+ y in R[x, y] with �glex. Then,
lcm(lpp(f), lpp(g)) = x4y2 and

Spoly1(f, g) =
x4y2

x3y2
· f −

x4y2

3x4y
· g

= x · f −
1

3
· y · g

= −x3y3 + x2 −
1

3
y2.

An S-polynomial Spoly1(f, g) is designed to produce cancellation of leading monomials.
A Gröbner basis [Buc65] of an ideal I ⊆ K[X̄] is a basis of I with special properties that
make it possible to answer a lot of questions about I algorithmically.

Lemma 2.2.6. Let I be an ideal in K[X̄]. Then lm(I) is also an ideal in K[X̄] where
lm(I) := {lm(g)|g ∈ I}.

The following is a definition of Gröbner bases.
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Definition 2.2.7 (Gröbner bases). Fix a term order �. A finite subset G = {g1, . . .,
gs} of an ideal I in K[X̄ ] is said to be a Gröbner basis with respect to � if

〈lm(g1), . . . , lm(gs)〉 = lm(I).

There are a lot of good properties of Gröbner bases. In fast, nowadays it is common
knowledge that Gröbner bases and the Buchberger algorithm are fundamental tools for
applications in several fields both inside and outside mathematics [Buc85]. If one is
interested in the theory deeply in K[X̄ ], the author recommends to read one of books
[BW93, CLO92, KR00, Win96]. In this section, we introduce the following three theorems
which are needed later.

Theorem 2.2.8. Let I be an ideal in K[X̄ ]. Then a basis G for I is a Gröbner basis for

I if and only if for an pair f and g in G, Spoly1(f, g)
r1∗
−→G 0.

Theorem 2.2.9. Let G = {g1, . . . , gt} be a Gröbner basis for an ideal I ⊆ K[X̄] and let
f ∈ K[X̄ ]. Then there is a unique r ∈ K[X̄] with the following two properties:

1. No monomial of r is divisible by any of lm(g1), . . . , lm(gt).
2. There is g ∈ I such that f = g + r.

In particular, r is the remainder on division of f by G no matter how the elements of G

are listed when using the reduction
r1
−→.

Theorem 2.2.10. Let G be a Gröbner basis for an ideal I ⊆ K[X̄] and let f ∈ K[X̄].

Then, f ∈ I if and only if f
r1∗
−→G 0.

Theorem 2.2.8 enables us to construct a Gröbner basis G for a given finite set F of
polynomials such that 〈G〉 = 〈F 〉. We can repeat computations of S-polynomials and
reductions until we get a desired Gröbner basis. Now, we introduce the Buchberger
algorithm [Buc65, Buc06] for computing Gröbner bases.

Algorithm 2.2.11. Buchberger(F,�) [Buc65]

Input F = {f1, . . . , fs} : a finite subset of K[X̄ ],
� : a term order on pp(X̄),

Output G: a Gröbner basis for 〈F 〉 with respect to � in K[X̄ ].
begin

G← F
P ← {(fi, fj) | 1 ≤ i < j ≤ s}
while P 6= ∅ do
Take any element (f, f ′) from P
P ← P\{(f, f ′)}
r ← (Spoly1(f, f ′)) ↓G (see below (∗))

if r 6= 0 then
P ← P ∪ {(g, r) | g ∈ G}
G← G ∪ {r}

end-if
end-while

return(G)
end
((∗) h ↓G denotes a normal form of h by

r1∗
−→G, i.e., h ↓G is irreducible by

r1
−→G)
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Definition 2.2.12. A reduced Gröbner basis for a polynomial ideal I ⊆ K[X̄] is a
Gröbner basis for I such that

1. lc(p) = 1 for all p ∈ G.
2. For all p ∈ G, no monomial of p lies in 〈lm(G\{p})〉.

Although a Gröbner basis may contain redundant elements, the reduced Gröbner basis
does not contain any. The reduced Gröbner basis is uniquely determined by an ideal
I ⊆ K[X̄ ] and a term order.

2.3 Syzygies and Gröbner bases for modules

Syzygies are very important objects and basic ingredients for many constructions in ho-
mological algebra and algebraic geometry. In this section we give a method for computing
syzygies. There exists some method for computing syzygies. Since we will see “compre-
hensive Gröbner bases for modules” in chapter 9, in this section we describe the
relations between syzygies and Gröbner bases in K[X̄]-module.

Definition 2.3.1. Let R be a ring, p1, . . . , pr ∈ R and p := (p1, . . . , pr) an r-tuple. An
r-tuple q = (q1, . . . , qr) ∈ R

r is called a syzygy for p1, . . . , pr if and only if

q · p = q1p1 + q2p2 + · · ·+ qrpr = 0.

We write

Syz(p1, . . . , pr) := {(q1, . . . , qr) ∈ R
r|q1p1 + · · ·+ qrpr = 0} ⊆ Rr

for the set of syzygies for p1, . . . , pr.

It is easy to see that the set of syzygies forms a submodule of Rr. In the case R = K[X̄],
it is a standard application of Gröbner bases to compute a basis of the syzygy module
(see [Win86, BW93, GMP02]).

In several papers and books [FSK86, KR00, MM86, CLO97, GMP02], an algorithm for
computing Gröbner bases for K[X̄]-modules and its properties were introduced. We can
easily extend the theory of Gröbner bases to modules. In order to describe the theory
of Gröbner bases in modules, we need to extend the notation of term order to the free
module K[X̄]r. We apply the following notations and definitions for the module structure.

Let e1, . . . , er be the canonical basis of the free module K[X̄]r =

r
⊕

i=1

K[X̄]ei. I.e, for each

i = 1, . . . , r,

ei =
(

ith

0, . . . , 0, 1, 0, . . . , 0
)

∈ K[X̄]r

denotes the i-th canonical basis vector of K[X̄]r with 1 at the i-th place. We call

xαei =
(

ith

0, . . . , 0, xα, 0, . . . , 0
)

∈ K[X̄]r

a module power product (involving component i) where α ∈ Nn, xα ∈ pp(X̄) and BT

is a transposed matrix B. The set of module power products with respect to X̄ is defined
as pp(X̄)r. (I.e., xαei ∈ pp(X̄)r.) Note that ei · ej = 0 for i 6= j.
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Definition 2.3.2 (Module orders). Let �t be a term order on K[X̄]. A module order
on pp(X̄)r is a total order �m on the set of power product {xαei|α ∈ Nn, i = 1, . . . , r},
which is compatible with the K[X̄ ]-module structure including the order �t, that is,
satisfying

1. xαei �m xβej ⇒ xα+γei �m xβ+γej ,
2. xα �t x

β ⇒ xαei �m xβei,

for all α, β, γ ∈ Nn, i, j = 1, . . . , r.

Two module orders are of particular practical interest: POT and TOP which are the
following.

Definition 2.3.3. Let � be a admissible order on K[X̄ ] and �m be a module order on
K[X̄]r with �.

1. A module order �m is called POT (position-over-term) if �m satisfies

xαei �m xβej :⇔ i < j or (i = j and xα � xβ).

This module order is written as �m:= (POT,�).
2. A module order �m is called TOP (term-over-position) if �m satisfies

xαei �m xβej :⇔ xα < xβ or (xα = xβ and i < j).

This module order is written as �m:= (TOP,�).

As we saw the notations of K[X̄] in Definition 2.2.1, we apply the same notations for
K[X̄]r. Let f, g be non-zero vectors in K[X̄]r and �m an arbitrary module order on
pp(X̄)r.

• The set of module power products of f that appear with a non-zero coefficient, is
written pp(f).
• The biggest module power product of pp(f) with respect to �m is denoted by lpp(f)

and is called the leading power product of g with respect to �m.
• The coefficient corresponding to lpp(f) is called the leading coefficient of f with

respect to �m which is defined by lc(f).
• The product lc(f) lpp(f) is called the leading monomial of f with respect to �m

which is defined by lm(f).
• The least common multiple (LCM) of lpp(f) and lpp(g) is defined by

LCM(lpp(f), lpp(g)).
• The set of monomials of f is denoted by Mono(f).

• If lpp(f) = Xβ1

1 · · ·X
βn
n ei ∈ pp(X̄)r, then degX̄(lpp(f)) := (β1, . . . , βn) ∈ Nn, and

degXi
(lpp(f)) := βi ∈ N.

Note that, if r = 1, we apply K[X̄]1, pp(X̄)1 as K[X̄], pp(X̄).

Example 2.3.4. Let a, b, x, y be variables and f =

(

2ax− bx+ y2

axy + 3

)

be a vector in

Q[a, b, x, y]2. We have a module order �m:= (POT,�{x,y,a,b}) = (POT, (x �lex y �lex

a �lex b)). Then we have the following

• pp(f) =
{

axe1, bxe1, y
2e1, axye2, e2

}

,
• lpp(f) = axe1,
• lc(f) = 2,
• lm(f) = 2axe1,
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• Mono(f) =
{

2axe1, bxe1, y
2e1, axye2, 3e2

}

,

• deg{a,b,x,y}(lpp(f)) = (1, 0, 1, 0) ∈ N4, deg{a}(lpp(f)) = 1.

We can easily generalize the theory of Gröbner bases to the module K[X̄]r. If one can
interested in “Gröbner bases for modules”, then the author recommends to read one of
books [KR00, CLO97, GMP02].

Definition 2.3.5 (Gröbner bases for modules). Fix a module order �m. A finite
subset G = {g1, . . ., gs} of a submodule M in K[X̄]r is said to be a Gröbner basis with
respect to �m if

〈lm(g1), . . . , lm(gs)〉 = lm(M).

We can easily apply the Buchberger algorithm for computing Gröbner bases in K[X̄ ]r.
The algorithm for computing Gröbner bases is exactly the same as the Buchberger algo-
rithm. (However, we need module orders.)

The next lemma and theorem show us the relation between syzygies and Gröbner bases
in K[X̄]r, and how to compute a basis of syzygy module by using the theory of Gröbner
bases in K[X̄]r. The following lemma, theorem and algorithm SYZ are from Greuel and
Pfister’s book [GMP02].

Lemma 2.3.6. Let � be a term order on pp(X̄), I ⊂ K[X̄]r =
⊕r

i=1K[X̄ ]ei a submodule
and S a Gröbner basis of I with respect to the module order �m= (POT,�). Then, for
any s = 0, . . . , r−1, S ′ := S∩

⊕r
i=s+1K[X̄]ei is a Gröbner basis of I ′ = I∩

⊕r
i=s+1K[X̄ ]ei

with respect to �m. In particular, S ′ generates I ′.

Proof. Let h ∈ I ′ ∩
⊕r

i=s+1K[X̄ ]ei, then we have to prove that there exists f ∈ S ′ such
that lm(f)| lm(h). Since S is a Gröbner basis of I , there exists f ∈ S such that there
exists lm(f)| lm(h). In particular, lm(f) ∈

⊕r
i=s+1K[X̄ ]ei. By the definition of the

module order POT , we obtain f ∈
⊕r

i=1K[X̄ ]ei, in particular, f ∈ S ′.

Theorem 2.3.7. Let f1, . . . , fk be vectors in K[X̄]r. Consider the canonical embedding

K[X̄]r ⊆ K[X̄]r+k

and the canonical projection

π : K[X̄ ]r+k → K[X̄]k.

Let G = {g1, . . . , gs} be a Gröbner basis of F = 〈f1 + er+1, . . . , fk + er+k〉 with respect
to a module order �m= (POT,�) where � is a term order on pp(X̄). Suppose that

{g1, . . . , gl} = G ∩
⊕r+k

i=r+1K[X̄]ei, then

Syz(f1, . . . , fk) = 〈π(g1), . . . , π(gl)〉.

Proof. By Lemma 2.3.6, G ∩
⊕r+k

i=r+1K[X̄]ei is a Gröbner basis of F ∩
⊕r+k

i=r+1K[X̄ ]ei.

On the other hand, π(F ∩
⊕r+k

i=r+1K[X̄]ei) = Syz(f1, . . . , fk). Namely, let h ∈ F ∩
⊕r+k

i=r+1K[X̄]ei, that is, h =
∑r+k

v=r+1 hvev =
∑k

j=1 bj(fj + er+j) for suitable bj ∈ K[X̄].

This implies that
∑k

j=1 bjfj = 0 and bj = hr+j .

Conversely, if h = (h1, . . . , hk) Syz(f1, . . . , fk), that is, if
∑k

v=1 hvfv = 0, then
∑k

v=1(fv +

er+v) ∈ F ∩
⊕r+k

i=r+1K[X̄]ei.
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Now, we can construct an algorithm for computing a basis of a syzygy module which is
the following.

Algorithm 2.3.8. SYZ(f1, . . . , fk)

Input f1, . . . , fk : vectors in K[X̄ ]r,
� : a term order on pp(X̄),

Output S = {s1, . . . , sl} ⊂ K[X̄]k such that 〈S〉 = Syz(f1, . . . , fk) ⊂ K[X̄]k.

1. F := {f1 + er+1, . . . , fk + er+k}, where e1, . . . , er+k denote the canonical generators
of K[X̄]r+k = K[X̄]r ⊕K[X̄]k such that f1, . . . , fk ∈ K[X̄ ]r =

⊕r
i=1K[X̄]ei.

2. Compute a Gröbner basis G of 〈F 〉 with respect to (POT,�).

3. G0 := G ∩
⊕r+k

i=r+1K[X̄ ]ei = {g1, . . . , gl}, with gi =
∑k

j=1 aijer+j , i = 1, . . . , l.

4. si := (ai1, . . . , sik), i = 1, . . . , l.
5. return(s1, . . . , sl)

In the algorithm SYZ, we need to compute a Gröbner basis G for 〈F 〉 with respect to
(POT,�). It is well-known that the Gröbner basis G has the following properties. We
can write the G as follows

G =















g1 · · · gi · · · gp 0
h1,r+1 hi,r+1 hp,r+1

... · · ·
... · · ·

... S
h1,r+k hi,r+k hp,r+k















where g1, . . . , gp ∈ K[X̄]r, hi,j ∈ K[X̄ ] for 1 ≤ i ≤ p, r ≤ j ≤ r + k, and S ⊂ K[X̄]k.
Each column is an element of G (i.e., each column is a vector.) Then, the Gröbner basis
G satisfies the following;

1. {g1, . . . , gp} is a Gröbner basis for 〈f1, . . . , fk〉 with respect to (POT,�),
2. 〈S〉 = Syz(f1, . . . , fk), and
3. gi = hi,r+1f1 + · · · + hi,r+kfk for i ≤ i ≤ k.

By the property of the module order POT , G holds the first property, and by the
theorem 2.3.7, G holds the second property, too. We know that the method of computing
inverse matrices. By this method of inverse matrices and the property of the module order
POT , one can easily imagine the third property.

We introduce one more algorithm in this section. It is sometimes called “extended
Gröbner bases algorithm”. This algorithm outputs a Gröbner basis for a submodule gen-
erated by vectors in K[X̄]r and a set of vectors which has the third property above. We
need the algorithm in chapter 3,7,8 and 9.

In the algorithm, the following canonical projection maps are needed;

π1 : K[X̄]r+k → K[X̄ ]r,

(a1, . . . , ar, ar+1, . . . , ar+k) 7→ (a1, a2, . . . , ar),

π2 : K[X̄]r+k → K[X̄ ]k,

(a1, . . . , ar, ar+1, . . . , ar+k) 7→ (ar+1, . . . , ar+k).
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Algorithm 2.3.9. EGA(f1, . . . , fk)

Input f1, . . . , fk : vectors in K[X̄ ]r,
� : a term order on pp(X̄),

Output G = {g1, . . . , gl} ⊂ K[X̄]r: a Gröbner basis for 〈f1, . . . , fk〉.
E = {h1, . . . , hl}: a subset of K[X̄ ]k such that gi = hi,1f1 + hi,2f2 + · · ·+ hi,kfk

for 1 ≤ i ≤ k where hi = (hi,1, . . . , hi,k) ∈ K[X̄ ]k.

1. F := {f1 + er+1, . . . , fk + er+k}, where e1, . . . , er+k denote the canonical generators
of K[X̄]r+k = K[X̄]r ⊕K[X̄]k such that f1, . . . , fk ∈ K[X̄ ]r =

⊕r
i=1K[X̄]ei.

2. Compute a Gröbner basis G′ of 〈F 〉 with respect to (POT,�).

3. G0 := G′ ∩
⊕r+k

i=r+1K[X̄]ei = {g1, . . . , gl},
4. G1 := G′\G0,
5. G = π1(G1), E = π2(G1),
6. return(G,E)

The compute algebra system singular*1[GMPS05] has the built-in commands which com-
pute a Gröbner basis in K[X̄ ]r and a basis of a syzygy module. (The author also has
implemented Algorithm 2.3.8 and 2.3.9 in the computer algebra system Risa/Asir*2. See
chapter 10.) In the next example, we execute Algorithm 2.3.8 and Algorithm 2.3.9, and
we see the built-in commands std and syz.

Example 2.3.10. Let g1 = xy + z, g2 = yz, g3 = xz be polynomials in Q[x, y, z]. We
have the graded reverse lexicographic order �grlex such that x �grlex y �grlex z. Then,
by Algorithm 2.3.8 and 2.3.9, first, we have to compute a Gröbner basis for I = 〈g1 +
e2, g2 + e3, g3 + e4〉 with respect to (POT,�grlex) in Q[x, y, z]4. The compute algebra
system singular works as follows.

> ring R=0,(x,y,z),(c,dp);

> module T=[x*y+z,1,0,0],[y*z,0,1,0],[x*z,0,0,1];

> module G=std(T); /* GB computation */

> G;

G[1]=[0,0,x,-y]

G[2]=[0,yz,-z,-y2]

G[3]=[0,xz,0,-xy-z]

G[4]=[z2,z,0,-y]

G[5]=[yz,0,1]

G[6]=[xz,0,0,1]

G[7]=[xy+z,1]

The set G is a Gröbner basis for I with respect to (POT,�grlex). This output means























0
0
x
−y









,









0
yz
−z
−y2









,









0
xz
0

−xy − z









,









z2

z
0
−y









,









yz
0
1
0









,









xz
0
0
1









,









xy + z
1
0
0























.

Then, from G[4], G[5], G[6], G[7], we can obtain a Gröbner basis G1 for 〈g1, g2, g3〉

*1 http://www.singular.uni-kl.de/
*2 http://www.math.kobe-u.ac.jp/Asir/
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with respect to �grlex as follows

G1 = {z2, yz, xz, xy + z}.

Moreover, each element of G1 can be written by g1, g2, g3 as follows















z2 = zg1 − yg3,
yz = g2,
xz = g3,
xy + z = g1.

From G[1],G[2],G[3], we obtain the set of the syzygies of {g1, g2, g3}

Syz(g1, g2, g3) =

〈





0
x
−y



 ,





yz
−z
−y2



 ,





xz
0

−xy − z





〉

.

That is, the basis S of syzygies of {g1, g2, g3} is

S =











0
x
−y



 ,





yz
−z
−y2



 ,





xz
0

−xy − z











.

We give one more example. Let f1 = xy + y, f2 = x2 + y, f3 = x be polynomials in
Q[x, y]. We have the graded reverse lexicographic �grlex order such that x �grlex y. The
built-in command syz outputs a basis of a syzygy module of the input {f1, f2, f3}.

> ideal I=x*y+y,x^2+y,x;

> module M=syz(I);

> M;

M[1]=[0,x,-x2-y]

M[2]=[1,-1,x-y]

A basis M of a syzygy module for {f1, f2, f3} is











0
x

−x2 − y



 ,





1
−1
−x− y











.
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Chapter 3

Gröbner bases in polynomial rings over

a polynomial ring

Many researchers have studied Gröbner bases in several domains: polynomial rings over
a Euclidean domain [KRK88], over the integers [NG94], over commutative regular rings
[Wei87], etc . . .. In this chapter we treat the theory of Gröbner bases in polynomial rings
over a polynomial ring. In [IP98], Insa and Pauer described how to compute Gröbner
bases in rings of differential operators with coefficients in a polynomial ring.(We will see
the original method in chapter 7.) They worked in non-commutative rings, however we can
easily apply this method to the commutative case for computing Gröbner bases in poly-
nomial rings over a polynomial ring. This is one of the methods for computing Gröbner
bases in polynomial rings over a polynomial ring. The other method is “computing a
Gröbner basis by using a block order in a polynomial ring over a field.”

In fact, both methods cannot compute a reduced Gröbner basis in polynomial rings
over a polynomial ring. We define reduced Gröbner bases in polynomial rings over a
polynomial ring, and give algorithms for computing them. This chapter is bases on the
author’s papers [Nab06, Nab07c].

3.1 Notations for K[Ā, X̄] and K[Ā][X̄]

Let Ā := {A1, . . . , Am} and X̄ := {X1, . . . , Xn} be finite sets of variables such that
Ā ∩ X̄ = ∅. pp(X̄), pp(Ā) and pp(Ā, X̄) denote the sets of power products of X̄, Ā and
Ā ∪ X̄ , respectively. In this thesis, we define K[Ā, X̄ ] as a polynomial ring over a field
K, and K[Ā][X̄ ] := (K[Ā])[X̄ ] as a polynomial ring over a polynomial ring K[Ā] (the
coefficient domain is the polynomial ring K[Ā]). Let f and g be non-zero polynomials
in K[Ā][X̄ ] and � be an arbitrary term order on the set of power products pp(X̄). If
polynomials f and g are in K[Ā][X̄], then we use the subscript Ā for the notations as
follows:

• The set of power products of f that appear with a non-zero coefficient, is written
ppĀ(f).
• The biggest power product of ppĀ(f) with respect to � is denoted by lppĀ(f) and

is called the leading power product of g with respect to �.
• The coefficient corresponding to lppĀ(f) is called the leading coefficient of f with

respect to � which is defined by lc(f) (or lcĀ(f)).
• The product lc(f) lpp(f) is called the leading monomial of f with respect to �

which is defined by lmĀ(f).
• The least common multiple (LCM) of lppĀ(f) and lppĀ(g) is defined by
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LCM(lppĀ(f), lppĀ(g).
• The set of monomials of f is denoted by MonoĀ(f).

• If lpp(f) = Aα1
1 · · ·A

αm
m Xβ1

1 · · ·X
βn
n ∈ pp(Ā, X̄), then

deg{Ā,X̄}(f) := (α1, . . . , αm, β1, . . . , βn) ∈ Nm+n.

If lppĀ(f) = Xβ1

1 · · ·X
βn
n ∈ pp(X̄), then degX̄(f) := (β1, . . . , βn) ∈ Nn. Note that

the subscripts are {Ā, X̄} and X̄.

Example 3.1.1. Let a, b, x, y be variables and f = 2ax2y + bx2y + 3x + by + 1, g =
abx2 + 2xy + by + 2 be polynomials.

If we consider polynomials f and g as members of Q[a, b, x, y] (the polynomial ring over
the field Q) with a block order
�{x,y},{a,b}:= (x �lex y, a �lex b) (where �lex is the lexicographic order), then

• pp(f) =
{

ax2y, bx2y, x, y, 1
}

,

• lpp(f) = ax2y,
• lc(f) = 2,
• lm(f) = 2ax2y,
• lcm(lpp(f), lpp(g)) = abx2y,
• Mono(f) =

{

2ax2y, bx2y, 3x, by, 1
}

,

• deg{a,b,x,y}(f) = (1, 0, 2, 1) ∈ N4.

If we consider polynomials f, g as members of Q[a, b][x, y] (the polynomial ring over the
polynomial ring Q[x, y]) with the lexicographic order x �lex y, then

• pp{a,b}(f) =
{

x2y, x, y, 1
}

,

• lpp{a,b}(f) = x2y,

• lc{a,b}(f) = 2a+ b,

• lm{a,b}(f) = (2a + b)x2y,

• lcm(lpp{a,b}(f), lpp{a,b}(g)) = x2y,

• Mono{a,b}(f) =
{

(2a+ b)x2y, 3x, by, 1
}

,

• deg{x,y}(f) = (2, 1) ∈ N2.

3.2 Approach by Insa and Pauer

In [IP98], Insa and Pauer studied Gröbner bases in K[X̄][D̄], i.e., rings of differential
operators with coefficients in a commutative polynomial ring, where D̄ = D1, . . . , Dn and
Di = ∂

∂Xi
: K[X̄] → K[X̄ ] is the partial derivative by Xi and 1 ≤ i ≤ n. (We will see

the original method in chapter 7.) They introduced a special S-polynomial and a special
reduction in order to compute Gröbner bases in K[X̄][D̄]. Clearly, K[X̄ ][D̄] is not a
commutative ring, however in the commutative ring K[Ā][X̄ ], it is possible to compute
Gröbner bases by the same computation method. In this section we introduce the special
S-polynomial and the special reduction which are from [IP98], and we give the Insa-Pauer
algorithm for computing Gröbner bases in K[Ā][X̄ ].

Proposition 3.2.1 (Insa and Pauer [IP98]). Let F be a finite set of polynomials
in K[Ā][X̄ ], g ∈ K[Ā][X̄ ] and � a term order on pp(X̄). Then there is a polynomial
r ∈ K[Ā][X̄ ] and there is a family (hf )f∈F such that

• g =
∑

f∈F

hff + r ( r is a remainder of g after division by F ),
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• for all f ∈ F, hf = 0 or g � hf ,
• r = 0 or lcĀ(r) /∈ 〈lcĀ(f)| lppĀ(f) divides lppĀ(r)〉.

The polynomials r, hf (f ∈ F ) can be computed as follows:
First set: r := g and hf = 0 (f ∈ F ).
While r 6= 0 and lcĀ(r) ∈ 〈lcĀ(f)| lppĀ(f) divides lppĀ(r)〉 do the following:
let F ′ := {f ∈ F | lppĀ(f) divides lppĀ(r)}, compute a family (cf )f∈F ′ in K[Ā][X̄ ] such
that

∑

f∈F ′

cf lcĀ(f) = lcĀ(r).

Replace

r by r −
∑

f∈F ′

cfX
degX̄(r)−degX̄(f)f

and
hf by hf + cfX

degX̄(r)−degX̄(f), f ∈ F ′,

where Xi := Xi1
1 · · ·X

in
n , i ∈ Nn.

By using Algorithm 2.3.9 EGA “extended Gröbner bases algorithm ”, we can compute a
family (cf )f∈F ′ in K[Ā][X̄ ] such that

∑

f∈F ′ cf lcĀ(f) = lcĀ(r). We simplify this propo-
sition to the following definition.

Definition 3.2.2 (reduction2). Let F be a set of polynomials in K[Ā][X̄ ] and g =
aβ + g′ ∈ K[Ā][X̄ ] where a ∈ K[Ā], β ∈ pp(X̄) and g′ ∈ K[Ā][X̄ ]. Moreover, let
F ′ := {f ∈ F | lppĀ(f) divides β }. If a ∈ 〈lcĀ(F ′)〉 ⊆ K[Ā], the element a can be written

as a =
∑

fi∈F ′

hi lcĀ(fi) where hi ∈ K[Ā]. Then a reduction
r2
−→F is defined as follows:

g
r2
−→F g −

∑

fi∈F ′

hi

β

lppĀ(fi)
fi.

In this chapter, we define this reduction as Reduction2 (written:
r2
−→) . Actually, reducing

g by F and reducing g by F ′ is the same. In this case, we can write the reduction g
r2
−→F ′

instead of g
r2
−→F .

We can continue this reduction step until we have a polynomial which can not be re-

duced by F . In this case, we use the notation
r2∗
−→F , i.e., g

r2∗
−→F h means that, for all

p ∈ MonoĀ(h), there does not exist a set F ′ := {f ∈ F | lppĀ(f) divides lppĀ(p)} such
that lcĀ(p) ∈ 〈lcĀ(F ′)〉. In Algorithm 3.2.8 Insa-Pauer, we will write Reduction2(g, F ) as

g
r2∗
−→F .

Example 3.2.3. Let F = {f1 = (a + b + 1)y, f2 = ay + 1} in Q[a, b][x, y], � the lexico-
graphic order such that x � y and g = (b+ 1)xy − y ∈ Q[a, b][x, y]. Then,

lcĀ(g) = b+ 1 ∈ 〈lcĀ(f1), lcĀ(f2)〉 = 〈a+ b+ 1, a〉,

hence, lcĀ(g) can be written as

lcĀ(g) = lcĀ(f1)− lcĀ(f2).

Clearly, lppĀ(f1)| lppĀ(g), lppĀ(f2)| lppĀ(g). Therefore, g can be reduced by F as follows:

g
r2
−→F g − (lcĀ(f1)xf1 − lcĀ(f2)yf2) = 0.
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Insa and Pauer also introduced the following special S-polynomial.

Definition 3.2.4 (S-polynomial2 [IP98]). Let G be a finite set of polynomials in
K[Ā][X̄ ] and let I be an ideal in K[Ā][X̄] generated by G. For E ⊆ G, let

SE :=

{

(ce)e∈E

∣

∣

∣

∣

∣

∑

e∈E

ce lcĀ(e) = 0

}

.

(We can consider SE as a set of syzygies for lcĀ(E).) Then for s = (ce)e∈E ∈ SE ,

Spoly2(E, s) =
∑

e∈E

ceX
max(E)−degĀ(e)e

is called S-polynomial with respect to s ,where

max(E) := (maxe∈E degX̄(e)1, . . . ,maxe∈E degX̄(e)n) ∈ Nn .

In this thesis, we call this special S-polynomial “ Spoly2”.

As we saw in chapter 2, we can compute the set SE which is a set of syzygies of lcĀ(E),
by using Algorithm 2.3.8 SYZ.

Example 3.2.5. Let E = {e1 = (ab+ b)x2 + y, e2 = (a+ b)x + 1, e3 = axy + by + 2} in
Q[a, b][x, y] and � the lexicographic order such that x � y. Then, by the algorithm SYZ,
we obtain a basis of a syzygy module of lcĀ(E)

{[0,−a, a + b], [−1, 1, b − 1]}.

If we take [0,−a, a+ b], then

Spoly2(E, [0,−a, a + b]) = 0e1 + (−a)ye2 + (a+ b)xe3

= (a+ b)bxy + 2(a+ b)x− ay.

If we take [−1, 1, b − 1], then

Spoly2(E, [−1, 1, b − 1]) = (−1)e1 + (1)ye2 + (b− 1)xe3

= xy + (b2 − b− 1)y2 + xy + 2(b− 1)y.

The definition of Gröbner bases in K[Ā][X̄ ] is the following. In [IP98], Insa-Pauer used
the remark of the definition as the definition of Gröbner bases in K[Ā][X̄ ].

Definition 3.2.6 (Gröbner bases). Fix a term order. A finite subset G = {g1, . . ., gs}
of an ideal I in K[Ā][X̄ ] is said to be a Gröbner basis if

〈lmĀ(g1), . . . , lmĀ(gs)〉 = lmĀ(I).

Remark: This definition is equivalent to the following. We are able to understand the
definition as follows: Let I be an ideal in K[Ā][X̄ ] and let G be a finite subset of J . For
i ∈ Nn let

lc(i, I) := 〈lcĀ(f)|f ∈ I,degX̄(f) = i〉.

Then G is a Gröbner basis of I (with respect to � ) if and only if ∀i ∈ Nn the ideal
lc(i, I) ⊆ K[Ā] is generated by

{lcĀ(g) | g ∈ G, i ∈ degX̄(g) + Nn } .
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Example 3.2.7. Consider the ring Q[a, b][x, y] with the lexicographic order x �lex y, and
let I = 〈f1, f2〉 = 〈ax+ bx+ y, bxy〉. Since

lm{a,b}(Spoly2(f1, f2)) = by2 /∈ 〈lm{a,b}(f1), lm{a,b}(f2)〉 = 〈(a+ b)x, bxy〉,

{f1, f2} is not a Gröbner basis for I. Actually, a Gröbner basis for I is {f1, f2, by
2}.

There are a lot of applications of Gröbner bases in K[Ā][X̄ ] which are well-known in
commutative polynomial rings over a field. For instance, if G is a Gröbner basis for an

ideal I in K[Ā][X̄ ], then ∀g ∈ I, g
r2∗
−→G 0. In this section, we do not describe the details

of the properties of Gröbner bases in K[Ā][X̄ ] (see [IP98] Proposition 3). The following
algorithm is for computing Gröbner bases in K[Ā][X̄ ].

Algorithm 3.2.8. Insa-Pauer(F,�)

Input: F : a finite set of polynomials in K[Ā][X̄ ],
�: a term order on pp(X̄),

Output: G: a Gröbner basis of F with respect to � in K[Ā][X̄ ].
begin

G← F
B ← {(fi1 , fi2 . . . fip) | 1 ≤ i1 < i2 · · · < ip ≤ s, 2 ≤ p ≤ s}
while B 6= ∅ do
Take any element E from B; B ← B\{E}
SE ← Compute a basis of a syzygy module for lcĀ(E)
while SE 6= ∅ do

Take any element α from SE ; SE ← SE\{α}
h←Spoly2(E,α)
r ←Reduction2(h,G)
if r 6= 0 then
B ← B ∪

{

(r, gj1 , .., gjq
)
∣

∣ distinct elements gj1 , . . . , gjp
∈ G, 1 ≤ p ≤ |G|

}

G← G ∪ {r}
end-if

end-while
end-while

return(G)
end

Remark: As we said earlier, we need the special S-polynomial Spoly2 and the special
reduction Reduction2 in order to compute Gröbner bases in K[Ā][X̄ ]. In this point, this
algorithm is more complicated than the Buchberger algorithm. There exist some criteria
for computing Gröbner bases in K[Ā][X̄ ]. We can apply Buchberger’s criteria [Buc79]
and Zhou and Winkler’s work [ZW06] for computing Gröbner bases.

The algorithm Insa-Pauer has been implemented by the author in the computer algebra
system Risa/Asir. In following example, we give some outputs of the program.

Example 3.2.9. Let F1 = {ax + by + 1, (b + 1)y, ax2 + bx + y} and F2 = {bxz + ay +
a, yz + by + 3, ay2z + bx + a} be subsets of Q[a, b][x, y, z] and � the lexicographic order
such that x � y � z.
Then, the program outputs the following set as a Gröbner basis for 〈F1〉 with respect to
�;
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[-b+1,a*x+1,-2*y]

The program outputs the following set as a Gröbner basis for 〈F2〉 with respect to �;

[((6*b-1)*a*y+a*z+8*a)*x+(-3*b+1)*a^2*y^3-8*a^2*y^2+3*a^2*y,(-a*z^2+(-b-8

)*a*z+(10*b-3)*a)*x+(-9*b+3)*a^2*y^2-24*a^2*y+9*a^2,b*x-b*a*y^2-3*a*y+a,(

z+b)*y+3,3*b^2*a*y-a*z^2+(-b-8)*a*z+(10*b-3)*a,-a*z^3+(-2*b-8)*a*z^2+(-b^

2+2*b-3)*a*z+(b^2-3*b)*a]

3.3 Approach via block orders
In this section, we introduce another computation method of Gröbner bases in K[Ā][X̄ ].
In fact, by computing Gröbner bases in K[Ā, X̄ ] with respect to a block order �X̄,Ā, we

can obtain a Gröbner basis in K[Ā][X̄ ]. In this approach, we need a normal S-polynomial
Spoly1 and reduction reduction1 which we saw in chapter 2. Before we describe an algo-
rithm for computing Gröbner bases in K[Ā][X̄ ], we need the following theorem.

Theorem 3.3.1. Let F be a finite set of polynomials inK[Ā][X̄ ]. F can be seen as a finite
subset of polynomials in K[Ā, X̄ ] and we write the set as F again. Let G = {g1, . . . , gs}
be a Gröbner basis for 〈F 〉 in K[Ā, X̄ ] with respect to a block order �X̄,Ā:= (�1,�2)(i.e.,

X̄ � Ā). G can be seen as a set of K[Ā][X̄ ] and we write the set as G again. Then, G is
also a Gröbner basis for 〈F 〉 with respect to �1 in K[Ā][X̄ ].

Proof. For all h ∈ 〈F 〉 ⊆ K[Ā][X̄ ], we prove that lmĀ(h) is generated by {lmĀ(g)|g ∈ G}.
Since h can be seen as an element of K[Ā, X̄ ] and G is a Gröbner basis for 〈F 〉 in K[Ā, X̄ ],
h can be written as

h = h1g1 + · · ·+ hsgs

such that lm(h) �X̄,Ā lm(h1g1) �X̄,Ā · · · �X̄,Ā lm(hsgs) where h1, . . . , hs ∈ K[Ā, X̄ ]. As

�{X̄,Ā} is a block order on K[Ā, X̄ ], we have

lmĀ(h) �1 lmĀ(h1g1) �1 · · · �1 lmĀ(hsgs)

in K[Ā][X̄ ]. W.l.o.g., h1g1, . . . , hkgk have the same leading power product “lppĀ(h)”
where k ≤ s. That is,

lmĀ(h) = lmĀ(h1g1) + · · ·+ lmĀ(hkgk).

We have lmĀ(higi) = lmĀ(hi) lmĀ(gi), hence

lmĀ(h) = lmĀ(h1) lmĀ(g1) + · · ·+ lmĀ(hk) lmĀ(gk).

Therefore, lmĀ(h) ∈ 〈lmĀ(g1), . . . , lmĀ(gs)〉. G is a Gröbner basis for 〈F 〉 with respect to
�1 in K[Ā][X̄ ].

By Theorem 3.3.1, we are able to construct an algorithm for computing Gröbner bases
in K[Ā][X̄ ].

Algorithm 3.3.2. GröbnerBasisB(F,�)

Input F : a finite set of polynomials in K[Ā][X̄ ],
�: a term order on pp(X̄),

Output G: a Gröbner basis of 〈F 〉 in K[Ā][X̄ ].



3.4 Problems 23

1. Consider F as a set of polynomials in K[Ā, X̄ ].
2. Compute the reduced Gröbner basis G for 〈F 〉 with respect to a block order �X̄,Ā=

(�,�1) in K[Ā, X̄ ] where �1 is a term order on pp(X̄).
3. Consider G as a set of polynomials in K[Ā][X̄ ]. Then, by Theorem 3.3.1, G is a

Gröbner basis for 〈F 〉 with respect to �X̄ in K[Ā][X̄ ].

Remark: We do not need to compute reduced Gröbner bases in K[Ā, X̄]. It suffices to
compute a (normal) Gröbner basis. Since in chapter 4 and 5 we describe the algorithms
Suzuki-Sato, NEW which has the algorithm GröbnerBasisB and need the properties of
reduced Gröbner bases in K[Ā, X̄ ], we built in reduced Gröbner bases computation in the
algorithm (in order to avoid writing the same algorithm twice).

Since we do not need the special S-polynomial Spoly2 and the special reduction reduc-
tion2 in this algorithm, this algorithm is much more efficient than the algorithm Insa-Pauer.

Example 3.3.3. Let a, b, x, y be variables and f1 = (a − 1)x + by2, f2 = ay + b in
Q[a, b][x, y], �′ a lexicographic order such that x �′ y. Moreover, let � be a block order
such that x �lex y � a �lex b. By the algorithm, first we compute the reduced Gröbner
basis G for 〈f1, f2〉 with respect to �,

G = {ay + b, (a− 1)x+ by2,−xy − bx+ by3}.

Then, we can consider G as a subset of Q[a, b][x, y]. G is a Gröbner basis for 〈f1, f2〉 with
respect to �′ in Q[a, b][x, y].

3.4 Problems
Here we discuss problems of the some algorithms Insa-Pauer and GröbnerBasisB (for com-
puting reduced Gröbner bases).

3.4.1 Approach by Insa and Pauer

In this subsection, we consider a problem of the Insa-Pauser approach by the following
example.

Example 3.4.1. Let f1 = a2x− a and f2 = (a3−a)x− a2 +1 be polynomials in Q[a][x].

Then, a Gröbner basis of 〈f1, f2〉 is {f1, f2}, because Spoly1(f1, f2) = 0, f1
r2∗
−→f2

f1 and

f2
r2∗
−→f1

f2 in Q[a][x]. However, we have

f3 = a · f1 − f2 = ax− 1.

The polynomial f3 is an element of 〈f1, f2〉, and f3 divides f1 and f2. This means 〈f3〉 =
〈f1, f2〉. That is, {f3} is a Gröbner basis for 〈f1, f2〉, too. {f3} is simpler than {f1, f2}.
However, {ax− 1} cannot be computed by the Insa-Pauer algorithm.

3.4.2 Approach via block order

In this subsection, we give a problem of the approach of block orders�X̄,Ā by the following
example.
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Example 3.4.2. Let F = {f1 = ax+ 1, f2 = (b+ 1)y, f3 = az + bz + z} be a set of poly-
nomials in Q[a, b][x, y, z]. F can be seen as a set of Q[a, b, x, y, z]. We have a block order
�{x,y,z},{a,b}= (�lex,�grlex) such that x �lex y �lex z and a �grlex b where �lex is the
lexicographic order and �grlex is the graded reverse lexicographic order. Then the reduced
Gröbner bases G ⊂ Q[a, b, x, y] for 〈F 〉 with respect to a block order �{x,y,z},{a,b} is the
following.

G = {g1 = (a+ b+ 1)z, g2 = (b+ 1)y, g3 = yz, g4 = ax+ 1, g5 = (b+ 1)xz − z} .

Since G is the reduced Gröbner basis of 〈F 〉 in Q[a, b, x, y, z], g ∈ G cannot be reduced by
G\{g} with respect to the block order in Q[a, b, x, y, z]. However, look at g5. Then, we
have

lmĀ(g5) ∈ 〈lmĀ(G\{g5})〉 ⊂ Q[a, b][x, y, z].

That is, g5 can be written
g5 = x · g1 − z · g4.

This means that g5 can be still reduced to 0 by g1 and g4 in Q[a, b][x, y, z]. The polynomial
g5 is a redundant polynomial in Q[a, b][x, y, z]. By the algorithm GröbnerBasisB, G\{g5}
cannot be computed.

�

�

�

�

Problem: Sometimes there exits a Gröbner basis which is simpler
(or more minimal) than Gröbner bases computed by either of the
two methods above.
This Gröbner basis cannot be computed by the two methods.

3.5 Reduced Gröbner bases

In this section, we define a reduced Gröbner basis for an ideal in K[Ā][X̄ ] and give
algorithms for computing a reduced Gröbner basis. First, we define weak reduced Gröbner
bases in K[Ā][X̄ ].

Definition 3.5.1 (Weak reduced Gröbner bases). Let �X̄,Ā:= (�1,�2) be a block

order and I an ideal in K[Ā][X̄ ]. Then, a weak reduced Gröbner basis G for I with
respect to �1 and �X̄,Ā, is a Gröbner basis for I in K[Ā][X̄] such that

1. for all p ∈ G, no monomial in Mono(p) lies in 〈lm(G\ {p})〉 in K[Ā, X̄] with respect
to �X̄,Ā,

2. for all p ∈ G, no monomial in MonoĀ(p) lies in 〈lmĀ(G\ {p})〉 in K[Ā][X̄ ] with
respect to �1,

3. for all p ∈ G, lc(p) = 1 with respect to �X̄,Ā.

As we said earlier, the algorithms Insa-Pauer and GröbnerBasisB cannot always compute
reduced Gröbner bases in K[Ā][X̄ ].

How do we compute (weak) reduced Gröbner bases in K[Ā][X̄ ]?

A polynomial ring K[Ā][X̄ ] can be seen as a polynomial ring K[Ā, X̄ ]. This means
that the polynomial ring K[Ā][X̄ ] has properties of K[Ā, X̄ ]. In this sense, we have two
reduction systems reduction1, reduction2 and two S-polynomial systems Spoly1, Spoly2 for
computing weak reduced Gröbner bases in K[Ā][X̄ ].
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For instance, in Example 3.4.1. We have a Gröbner basis {f1 = ax2 − a, f2 = (a3 −
a)x − a2 + 1}. If we use reduction1 or Spoly1 to the Gröbner basis {f1, f2}, then we can
obtain ax+ 1 by the computation

f2
r1∗
−→{f1} ax+ 1, or Spoly1(f1, f2) = ax+ 1.

Since f1
r1∗
−→{ax+1} 0 and f2

r1∗
−→{ax+1} 0, {ax + 1} is a weak reduced Gröbner basis for

〈f1, f2〉.

In Example 3.4.2, we obtained a Gröbner basis G = {g1, g2, g3, g4, g5} by the algorithm
GröbnerBasisB . Let’s apply reduction2 to G. Then, since

lpp{a,b}(g1)| lpp{a,b}(g5), lpp{a,b}(g4)| lpp{a,b}(g5)

and
lc{a,b}(g5) = − lc{a,b}(g1) + lc{a,b}(g4) = −(a+ b+ 1) + a = −b− 1,

we have g5
r1∗
−→{g1,g2} 0. Thus, g5 is a redundant polynomial which is found by reduction1.

By Definition 3.5.1, a weak reduced Gröbner basis for G is {g1, g2, g3, g4} with respect to
the lexicographic order with x � y � z.

By the observation above, we need reduction1, reduction2, Spoly1 and Spoly2 for comput-
ing weak reduced Gröbner bases in K[Ā][X̄ ]. Now, we can easily construct an algorithm
for computing weak reduced Gröbner bases. We know that by the algorithms Insa-Pauer
or GröbnerBasisB, we can obtain a Gröbner basis G in K[Ā][X̄ ]. This Gröbner basis G
is not always a weak reduced Gröbner basis, hence we need reduction1 and reduction2 to
reduce G to a reduced Gröbner basis. Actually, we need two reduction systems reduction1,
reduction2 and one of two S-polynomial systems Spoly1 and Spoly2.
The following algorithm returns a weak reduced Gröbner basis. In the first step of the
following algorithm, we apply Insa-Pauer or GröbnerBasisB for computing Gröbner bases
in K[Ā][X̄ ].

Algorithm 3.5.2. WRGB(F,�1,�2) (Weak reduced Gröbner bases)

Input F : a finite set of polynomials in K[Ā][X̄ ],
�1 : a term order on pp(X̄),
�2 : a term order on pp(Ā),
(�X̄,Ā:= (�1,�2) : a block order,)

OutputG: a weak reduced Gröbner basis of 〈F 〉 with respect to �1 and �X̄,Ā inK[Ā][X̄ ].
begin

G← Compute a Gröbner basis G for 〈F 〉 by Insa-Pauer or GröbnerBasisB
E1← 0

while E1 6= 1 do
if there exists p ∈ G such that
(

p
r1∗
−→{G\{p}} p1 and p 6= p1

)

or
(

p
r1∗
−→{G\{p}} p1 and p 6= p1, with respect to �X̄,Ā

)

then
if p1 6= 0 then
G← {G\{p}} ∪ {p1}

else if
G← G\{p}
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end-if
else-if
E1← 1

end-if
end-while

return(G)
end

Theorem 3.5.3. The algorithm WRGB terminates. The output forms a weak reduced
Gröbner basis for 〈F 〉 with respect to �1 and �X̄,Ā in K[Ā][X̄ ].

Proof. In the first line of Algorithm 3.5.2 WRGB, if we apply Insa-Pauer for computing a
Gröbner basis for 〈F 〉 inK[Ā][X̄ ], then Insa-Pauer terminates. (SinceK[Ā] is a Noetherian
ring, K[Ā][X̄ ] is a Noetherian ring too. Thus, the termination of Insa-Pauer is guaranteed
because we have a finite ascending chain condition of properly contained ideals over a
Noetherian ring.) In the first step of Algorithm 3.5.2 WRGB, if we apply GröbnerBasisB
for computing a Gröbner basis for 〈F 〉 in K[Ā][X̄ ], obviously GröbnerBasisB terminates.
(see [Buc65]). Let G be a finite set of polynomials in K[Ā][X̄]. In the while-loop step,
if there exists an element p of Mono(g) or MonoĀ(g) which can be reduced to p1 by some
polynomials of G\{g} in reduction1 or reduction2, then we always have lm(p) �X̄,Ā lm(p1)
(lm(p1) is smaller or equal than lm(p) with respect to the term order �X̄,Ā). That is, the
result of applying reduction1 or reduction2 to any monomial m ∈Mono(g)∪MonoĀ(g) has
a leading monomial which cannot be greater than m with respect to �X̄,Ā. Therefore,
iterated application of reduction1 and reduction2 to G will eventually terminate. This
algorithm terminates and the outputs satisfy the properties of Definition 3.5.1.

In Algorithm 3.5.2 WRGB, if we apply the algorithm Insa-Pauer for computing a Gröbner
basis, then we need syzygy computations Spoly1 and “extended Gröbner bases algorithm
Reduce1” (i.e., we have to apply the algorithms SYZ and EGA for computing them.). In
general, syzygy computations and “extended Gröbner bases algorithm” are expensive.
However, in Algorithm 3.5.2 WRGB, if we apply the algorithm GröbnerBasisB, then we
do not need any syzygy computation. Actually, the algorithm GröbnerBasisB is a normal
Gröbner bases computation in polynomial rings over a field with respect to a block order.
At present, we have very powerful programs for computing Gröbner basis in K[Ā, X̄]
in the computer algebra systems Singular*1, Risa/Asir*2 and Magma*3. We can apply
these powerful programs for computing weak reduced Gröbner bases in K[Ā][X̄ ]. Thus,
concerning implementation and speed, WRGB with GröbnerBasisB is better than WRGB
with Insa-Pauer.

Before concluding this section, we consider a property of reduced Gröbner bases. Now
we have a question.

“Is a weak reduced Gröbner basis uniquely determined by an ideal I ⊆ K[Ā][X̄ ]
and term orders?”

In fact, this answer is “NO”. A weak reduced Gröbner basis is not unique. We have
the following easy example for this question.

*1 http://www.singular.uni-kl.de/
*2 http://www.math.kobe-u.ac.jp/Asir/
*3 http://magma.maths.usyd.edu.au/magma/
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Example 3.5.4. Let F = {(ab + 1)xy, (ac + 1)xy} be a subset of Q[a, b, c][x, y] and
�{x,y},{a,b,c}= (�lex,�lex) a block order with x �lex y and a �lex b �lex c. Then, F is
a weak reduced Gröbner basis for 〈F 〉 in Q[a, b, c][x, y]. In fact, F satisfies the properties
1,2 of Definition 3.5.1. However, we can say 〈F 〉 = 〈(ac + 1)xy, (−b + c)xy〉. The set
G = {(ac + 1)xy, (−b + c)xy} is a weak reduced Gröbner basis for 〈F 〉 with respect to
�lex and �{x,y},{a,b,c}, too. Therefore, a weak reduced Gröbner basis is not uniquely
determined.
Note that, actually, lcĀ(G) = {ac + 1,−b + c} is the reduced Gröbner basis for
〈lcĀ(F )〉 with respect to �lex in Q[a, b, c]. Hence, in this case, by computing the
reduced Gröbner basis for 〈lcĀ(F )〉 in Q[a, b, c], we can obtain a unique reduced Gröbner
basis.

We give one more example facilitate the understanding of the next definition. Let
F = {(ac + b)x2, (ac − c + bd2)x2, (−cd − bc + bd3)x} ⊂ Q[a, b, c, d][x]. We have the lex-
icographic order � such that a � b � c � d. In fact, F is a weak Gröbner basis for 〈F 〉.
Suppose that e ∈ lpp{a,b,c,d}(F ), Fe = {f | lpp{a,b,c,d}(f) = e}. We have lpp{a,b,c,d}(F ) =

{x, x2}, so Fx = {(−cd − bc + bd3)x} and Fx2 = {(ac + b)x2, (ac − c + bd2)x2}. Let’s
consider all coefficients of Fx and Fx2 . Since lc{a,b,c,d}(Fx) = {−cd − bc + bd3} has

only one element, {−cd − bc + bd3} is the reduced Gröbner basis for an ideal gener-
ated by itself. Next we consider lc{a,b,c,d}(Fx2) = {ac + b, ac − c + bd2}. Actually,

{ac+ b, ac− c+ bd2} is NOT the reduced Gröbner basis for the ideal generated by itself
{ac+ b, ac− c+ bd2} with respect to � in Q[a, b, c, d]. However, since the main variable x
divides x2, by definition of reduction2, lc{a,b,c,d}(Fx2) is constrained by 〈lc{a,b,c,d}(Fx2)〉.
Therefore, we have to consider lc{a,b,c,d}(Fx2) in Q[a, b, c, d]/〈lc{a,b,c,d}(Fx)〉. In this ex-
ample, lc{a,b,c,d}(Fx2) is the reduced Gröbner basis for the ideal generated by itself with
respect to � in Q[a, b, c, d]/〈lc{a,b,c,d}(Fx)〉.

We did not take care of all coefficients of weak reduced Gröbner bases in K[Ā], and thus
a weak reduced Gröbner basis was not uniquely determined. Since the coefficient domain
is a polynomial ring, we need some conditions to obtain a unique reduced Gröbner basis
in K[Ā][X̄ ]. We call this reduced Gröbner basis “strong reduced Gröbner basis”.

Definition 3.5.5 (Strong reduced Gröbner bases). Let �X̄,Ā:= (�1,�2) be a block

order and I an ideal in K[Ā][X̄ ]. Suppose that for e ∈ lppĀ(G), Ge = {f | lppĀ(f) = e}.
Then, a strong reduced Gröbner basis G for I with respect to �1, �2 and �X̄,Ā is a

Gröbner basis for I in K[Ā][X̄ ] such that

1. for all p ∈ G, no monomial in Mono(p) lies in 〈lm(G\ {p})〉 in K[Ā, X̄] with respect
to �X̄,Ā,

2. for all p ∈ G, no monomial in MonoĀ(p) lies in 〈lmĀ(G\ {p})〉 in K[Ā][X̄ ] with
respect to �1,

3. for all e ∈ lppĀ(G), lcĀ(Ge) is the reduced Gröbner basis for an ideal generated by
itself lcĀ(Ge) with respect to �2 in the quotient ring K[Ā]/Je where Je is an ideal
generated by F = {lcĀ(g) ∈ K[Ā]|g ∈ G\Ge such that lppĀ(g)|e}.
(If F = ∅, K[Ā]/Je = K[Ā].)

Remark∗: Let I be an ideal in K[Ā] and J an ideal in K[Ā]/I. Then, it is possible to
compute a reduced Gröbner basis for J with respect to a term order � in K[Ā]/I, and
a reduced Gröbner basis in K[Ā]/I is uniquely determined; we can compute the reduced
Gröbner basis GJ for J with respect to � in K[Ā], and the reduced Gröbner basis GI for
I with respect to � in K[Ā]. Both GJ and GI are unique. Next we compute all normal
form of GJ by GI . Then, GJ ↓GI

is the reduced Gröbner basis for J in K[Ā]/I and unique
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(where GJ ↓GI
is defined at the end of Algorithm 3.5.6 SRGB).

In order to consider the strong reduced Gröbner basis, let’s see Example 3.4.1, again.
In the example, we obtained a Gröbner basis G = {f1 = a2x− a, f2 = (a3− a)x− a2 + 1}
by Insa-Pauer, but G does not satisfy the property 3 of Definition 3.5.5. Since the set of
all power products is lppĀ(G) = {x}, we have Gx := {f1, f2} and lcĀ(Gx) := {a2, a3−a}.
The reduced Gröbner basis for 〈lcĀ(Gx)〉 is {a}. Since {a} 6= lcĀ(Gx), G is not a strong
reduced Gröbner basis. However, we can construct the strong reduced Gröbner basis.
Since 〈a〉 = 〈lcĀ(Gx)〉, a can be written as

a = c1 lcĀ(f1) + c2 lcĀ(f2),

where c1, c2 ∈ Q[a]. In this case, c1 = a, c2 = −1. Now we can obtain a new polynomial
g such that 〈g〉 = 〈G〉, 〈lmĀ(g)〉 = 〈lmĀ(G)〉 and {lcĀ(g)} is the reduced Gröbner basis
for lcĀ(Gx).

g = c1f1 + c2f2 = af1 − f2 = ax+ 1.

Therefore, {g} is a strong reduced Gröbner basis.

The following algorithm returns a strong reduced Gröbner basis.

Algorithm 3.5.6. SRGB(F,�1,�2) (Strong reduced Gröbner bases)

Input F : a finite set of polynomials in K[Ā][X̄ ],
�1 : a term order on pp(X̄),
�2 : a term order on pp(Ā),
(�X̄,Ā:= (�1,�2) : a block order),

Output L: a strong reduced Gröbner basis of 〈F 〉 with respect to the term orders �1,�2

and �{X̄,Ā} in K[Ā][X̄ ].
begin
G← Compute a weak reduced Gröbner basis for 〈F 〉
B ← lppĀ(G)
L← ∅

while B 6= ∅ do
Select the lowest power product p with respect to �1 from B; B ← B\{p}
Gp ← {f ∈ F | lppĀ(f) = p}
G← G\Gp

Jp ← {lcĀ(f)|f ∈ G s.t lppĀ(f)|p}
if lcĀ(Gp) is NOT the reduced Gröbner basis with respect to �2 in K[Ā]/〈Jp〉 then
Q← Compute Q such that 〈Q〉 = 〈Gp〉, 〈lmĀ(Q)〉 = lmĀ(〈Gp〉) and
lcĀ(Q) is the reduced Gröbner basis for 〈lcĀ(Gp)〉 with respect to �2 in K[Ā]/〈Jp〉
L← L ∪ {Q ↓L}
else-if
L← L ∪ {Gp ↓L}
end-if

end-while
return(L)

end

In the algorithm, we used the notations Q ↓L and Gp ↓L where Q,Gp, L ⊂ K[Ā][X̄ ].
This meaning is the following.
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Q ↓L:=
begin
S ← ∅
while Q 6= ∅ do
Select q from Q; Q← Q\{q}; q1 ← q ↓L (by Reduction1 and Reduction2)

if q1 6= 0 then
S ← S ∪ {q1}

end-if
end-while
return(S)
end

Theorem 3.5.7. The algorithm SRGB terminates. The output forms a strong reduced
Gröbner basis for 〈F 〉 with respect to the term orders in K[Ā][X̄ ].

Proof. We know that how to compute a weak reduced Gröbner basis G, and this step
terminates. Since we have a Gröbner basis G, we have to check lcĀ(Gp) where p ∈
lppĀ(G). If lcĀ(Gp) is not a reduced Gröbner basis with respect to �2 in K[Ā]/〈Jp〉,
then, we have to compute the following;

Q← Compute Q such that 〈Q〉 = 〈Gp〉, 〈lmĀ(Q)〉 = lmĀ(〈Gp〉) and lcĀ(Q) is the reduced
Gröbner basis for 〈lcĀ(Gp)〉 with respect to �2 in K[Ā]/〈Jp〉.

As we said in the Remark∗, it is possible to compute Q by “extended Gröbner bases
algorithm Algorithm 2.3.9”. This step clearly terminates. Since B is a finite set, the first
while-loop terminates. Therefore, this algorithm terminates. In the if-part of the algo-
rithm, if lcĀ(Gp) is not the reduced Gröbner basis with respect to �2 in K[Ā]/〈Jp〉, then
the algorithm computes Q. Next the algorithm computes Q ↓L. In fact, by reduction1,
reduction2 and the weak reduced Gröbner basis, we have lmĀ(Q) = lmĀ(Q ↓L). That
is, in this step, the algorithm reduces non-leading monomials of Q for the property 1,2
of Definition 3.5.5. By the same reasons, if lcĀ(Gp) is the reduced Gröbner basis with
respect to �2 in K[Ā]/〈Jp〉, then we have lmĀ(Gp) = lmĀ(Gp ↓L), and Gp ↓L satisfies
the property 1,2 of Definition 3.5.5. Therefore, this algorithm outputs a strong reduced
Gröbner basis with respect to �1, �2 and �X̄,Ā.

A strong reduced Gröbner bases have the following nice property.

Theorem 3.5.8. Let �X̄,Ā:= (�1,�2) be a block order on pp(X̄, Ā). Let I be an ideal

in K[Ā][X̄ ]. Then, I has a unique strong reduced Gröbner basis.

Proof. Since the existence of strong reduced Gröbner bases was proved by Theorem 3.5.7,
we prove the uniqueness. First we prove the following claim.

Claim 1 Let �X̄,Ā:= (�1,�2) be a block order on pp(X̄, Ā) and I an ideal in K[Ā][X̄ ].
Let G1 and G2 be strong reduced Gröbner bases for I with respect to �1 and �X̄,Ā. Then,
lm(G1) = lm(G2). Namely, the set of all leading monomials of strong reduced Gröbner
bases for I is unique.

(Proof of Claim 1) Assume that G1 and G2 are strong reduced Gröbner bases for I in
K[Ā][X̄ ]. We set G1 = {g1, . . . , gs}, G2 = {h1, . . . , hp}. W.l.o.g., lppĀ(g1) = . . . =
lppĀ(gk) is the lowest leading power product of G1 with respect to �1 for 1 ≤ k ≤ s,
and lppĀ(h1) = . . . = lppĀ(hl) is the lowest leading power product of G2 with respect
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to �1 for 1 ≤ l ≤ p. If lppĀ(g1) �1 lppĀ(h1) (lppĀ(g1) is bigger than lppĀ(h1)), h1 can
not be in 〈G1〉, because there is no element such that lppĀ(gi)| lppĀ(h1) where gi ∈ G1.
However, by 〈G1〉 = 〈G2〉, we have h1 ∈ 〈G1〉. Hence, lppĀ(g1) � lppĀ(h1) (by the order
�1). By the same reason, we have also lppĀ(h1) � lppĀ(g1) (by the order �1). Therefore,
lppĀ(h1) = lppĀ(g1). We have two sets

{lmĀ(g1), . . . , lmĀ(gk)} = {lcĀ(g1) lppĀ(g1), . . . , lcĀ(gk) lppĀ(g1)},
{lmĀ(h1), . . . , lmĀ(hp)} = {lcĀ(h1) lppĀ(g1), . . . , lcĀ(hp) lppĀ(g1)}.

Since G1, G2 are strong reduced Gröbner bases for I with respect to �1, �2 and �X̄,Ā

in K[Ā][X̄ ], {lcĀ(g1), . . . , lcĀ(gk)} is the reduced Gröbner basis for an ideal generated by
itself in K[Ā], and {lcĀ(h1), . . . , lcĀ(hl)} is also the reduced Gröbner basis for an ideal
generated by itself in K[Ā]. By the property of Gröbner bases G1, G2 and lppĀ(h1) =
lppĀ(g1), we have the following relations

lmĀ(hj1) = α1 lmĀ(g1) + · · · + αk lmĀ(gk)

= α1 lcĀ(g1) lppĀ(g1) + · · · + αk lcĀ(gk) lppĀ(g1),

lmĀ(gj2) = β1 lmĀ(h1) + · · ·+ βl lmĀ(hl)

= β1 lcĀ(h1) lppĀ(g1) + · · ·+ βl lcĀ(hl) lppĀ(g1),

where α1, . . . , αk, β1, . . . , βl ∈ K[Ā], 1 ≤ j1 ≤ k and 1 ≤ j2 ≤ l. Hence we can say
〈lcĀ(g1), . . . , lcĀ(gk)〉 = 〈lcĀ(h1), . . . , lcĀ(hl)〉. Since the two sets {lcĀ(g1), . . . , lcĀ(gk)}
and {lcĀ(h1), . . . , lcĀ(hp)} are the reduced Gröbner bases with respect to �2 in K[Ā], we
have {lcĀ(g1), . . . , lcĀ(gk)} = {lcĀ(h1), . . . , lcĀ(hl)}. Therefore we have

{lmĀ(g1), . . . , lmĀ(gk)} = {lmĀ(h1), . . . , lmĀ(hl)}.

Next we consider two sets G11 := G1\{g1, . . . , gk} and G21 := G2\{h1, . . . , hl}. W.l.o.g.,
lppĀ(gk+1) = . . . = lppĀ(gk1

) is the lowest leading power product of G11 with respect to
�1 for 2 ≤ k1 ≤ s. That is, gk+1, . . . , gk1

∈ G11 ⊆ G1. Since G1 is a strong reduced
Gröbner basis, lmĀ(gk+1), . . . , lmĀ(gk1

) can not be reduced by lmĀ(g1), . . . , lmĀ(gk).
W.l.o.g., lppĀ(hl+1) = . . . = lppĀ(hl1) is the lowest leading power product of G21

with respect to �1 for 2 ≤ l1 ≤ p. That is, hl+1, . . . , hl1 ∈ G21 ⊆ G2. By the
same reason above, we have lppĀ(gk+1) = lppĀ(hl+1) and 〈lcĀ(gk+1), . . . , lcĀ(gk1

)〉 =
〈lcĀ(hl+1), . . . , lcĀ(hl1)〉. We know that lppĀ(g1) is the lowest leading power product of
G1 and G2. If lppĀ(g1) does not divide lppĀ(gk+1), then by the same reason above,

{lmĀ(gk+1), . . . , lmĀ(gk1
)} = {lmĀ(hl+1), . . . , lmĀ(hl1)}.

If lppĀ(g1) divide lppĀ(gk+1), then G1 and G2 have the same set

J = {lcĀ(g1), . . . , lcĀ(gk)} = {lcĀ(h1), . . . , lcĀ(hl)}.

By the Remark∗, the reduced Gröbner basis for 〈lcĀ(gk+1), . . . , lcĀ(gk1
)〉 is unique in

K[Ā]/J . Since G1 and G2 are strong reduced Gröbner bases, we have

{lmĀ(gk+1), . . . , lmĀ(gk1
)} = {lmĀ(hl+1), . . . , lmĀ(hl1)}.

By the Hilbert basis theorem, G1 and G2 have finite many elements. Therefore, repeat
the same procedure, then we have lmĀ(G1) = lmĀ(G2).

Suppose that G1 and G2 are strong reduced Gröbner bases for I. Then, by the claim
1, we have lmĀ(G1) = lmĀ(G2). Thus, given g1 ∈ G1, there is g2 ∈ G2 such that
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lmĀ(g1) = lmĀ(g2). If we can show that g1 = g2, it will follow that G1 = G2, and
uniqueness will be proved.
To show g1 = g2, consider g1− g2. This is in I, and since G1 is a Gröbner basis, it follows

that g1 − g2
r1∗
−→G1

◦
r2∗
−→G1

◦ · · · ◦
r1∗
−→G1

0 (by Reduction1 and Reduction2). However,
we also know lmĀ(g1) = lmĀ(g2). Hence, these monomials cancel in g1 − g2, and the
remaining monomials are divisible by none of lmĀ(G1) = lmĀ(G2) since G1 and G2 are

reduced. This shows that g1−g2
r1∗
−→G1

◦
r2∗
−→G1

◦ · · · ◦
r1∗
−→G1

g1−g2, and then g1−g2 = 0
follows. This completes the proof.

3.6 Computation examples

The algorithms WRGB (with GröbnerBasisB) have been implemented for the case K = Q
in the computer algebra system Risa/Asir by the author. In this section, we give three
easy examples of reduced Gröbner bases .

Example 3.6.1. Let a, x, y be variables and f1 = (a− 1)x+ y2, f2 = ay+ a polynomials
in Q[a][x, y]. We compute a reduced Gröbner basis for 〈f1, f2〉 with respect to the lexico-
graphic order with x � y in Q[a][x, y].
By the procedure of WRGB, first we compute the reduced Gröbner basis G for 〈f1, f2〉
with respect to a block order �{x,y},{a} in Q[a, x, y]. The reduced Gröbner basis G in
Q[a, x, y] is the following

G =
{

g1 = ay + a, g2 = ax− x+ y2, g3 = −xy − x+ y3 + y2
}

.

Second, we need to check whether there exists a polynomial p ∈ G which can be reduced
by G\{p} or not.
We have lpp{a}(g1)| lpp{a}(g3), lpp{a}(g2)| lpp{a}(g3) and lc{a}(g3) = lc{a}(g1) −
lc{a}(g2) = −a+ (a− 1) = −1, therefore g3 can be reduced as follows

g3
r1
−→{g1,g2} g3 − (−xg1 + yg2) = ax− x+ y2 = g2.

The set {g1, g2} is a weak reduced Gröbner basis for 〈f1, f2〉 in Q[a][x, y]. Actually, {g1, g2}
is the strong reduced Gröbner basis, too.

In the following two examples, we compare three algorithms GröbnerBasisB, Insa-Pauer
and WRGB. We used a PC with [CPU: Pentium M 1.73 GHZ, OS: Windows XP].

Example 3.6.2. Let a, b, x, y, z be variables and F = {bxz + ay + a, y + by + 3, ay2z +
bz + b, ay + a} in Q[a, b][x, y, z]. We have the graded lexicographic order with x � y � z.
We compute a Gröbner basis for 〈F 〉 in Q[a, b][x, y, z] by three algorithms, Insa-Pauer,
GröbnerBasisB, and WRGB (with GröbnerBasisB).

1. By Insa-Pauer, we have the following Gröbner basis

[(b-2)*a,(a+b)*z+b,(b+1)*y+3,b*x].

(cputime: 0.07851sec)

This list has four polynomials.
2. By GröbnerBasisB, we have the following Gröbner basis

[(b-2)*a,(a+b)*z+b,(-b^2+2*b)*z-b^2+2*b,(b+1)*y+3,a*y+a,b*x,

a*x,(z+1)*y+(-b+3)*z-b+3,(y+3)*x].

(cputime: 0sec)



This list has eight polynomials.
3. By WRGB, we have the following weak reduced Gröbner basis

[(b-2)*a,(a+b)*z+b,(b+1)*y+3,b*x].

(cputime: 0.01563sec)

(Actually, this is the strong Gröbner basis, too.) This list is same as the first list
which was obtained by Insa-Pauer.

Example 3.6.3. Let a, b, x, y, z be variables and F = {ax2z+ay+a, axz+b, (a+1)xz+ab}
in Q[a, b][x, y, z]. We have the lexicographic order with x � y � z. We compute a Gröbner
basis for 〈F 〉 in Q[a, b][x, y, z] by three algorithms Insa-Pauer, GröbnerBasisB, and WRGB
(with GröbnerBasisB).

1. By Insa-Pauer, we have the following Gröbner basis

[b*a^2-b*a-b,-b*x+a*y+a,(a+1)*z*x+b*a,a*z*x+b,

a*z*y+a*z+b^2*a-b^2,(-a^3+a^2+a)*y-a^3+a^2+a].

(cputime: 0.04688sec)

This list has six polynomials.
2. By GröbnerBasisB, we have the following Gröbner basis

[-b*a^2+b*a+b,(a^3-a^2-a)*y+a^3-a^2-a,b*z*y+b*z-b^3*a+2*b^3,

a*z*y+a*z+b^2*a-b^2,-b*x+a*y+a,-z*x-b*a+b].

(cputime: 0sec)

This list has six polynomials.
3. By WRGB, we have the following reduced Gröbner basis

[-b*a^2+b*a+b,(a^3-a^2-a)*y+a^3-a^2-a,a*z*y+a*z+b^2*a-b^2,

-b*x+a*y+a,-z*x-b*a+b].

(cputime: 0.01563sec)

This list has five polynomials.
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Chapter 4

Comprehensive Gröbner bases and

comprehensive Gröbner systems

In this chapter, we describe comprehensive Gröbner bases and comprehensive Gröbner
systems. First, we describe the history and recent trend. Second, we give the definitions
of comprehensive Gröbner bases and comprehensive Gröbner systems. Third, we treat the
Suzuki-Sato algorithms for computing comprehensive Gröbner bases and comprehensive
Gröbner systems. (In this thesis, our algorithms in various domains are based on the
Suzuki-Sato algorithm.) Finally, we introduce the software which computes comprehensive
Gröbner bases and comprehensive Gröbner systems.

4.1 Introduction

Comprehensive Gröbner bases for parametric polynomial ideals were introduced, con-
structed, and studied by Weispfenning in 1992. Since then comprehensive Gröbner bases
have been studied and implemented in the several computer algebra systems.
A comprehensive Gröbner basis is a finite subsets G of a parametric polynomial ideal I
such that σ(I) constitutes a Gröbner basis of the ideal generated by σ(I) under all spe-
cialization σ of the parameters in arbitrary fields.

Roughly speaking, a comprehensive Gröbner system is a parametric Gröbner basis with
parameter spaces. If we take a parameter space P and its set of parametric polynomi-
als G from a comprehensive Gröbner systems for a parametric polynomial ideal I, then
σ(G) constitutes a Gröbner basis of the ideal generated by σ(I) under the specialization
σ with respect to the parameter space P of the parameters. (We introduce a definition of
comprehensive Gröbner bases and comprehensive Gröbner systems in the next section.)
These concept has found numerous applications.

After Weispfenning’s paper was published, Dolzman and Sturm have implemented and
published the software [DS97]. However, there was no big development about comprehen-
sive Gröbner bases and comprehensive Gröbner systems for ten years. Recently, the big
developments were made by Montes, Sato, Suzuki and Weispfenning.

[Efficient computation]
•Montes published the new algorithm for computing comprehensive Gröbner systems and
its software in 2002 and 2006 [Mon02, MM05, MM06].
• Suzuki and Sato publish the new algorithm for computing comprehensive Gröbner bases
and comprehensive Gröbner systems in 2006 [SS06].
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[Theory]
• Suzuki and Sato presented an alternative definition of comprehensive Gröbner bases in
terms of Gröbner bases in polynomial rings over commutative von Neumann regular rings
[SS02, SS03]. This Gröbner basis is called “alternative comprehensive Gröbner basis”.
Alternative comprehensive Gröbner bases have the following nice properties, which do
not hold in standard comprehensive Gröbner bases ;

1. There is a canonical form of an alternative comprehensive Gröbner basis in a natural
way.

2. We can use reductions of an alternative comprehensive Gröbner basis.

• Weispfenning presented a concept of canonical comprehensive Gröbner bases under
very general assumptions on the parameter ring [Wei02a, Wei03]. After this paper was
published, this result was applied for improving Montes’ algorithm by Montes [MM06].

In this chapter we mainly describe the Suzuki-Sato algorithms [SS06] for computing com-
prehensive Gröbner bases and comprehensive Gröbner systems, because the Suzuki-sato
algorithms are faster then other existing algorithms. In the final section of this chap-
ter, we introduce the software for computing comprehensive Gröbner bases and systems;
REDLOG in Reduce, Montes’ program in Maple and Suzuki’s program in Maple, Risa/Asir,
Mathematica, singular and the author’s package in Risa/Asir.

In chapter 5, we improve the Suzuki-Sato algorithms for computing comprehensive
Gröbner systems. In chapter 8 and 9, we apply the Suzuki-Sato algorithm for computing
comprehensive Gröbner bases and comprehensive Gröbner systems in rings of differential
operators and K[Ā][X̄ ]-module.

4.2 Comprehensive Gröbner bases and comprehensive Gröbner

systems
In this section, we give definitions and examples of comprehensive Gröbner bases and com-
prehensive Gröbner systems. In general, comprehensive Gröbner bases and comprehensive
Gröbner systems are called “parametric Gröbner bases”.

4.2.1 Comprehensive Gröbner systems

Here, we give a definition of comprehensive Gröbner systems and their examples. In this
thesis, we use the following notations for the canonical specialization homomorphism.

For arbitrary ā ∈ Lm, we can define the canonical specialization homomorphism σā :
K[Ā]→ L induce by ā, and we can naturally extend it to σā : K[Ā][X̄ ]→ L[X̄].

Definition 4.2.1 (Comprehensive Gröbner Systems). Let F be a subset of
K[Ā][X̄ ], A1, . . . ,Al algebraically constructible subsets of Lm and G1, . . . , Gl subsets
of K[Ā][X̄ ]. Let S be a subset of Lm such that S ⊆ A1 ∪ · · · ∪ Al. A finite set
G = {(A1, G1), . . . , (Al, Gl)} of pairs is called a comprehensive Gröbner system on
S for 〈F 〉 if σā(Gi) is a Gröbner basis of the ideal 〈σā(F )〉 in L[X̄ ] for each i = 1, . . . , l
and ā ∈ Ai. Each (Ai, Gi) is called a segment of G. We simply say G is a comprehensive
Gröbner system for 〈F 〉 if S = Lm.
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In this thesis, we use an algebraically constructible set that has a form

V(f1, . . . , fk)\V(g1, . . . , gl) ⊆ L
m

where f1, . . . , fk, g1, . . . , gl ∈ K[Ā].
We give examples of comprehensive Gröbner systems in the following.

Example 4.2.2. Let F = {ax2y+ y, bx2y2 + ax+ y} ⊂ Q[a, b][x, y], a, b parameters, x, y
variables and � the lexicographic order such that x � y. Then, a comprehensive Gröbner
system for 〈F 〉 with respect to � is

G1 =
{(

Q2 \V(a, b), {a2x− by2 + ay,−b2y5 + 2bay4 − a2y3 − a3y}
)

,
(

V(a, b), {y}
)}

.

This meaning is the following;

{

{a2x− by2 + ay,−b2y5 + 2bay4 − a2y3 − a3y}, if a 6= 0, b 6= 0,
{y}, if a = b = 0.

In the comprehensive Gröbner system G1, the parameter spaces Q2 \V(a, b) and V(a, b)
are disjoint, i.e., (Q2 \V(a, b))∩V(a, b) = ∅. The following set G2 is also a comprehensive
Gröbner system for 〈F 〉 with respect to �;

G2 =

{ (

Q2 \V(ab), {−b2y5 + 2aby4 − a2y3 − a3y, a2x− by2 + ay}
)

,
(

V(b)\V(a), {−y2x+ y, ax+ y, y3 + ay}
)

,
(

V(a), {y}
)

}

.

We can understand the set as follows.






{−b2y5 + 2aby4 − a2y3 − a3y, a2x− by2 + ay}, if ab 6= 0,
{−y2x+ y, ax+ y, y3 + ay} if b = 0, a 6= 0,
{y}, if a = 0.

In the comprehensive Gröbner system G2, the parameter spaces are not disjoint, however
G2 is a comprehensive Gröbner systems, too. Actually, we have

Q2 =
(

Q2 \V(ab)
)

∪
(

V(b)\V(a)
)

∪
(

V(a)
)

.

Weispfenning introduced an algorithm for computing comprehensive Gröbner systems
in [Wei92]. The idea of the algorithm is very natural and simple. For instance, let
F = {f1 = (a− 1)x+ y2, f2 = ay+ a} ⊂ Q[a][x, y], x, y variables, a parameter and � the
lexicographic order such that x � y. The idea is the following; if the leading coefficient

of a polynomial f ∈ K[Ā][X̄ ] vanishes under the specialization σb̄ where b̄ ∈ C|Ā|, then
lppĀ(f) 6= lpp(σb̄(f)). Therefore, we need the case distinctions, i.e., we need to compute
the case Ā = b̄ and the case Ā 6= b̄. That is, we have to compute the S-polynomials in
both cases.
In the example, first we need to consider the cases a = 0 and a 6= 0. If a = 0, then we have
σa=0(F ) = {−x + y2} which is always the Gröbner basis of σa=0(F ). If a 6= 0, we need
again a case distinction “case a = 1” and “case a 6= 1”. When a = 1,then σa=1(f1) = y2

and σa=1(f2) = y+ 1. In this case, {1} is the Gröbner basis for 〈σa=1(F )〉 = 〈1〉. Finally,
we need to consider the case a 6= 0, 1. In this case, by the first Buchberger’s criterion, F
is a Gröbner basis. Therefore, a comprehensive Gröbner system for 〈F 〉 with respect to
� is

{

(Q \{0, 1}, F ), (V(a− 1), {1}), (V(a), {−x+ y2})
}

.
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In general, in this example, the case (Q \{0, 1}, F ) is called “generic” case. The other
cases are called “singular” cases. See Figure 4.1.

Input: F = {(a− 1)x+ y2, ay + a}

�
�

�
�(a− 1)x+ y2, ay + a{−x+ y2}

{1} {(a− 1)x+ y2, ay + a}

Figure 4.1

�
�

�
�

��+

a = 1, (a 6= 0)

�
�

�
�	

a = 0
Z

Z
Z

Z
Z~

a 6= 0

Z
Z

Z
ZZ~

a 6= 1, (a 6= 0)

4.2.2 Comprehensive Gröbner bases

Here, we give a definition of comprehensive Gröbner bases and their examples. The ex-
istence of comprehensive Gröbner basis was shown in Weispfenning [Wei92]; the paper
provided moreover a construction of a comprehensive Gröbner basis from a set of para-
metric polynomials and term order on pp(X̄). Actually, the construction of comprehensive
Gröbner bases is basically computing comprehensive Gröbner systems. First we give the
definition as follows.

Definition 4.2.3 (Comprehensive Gröbner bases). Let F and G be sets of polyno-
mials in K[Ā][X̄ ]. G ⊂ 〈F 〉 is called a comprehensive Gröbner basis for 〈F 〉 if σā(G)
is a Gröbner basis for 〈σā(F )〉 for each ā ∈ Lm.

We already saw comprehensive Gröbner systems in previous section which has conditions
of parameters (parameter spaces). However, comprehensive Gröbner bases do not have
any condition of parameters. A comprehensive Gröbner basis is a set of polynomials.
In this point, comprehensive Gröbner bases are different from comprehensive Gröbner
systems. We give an example of comprehensive Gröbner bases.

Example 4.2.4. Let F = {ax2y+ y, bx2y2 + ax+ y} ⊂ Q[a, b][x, y], a, b parameters, x, y
variables and � the lexicographic order such that x � y. Then, a comprehensive Gröbner
basis for 〈F 〉 with respect to � is

G =
{

bxy3 − axy2 + ay, a2x− by2 + ay,−b2y5 + 2aby4 − a2y3 − a3y,−bx3y3 − xy2 + y,

bx2y2 + ax+ y, bx2y4 + bxy3 + y3 + ay, ax2y + y
}

.

Even if we substitute arbitrary values for the parameter a, b of the set G, the set {σ(G)}
is always a Gröbner basis for 〈σ(F )〉 with respect to �.

Weispfenning introduced an algorithm for computing comprehensive Gröbner bases in
[Wei92]. The idea of the algorithm is the same as the algorithm for computing compre-
hensive Gröbner systems. However, in order to construct comprehensive Gröbner bases
we need the following concept.
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Definition 4.2.5. Let F be a subset of K[Ā][X̄ ], A1, . . . ,Al algebraically constructible
subsets of Lm and G1, . . . , Gl subsets ofK[Ā][X̄ ]. A finite set G = {(A1, G1), . . . , (Al, Gl)}
of pairs is called faithful for 〈F 〉 if Gi ⊂ 〈F 〉 for each i = 1, . . . , l.

If we have a faithful comprehensive Gröbner system {(A1, G1), . . . , (Al, Gl)} for 〈F 〉
where the notations are from Definition 4.2.5, then by the definition of comprehensive
Gröbner bases, G1 ∪ · · · ∪ Gl is a comprehensive Gröbner basis for 〈F 〉. The idea of
Weispfenning’s algorithm for computing comprehensive Gröbner bases is almost same as
the algorithm for computing comprehensive Gröbner systems.

Let us consider the same example of section 4.2.1. We have F = {f1 = (a−1)x+y2, f2 =
ay + a} in Q[a][x, y] and � the lexicographic order such that x � y. First we have to
compute the S-polynomial of the pair (f1, f2). As we said in section 4.2.1., we need case
distinctions. If a = 0, then lm{a}(f1) = (a − 1)x and lm{a}(f2) = 0. Hence, in this case,

F is a Gröbner basis. Next, if a = 1, then lm{a}(f1) = y2 and lm{a}(f2) = ay. Therefore,

Spoly1(f1, f2) = af1 − yf2

= a(a− 1)x+ ay2 − ay2 − ay

= a(a− 1)x− ay
r1
−→ay+a a(a− 1)x− a = f3

Note that we need the tail of f1 “(a − 1)x”, because we need to compute a faithful
comprehensive Gröbner systems. In this point, this computation method is different, and
more complicated than the method of computing comprehensive Gröbner systems.

We have to continue the computation, and we need to compute the S-polynomials of
pairs (f1, f3) and (f2, f3). However, we have lm{a}(f3) = a 6= 0. Therefore, {f1, f2, f3} is
a Gröbner basis for 〈F 〉, because a is in the coefficient domain Q[a, b]. (If we substitute
an arbitrary non-zero value for the parameter a, then this Gröbner basis is {1}.) Finally,
we have to consider the case a 6= 0, 1. In this case, by Buchberger’s first criterion, F is a
Gröbner basis for 〈F 〉 with respect to �. Therefore, a comprehensive Gröbner basis for
〈F 〉 with respect to � is the following;

F ∪ {f3}.

See Figure 4.2, and compare Figure 4.1 and Figure 4.2.

Input: F = {(a− 1)x+ y2, ay + a}

�
�

�
�(a− 1)x+ y2, ay + a{(a− 1)x+ y2, ay + a}

{(a− 1)x+ y2, ay + a, a(a− 1)x+ a} {(a− 1)x+ y2, ay + a}

Figure 4.2
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a 6= 1, (a 6= 0)
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4.3 Stability of ideals

Here, we describe the stability of ideals under specialization in K[Ā][X̄ ]. Mainly, we
introduce Kalkbrener’s theory [Kal97].

As we said previous section, every ring homomorphism σ : K[Ā] → L extends naturally
to a homomorphism σ : K[Ā][X̄ ] → L[X̄]. The image under σ of an ideal I ⊆ K[Ā][X̄ ]
generates the extension σ(I) := {σ(f) : f ∈ I} ⊆ L[X̄ ].

Definition 4.3.1. We call an ideal I ⊆ K[Ā][X̄ ] stable under the ring homomorphism
σ and a term order � if it satisfies

σ(lmĀ(I)) = lm(σ(I))

where σ(lmĀ(I)) := {σ(lmĀ(f)) : f ∈ I} and lm(σ(I)) := {lm(f) : f ∈ σ(I)}.

In several papers [Bec94, Gia87, Kal97, EGT01, Sat05], the stability of ideals under
specialization was studied. The following theorem is the key theorem for constructing the
Suzuki-Sato algorithm (also our new algorithm) for computing comprehensive Gröbner
systems and comprehensive Gröbner bases.

Theorem 4.3.2 (Kalkbrener (1997) [Kal97]). Let π be a ring homomorphism from
K[Ā] to L, I an ideal in K[Ā][X̄ ] and G = {g1, . . . , gs} a Gröbner basis of I with respect to
a term order �. We assume that the gi’s are ordered in such a way that there exists an r ∈
{1, . . . , s} with π(lcĀ(gi)) 6= 0 for i ∈ {1, . . . , r} and π(lcĀ(gi)) = 0 for i ∈ {r + 1, . . . , s}.
Then the following three conditions are equivalent.

1. I is stable under σ and �.
2. {π(g1), . . . , π(gr)} is a Gröbner basis of σ(I) with respect to the term order �.
3. For every i ∈ {r + 1, . . . , s}, π(gi) is reducible to 0 modulo {π(g1), . . . , π(gr)} in
L[X̄ ].

Proof. We know that {π(g1), . . . , π(gq)} is a Gröbner basis of π(I) in K[X̄] if and only if

{π(lm(g))|g ∈ G} = lm(π(I)).

Since
{π(lm(g))|g ∈ G} = π(lm(I))

1. and 2. are equivalent.
If {π(g1), . . . , π(gq)} is a Gröbner basis for π(I) then the condition (3) holds. It remains
to show that 3. implies 1..
Since {g1, . . . , gs} is a Gröbner basis of I, we can write

lm(I) = 〈lm(g1), . . . , lm(gs)〉.

We prove
π(lm(I)) = lm(π(I)).

Before we prove this equality, we prove the following claim.

Claim 1 Let f ∈ I with π(f) 6= 0. Then, there exists g ∈ I such that lppĀ(g) divides
lpp(π(f)) and π(lcĀ(g)) 6= 0.
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Proof of Claim 1. This proof is the same as “Kalkbrener [Kal97] Theorem 3.1”.
We prove by induction on a monomial order �.
[Induction basis:] If lpp(f) = 1, then π(lc(f)) 6= 0 and lpp(f) = lpp(π(f)). Hence, the
claim holds.
[Induction step:] Since the claim holds if π(lc(f)) 6= 0, we assume that π(lc(f)) = 0. If
there exists an i ∈ {1, . . . , r} such that lpp(gi) divides lpp(f), then we set

f ′ = lc(gi) · f − lc(f) ·
lpp(f)

lpp(gi)
· gi.

Obviously, lpp(π(f ′)) = lpp(π(f)) and lpp(f) � lpp(f ′), because of π(lc(f)) = 0. Thus,
the claim follows from the induction hypothesis.
Otherwise, there exist j1, . . . , jk ∈ {q + 1, . . . , s} and cj1 , . . . , cjk

∈ R such that lpp(gjl
)

divides lpp(f) for l ∈ {1, . . . , k} and

lm(f) =

k
∑

l=1

cjl
·

lpp(f)

lpp(gjl
)
· lm(gjl

).

Let i ∈ {r+ 1, . . . , s}. Since π(gi) is reducible to 0 module {π(g1), . . . , π(gr)} there exists
an hi ∈ I and bi ∈ R\ ker(π) with π(bi) ·π(gi) = π(hi) and lpp(fi) � lpp(π(gi)) = lpp(hi).
Set

f ′ := b · f −
k
∑

l=1

b

bjl

· cjl
·

lpp(f)

lpp(gjl
)
· (bjl

· gjl
− hjl

),

where b := Πk
l=1bjl

. Obviously, lpp(π(f ′)) = lpp(π(f)) and lpp(f) � lpp(f ′). The claim
follows from the induction hypothesis.

We prove π(lm(I)) = lm(π(I)).
(⊆) Take an element f ∈ π(lm(I)), then there exists h ∈ I such that f = lm(π(h)). By
the claim 1, there exists g ∈ I such that lpp(g) divides lpp(f) and π(lc(g)) 6= 0. Hence,

lpp(f) = d1 lpp(g), (d1 ∈ K[X̄])

lm(f) = lc(f) · d1 · lpp(g), (× lc(f))

lc(g) · lm(f) = lc(f) · d1 · lm(g), (× lc(g))

π(lc(g)) · π(lm(f)) = π(lc(f)) · π(d1) · π(lm(g)). (π : homo.)

Since f = lm(π(h)), obviously π(lm(f)) = f . Therefore, we have

f =
π(lc(f))

π(lc(g))
· π(d1) · lm(π(g)). (π(lc(g)) 6= 0)

Since lm(π(g)) ∈ lm(π(I)), f ∈ lm(π(I)). Therefore, π(lm(I)) ⊆ lm(π(I)).

(⊇) Take an element f ∈ lm(π(I)). Then there exists p ∈ I such that f = lm(π(p)).By
the claim 1, there exists g ∈ I such that lpp(g) divides f and π(lc(g)) 6= 0. Thus,

lpp(f) = d lpp(g), (d ∈ K[X̄])

lm(f) = lc(f) · d · lpp(g), (× lc(f))

lc(g) · lm(f) = lc(f) · d · lm(g), (× lc(g))

π(lc(g)) · π(lm(f)) = π(lc(f)) · π(d) · π(lm(g)). (π : homo.).
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Since f = lm(π(p)), obviously π(lm(f)) = f . Therefore, we have

f =
π(lc(f))

π(lc(g))
· π(d) · π(lm(g)).

Since π(lm(g)) ∈ π(lm(I)), pi ∈ π(lm(I)). Therefore, π(lm(I)) ⊇ lm(π(I)).

4.4 Suzuki-Sato’s algorithm
In this section we describe Suzuki-Sato’s algorithm [SS06] for computing comprehensive
Gröbner bases and comprehensive Gröbner systems. In general, the algorithms are faster
than other existing algorithms. The algorithms are based on Kalkbrener’s theory stability
of ideals.
In this thesis, we assume the algorithm LCM. The algorithm LCM(h1, . . . , hl) outputs the
least common multiple of h1, . . . , hl in K[Ā] where h1, . . . , hl ∈ K[Ā].

4.4.1 Comprehensive Gröbner systems

Here, we introduce the Suzuki-Sato algorithm [SS06] for computing comprehensive
Gröbner systems.

The next two lemmas are the direct consequences of Theorem 4.3.2.

Lemma 4.4.1. Let F be a subset of K[Ā][X̄ ]. Let G be a Gröbner basis for 〈F 〉 in
K[Ā][X̄ ] with respect to a term order �. Suppose that {h1, . . . , hs} := {lcĀ(g) : g ∈ G}
and h := LCM(h1, . . . , hs).
Then, for any ā ∈ Lm\V(h), σā(G) is a Gröbner basis for 〈σā(F )〉 with respect to �1 in
L[X̄ ].

Proof. By Theorem 4.3.2 (3), this lemma holds.

Lemma 4.4.2. Let F be a subset of K[Ā][X̄ ] and S a subset of K[Ā]. Let G be a
Gröbner basis for 〈F ∪ S〉 in K[Ā][X̄ ] with respect to a term order �. Suppose that
B := {b : b ∈ 〈S〉, b ∈ G}, {h1, . . . , hs} := {lcĀ(g) : g ∈ G\B} and h := LCM(h1, . . . , hs).
Then, for any ā ∈ V(S)\V(h), σā(G) is a Gröbner basis for 〈σā(F )〉 with respect to � in
L[X̄ ]. Actually, we have σā(G) = σā(G\B).

Proof. If we take g ∈ G\B, then for all ā ∈ V(S)\V(h) we have σā(lcĀ(g)) 6= 0. If we
take g ∈ G ∩ B, then we have σā(g) = 0 and σā(lcĀ(g)) = 0. Of course, 〈0〉 is stable.
Therefore, G is stable under the specialization σā. By Theorem 4.3.2, σā(G) = σā(G\B)
is a Gröbner basis for 〈σā(F )〉.

By Lemma 4.4.1 and Lemma 4.4.2, we can construct an algorithm for computing com-
prehensive Gröbner systems which is from [SS06].

Algorithm 4.4.3. Suzuki-Sato(F,�) [SS06]

Input F : a finite subset of K[Ā][X̄ ],
�: a term order on pp(X̄),

Output G: a comprehensive Gröbner system for 〈F 〉 with respect to � on Lm.
begin

G← CGSMain(F, ∅,�)
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return(G)
end

Algorithm 4.4.4. CGSMain(F,Z,�)

Input F : a finite subset of K[Ā][X̄ ],
Z: a finite set of polynomials in K[Ā],
�: a term order on pp(X̄),

Output H: a comprehensive Gröbner system for 〈F 〉 on V(Z).
begin

G← GröbnerBasisB(F ∪ Z,�)
if 1 ∈ G then

H ← {(Z, {1}, {1})}
else

G′ ← G\{g : g ∈ G ∩K[Ā], g ∈ 〈Z〉}
S ← {h1, .., hl} := {lcĀ(f) : f ∈ G′} (∗∗)
if S 6= ∅ then
h← LCM(h1, . . . , hl)
H ← {(Z, {h}, G′)} ∪ CGSMain(G,Z ∪ {h1},�) ∪ · · ·

· · · ∪ CGSMain(G,Z ∪ {hl},�)
else
H ← {(Z, {1}, G′)}

end-if
end-if
return(H)
end

Remark : We are able to apply a lot of optimization techniques to obtain small and
nice outputs comprehensive Gröbner systems. For instance in (∗∗), we can factorize
all elements of S into irreducible factors, and compute a radical ideal of 〈Z〉 for get-
ting small and nice outputs. Many researchers of parametric Gröbner bases have stud-
ied the optimization techniques to get small and nice outputs comprehensive Gröbner
systems (and bases) [BW93, Kre92, Mon02, MM06, Nab05a, SSN03a, SS03, SSN03b,
Wei02b, Wei03]. In the algorithms Suzuki-Sato and CGSMain, we can use these tech-
niques for computing comprehensive Gröbner systems. Note that conditions of seg-
ments (of a comprehensive Gröbner system) produced by the algorithm CGSM may not
be disjoint, i.e. (V(Z)\V(h)) ∩ (V(Z ′)\V(h′)) could be non-empty for distinct elements
(Z, h,G), (Z ′ , h′, G′) ∈ H. Though this fact looks a serious disadvantage, it enables us to
avoid producing unnecessary inequations (which is h in the algorithm CGSMain). In the
algorithm we do not even check if (V(Z)\V(h)) = ∅. Of course, we can check it after the
algorithm terminates and omit it from the segments in case it is empty. We can also make
the constructible sets of segments pairwise disjoints [SS06].
Since a leading coefficient of each polynomial of a segment does not vanish by the special-
ization, we can apply reductions of K(Ā)[X̄ ] where K(Ā) is the field of rational functions.
This is also one of optimization techniques.
In the algorithms Suzuki-Sato and CGSMain, we applied the algorithm GröbnerBasisB for
computing Gröbner bases in K[Ā][X̄ ]. The Gröbner bases computed with respect to a
block order with X̄ � Ā in K[Ā, X̄ ] are not always reduced Gröbner bases in K[Ā][X̄ ].
As we saw in chapter 3, there sometimes exist some unnecessary polynomials in the out-
puts. Therefore, we can also apply the technique of reduced Gröbner bases in K[Ā][X̄ ]
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for getting nice comprehensive Gröbner systems.

Theorem 4.4.5 ([SS06]). The algorithm NEW terminates for any input F of a finite
subset of K[Ā][X̄ ]. The output forms a comprehensive Gröbner system for 〈F 〉 on Lm.

Proof. Since we need the same proof in chapter 5,8 and 9, we introduce a proof of [SS06].
First, we show the termination. We suppose that CGSMain does not terminate, then there
exists an infinite sequence F0, F1, . . . which are from the first line of CGSMain. Notice
that 〈Fn+1〉 = 〈Fn ∪ {hn}〉 for some hn ∈ K[Ā] such that hn /∈ 〈Fn〉. Hence, we have
〈Fn〉 ( 〈Fn〉 for each n, which contradicts to the fact K[Ā, X̄ ] is a Noetherian ring, and
the algorithm GröbnerBasisB outputs a reduced Gröbner basis in K[Ā, X̄]. This algorithm
terminates.
We next show that, if (Z, h,G) ∈ H, then the triple (Z, h,G) forms a segment of a
comprehensive Gröbner system for 〈F 〉, i.e., σā(G) is a Gröbner basis of 〈σā(F )〉 for each
ā ∈ V(Z)\V(h).
Let G be a Gröbner basis of the ideal 〈F ′〉 with respect to � in K[Ā][X̄ ], B := {g|g ∈
G ∩K[Ā], g ∈ 〈Z〉} and {h1, . . . , hl} := {lcĀ(f)|g ∈ G\B} and h = lcm(h1, . . . , hl). Then
by Lemma 4.4.2, σā(G) is a Gröbner basis of 〈σā(F ′)〉 for ā ∈ V(Z)\V(h). Therefore,
for ā ∈ V(Z)\V(h), σā(G\B) = σā(G) and σā(F ′) = σā(F ). This means that σā(G) is a
Gröbner basis of 〈σā(F )〉.
We have to finally prove that the conditions in H covers the entire Lm, i.e.,

Lm =
⋃

(P,q,G)∈H

V(P )\V(q).

The following equation always holds.

V(Z) = (V(Z)\V(h′)) ∪
l
⋃

i=1

V(Z ∪ h′i).

The equation above follows by the induction on the well-founded tree of the algorithm.

The algorithm has been implemented in the computer algebra system Risa/Asir. In the
following example, we see an output of the program.

Example 4.4.6. Let F = {ax2y2 + x2 + 2, x3 + bxy2 + 2} be a set of polynomials in
Q[a, b][x, y], a, b parameters, x, y variables and � the graded reverse lexicographic order
such that x � y. Then, the program outputs the following as a comprehensive Gröbner
system for 〈F 〉 with respect to �.

[b]==0, [a]!=0,

[x^3+2,x-a*y^2-1]

[b,a]==0, [1]!=0,

[1]

[a]==0, [b]!=0,

[x^2+2,x-b*y^2+2]

[0]==0, [a*b]!=0,

[-x^2+(a*y^2+1)*x-b*y^2,a*x^3+b*x^2-b*x+b^2*y^2+2*a,-b*x^2-2*a*x+b^2*a*y^4

+2*a^2*y^2+2*a-2*b]
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This meaning is the following;























{x3 + 2, x− ay2 − 1}, if b = 0, a 6= 0,
{1}, if a = b = 0,
{x2 + 2, x− by2 + 2}, if a = 0, b 6= 0,
{−x2 + axy2 + x− by2, ax3 + bx2 − bx+ b2y2 + 2a, if ab 6= 0.
−bx2 − 2ax+ b2ay4 + 2a2y2 + 2a− 2b}

4.4.2 Comprehensive Gröbner bases

Here we introduce the Suzuki-Sato algorithm for computing comprehensive Gröbner bases.
We already saw comprehensive Gröbner systems which have parameter spaces (condi-
tions of parameters). However, comprehensive Gröbner bases do not have any parameter
space. A comprehensive Gröbner basis is a set of polynomials. In order to construct an
algorithm for computing comprehensive Gröbner bases, we need the concept “faithful”
Definition 4.2.5.

Actually, we describe an algorithm for computing faithful comprehensive Gröbner sys-
tems. If {(V(s1)\V(t1), G1), . . . , (V(sl)\V(tl), Gl)} is a faithful comprehensive Gröbner
system for 〈F 〉, then by the definition of comprehensive Gröbner basis, G1 ∪ · · · ∪ Gl is
a comprehensive Gröbner basis for 〈F 〉. Therefore, we modify the algorithm CGSMain to
compute a faithful comprehensive Gröbner system. The key idea which is from [SS06], is
to apply a new variable U .
In [SS06], they introduced a new auxiliary variable U besides X̄ and Ā in order to com-
pute comprehensive Gröbner bases.

We define homomorphisms σ0 and σ1 from K[Ā][U, X̄ ] to K[Ā][X̄ ] as a specialization
of U with 0 and 1 respectively, i.e. σ0(f(U, Ā, X̄)) = f(0, Ā, X̄) and σ1(f(U, Ā, X̄)) =
f(1, Ā, X̄).
Before we introduce the algorithm for computing comprehensive Gröbner bases, we need
the following lemma which is also from [SS06].

Lemma 4.4.7 ([SS06]). Let F and S be subsets of K[Ā][X̄ ]. For any g ∈ 〈(U · F ) ∪
(U − 1) · S)〉 ⊆ K[Ā][U, X̄ ], then σ0(g) ∈ 〈S〉 ⊆ K[Ā][X̄ ] and σ1(g) ∈ 〈F 〉 ⊆ K[Ā][X̄ ].

Proof. See [SS06].

Theorem 4.4.8. Let F be a subset of K[Ā][X̄ ], S a subset of K[Ā], and � a term order
on pp(X̄). Moreover, let G be a Gröbner basis of 〈(U · F ) ∪ (U − 1) · S)〉 in K[Ā][U, X̄ ]
with respect to a block order �′:= (�U ,�) on pp(U, X̄) such that U � X̄ where �U

is a term order on pp(U). Suppose that B1 := {g|g ∈ G ∩ K[Ā][U ], lcĀ(g) ∈ 〈S〉},
B2 := {g|g ∈ G,degU (lppA(g)) = 0}, G′ := {g|g ∈ G\(B1 ∪ B2)} and {h1, . . . , hl} :=
{lcĀ(g)| lcĀ(g) /∈ K, g ∈ G′} ⊆ K[Ā].
Then for each ā ∈ V(S)\V(h), σā(σ1(G)) is a Gröbner basis of 〈σā(F )〉 in L[X̄] with
respect to � where h = lcm(h1, . . . , hl). Actually, we have σā(σ1(G)) = σā(σ1(G′)).

Proof. Note that any polynomial of G′ has a linear form of U , i.e., the degree of U is
at most 1. It is clearly that σ1(G) is a basis of 〈F 〉 by Lemma 4.4.7. We prove that
σā(σ1(G)) is a Gröbner basis of 〈σā(F )〉. For ā ∈ V(S)\V(h), we have σā(lcĀ(g)) 6= 0 for
each g ∈ G′.
By the sets G′, B1 and B2, we have G = G′ ∪ B1 ∪ B2. For each f ∈ B1, f can be
written as f = U · f1 + f2 where f1, f2 ∈ K[Ā]. By Lemma 4.4.7, σ0(f) = f2 ∈ 〈S〉,
thus σā(f2) = 0. By the definition of B1, lcĀ(f) = f1 ∈ 〈S〉, thus σā(f1) = 0. Hence,
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σā(f) = 0.
For each q ∈ B2, by Lemma 4.4.7, σ0(q) = q ∈ 〈S〉. Thus σā(q) = 0. Even if we change
a term order � to a block order �′ with U � X̄ in Lemma 4.4.2, the properties of
Lemma 4.4.2 hold. Therefore, σā(G) = σā(G\(B1 ∪B2)) = σā(G′) is a Gröbner basis for
〈σā(U · F ∪ (U − 1) · S)〉 with respect to the �′ in L[U, X̄ ].
For g ∈ G′, g can be written as g = U · g1 + g2 where g1, g2 ∈ K[Ā][X̄ ]. By Lemma 4.4.7,
we have σ0(g) = g2 ∈ 〈S〉, thus σā(g2) = 0. Namely, we have σā(g) = σā(U · g1). Since
every power product of σā(G′) has a variable U whose degree is 1 and U � X̄ , σ1(σā(G′))
is a Gröbner basis of 〈σ1(σā(U ·F )∪ (U − 1) ·S〉 = 〈σ1(σā(U ·F ))〉 = 〈σā(F )〉. Therefore,
it follows that σā(σ1(G)) is a Gröbner basis for 〈σā(F )〉 in L[X̄].

By Theorem 4.4.8, we can have an algorithm for computing faithful comprehensive
Gröbner systems as follows.

Algorithm 4.4.9. FCGS(F,�) (Faithful Comprehensive Gröbner Systems) [SS06]

Input F : a subset of K[Ā][X̄ ],
�: a term order on pp(X̄),

Output G: a faithful comprehensive Gröbner system on Lm for 〈F 〉 with respect to �.
begin

H ← GröbnerBasisB(F )
if 1 ∈ H then

G← {(∅, {1},H)}
end-if

S ← {h1, . . . , hl} := {q|q ∈ factorize(lcĀ(g)), lcĀ(g) /∈ K, g ∈ H}
if S 6= ∅ then

h← lcm(h1, . . . , hl)
G← {(∅, h,H)} ∪ CGBMain(H, {h1},�)∪

· · · ∪ CGBMain(H, {hl},�)
else

G← {(∅, {1},H)}
end-if
return(G)
end

Algorithm 4.4.10. CGBMain(F,Z,�)

Input F : a subset of K[Ā][X̄ ],
Z: a finite set of polynomials in K[Ā],
�: a term order on pp(U, X̄) such that U � X̄,

Output G: a finite set of triples which forms a faithful comprehensive Gröbner system
on V(Z) for 〈F 〉.
begin

H ←GröbnerBasisB(U · F ∪ ((U − 1) · Z,�))
C ← the reduced Gröbner basis for 〈Z〉 in K[Ā]

if 1 ∈ C then
G← ∅

end-if
B1 ← {g|g ∈ H ∩K[Ā][U ], lcĀ(g) ∈ 〈Z〉}
B2 ← {g|g ∈ H,degU (lppA(g)) = 0}
H ′ ← H\(B1 ∪B2)
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L← {h1, . . . , hl} := {q|q ∈ factorize(lcĀ(g))\K, g ∈ H ′}
if L 6= ∅ then

h← lcm(h1, . . . , hl)
G←

{

(Z, h, σ1(H ′))
}

∪ CGSMain(F,Z ∪ {h1},�)∪
· · · ∪ CGSMain(F,Z ∪ {hl},�)

else
G←

{

(Z, {1}, σ1(H ′)
}

end-if
return(G)
end

Remark : Like the remark of Algorithm 4.4.3, we are able to apply a lot of optimization
techniques for getting small and nice outputs. See the remark.

Theorem 4.4.11 ([SS06]). Let F be a finite set of polynomials in K[Ā][X̄ ]. Then,
the algorithm FCGSM(F,�) terminates. The output of FCGS is a faithful comprehensive
Gröbner system on Lm for 〈F 〉.

Proof. In order to show the termination of the algorithm, it suffices to show that each hi is
not in the ideal 〈Z〉 for each i = 1, . . . , l because this algorithm is almost same as algorithm
CGS (see Theorem 4.4.3) (and we have σā(B1) = σā(B2) = 0 where ā ∈ V(Z)\V(h)). All
notations of this proof is from the algorithm FCGS.
By the construction of hj , there exists g ∈ H (which is from GröbnerBasisB(UF ∪ (U −
1)Z,�))) such that hi ∈ factorize lcĀ(g), lppĀ(g) /∈ pp(X̄). Therefore g can be written as

g = hipUT + g1,

where T ∈ pp(X̄), p ∈ pp(Ā), lppĀ(g) = U · T and g1 ∈ K[Ā][U, X̄ ]. If hi ∈ 〈Z〉, then
hi · (U − 1) ∈ 〈G〉. Hence, lmĀ(hi · (U − 1)) = lmĀ(hi · U) must be reduced by G. In the
algorithm GröbnerBasisB, we compute the reduced Gröbner basis for 〈U · F ∪ (U − 1) ·Z〉
in K[Ā, U, X̄ ] with respect to a block order with U � X̄ � Ā. Since G is the reduced
Gröbner basis in K[Ā, U, X̄ ], this is the contradiction. Therefore, hi is not in the ideal
〈Z〉.
It is an easy consequence of Theorem 4.4.8 and Lemma 4.4.7 that the output of FCGSM
is a faithful comprehensive Gröbner system on Lm for 〈F 〉.

Now, it is clear that the following algorithm outputs a comprehensive Gröbner bases
for 〈F 〉.

Algorithm 4.4.12. CGB(F,�) [SS06]

Input F : a subset of K[Ā][X̄ ],
�: a term order on pp(X̄),

Output G: a comprehensive Gröbner basis on Lm for 〈F 〉 with respect to �.
begin
G← ∅
H ← FCGS(F,�)
while H 6= ∅ do

Select a triple (D,Z1, Z2) from H
H ← H\{(D,Z1, Z2))}
G← G ∪ {D}

end-while
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return(D)
end

The algorithms FCGS and CGB have been implemented in the computer algebra system
Risa/Asir by the author.

Example 4.4.13. Let F = {ax2y2 + x2 + 2, x3 + bxy2 + 2} be a set of polynomials in
Q[a, b][x, y], a, b parameters, x, y variables and � the graded reverse lexicographic order
such that x � y. We saw a comprehensive Gröbner system for 〈F 〉 in Example 4.4.6.
Now, we consider a faithful comprehensive Gröbner system and comprehensive Gröbner
basis. First, we consider a faithful comprehensive Gröbner system. Our program outputs
the following as a faithful comprehensive Gröbner system for 〈F 〉 with respect to �.

[b]==0, [a]!=0,

[-b*y^2*x^2+2*x-b^2*y^4-2*a*y^2-2,x^3+b*y^2*x+2]

[b,a]==0, [1]!=0,

[(-2*a-b)*y^2*x^2-2*a*y^2*x-b^2*y^4+(-2*a+2*b)*y^2-6]

[a]==0, [b]!=0,

[a*y^2*x^2+(a*y^2+1)*x-b*y^2+2,(a*y^2+1)*x^2+2]

[0]==0, [a,b]!=0,

[x^3+b*y^2*x+2,-b*x^2-2*a*x+b^2*a*y^4+2*a^2*y^2+2*a-2*b,-b*y^2*x^2+2*x-b^2

*y^4-2*a*y^2-2,-x^2+(a*y^2+1)*x-b*y^2]

This meaning is the following;






















{−by2x2 + 2x− b2y4 − 2ay2 − 2, x3 + by2x+ 2}, if b = 0, a 6= 0,
{(−2a− b)y2x2 − 2ay2x− b2y4 + (−2a+ 2b)y2 − 6}, if a = b = 0,
{ay2x2 + (ay2 + 1)x− by2 + 2, (ay2 + 1)x2 + 2}, if a = 0, b 6= 0,
{x3 + by2x+ 2,−bx2 − 2ax+ b2ay4 + 2a2y2 + 2a− 2b if ab 6= 0.
−by2x2 + 2x− b2y4 − 2ay2 − 2,−x2 + (ay2 + 1)x− by2}

If one compares the output with Example 4.4.6, then one can easily understand that this
output has a lot of unnecessary monomials for a comprehensive Gröbner system. However,
when we compute a comprehensive Gröbner basis, we need these monomials.

Next, we consider a comprehensive Gröbner basis for 〈F 〉 with respect to �. The
program outputs the following as a comprehensive Gröbner basis G:

[-b*x^2-2*a*x+b^2*a*y^4+2*a^2*y^2+2*a-2*b, -x^2+(a*y^2+1)*x-b*y^2,(a*y^2+1

)*x^2+2,a*y^2*x^2+(a*y^2+1)*x-b*y^2+2, (-2*a-b)*y^2*x^2-2*a*y^2*x-b^2*y^4+

(-2*a+2*b)*y^2-6, -b*y^2*x^2+2*x-b^2*y^4-2*a*y^2-2, x^3+b*y^2*x+2].

Note that if we substitute any values for parameters a, b of G then the set G computed is
always a Gröbner basis for 〈σ(F )〉 with respect to �. However, the set G is not always
the reduced Gröbner basis for 〈σ(F )〉 with respect to �.

4.5 Software

Here we introduce the software for computing comprehensive Gröbner bases and compre-
hensive Gröbner systems.
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4.5.1 REDUCE package REDLOG

REDLOG is a package of the computer algebra system REDUCE*1. The Weispfenning algo-
rithm [Wei92] for computing comprehensive Gröbner bases have been implemented within
the framework of the REDUCE package REDLOG [DSS06]. REDLOG has the commands
for computing comprehensive Gröbner bases and comprehensive Gröbner systems. In the
following websites, one can see the manual and some examples.

http://www.fmi.uni-passau.de/~redlog/

http://www.fmi.uni-passau.de/~reduce/cgb/

The command gsys computes a faithful comprehensive Gröbner system. The command
cgb computes a comprehensive Gröbner basis. In the following example, we give examples
how the commands works. Let {ax2y + bx + y, bx + y2} be a subset of Q[a, b][x, y], x, y
variables and a, b parameters. We have the lexicographic order � such that x � y. Then,
the program works as follows.

REDUCE 3.8, 15-Apr-2004, patched to 22-Feb-2006 ...

1: load(cgb);

2: torder({x,y},lex)$

3: gsys {a*x^2*y+b*x*y,b*x+y^2};

{{a <> 0 and b <> 0,

2

{a*x *y + b*x*y,

2

b*x + y ,

5 2 3

a*y - b *y }},

{a <> 0 and b = 0,

2 2

{a*x *y + b*x*y,b*x + y }},

{b <> 0 and a = 0,

2

{a*x *y + b*x*y,

2 3

a*x *y - y ,

2

b*x + y }},

2

{a = 0 and b = 0,{b*x + y }}}

4: cgb{a*x^2*y+b*x*y,b*x+y^2};

*1 http://www.reduce-algebra.com/index.htm
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2

{a*x *y + b*x*y,

2 3

a*x *y - y ,

2

b*x + y ,

5 2 3

a*y - b *y }

4.5.2 Montes’ programs in Maple

The Montes algorithm [Mon02, MM06] has been implemented in the computer algebra
system Maple*2 by Montes. One can get the program from the following website.

http://www-ma2.upc.edu/~montes/

In the following example, we give examples how the program works. Let {ax2y + bx +
y, bx + y2} be a subset of Q[a, b][x, y], x, y variables and a, b parameters. We have the
lexicographic order � such that x � y (and a > b). Then, the program works as follows.

> with(dpgb):

> S:=[a*x^2*y+b*x*y,b*x+y^2];

S := [ax2y + bxy, bx+ y2]

Xord:=plex(x,y); Pord:=plex(a,b);

Xord := plex(x, y)
Pord := plex(a, b)

> T0:=dispgb(S,Xord,Pord,rebuild=0):

The output of the command dispgb has a lot of information. There exist two routines to
obtain the fundamental information: “tplot” (to have a visual description of the discussion
tree) and “finalcases” (to obtain the algebraic content of the tree.

> finalcases(T0);

[[[1, 1], [a y5 − b2 y3, b x+ y2], [], {a, b}, [y5, x]], [[1, 0], [y2, y x2], [b], {a}, [y2, y x2]],
[[0, 1], [y3, b x+ y2], [a], {b}, [y3, x]], [[0, 0], [y2], [b, a], {}, [y2]]]

The output of “finalcases” is a list of terminal cases. Each case is given by a list whose
elements are

1) the label,
2) the reduced Gröbner basis,
3) the null condition,
4) the non-null condition,
5) the set of the leading power products of the Gröbner basis.

In this thesis, we do not explain in the detail. If one is interested in the program, download
it from the website and see the tutorial of the program DPGB.

*2 http://www.maplesoft.com/
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4.5.3 Suzuki’s programs in the several computer algebra systems

The Suzuki-Sato algorithm [SS06] has been implemented in the computer algebra sys-
tems Risa/Asir*3, Mathematica*4, Maple and singular*5 by Suzuki. One can download the
programs from the following website.

http://kurt.scitec.kobe-u.ac.jp/~sakira/CGBusingGB/

We give an example of the Maple’s program. Let {ax2y + bx + y, y2 + x, bx + y2} be a
subset of Q[a, b][x, y], x, y variables and a, b parameters. We have the lexicographic order
plex such that x � y. Then, the program works to compute a comprehensive Gröbner
system as follows.

> G := cgs([a*x^2*y+b*x+y,y^2+x,b*x+y^2],[x,y],[a,b],plex(x,y),plex(x,y,a,

b));

G :=
{

[1, [b − 1, a,−y + y2, x+ y]], [a, [b − 1, ay5 − y2 + y, y2 + x]],

[a (b− 1) , [by − y, ay5 − y2 + y, y2 + x]], [b− 1, [a, by − y,−y + y2, x+ y]]
}

> bases2exp(G);
{

[{b− 1 = 0, a = 0} ,
{

−y + y2, x+ y
}

],

[{b− 1 = 0, a! = 0} ,
{

ay5 − y2 + y, y2 + x
}

],

[{(a (b− 1))! = 0} ,
{

ay5 − y2 + y, y2 + x, by − y
}

],

[{a = 0, (b− 1)! = 0} ,
{

−y + y2, x+ y, by − y
}

]
}

4.5.4 Nabeshima’s package

The author made a package in the compute algebra system Risa/Asir for computing com-
prehensive Gröbner bases and comprehensive Gröbner systems. In chapter 10, we intro-
duce the package PGB.

*3 http://www.math.kobe-u.ac.jp/Asir/asir.html
*4 http://www.wolfram.com/
*5 http://www.singular.uni-kl.de/
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Chapter 5

A new algorithm for computing

comprehensive Gröbner systems

In this chapter, we treat a new algorithm for computing comprehensive Gröbner systems.
In the previous chapter, we saw the Suzuki-Sato algorithm [SS06] for computing com-
prehensive Gröbner systems. Actually, in time complexity, the Suzuki-Sato algorithm is
more efficient than other existing algorithms. In this chapter, we improve the Suzuki-Sato
algorithm by using inequations (“6= 0”) and Gröbner bases computation in a polynomial
ring over a polynomial ring.

If we compute a Gröbner basis for an ideal in a polynomial ring over a polynomial
ring, then the Gröbner basis computed often has the special property ♦1 (see section 5.1)
which does not hold in a polynomial ring over a field. This property makes overmuch
parameter spaces. Hence, the computation of comprehensive Gröbner systems becomes
expensive. However, by using inequations (“6= 0”), we can avoid this behavior. Therefore,
we can compute a comprehensive Gröbner system much faster, and have a nice compre-
hensive Gröbner system. We implemented our new algorithm in the computer algebra
system Risa/Asir [NT92]. Through our computation experiment, we checked that in many
cases, our program is faster than the Suzuki-Sato algorithm. Especially, if the number of
parameters is greater than the number of variables, our algorithm is much more efficient
than Suzuki-Sato’s one. Moreover, the outputs of our program are much nicer than the
Suzuki-Sato algorithm. That is, the number of partitions of the whole parameter space is
smaller than Suzuki-Sato’s. This chapter is based on the author’s paper [Nab07d].

First, we motivate the new algorithm in order to facilitate the understanding the algo-
rithm.

5.1 Motivation

Let F be a subset of K[Ā][X̄ ]. Then, by the algorithm GröbnerBasisB we can compute a
Gröbner basis G = {g1, . . . , gl} for 〈F 〉 with respect to � in K[Ā][X̄]. The Gröbner basis
G in K[Ā][X̄ ] often (not always) has the following property

(♦1)� �
gi, gj ∈ G such that lppĀ(gi)| lppĀ(gj) and gi 6= gj .

� �
If we consider a reduced Gröbner basis for a given ideal in K[X̄ ] (a polynomial ring
over a field), then the reduced Gröbner basis does not hold this property. Actually,
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when we compute a comprehensive Gröbner system for a given ideal, this property often
makes many small and unnecessary parameter spaces. Hence, our strategy for computing
comprehensive Gröbner systems is “avoiding this property by using inequations
(6= 0)”. Before describing our algorithm, we consider the Suzuki-Sato algorithm and give
our idea.

The first step of Suzuki-Sato(F,�) works as Figure 5.1. That is, we have to consider l cases
lcĀ(g1) = 0, . . . , lcĀ(gl) = 0 for computing a comprehensive Gröbner system for 〈F 〉.

Input: F

G = {g1, . . . , gl}

· · · · · · · · ·

Figure 5.1

?

HHHHHHHHHj

lcĀ(gl) = 0
�
�
�

��

lcĀ(g2) = 0

����������

lcĀ(g1) = 0

The Suzuki-Sato algorithm does not apply inequations (“ 6= 0”) for computing compre-
hensive Gröbner systems. In this point, this algorithm is extremely simple. However, as
we said the above, Gröbner bases in K[Ā][X̄ ] have the special property (♦1). Hence, the
Suzuki-Sato algorithm provides overmuch parameter spaces. This condition (a lot of pa-
rameter spaces) is not nice when we compute a comprehensive Gröbner systems. Probably,
by using inequations (“ 6= 0”), we can obtain the number of parameter spaces which are
smaller than Suzuki-Sato’s outputs. This means that we may compute a comprehensive
Gröbner systems more efficient than the Suzuki-Sato algorithm. (In the next subsection,
we will discuss about this theory.) When and how do we use inequations?

If there exists gi ∈ G such that lppĀ(gi) = 1, then we do not need to consider l cases.
We need to consider only one case (branch) lcĀ(gi) = 0, because for ā ∈ Lm\V(lcĀ(gi)),
the Gröbner basis of σā(F ) is {1}. That is, if lcĀ(gi) 6= 0, then we can decide one segment
without computing the cases lcĀ(gj) = 0 for 1 ≤ j 6= i ≤ l. Therefore, we can remove the
cases left by the inequations lcĀ(gi) 6= 0.

Suppose that for p ∈ G, Gp := {g ∈ G\{p} : lppĀ(p)| lppĀ(g)}. If Gp is not an empty-
set, for ā ∈ Lm\V(lcĀ(p)), all elements of lppĀ(Gp) can be reduced by σā(lppĀ(p)).
Therefore, we do not need to consider the cases lcĀ(gpi) = 0 where gpi ∈ Gp. That is, the
set lcĀ(Gp) can be removed by lcĀ(p) 6= 0. If so, we can construct a new algorithm for
computing comprehensive Gröbner systems which is more efficient than the Suzuki-Sato
one. If Gp is an empty-set, then we can follow the Suzuki-Sato algorithm. This is our
main strategy for computing comprehensive Gröbner systems.

Now we have a specific example for computing a comprehensive Gröbner system. Let
F = {ax3, bx2, cx} ∈ Q[a, b, c][x] where a, b, c are parameters and x is a variable. First,
we consider the Suzuki-Sato algorithm. The Suzuki-Sato algorithm works as Figure 5.2. A

comprehensive Gröbner basis for 〈F 〉 is
{

1 , 2 , . . . , 16
}

in Figure 5.2. Of course, we

can use several optimization techniques for getting small and nice comprehensive Gröbner
systems. However, basically, the Suzuki-Sato algorithm works as Figure 5.2.
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Input: {ax3, bx2, cx}

1

2

53

4 6

7

8 10

119

12

13 15

14 16

Figure 5.2
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��

b = 0

The algorithm (with several techniques) has been implemented in the computer algebra
system Risa/Asir. The program outputs the following as a comprehensive Gröbner systems
for 〈F 〉.















































{x}, if a = 0, cb 6= 0,
{x}, if a = b = 0, c 6= 0
{x} if b = 0, ac 6= 0
{x2} if a = c = 0, b 6= 0
{∅} if a = b = c = 0,
{x3} if c = b = 0, a 6= 0,
{x2}, if c = 0, ab 6= 0
{x} if abc 6= 0.

The program outputs 8 segments.

Next we try to apply our idea which uses inequations “ 6= 0”. First, we compute a
Gröbner basis S1 for 〈F 〉 in Q[a, b, c][x]. Then, S1 = {ax3, bx2, cx}, and we know that
lpp{a,b,c}(cx) = x, lpp{a,b,c}(bx

2) = x2, lpp{a,b,c}(ax
3) = x3. Clearly, x|x2 and x|x3.

Hence, if lc{a,b,c}(cx) = c 6= 0, then a Gröbner basis for 〈F 〉 is {x}. Since L3\V(c)

(c 6= 0) cannot cover the whole space L3, next we have to consider the case c = 0. If
c = 0, then we have S2 = {ax3, bx2} which is a Gröbner basis for 〈S2〉 (itself). Clearly,
lpp{a,b,c}(bx

2)| lpp{a,b,c}(ax
3). Hence, if c = 0 and b 6= 0, then a Gröbner basis for 〈F 〉 is

{x2}. Finally, we have to consider the cases a 6= 0 and a = 0. Therefore, our idea works
as Figure 5.3.

Our idea returns the following comprehensive Gröbner systems for 〈F 〉.



















1 = [{x}, if c 6= 0],

2 = [{x2}, if c = 0, b 6= 0],

3 = [{x3} if b = c = 0, a 6= 0],

4 = [{∅} if a = b = c = 0].

This comprehensive Gröbner system has 4 segments.
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Input: {ax3, bx2, cx}

�
�

�
�S1

1 �
�

�
�S2

2 �
�

�
�S3

3 4

Figure 5.3
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����)
b 6= 0

PPPPq
a = 0

As we saw, our computation process Figure 5.3 is simpler than Suzuki-Sato’s one Figure
5.2. Furthermore, the output of our approach has only 4 segments which is smaller than
Suzuki-Sato’s one. Therefore, our approach is much more efficient than the Suzuki-Sato
algorithm.

In the next subsection, we will describe our approach strictly, and give a new algorithm
for computing comprehensive Gröbner systems.

5.2 A new algorithm
In this section, we give a new algorithm for computing comprehensive Gröbner systems.
The following theorem is the main idea for constructing the new algorithm.

Theorem 5.2.1. Let F be a subset of K[Ā][X̄ ], H = {g, g1, . . . , gl} a Gröbner basis for
〈F 〉 with respect to �. Select g from H, and set r := 1

lcĀ(g)
(r is a new variable) and

g′ := lppĀ(g) + r · (g − lmĀ(g)). Suppose that H ′ := (H\{g}) ∪ {g′} = {g′, g1, . . . , gl} ⊆
K[r, Ā][X̄ ], and G′ is a Gröbner basis of H ′ with respect to � in K[r, Ā][X̄ ]. Further-
more, G :=

{

f 6= 0, f ∈ K[Ā][X̄ ]
∣

∣ f = lcĀ(g)k · σr=1(q), degr(q) = k ∈ N, q ∈ G′
}

and

{h01, . . . , h0e} := {lcĀ(f) ∈ K[Ā] : f ∈ G}.
Then, for any ā ∈ Lm\(V(lcĀ(g)) ∪ V(h)), σā(G) is a Gröbner basis for 〈σā(F )〉 with
respect to � in L[X̄ ] where h = LCM(h01, · · · , h0e). (σr=1(q) means substituting 1 for
the variable r of q.)

Proof. For all ā = (a1, . . . , am) ∈ Lm\(V(lcĀ(g)) ∪ V(h)), we have σā(lcĀ(g)) 6= 0, and
σā(h) 6= 0. Set b̄ := (a1, . . . , an,

1
σā(lcĀ(g)) ) ∈ L

m+1. By the definition of h, for all p ∈ G′,

we have σb̄(lmĀ(p)) 6= 0. Hence, by Theorem 4.4.1, σb̄(G
′) is a Gröbner basis for 〈σb̄(H

′)〉
with respect to �. Actually, 〈σb̄(G

′)〉 = 〈σā(G)〉. Therefore, σā(G) is a Gröbner basis
for 〈σb̄(H

′)〉 with respect to �, too. Since σā(gi) = σb̄(gi) and 〈σā(g)〉 = 〈σb̄(g
′)〉 for

1 ≤ i ≤ l, we have 〈σb̄(H
′)〉 = 〈σā(H)〉. As σā is a ring homomorphism, obviously we

have 〈σā(H)〉 = 〈σā(F )〉. Therefore, σā(G) is a Gröbner basis for 〈σā(F )〉 with respect to
�.

The following two corollaries are the direct consequence of Theorem 4.3.2, Theorem 5.2.1
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and Lemma 4.4.1.

Corollary 5.2.2. With the same notations and conditions in Theorem 5.2.1, se-
lect s from G, and set r := 1

lcĀ(s)
(r is a new variable) and s′ := lppĀ(s) +

r · (s − lmĀ(s)). Suppose that D1 := (G\{s}) ∪ {s′} ⊆ K[r, Ā][X̄ ], and D2 is
a Gröbner basis of 〈D1〉 with respect to � in K[r, Ā][X̄ ]. Furthermore, D3 :=
{

f ∈ K[Ā][X̄ ]
∣

∣ f 6= 0, f = lcĀ(s)k · σr=1(q), degr(q) = k ∈ N, q ∈ D2

}

and {h11, . . . , h1e} :=

{lcĀ(f) ∈ K[Ā] : f ∈ D3}.
Then, for any ā ∈ Lm\(V(lcĀ(g)) ∪ V(lcĀ(s)) ∪ V(h1)), σā(D3) is a Gröbner basis for
〈σā(F )〉 with respect to � in L[X̄ ] where h1 = LCM(h11, · · · , h1e).

Corollary 5.2.3. With the same notations and conditions in Theorem 5.2.1, let S be
a subset of K[Ā]. Then, we compute a Gröbner basis D for 〈G ∪ S〉 with respect to �
by the algorithm GröbnerBasisB in K[Ā][X̄ ]. Suppose that B := {b : b ∈ D, b ∈ 〈S〉},
{d1, . . . , du} := {lcĀ(f) : f ∈ D\B} and d := LCM(d1, . . . , du).
Then, for any ā ∈ V(S)\(V(lcĀ(g)) ∪ V(d)), σā(D) is a Gröbner basis for 〈σā(F )〉 with
respect to � in L[X̄].

Now, we can construct a new algorithm by using Lemma 4.4.1, Lemma 4.4.2, Theo-
rem 5.2.1, Corollary 5.2.2 and Corollary 5.2.3. Before describing the algorithm, we give
one example for computing a comprehensive Gröbner system by using our strategy.

Example 5.2.4. Let F = {xy + x, ax2 + y + 2, bxy + y} be a subset of Q[a, b][x, y], a, b
parameters and x, y variables. We have the lexicographic order � such that x � y. Let’s
compute a comprehensive Gröbner system for 〈F 〉 with respect to �.

1. First, we compute a Gröbner basis for 〈F 〉 in Q[a, b][x, y] by the algo-
rithm GröbnerBasisB. Then, the algorithm GröbnerBasisB(F,�) outputs
{a + b2, y + 1, bx + 1, ax − b}. Clearly, for α ∈ C2 \V(a + b2), {1} is the
Gröbner basis for 〈σα(F )〉 with respect to �. That is, one of segments of a
comprehensive Gröbner system for 〈F 〉 is (C2 \V(a+ b2), {1}).

2. Next, we have to consider the case {a + b2 = 0}. By Lemma 4.4.2, we can obtain
one segment (V(a + b2)\V(ab), {y + 1, bx + 1, ax − b}). However, this procedure
is the same as Suzuki-Sato’s one. As we are considering a new algorithm by using
Theorem 5.2.1, we do not apply this procedure. Since we use Theorem 5.2.1, we
have to select one polynomial from {y+ 1, bx+ 1, ax− b}. Now we have a question
“Which polynomial had we better select to compute a comprehensive
Gröbner system efficiently?”
This answer is very important for our new algorithm. In this example, we know that
lpp{a,b}(bx+1) divides lpp{a,b}(ax−b), and lpp{a,b}(ax−b) divides lpp{a,b}(bx+1).

Hence, if we select bx + 1 (or ax − b), then ax − b (or bx + 1) can be reduced
by lpp{a,b}(bx + 1) (or lpp{a,b}(ax − b)). Therefore, we had better select one of
bx + 1, ax − b. Let’s select ax − b. In order to follow Theorem 5.2.1, we replace
ax− b as x− br where r is a new variable and r := 1

a
.

3. Now we are considering the case {a+ b2 = 0, a 6= 0}. We compute a Gröbner basis
for 〈a+b2, y+1, bx+1, x−br〉 in Q[a, b, r][x, y] with respect to �. Then the algorithm
GröbnerBasisB outputs {−ar+1, a+ b2, y+1, x− br}. Since we are considering the
case {a+ b2 = 0, a 6= 0} (and r = 1

a
), we do not need −ar+ 1,−a− b2 from the set

and we can replace x − br as ax − b. By Theorem 5.2.1, for α ∈ V(a + b2)\V(a),
{ax−b, y+1} is a Gröbner basis for 〈σα(F )〉 in C[x, y]. That is, one of the segments
is (V(a+ b2)\V(a), {ax− b, y + 1}).



56 Chapter 5 A new algorithm for computing comprehensive Gröbner systems

4. Finally, we have to consider the case {a + b2 = 0, a = 0}. We can simplify
the case into {a = 0, b = 0}. In this case, clearly, the Gröbner basis is
{1}. Therefore, a comprehensive Gröbner system for 〈F 〉 with respect to � is
{

(C2 \V(a+ b2), {1}), (V(a+ b2)\V(a), {ax− b, y + 1}), (V(a, b), {1})
}

. That is,







{1}, if a+ b2 6= 0,
{ax− b, y + 1}, if a+ b2 = 0, a 6= 0,
{1} if a = b = 0.

See Figure 5.4.

Input: F = {xy + x, ax2 + y + 2, bxy + y}

�
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�
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{ax− b, y + 1} {1}

Figure 5.4
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Let G be a Gröbner basis for an ideal I in K[Ā][X̄ ]. Suppose that

E := {f ∈ G : ∃g ∈ G\{f}s.t. lppĀ(f)| lppĀ(g)}.

When we apply Theorem 5.2.1 for computing comprehensive Gröbner systems, we have
to select one polynomial from G. Then, we have the following question.

Which polynomial should we select in order to compute comprehensive
Gröbner systems efficiently?

In Example 5.2.4 (2), we selected ax−b, because lpp{a,b}(ax−b) divides lpp{a,b}(bx+1).

In this case, we have E = {ax−b, bx+1}. If E is an empty set, then in Theorem 5.2.4, we
have always lpp(σā(H)) = lpp(σā(H ′)) for any ā ∈ Lm\(V(lcĀ(g)) ∪ V(h)) = Lm\V(h).
(By the theorem, clearly σā(H) and σā(H ′) is a Gröbner basis for 〈F 〉 with respect to
� in L[X̄ ].) Namely, in this case, we should not apply Theorem 5.2.4, because we have
lcĀ(H)\K = (lcĀ(H ′) ∪ {lcĀ(g)})\K. That is, the parameter spaces cannot be changed
by the selected polynomial. In this case, we apply Suzuki-Sato’s approach. If E is not an
empty set, then our approach (Theorem 5.2.1) works powerfully for computing
comprehensive Gröbner systems. In fact, it is often happened that E is not an empty
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set. Our answer of the question is that “selecting one element from E”. In the new
algorithm which is the following, like normal strategy of Gröbner bases computation we
select one polynomial from E which have the lowest leading power product in lppĀ(E)
with respect to a term order.

Since the following algorithm makes the branches by inequations “6= 0”, we need the
Corollary 5.2.2 and Corollary 5.2.3. That is, these corollaries are for the branches “6= 0”.
In the new algorithm NEW, we assume the algorithm factorize. The algorithm factorize(h)
outputs a set of all irreducible factors of h in K[Ā] where h ∈ K[Ā].

In the remark of the algorithm NEW, we describe why we input a natural number U in
the algorithm NEW.

Algorithm 5.2.5. NEW(F,U,�)

Input F : a finite subset of K[Ā][X̄ ],
�: a term order on pp(X̄),
U : a natural number (<∞),

Output G: a comprehensive Gröbner system for 〈F 〉 with respect to � on Lm.
begin

G← NewCGSMain(F, ∅, ∅, 1, 0,�, U)
return(G)

end

Algorithm 5.2.6. NewCGSMain(F,L1, L2, D,N,�, U)

Input F : a finite subset of K[Ā][X̄ ],
L1 : a finite set of polynomials in K[Ā] “(= 0)”
L2 : a finite set of polynomials in K[Ā] “(6= 0)”,
D: a polynomial in K[Ā],
U : a natural number (<∞),
�: a term order on pp(X̄),
N : a natural number (< U),

Output H: a comprehensive Gröbner system for 〈F 〉 with respect to � on V(L1)\V(L2).
begin
1: G← GröbnerBasisB(F ∪ L1,�) in K[r, Ā][X̄ ]
2: G∗ ← Transform(G,D)
3: G1 ← G∗\{g : g ∈ G∗ ∩K[Ā], g ∈ 〈L1〉}
4: E ← {f ∈ G1 : ∃g ∈ G1\{f} s.t. lppĀ(f)| lppĀ(g)}
5: if E 6= ∅ and N ≤ U then
6: Select q from E s.t. lppĀ(q) is the lowest element in lppĀ(E) with respect to �

(r := lcĀ(q)−1, i.e., r is the new variable.)
7: q∗ ← lppĀ(q) + r · (q − lmĀ(q)) (i.e., lcĀ(q∗) = 1)
8: F ∗ ← (G1\{q}) ∪ {q

∗}
9: {t1, . . . , tk} ← factorize(lcĀ(q))
10: t← t1 · t2 · · · tk

11: if V(L1)\

(

V(t) ∪
⋃

s∈L2

V(s)

)

6= ∅ then (♣1)

12: N ← N + 1
13: H1 ← NewCGSMain(F ∗, L1, L2 ∪ {t}, lcĀ(q), N,�, U)
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14: end-if
15:H2 ← NewCGSMain(G1, L1 ∪ {t1} , L2, ∅, 0,�, U) ∪ · · ·

· · · ∪ NewCGSMain(G1, L1 ∪ {tk} , L2, ∅, 0,�, U)
16: H ← H1 ∪H2

17: else

18: S ← {h1, .., hl} :=

{

f : V(f) ⊂/
⋃

s∈L2

V(s), f ∈ factorize(lcĀ(g)), lcĀ(g) /∈ K, g ∈ G1

}

(♣2)
19: h← LCM(h1, . . . , hl)
20: H ← {(L1, {h}, G1)}
21: if S 6= ∅ then
22: while S 6= ∅ do
23: Select p from S; S ← S\{p}
24: H ← H∪ NewCGSMain(G1, L1 ∪ {p}, L2, ∅, 0,�, U)
25: end-while
26: else
27: H ← {(L1, L2, G1)}
28: end-if
29: end-if
30: return(H)
end

Algorithm 5.2.7. Transform(F,D)

Input F : a finite subset of K[r, Ā][X̄ ],
D: a polynomial in K[Ā]

Output G: a finite subset of K[Ā][X̄ ]
begin
if D = ∅ then
return(F )
end-if
G← ∅
while F 6= ∅ do

Select f from F ; F ← F\{f}
N ← degr(f)
L← Mono(f); H ← 0

while L 6= ∅ do
Select p from L ; L← L\{p}
N1 ← N − degr(p)
p1 ← Substitute 1 for the variable r of p
q1 ← p1 ·D

N1

H ← H + q1
end-while

if H 6= 0 then
G← G ∪ {H}
end-if

end-while
return(G)
end
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Remark : In (♣1) and (♣2), we applied the notation
⋃

(union) for the algorithm.
Since obviously V(h1) ∪ V(h2) = V(LCM(h1, h2)) where h1, h2 ∈ K[Ā], we can apply
V(LCM(s1, . . . , sl)) instead of

⋃

s∈L2
V(s) where L2 = {s1, . . . , sl}. As we used the nota-

tion “∪ (union)” in Theorem 5.2.1, we followed Theorem 5.2.1 in Algorithm 5.2.6.

In Theorem 5.2.1, Corollary 5.2.2 and Corollary 5.2.3, we need to transform the set F as
follows;

(1) computing a Gröbner basis H for 〈F 〉, (line 1)
(2) transforming H into H ′ by the new variable r, (line 7)
(3) computing a Gröbner basis G′ for 〈H ′〉, (line 1)
(4) transforming G′ into G by the algorithm Transform. (line 2)

If we do not use the natural number U in the algorithm, then by these transformations
(1) − (4), we rarely obtain the infinite loop from 1 to 14 (recurrently) on paths of a
tree structure. When we compute a Gröbner basis in K[Ā][X̄ ], we apply the algorithm
GröbnerBasisB. Since the algorithm GröbnerBasisB which uses a block order, regards pa-
rameters as variables, if we iterate the procedure line 1 – line 14, then we rarely see that
line 1 always outputs the same Gröbner basis. In order to avoiding this infinite loop, we
introduced the natural number U . This is very technical step for always terminating the
algorithm.
We can apply a lot of optimization techniques to obtain small and nice outputs com-
prehensive Gröbner systems (like the Suzuki-Sato algorithm [SS06]). Theoretically, like
Algorithm 4.4.4, we do not need factorize in order to compute comprehensive Gröbner
systems. However, since factorize is very effective as one of the optimization techniques to
obtain small and nice outputs, we add the algorithm factorize to the algorithm. We can
also compute a radical ideal of 〈L1〉 to get nice outputs.

Theorem 5.2.8. The algorithm NEW(F,�) terminates. The output forms a comprehen-
sive Gröbner system for 〈F 〉 on Lm.

Proof. First we show the termination. It suffices to show the termination of
NewCGSMain(F,L1, L2, D,N,�, U). The key part is line 5 of Algorithm 5.2.6.

(∗1) If E = ∅ and N ≤ U , then we have to consider lines 18–29 where is Suzuki-
Sato’s approach. In this case, the algorithm provides one segment (see line 19).
(∗2) If E 6= ∅ and N ≤ U , then we have to consider lines 6–16. In this case, the
algorithm does not provide any segment.

NewCGSMain is a recurrence algorithm and makes the tree structure. Take an arbitrary
path of the tree structure. We prove that the algorithm executes lines 17–28 (∗1) and
lines 6–15 (∗2) a finite number of times in the path. By the same reason of the proof of
Suzuki-Sato [SS06], the algorithm executes (∗1) a finite number of times (see [SS06]). We
need to prove that the algorithm executes (∗2) a finite number of times. As we said in
the remark, if we do not have the number U and N , then the algorithm does not always
terminate. However, the algorithm has U which is a finite number, and thus the algorithm
executes (∗2) at most U times. Hence, this algorithm terminates.
Next we have to show the correctness. This proof is almost same as the proof of the Suzuki-
Sato algorithm. See Theorem 4.4.5. We remark that in this proof we need Theorem 5.2.1,
Corollary 5.2.2 and Corollary 5.2.3.
In line 13 and 15, the algorithm computes the cases t = LCM(t1, . . . , tk) 6= 0 and t1 =
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0, . . . , tk = 0, i.e,
⋃k

i=1 V(ti)∪(Lm\V(t)) = Lm. By this fact and the proof of Suzuki-Sato
[SS06], the output of the algorithm covers the whole parameter space.

The algorithm NEW has been implemented in the computer algebra system Risa/Asir.
In the following examples, we give outputs of the program. Note that in the program the
natural number U of the algorithm NEW is fixed U = 5.

Example 5.2.9. Let F = {ax4y+xy2+bx, x3+2xy, bx2+x2y} be a subset of Q[a, b][x, y],
a, b parameters and x, y variables. We have the lexicographic order � such that x � y.
Then, the program outputs a comprehensive Gröbner system for 〈F 〉 with respect to �
as follows.

[b]==0, [[1]]!=0,

[x^3+2*y*x,y*x^2,y^2*x]

[a,b+1]==0, [[1]]!=0,

[-x^3-2*x,(-y+1)*x]

[8*b^3*a^2-b^2-2*b-1]==0, [[b+1]]!=0,

[(-b-1)*x^2+4*b^2*a*x,(-y-b)*x]

[0]==0, [[8*b^4*a^2-b^3-2*b^2-b]]!=0,

[x]

This meaning is the following;














{x3 + 2xy, x2y, xy2}, if b = 0,
{x3 + 2x, (y − 1)x}, if a = b+ 1 = 0,
{x}, if 8b3a2 − b2 − 2b− 1 = 0, b + 1 6= 0,
{x} if 8b4a2 − b3 − 2b2 − b = 0.

Example 5.2.10. Let F = {ax2 + by2, cx2 + y2, 2ax− 2cy} be a subset of Q[a, b, c][x, y],
a, b, c parameters and x, y variables. We have the lexicographic order � such that x � y.
Then, the program outputs a comprehensive Gröbner system for 〈F 〉 with respect to �
as follows.

[a,b,c]==0, [[1]]!=0,

[y^2]

[b^2+c,a-c*b,b*a+c^2]==0, [[a]]!=0,

[a*x-c*y]

[a,c]==0, [[b^2+c]]!=0,

[y^2]

[a,c*b]==0, [[c],[b^2+c]]!=0,

[c*x^2,y]

[a-c*b]==0, [[a],[b^2+c]]!=0,

[a*x-c*y,y^2]

[a]==0, [[c],[a-c*b]]!=0,

[c*x^2,y]
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[0]==0, [[a],[a-c*b]]!=0,

[a*x-c*y,y^2]

This meaning is the following;







































{y2}, if V(a, b, c),
{ax− cy}, if V(b2 + c, a− cb, ba+ c2)\V(a)
{y2}, if V(a, c)\V(b2 + c),
{cx2, y} if V(a, cb)\(V(c) ∪ V(b2 + c)),
{ax− cy, y2} if V(a− cb)\(V(a) ∪ V(b2 + c)),
{cx2, y} if V(a)\(V(c) ∪ V(a− cb)),
{ax− cy, y2} if C3 \(V(a) ∪ V(a− cb)).

This output has 7 segments. (Note that V(h1) ∪ V(h2) = V(LCM(h1, h2)) where h1, h2 ∈
K[Ā].) By the way, the program of the Suzuki-Sato algorithm outputs 17 segments.

As we saw chapter 4, when we compute a comprehensive Gröbner basis, we need to
compute a faithful comprehensive Gröbner system. It is clear that, by the definition of
faithful, the algorithm NEW can not output a faithful comprehensive Gröbner systems.

5.3 Optimization techniques

In this subsection, we introduce one optimization technique for computing a nice and
small comprehensive Gröbner system. In the author’s experience, we sometimes see the
condition of the following lemma when we compute a Gröbner basis in K[Ā][X̄ ]. We can
apply the lemma as one of optimization techniques.

Lemma 5.3.1. Let F be a subset of K[Ā][X̄ ], � a term order on pp(X̄) and G a Gröbner
basis for 〈F 〉 with respect to � in K[Ā][X̄ ]. We have g1, . . . , gl ∈ G such that MonoĀ(gi) ⊂
〈lppĀ(G\{g1, . . . , gl})〉 where 1 ≤ i ≤ l. Suppose that {h1, . . . , hs} := {lcĀ(f) ∈ K[Ā] :
f ∈ G\{g1, . . . , gl}} and h := LCM(h1, . . . , hs). Then, for any ā ∈ Lm\V(h),

(1) 〈G〉 is stable under σā and �,
(2) σā(G\{g1, . . . , gl}) is a Gröbner basis for 〈σā(F )〉 with respect to � in L[X̄ ].

Proof. Since MonoĀ(gi) ⊂ 〈lppĀ(G\{g1, . . . , gl})〉, lmĀ(σā(gi)) ∈ 〈lppĀ(G\{g1, . . . , gl})〉.
Hence, 〈σā(lmĀ(G))〉 = 〈σā(lmĀ(G\{g1, . . . , gl}))〉. σā(gi) can be reduced to 0 by
σā(G\{g1, . . . , gl}). By Theorem 4.3.2, G is a stable under σā and σā(G\{g1, . . . , gl}) is
a Gröbner basis for 〈σā(F )〉 with respect to � in L[X̄ ].

We have already seen an easy example of this lemma in Example 5.2.4. If there exists
p ∈ G such that lppĀ(p) = 1 (notations are from Lemma 5.3.1), then we do not need to
consider the other polynomials G\{p} for getting a segment. In the next example, we give
a more general example of Lemma 5.3.1.

Example 5.3.2. Let a, b be parameters, x, y, z variables, and F = {axz + bxz + a, bz +
a, (a2 +a)xy} in Q[a, b][x, y, z]. By the algorithm GröbnerBasisB, we have a Gröbner basis
G for 〈F 〉 with respect to the lexicographic order � such that x � y � z. This Gröbner
basis G is the following

G =

{

g1 = bz + a, g2 = (−a2 − a)y, g3 = (−a2 − ab)x+ ab,
g4 = (az − a)x+ a, g5 = (b− 1)axy − aby

}

.

Then, we have g5 ∈ 〈lpp{a,b}(g1), . . . , lpp{a,b}(g4)〉. Therefore, by Lemma 5.3.1, we can



62 Chapter 5 A new algorithm for computing comprehensive Gröbner systems

say that for α ∈ C2\V(ab(a + 1)(a + b)), {σα(g1), . . . , σα(g4)} is a Gröbner basis for
〈σα(F )〉 with respect to � in C[x, y, z]. That is, by using Lemma 5.3.1, we can remove
g5. Therefore, we do not need to consider the case {lc{a,b}(g5) = b− 1 = 0}.

5.4 Benchmark tests and improvements

The algorithms Suzuki-Sato and NEW which contain several optimization techniques, have
been implemented in Risa/Asir by the author. In this section, we compare both programs
Suzuki-Sato and NEW, and notice both problems. Moreover, in the second part of this
section, we improve our algorithm NEW. Note that the natural number U of the algorithm
NEW is fixed U = 5. (We used a PC [CPU: Pentium M 1.73 GHZ, Memory 512 MB RAM,
OS: Windows XP].)

Let a, b, c, d be parameters and x, y, z, w variables and � the lexicographic order such that
x � y � z � w. We have the following subsets of C[a, b, c, d][x, y, z, w];

F1 = {ax4y + xy2 + bx, x3 + 2xy, bx2 + x2y},
F2 = {ax2y3 + by + y, x2y2 + xy + 2, ax2 + by + 2},
F3 = {ax4 + cx2 + b, bx3 + x2 + 2, cx2 + dx},
F4 = {ax3y + cxy2, x4y + 3dy, cx2 + bxy, x2y2 + ax2, x5 + y5}.

The following table includes timing date of the programs in each problems.

Problem Algorithm Segments time (sec.)
F1 Suzuki-Sato 7 0.079

NEW 4 0.031
F2 Suzuki-Sato 4 0.047

NEW 6 0.093
F3 Suzuki-Sato 31 2.421

NEW 22 2.203
F4 Suzuki-Sato 39 1.391

NEW 15 0.234

In the table above, we can see that our algorithm NEW runs faster than the algorithm
Suzuki-Sato in the problems F1, F3, F4. Furthermore, the numbers of segments are smaller
than Suzuki-Sato’s outputs. We remark that NEW does not always run faster than Suzuki-
Sato. See the problem F2. However, in many cases, NEW runs faster than Suzuki-Sato.
Especially, if the number of parameters is greater than the number of variable, i.e., |Ā| >
|X̄ |, then NEW is much more efficient than Suzuki-Sato for computing comprehensive
Gröbner systems.

Next, we consider more difficult problems. We use the lexicographic order � such that
x � y � z � w. We have the following subsets of C[a, b, c, d][x, y, z, w];

F5 = {ax2y + bx+ y3, ax2y + bxy, y2 + bx2y + cxy},
F6 = {ax2y2 + bxz2, bxy2 + cx2 + 2, cx2 + by2z},
F7 = {x4 + ax3 + bx2 + cx+ d, 4x3 + 3ax2 + 2bx+ c},
F8 = {x3 − a, y4 − b, x+ y − az},
F9 = {ax2 + by, cw2 + z, (x− z)2 + (y − w)2, 2dxw − 2by}.
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Problem Algorithm Segments time (sec.)
F5 Suzuki-Sato 14 0.219

NEW 6 0.109
F6 Suzuki-Sato 11 0.125

NEW 7 0.094
F7 Suzuki-Sato 875 92.88

NEW 17 0.312
F8 Suzuki-Sato 7 0.282

NEW −− > 30 m
F9 Suzuki-Sato −− > 30 m

NEW −− > 30 m

In the problems F5, F6, F7, NEW runs faster than Suzuki-Sato. Why does the program
NEW run faster? Because NEW compute segments whose number is smaller than that of
Suzuki-Sato’s. Look at “Segments” of the table. In the problem F8, NEW cannot return
between 30 minutes. Why? Because the program of the algorithm GröbnerBasisB need a
lot of time for computing a Gröbner basis in C[r, a, b][x, y, z] where r is the new variable.
In Algorithm 5.2.6 line 6, we have to make the new variable r. This is dangerous when we
compute a Gröbner basis in polynomial rings. The problems of the algorithms Suzuki-Sato
and NEW, are the following.

• Suzuki-Sato creates a lot of segments (parameter spaces).
• NEW (sometimes) needs expensive Gröbner bases computations (however, the num-

ber of segments is not big).

Now we improve the algorithm NEW. Look at line 6 of Algorithm 5.2.6. In the line, we
must select one polynomial. Actually, in the problem F8, the program NEW selected
a bad polynomial. Therefore, the program could not return. We should select a good
polynomial from E for computing a comprehensive Gröbner system. In Algorithm 5.2.6,
we define the following set as E

E := {f ∈ G : ∃g ∈ G\{f} s.t. lppĀ(f)| lppĀ(g)}.

In fact, in the problem F8, the program NEW selects a polynomial f from E which has
12 monomials, i.e., the cardinality of Mono{a,b}(f) is 12. Since this polynomial f is very
long (and we multiply f by the new variable r), the Gröbner bases computation become
very expensive. The author has computed a lot of comprehensive Gröbner systems by the
program. By these computational experiments, the author was noticed that “we should
not select a long polynomial from E.” That is, in concerning speed, we need to
consider how many monomials the selected polynomial has.

Now, in Algorithm 5.2.6, we can replace E to the following set

Es := {f ∈ G : ](MonoĀ(f)) ≤ s,∃g ∈ G\{f} s.t. lppĀ(f)| lppĀ(g)}.

where s ∈ N and ](MonoĀ(f)) is the cardinality of the set MonoĀ(f). Clearly, we have
Es ⊆ E. In this case, we rename the algorithm NEW as NEW[s]. In the following table
we also consider F10 and F11 which are the following;

F10 = {ax2y + bcx+ y3, cx2y + bxy, ay2 + bx2y + cxy},
F11 = {(a+ bc)x4 + y3, cx2y + bxy, (b+ c)x2y + ay2}.
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Problem Algorithm Segments time (sec.)
NEW[1] 621 91.39

F7 NEW[2] 53 1.141
NEW[3] 17 0.359

Suzuki-Sato 7 0.328
F8 NEW[1] 7 0.375

NEW[2] 7 0.375
F9 Suzuki-Sato −− > 30 m

NEW[1] 458 133.2
Suzuki-Sato 37 1.172

F10 NEW −− > 30 m
NEW[1] 29 0.671

Suzuki-Sato −− > 30 m
F11 NEW −− > 30 m

NEW[1] 239 7.828

Remark: If we apply s = 1 for NEW[s], then we do not need the new variable r. However,
like the problem F7, sometimes the algorithm creates a lot of segments. In our algorithm,
selecting a good polynomial from E (or Er) is very important to compute a comprehensive
Gröbner system, efficiently.
The method of selecting a polynomial from E (or choosing s) for computing comprehensive
Gröbner systems efficiently, is a open problem.

We introduced a new algorithm for computing comprehensive Gröbner systems. In
many cases, our algorithm is more efficient than the Suzuki-Sato algorithm. That is, our
algorithm creates smaller outputs, and runs faster than the Suzuki-Sato algorithm. In
general, if the number of parameters is greater than the number of variables, then the
Suzuki-Sato algorithm is slower than other existing algorithm. This is because the Suzuki-
Sato algorithm creates overmuch segments. (If the number of parameters is smaller than
the number of variables, then the algorithm is very fast.) However, in this case, our
algorithm is even faster. This is the main advantage of our algorithm compared to the
Suzuki-Sato algorithm.
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Chapter 6

Comprehensive Gröbner bases and von

Neumann regular rings

In this chapter, we describe the relations between comprehensive Gröbner bases and non-
parametric Gröbner bases over commutative von Neumann regular rings. Commuta-
tive von Neumann regular rings can be viewed as certain subdirect products of fields.
So in some sense they can code arbitrary sets of fields. In 1987, Weispfenning stud-
ied and constructed the theory of Gröbner bases in polynomial rings over a commu-
tative von Neumann regular ring. In 1992, Weispfening also introduced, constructed
and studied comprehensive Gröbner bases for parametric polynomial ideals. Here, we
show that there is a surprisingly close relationship between his two works. Thus, we
show that Gröbner bases over commutative von Neumann regular rings do in fact cover
parametric Gröbner bases over commutative von Neumann rings. We call the para-
metric Gröbner bases “alternative comprehensive Gröbner bases (ACGB)”. In papers
[SS02, SS03, SSN02, SSN03b, SSN03a, SS04, Wei02b, Wei06], these results are shown.

In the second part of this chapter, we present the special type of comprehensive Gröbner
bases. In construction of parametric Gröbner bases, we usually assume that parameters
can take arbitrary values. In case, however, there exist some constraints among param-
eters, it is more natural to construct comprehensive Gröbner bases for only parameters
satisfying such constraints. Using this idea, we formalized comprehensive Gröbner bases
in terms of ACGB. In the author’s papers [SSN03a, SSN03b, Nab05a, Nab05b], these
results were presented.

6.1 Von Neumann regular rings and Boolean algebra
In this section we describe relations between commutative von Neumann regular rings
and Boolean algebra. Some of the facts of this section are presented in Saracino and
Weispfenning [SW75, Lou79], and some books of “Boolean algebra”, for instance [BS80].
First, we give a definition of “commutative von Neumann regular rings”.

Definition 6.1.1 (commutative von Neumann regular rings [SW75, Wei87]). A
commutative ring R with identity 1 is called a commutative von Neumann regular
ring if it has the following property:

∀a ∈ R ∃b ∈ R such that a2b = a.

For such b, a∗ := ab and a−1 := ab2 are uniquely determined and satisfy aa∗ = a,
aa−1 = a∗ and (a∗)2 = a∗ is idempotent of a, a−1 the quasi inverse of a.
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Note that every direct product of fields is a commutative von Neumann regular ring.
Conversely, any commutative von Neumann regular ring is known to be isomorphic to a
subring of a direct product of fields [SW75].
In this chapter, we assume that R is a commutative von Neumann regular ring.

Example 6.1.2. Take R = Q3 and define for a = (a1, a2, a3) ∈ Q3, a−1 := (y1, y2, y3)
where for i ∈ {1, 2, 3}

yi =

{

0, if ai = 0,
1
ai
, otherwise.

We see that for all a ∈ Q3 there exists b ∈ Q3, namely

b := a−1 such that a2b = a.

Therefore, Q3 is a von Neumann regular ring. (We consider 0−1 := 0.)

A definition of Boolean algebra is the following.

Definition 6.1.3. B := 〈B,∧,∨,¬, 0, 1〉 is called a Boolean algebra if B satisfies the
following property;

1. x ∨ x = x ∧ x = x, for x ∈ B,
2. x ∨ y = y ∨ x, x ∧ y = y ∧ x, for x, y ∈ B,
3. (x ∨ y) ∨ z = x ∨ (y ∨ z), (x ∧ y) ∧ z) = x ∧ (y ∧ z), for x, y, z ∈ B,
4. (x ∨ y) ∧ x = x, (x ∧ y) ∨ x = x, for x, y ∈ B,
5. (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z), (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z), for x, y, z ∈ B,
6. x ∨ ¬x = 1, x ∧ ¬x = 0, for x ∈ B.

Definition 6.1.4. Let R be a commutative von Neumann regular ring. Let A = {x ∈
R|x2 = x} be a set of idempotents of R. Define on A the operations ¬,∧,∨ by ¬a = 1−a,
a ∧ b = ab and a ∨ b = a+ b − ab. Then B(R) := 〈A,¬,∧,∨, 1, 0〉 is called the Boolean
algebra of R. The set A is called the carrier set of B(R).

Note that the carrier set of B(Q3) is {(x1, x2, x3) | x1, x2, x3 ∈ {0, 1}}.

Definition 6.1.5 ([BS80]). Let B = 〈B,∧,∨,¬, 0, 1〉 be a Boolean algebra. A subset I
of B is called an ideal of B if

1. 0 ∈ I,
2. a, b ∈ I =⇒ a ∨ b ∈ I,
3. (a ∈ I and b = a ∧ b) =⇒ b ∈ I.

Note that definition 6.1.5 property (3) is equivalent to ;

a ∈ I and b ∈ B ⇒ a ∧ b ∈ I.

It is important to consider prime ideals of Boolean algebra in order to construct an algo-
rithm for computing Gröbner bases in polynomial rings over a commutative von Neumann
regular ring. We give a definition of prime ideals of Boolean algebra and the examples.

Definition 6.1.6 ([BS80]). An ideal I of a Boolean algebra is called a prime ideal if
1 /∈ I and a ∧ b ∈ I implies a ∈ I or b ∈ I.
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Example 6.1.7. Let B(Q3) := 〈B,∧,∨,¬, 0, 1〉. Then, prime ideals of B(Q3) are

P1 := {(0, x2, x3) | x2, x3 ∈ {0, 1}} ,

P2 := {(x1, 0, x3) | x1, x3 ∈ {0, 1}} ,

P3 := {(x1, x2, 0) | x1, x2 ∈ {0, 1}} .

The set Qi := {(x1, 0, 0) | x1 ∈ {0, 1}} is not a prime ideal in B(Q3), because (1, 0, 1) ∧
(1, 1, 0) = (1, 0, 0) ∈ Q1, but (1, 0, 1), (1, 1, 0) 6= Q1.

Proposition 6.1.8. For i = 1, . . . , n let Pi = {(x1, . . . , xn) ∈ {0, 1}n |xi = 0}.
The set of all prime ideals of B(Qn) = 〈B,∧,∨,¬, 0, 1〉 is {P1, . . . , Pn} where
B = {(x1, . . . , xn) | xi ∈ {0, 1}}.

Proof. Let S be an arbitrary non-empty subset of {1, · · · , n}. We denote for all j ∈ S,

Ij := {(x1, . . . , xn) ∈ {0, 1}n |xj = 1} .

Then, Ij is not an ideal in B(Qn), because Ij does not satisfy definition 5 (3).
Let L be an arbitrary subset of {1, · · · , n}. Then we denote

IL := {(x1, . . . , xn) ∈ {0, 1}n |xj = 0, j ∈ L} .

First we prove that if |L| = 1 (|L| is the cardinality of L), then IL is a prime ideal.
Let L = {i} ⊆ {1, . . . , n}, then ai and bi are the ith coordinate of a, b ∈ B.
Take a ∧ b ∈ IL, then ai ∧ bi = 0. Hence ai or bi must be 0. Therefore a ∈ IL

or b ∈ IL and thus IL is a prime ideal. Second, we prove that if |L| > 1,
then IL is not a prime ideal. Take j1, j2 ∈ L, j1 6= j2. Let aj be the jth co-
ordinate of a ∈ B. Take f ∈ {(x1, . . . , xn) ∈ {0, 1} | xj1 = 1, xj2 = 0} and g =
{(x1, . . . , xn) ∈ {0, 1}n | xj1 = 0, xj2 = 1}. Then f ∧ g ∈ IL, but fj1 ∧ gj1 = fj2 ∧ gj2 = 0.
Hence f, g /∈ IL. Therefore IL is a prime ideal of B(Qn). The set of all prime ideals of
B(Qn) is {P1, . . . , Pn}.

Definition 6.1.9. An ideal I of a Boolean algebra B is called a maximal if there exists
no ideal J with I ( J ( B.

Theorem 6.1.10 (Theorem 3.12 [BS80]). Let I be an ideal of B := 〈B,∧,∨,¬, 0, 1〉.
Then, I is a maximal ideal of B if and only if for any a ∈ B, exactly one of a,¬a belongs
to I.

Lemma 6.1.11 (Corollary 3.13 [BS80]). Let I is an prime ideal of Boolean algebra
〈B,∧,∨,¬, 0, 1〉 if and only if I is a maximal ideal.

Proof. (⇐) Suppose I is a maximal ideal with

a ∧ b ∈ I, for a, b ∈ B.

As
(a ∧ b) ∨ (¬a ∨ ¬b) = 1 /∈ I,

we have
¬a ∨ ¬b /∈ I,

hence,
¬a /∈ I or ¬b ∈ I.
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By theorem 6.1.10 either
a ∈ I or b ∈ I.

(⇒) Since 0 ∈ I, given a ∈ B we have

a ∧ ¬a ∈ I.

Since I is a prime ideal,
a ∈ I or ¬a ∈ I.

As
a ∨ ¬a = 1 /∈ I,

one of a,¬a belong to I. By theorem 6.1.10, I is a maximal ideal.

For a Boolean algebra B, Spec(B) denotes the prime spectrum of B, i.e., the set of all
prime ideals of B. The set of all maximal ideals of B is denoted by St(B). (Actually, in
this case, by Lemma 6.1.11 we can say Spec(B) = St(B).)

Theorem 6.1.12 (Saracino-Weispfenning[SW75]). For a maximal ideal I of B(R),
IR = {xy | x ∈ R, y ∈ I } (then IR is a maximal ideal of R). If we define a map Φ from R
into

∏

I∈St(B(R)) R/IR by Φ(x) =
∏

I∈St(B(R))[x]IR
, then Φ is a ring isomorphism.

An example of the theorem is the following.

Example 6.1.13. Let’s consider Q3. From Proposition 6.1.8 and Lemma 6.1.11, we know

St(B(Q3)) = Spec(B(Q3)) = {P1, P2, P3}.

Let Si := {xy|x ∈ Q3, y ∈ Pi} for each i = 1, 2, 3. Then, by Theorem 6.1.12,

Q3 ∼= Q3/S1 ×Q3/S2 ×Q3/S3.

Obviously, Q3/S3 is isomorphic to Q. By this identification Φ can be seen as the identity
map on Q3.

Let Rp := R/(pR) where p ∈ Spec(B(R)). Then for a subset Q of R and p ∈ Spec(B(R))
we let Φp : R −→ Rp be the canonical homomorphism, and Qp the image of Q under Φp.

Remark: Let P1 be as in example 6.1.7. Obviously Q3
P1

is isomorphic to Q and thus
ΦP1

can be seen as the projection map

ΦP1
: Q3 → Q,

(a, b, c) 7→ (c),

where a, b, c ∈ Q.

6.2 Gröbner bases over von Neumann regular rings

Here, we describe the theory of Gröbner bases in polynomial rings over a commutative
von Neumann regular ring. The theory has been studied by Weispfenning [Wei87]. Before
describing the theory, we define the notations for R[X̄].

Definition 6.2.1. Let f be a non zero polynomial in R[X̄] and � be an arbitrary order
on the set of power products.
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1. The set of power products of f that appear with a non-zero coefficient, is written
pp(f).

2. The biggest power product of pp(f) with respect to � is denoted by lpp(f) and is
called the leading power product of g with respect to �.

3. The coefficient corresponding to lpp(f) is called leading coefficient of f with
respect to �.

4. The product lc(f) lpp(f) is called the leading monomial of f with respect to �.

Example 6.2.2. To illustrate, let f = (2, 0, 2
3 )xy2z + (−1,−3, 0)z2 + ( 1

2 , 0, 5)x
3 +

(3, 4, 0)x2z2 in Q3[x, y, z] and let � denote the lexicographic order with x � y � z. Then

pp(f) = {xy2z, z2, x3, x2z2},

lc(f) =

(

1

2
, 0, 5

)

,

lpp(f) = x3,

lm(f) =

(

1

2
, 0, 5

)

x3.

In this section and the next section, Greek letters α, β, γ are used for power products,
Roman letters a, b, c for elements of R, f, g, h for polynomials over a commutative von
Neumann regular ring R. In order to describe the theory, we need a reduction system as
the normal polynomial ring K[X̄]. Note that R is not an integral domain.

Definition 6.2.3 (reduction [Wei87]). For a polynomial f = aα+ g with lm(f) = aα,
a monomial reduction →f is defined as follows:

bαβ + h→f bαβ + h− ba−1β(aα + g) = (bαβ − ba∗αβ) + h− g

where ab 6= 0 (and bαβ need not be the leading monomial of bαβ+h). (See Definition 6.1.1
for the notation a∗.)
Actually, we can repeat this reduction step until we have a polynomial which can not

reduced by f . In this case, we use the notation
∗
−→f .

An example of the reduction is the following.

Example 6.2.4. Let f = (2, 0)x2y + (2, 1)y, g = (3, 2)x2y2 ∈ Q2[x, y] with the lex-order
x � y.

g−→fg − (3, 2) ·

(

1

2
, 0

)

· y · f

= (3, 2)x2y2 −
(

(3, 0)x2y2 + (3, 0)y2
)

= (0, 2)x2y2 + (−3, 0)y2

In the above example, we have lpp(g) = x2y2, but after reduction by f , we have still
lpp((0, 2)x2y2 + (−3, 0)y2) = x2y2. (Note that the first coordinate was reduced by f .)
This property is not good for computing Gröbner bases in the ring, and thus we need the
following definition.

Definition 6.2.5 (boolean closed [Wei87]). A polynomial f is called boolean closed
if (lc(f))∗f = f .

Example 6.2.6. Let f = (0,−1)x2y+(0, 3)xy+(0, 2) in Q2[x, y]. Then (lc(f))∗ = (0, 1),
and (lc(f))∗f = f . Hence f is a boolean closed polynomial.
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A reduction →F by a set F of polynomials in also naturally defined.

Remark: If polynomial g is not a boolean closed polynomial, then we have a problem
which we have already seen in Example 6.2.4. Therefore, we need only boolean closed
polynomials to compute reductions. If we have a non-boolean closed polynomial g, then
we have to classify g into a set of boolean closed polynomials for computing reductions.

We are able to construct a set of boolean closed polynomials H from a given finite
set of polynomials F ⊂ R[X̄] such that ideal 〈F 〉 = 〈H〉. Though H is not determined
uniquely, we use the notation BC(F ) (boolean closure of F ) to denote one of such H.
We need a set of boolean closed polynomials for reductions. The following algorithm
provides a set BC(F ) of boolean closed polynomials for a given subset F of R[X̄] such
that 〈F 〉 = 〈BC(F )〉.

Let q be a polynomial inR[X̄]. We denote by q−(lc(q)∗)q the boolean remainder br(q)
of q, and by lc(q)∗q the boolean closure bc(q) of q. So for q 6= 0, degX̄(br(q)) ≤ degX̄(q)
and q = bc(q) + br(q).

Algorithm 6.2.7. BC(F,�) (Boolean Closure[Wei87])

Input: F : a finite set of polynomials in R[X̄ ]
�: a term order on pp(X̄),

Output: Q: a finite set of boolean closed polynomials in R[X̄] with 〈F 〉 = 〈Q〉.
begin
Q←−∅; H←−F

while H 6= ∅ do
Select g from H; H ← H\{g}
Q←−Q ∪ {bc(g)}

if br(g) 6= 0 then
H←−H ∪ {br(g)}

end-if
end-while

return(Q)
end

Example 6.2.8. Let f := (1, 3, 0)x2y + (3, 1, 1)xy + (0, 0, 1)y + (−1, 3,−2) and g :=
(−1, 0, 2)x2 +(−1, 2, 2)xy+(3, 2, 0)x+(2, 0, 0) in Q3[x, y] and � is the lexicographic order
such that x � y. Then by the algorithm, we have

BC({f}) = {(1, 3, 0)x2y + (3, 1, 0)xy + (−1, 3, 0), (0, 0, 1)xy + (0, 0, 1)y + (0, 0,−2)},

BC({g}) = {(−1, 0, 2)x2 + (−1, 0, 2)xy + (3, 0, 2)x + (2, 0, 0), (0, 2, 0)xy + (0, 2, 0)x}.

Hence,
BC({f, g}) = BC({f}) ∪ BC({g}).

Theorem 6.2.9 ([Wei87]). For any finite set F of polynomials, we can construct a finite
set H of boolean closed polynomials such that ideal 〈F 〉 = 〈H〉.

We can naturally define Gröbner bases in R[X̄ ], like the case polynomial rings over a
field K[X̄], as follows.
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Definition 6.2.10 (Gröbner bases). Fix a term order on pp(X̄). A finite set G =
{g1, . . . , gs} of an ideal I is said to be a Gröbner basis for I with respect to � if

〈lm(g1), . . . , lm(gl)〉 = lm(I).

Definition 6.2.11 (S-polynomial [Wei87]). For each pair of polynomials f = aα+ f ′

and g = bβ + g′ where lm(f) = aα, lm(g) = bβ. An S-polynomial of f and g (written :
SP(f, g)) is defined as follows:

SP(f, g) = b
lcm(α, β)

β
· f − a

lcm(α, β)

α
· g

= b
lcm(α, β)

β
· f ′ − a

lcm(α, β)

α
· g′.

Example 6.2.12. Let f = (1, 0, 2)x2y+(2, 3,−1)xy+(2, 1, 0)y, g = (2, 1, 1)x2+(2, 3, 0)x+
(1, 1, 1)y in Q3[x, y]. Then the S-polynomial of f and g are is:

SP(f, g) = (2, 1, 1) · f − (1, 0, 2) · g

= (4, 3,−1)xy + (4, 1, 0)y + (1, 0, 0)xy + (1, 0, 2)y2

= (5, 3,−1)xy + (1, 0, 2)y2 + (4, 1, 0)y.

Theorem 6.2.13 ([Wei87]). Let G ⊂ R[X̄] be a finite set of boolean closed polynomials.
Then G is a Gröbner basis if and only if SP(f, g)−→G0 for any pair f and g of polynomials
in G.

Now, we can construct an algorithm for computing Gröbner bases in R[X̄ ]. This algo-
rithm is essentially same as the Buchberger algorithm [Buc65]. We remark again that R
is not an integral domain.

Algorithm 6.2.14. GBovN(F,�) (Gröbner basis over a von Neumann regular ring)

Input: F : a finite list of polynomials in R[X̄ ]
�: a term order on pp(X̄),

Output: G: Gröbner basis of 〈F 〉 with respect to � in R[X̄ ] with 〈F 〉 = 〈G〉
begin
G←−BC(F,�); C←−{{g, f}|g, f ∈ G}

while C 6= ∅ do
Select {h1, h2} from C; C ← C\{{h1, h2}}

if SP(h1, h2)↓G 6= 0 then
G←−G ∪BC(SP(h1, h2)↓G,�) (see below (∗))
B←−{(f, k)|k ∈ BC(SP(h1, h2)↓G,�), f ∈ G}
C←−C ∪B

end-if
end-while

return(G)
end
((∗) h↓F denotes a normal form of h modulo →F , i.e., h↓F is irreducible modulo →F .)

If a finite set G is a Gröbner basis and reduced, then G is called reduced Gröbner
basis (i.e., ∀p ∈ G, p cannot be reduced by G\{p}). We have the following property.
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Theorem 6.2.15 ([Wei87]). Let G be a reduced Gröbner basis, then any element of G
is boolean closed.

In K[X̄], reduced Gröbner bases serve us as canonical forms of Gröbner bases, however
we have to be careful in R[X̄].

Definition 6.2.16 ([Sat98]). A polynomial f is called monic if it satisfies lc(f) =
(lc(f))∗.

Definition 6.2.17 ([Sat98, Wei87]). A reduced Gröbner basis G ⊂ R[X̄] is called a
stratified Gröbner basis, when it satisfies the following two properties.

1. Every element of G is monic.
2. lpp(f) 6= lpp(g) for any distinct elements f and g of G.

Theorem 6.2.18 ([Wei87]). A stratified Gröbner basis is determined uniquely, i.e., two
stratified Gröbner bases G,G′ ⊂ R[X̄] with 〈G〉 = 〈G′〉 must be identical.

Remember that in Theorem 6.1.12, IR depends on I. So let Rp := R/(pR) where
p ∈ Spec(B(R)). Then for a subset Q of R and p ∈ Spec(B(R)) we let Φp : R → Rp be
the canonical homomorphism, and Qp the image of Q under Φp. The following theorem is
quite important for constructing (alternative) comprehensive Gröbner bases. In the next
theorem, we use the notations Rp and Gp := Φ(G).

Theorem 6.2.19 (Weispfenning [Wei87]). Let G be a finite set of non-zero polyno-
mials in R[X̄].

1. If G is a set of boolean closed polynomials, then G is a Gröbner basis if and only if
for all p ∈ Spec(B(R)), Gp in a Gröbner basis in Rp[X̄].

2. G is a reduced Gröbner basis if and only if G is a set of boolean closed polynomials
and for all p ∈ Spec(B(R)), Gp is a reduced Gröbner basis in Rp[X̄ ].

3. If for all h ∈ R[X̄], G is a Gröbner basis, then (h↓G)p = hp ↓Gp
.

6.3 Criteria for computing Gröbner bases

In [Buc79, Buc70], Buchberger has introduced criteria for computing Gröbner bases in
K[X̄]. It is possible to generalize the criteria to R[X̄ ]. In this section, we present criteria
for computing Gröbner bases in R[X̄ ]. That is, we describe techniques for removing
unnecessary critical pairs. By the criteria, we can improve Algorithm 6.2.14 for computing
Gröbner bases efficiently. The facts of this section is from the author’s paper [Nab05b].

Theorem 6.3.1 (First Criterion). Let f and g be non-zero boolean closed polyno-
mials in R[X̄ ]. If f and g have lc(f) lc(g) = 0 or disjoint leading power products, then

SP(f, g)
∗
−→{f,g} 0.

Proof. If lc(f) lc(g) = 0, then by Definition 6.2.11, SP(f, g) = 0. Assume that f and g
have disjoint leading power products. For all p ∈ Spec(B(R)), then we have fp, gp in
Rp[X̄ ]. If one of fp and gp is 0, then SP(f, g)p = 0 in Rp[X̄ ]. (R is not an integral
domain.) If fp 6= 0 and gp 6= 0, then we can apply the original Buchberger’s criterion

[Buc79]. Hence, we have SP(fp, gp)
∗
−→{fp,gp}0 in Rp[X̄ ]. Therefore, {fp, gp} is a Gröbner

basis for ideal 〈fp, gp〉 in Rp[X̄ ]. By Theorem 6.2.19, {f, g} is a Gröbner basis in R[X̄].

Therefore, SP(f, g)
∗
−→{f,g} 0.

Theorem 6.3.2 (Second Criterion). Let p, g1 and g2 be non-zero boolean closed poly-
nomials in R[X̄] such that the following hold:
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1. lpp(p)|LCM(lpp(g1), lpp(g2)), and
2. lc(g1)

∗ lc(p)∗ lc(g2)
∗ = lc(g1)

∗ lc(g2)
∗.

Then, SP(g1, g2) is generated by an ideal 〈SP(g1, p),SP(g2, p)〉 in R[X̄]. That is,
SP(g1, g2) ∈ 〈SP(g1, p),SP(g2, p)〉.

Proof. We have the following equation (which is an easy exercise).

lc(p)∗
LCM(lpp(g1), lpp(g2), lpp(p))

LCM(lpp(g1), lpp(g2))
SP(g1, g2)

+ lc(g2)
∗ LCM(lpp(g1), lpp(g2), lpp(p))

LCM(lpp(g1), lpp(p))
SP(g1, p)

+ lc(g1)
∗ LCM(lpp(g1), lpp(g2), lpp(p))

LCM(lpp(g2), lpp(p)
SP(g2, p) = 0.

Since lpp(p)|LCM(lpp(g1), lpp(g2)), we have

LCM(lpp(g1), lpp(g2), lpp(p)) = LCM(lpp(g1), lpp(g2)).

By the above equations, we have

lc(p)∗ SP(g1, g2) + lc(g2)
∗ LCM(lpp(g1), lpp(g2), lpp(p))

LCM(lpp(g1), lpp(p))
SP(g1, p)

+ lc(g1)
∗ LCM(lpp(g1), lpp(g2), lpp(p))

LCM(lpp(g2), lpp(p)
SP(g2, p) = 0. (∗)

By the definition of S-polynomial and the assumption 2, we have

lc(p)∗ SP(g1, g2) = SP(g1, g2).

Hence, the equation (∗) can be transformed as follows :

SP(g1, g2) = − lc(g2)
∗ LCM(lpp(g1), lpp(g2), lpp(p))

LCM(lpp(g1), lpp(p))
SP(g1, p)

− lc(g1)
∗ LCM(lpp(g1), lpp(g2), lpp(p))

LCM(lpp(g2), lpp(p)
SP(g2, p)

∈ 〈SP(g1, p),SP(g2, p)〉.

We have the next corollary which directly follows from theorem 6.3.2

Corollary 6.3.3. Let g1, p, g2 and pi be polynomials in R[X̄ ] for each i = 1, 2, . . . l such
that the following holds:

1. lpp(pi)|LCM(lpp(g1), lpp(g2)) for each i = 1, 2, . . . l, and
2. (lc(p1)

∗ ∨ lc(p2)
∗ ∨ . . . ∨ lc(pl)

∗) lc(g1)
∗ lc(g2)

∗ = lc(g1)
∗ lc(g2)

∗.

Then, SP(g1, g2) is generated by an ideal
〈SP(g1, p1), . . . ,SP(g1, gl),SP(g2, p1), . . . ,SP(g2, pl)〉 in R[X̄]. Note that notation ∨ is sum
of boolean algebra. i.e. a ∨ b = a+ b− ab.

The next algorithm is required by Algorithm 6.3.5 ImprovedGB, and contains two cri-
teria above. The following algorithm removes unnecessary critical pairs in R[X̄ ]. The
foundation algorithm of Algorithm 6.3.4 is UPDATE of [BW93](pp.230). The original
algorithm UPDATE [BW93] is improved for the polynomial ring R[X̄] by the two criteria.
The new algorithm which is the following, is called UPDATE, again. The termination
argument follows the original UPDATE.
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Algorithm 6.3.4. UPDATE(Gold, Bold, h,�) (Update of a set of critical pairs and basis)

Input: Gold: a finite subset in R[X̄],
Bold: a finite set of critical pairs in R[X̄ ],
h : a non-zero polynomial ∈ R[X̄],
�: a term order on pp(X̄),

Output: Gnew: updates of Gold, Bnew: update of Bold.
begin
C←−{{h, g}|g ∈ Gold}; D←−∅; E←−∅
while C 6= ∅ do
Select {h, g} from C

if lc(h)∗ lc(g)∗ = 0 then
C ← C\{{h, g}}

else
E ← E∪{{h, g}}; C ← C\{{h, g}}

end-if
end-while
while E 6= ∅ do
Select {h, g1} from C; E ← E\{{h, g1}}

if lpp(h) and lpp(g1) are disjoint or
(

LCM(lpp(h), lpp(g2)) - LCM(lpp(h), lpp(g1))∀{h, g2} ∈ E and

LCM(lpp(h), lpp(g2)) - LCM(lpp(h), lpp(g1))∀{h, g2} ∈ D
)

then
D ← D∪{{h, g1}}
end-if

end-while
F←−∅
while D 6= ∅ do
select {h, g} from D ; D ← D\{{h, g}}

if lpp(h) and lpp(g) are not disjoint then
F ← F∪{{h, g}}
end-if

end-while
Bnew ← ∅
while Bold 6= ∅ do
Select {g1, g2} from Bold; Bold ← Bold\{{g1, g2}}

if lpp(h) - LCM(lpp(g1), lpp(g2)) or LCM(lpp(g1), lpp(h)) = LCM(lpp(g1), lpp(g2))
or LCM(lpp(h), lpp(g2)) = LCM(lpp(g1), lpp(g2)) then

Bnew ← Bnew∪{{g1, g2}}
elif lc(h)∗ lc(g1)

∗ lc(g2)
∗ 6= lc(g1)

∗ lc(g2)
∗ then

Bnew ← Bnew∪{{g1, g2}}
end-elif
end-if

Bnew ← Bnew∪F ; Gnew ← ∅
while Gold 6= ∅ do
select g from Gold; Gold ← Gold\{g}

if lpp(h) - lpp(g) then
Gnew ← Gnew∪{g}

end-if
end-while

Gnew ← Gnew∪{h}



6.4 Alternative comprehensive Gröbner bases 75

end-while
return(Gnew, Bnew)
end

Finally, we construct an algorithm which is more efficient than Algorithm 6.2.14. Let
F be a finite subset of R[X̄] with a order and � a term order on pp(X̄). Then, the
following algorithm outputs a reduced Gröbner basis G in R[X̄] such that 〈F 〉 = 〈G〉, and
eliminates superfluous critical pairs according to the first and second criterion.

Algorithm 6.3.5. ImprovedGB(F,�)

Input: F : a finite list of polynomials in R[X̄ ],
� : a term order on pp(X̄),

Output: G : Gröbner bases of F in R[X̄ ] with 〈F 〉 = 〈G〉.
begin
L←BC(F,�)
G←∅
B←∅
while L 6= ∅ do
Select g from L
L← L\{g}
(G,B)← UPDATE(G,B, g,�)
end-while
while B 6= ∅ do
Select {g1, g2} from B
B ← L\{{g1, g2}}
h← SP(g1, g2)↓G

if h 6= 0 then
H ← BC({h},�)

while H 6= ∅ do
Select h1 from H
H ← H\{h1}
(G,B)← UPDATE(G,B, h1,�)
end-while

end-if end-while
return(G)
end

6.4 Alternative comprehensive Gröbner bases

Here we describe alternative comprehensive Gröbner bases (ACGB). Alternative com-
prehensive Gröbner bases are based on the theory of polynomial rings over commutative
von Neumann regular rings. The idea is the following.

In section 6.4, 6.5 and 6.6, we assume that K is always an infinite field. Let
f1(Ā, X̄), . . . , fk(Ā, X̄) be polynomials in K[Ā, X̄ ] with parameters Ā = {A1, . . . , Am}
and variables X̄ = {X1, . . . , Xn}. Consider each polynomial f(Ā) in K[Ā] as function
from Km to K, then f1(Ā, X̄), . . . , fk(Ā, X̄) become polynomials in the polynomial ring
KKm

[X̄ ] over a von Neumann regular ring KKm

.
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This idea leads us to define an alternative Comprehensive Gröbner basis (ACGB).

Definition 6.4.1 ([SS03]). Let F be a finite set of polynomials in a polynomial ring
K[Ā, X̄ ] over K with variables Ā = {A1, . . . , Am} and X̄ = {X1, . . . , Xn}. Let G be a

Gröbner basis of 〈F 〉 in a polynomial ring K̄K̄m

[X̄ ]. G is called an alternative compre-
hensive Gröbner basis (ACGB) of F with parameters Ā in K̄[X̄ ]. (K̄ is an algebraic
closure of K.)

Remark: In order to enable the above Gröbner bases computation, it suffices to es-
tablish a way to handle the smallest commutative von Neumann regular ring extending
the canonical image of K[Ā]. If the rational field K(Ā) would correspond to it, the situ-
ation would be very nice. Unfortunately, it does not work. Consider the inverse A1

−1 of
A1 in the commutative von Neumann regular ring KKm

. Since A1(a1, . . . , am) = a1

for any a1, . . . , am ∈ K, A1
−1 should be the function φ from Km → K such that

φ(0, a2, . . . , am) = 0 and φ(a1, . . . , am) = 1
a1

if a1 6= 0. Certainly φ is not a member

of K(Ā).

Example 6.4.2 ([SS03]). Let t be a function C2 to C defined by

t(a, b) =

{

a− b, if (a, b) ∈ C2 \V(a− b),
0, otherwise.

The inverse is

t(a, b) =

{

1
a−b

, if (a, b) ∈ C2 \V(a− b),
0, otherwise.

The addition of t and t−1 is

(t+ t−1)(a, b) =

{

a2−2ab+b2+1
a−b

, if (a, b) ∈ C2 \V(a− b),
0, otherwise.

The multiplication

(t · t−1)(a, b) =

{

1, if (a, b) ∈ C2 \V(a− b),
0, otherwise.

Actually, we would like to apply Theorem 6.2.19 for constructing an algorithm for
computing ACGB in K̄K̄m

[X̄ ]. What is a prime ideal in B(K̄K̄m

)?

Proposition 6.4.3. The form of all prime ideals is the following:

∀α ∈ K̄m, Tα :=
{

t ∈ K̄K̄m
∣

∣

∣ t(α) = 0, t(β) ∈ {0, 1} ,∀β ∈ Km\{α}
}

(∗).

Proof. (Ideal) First, we prove that Tα is an ideal in B(K̄K̄m

). It is obviously 0 ∈ Tα. Take
f, g from Tα, then f(α) = 0 and g(α) = 0. Hence, we have (f ∨ g)(α) = (f + g− fg)(α) =
f(α)+ g(α)− f(α)g(α) = 0. This fact implies f ∨ g ∈ Tα. (Note that K is a infinite field,

and the function Km → K is a injection.) Take f from Tα and h ∈ B(K̄K̄m

). We have

(h ∧ f)(α) = 0 since f(α) = 0. Therefore, Tα is an ideal in B(K̄K̄m

).
(Prime) We prove that Tα is a prime ideal. Take f ∧ g ∈ Tα, then (f ∧ g)(α) =
f(α) ∧ g(α) = 0. Therefore, f(α) = 0 or g(α) = 0, this means f ∈ Tα or g ∈ Tα. Tα is a
prime ideal.
Next we prove that all prime ideals of B(K̄K̄m

) has the form (∗). This means that any
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function q from Tα is always zero at only one point α. This prove is essentially same as
Example 6.1.8. Let’s consider the following set;
∀α1, . . . , αi ∈ K

m with αj 6= αl, j, l ∈ {1, . . . , i} and j 6= l,

T(α1,...,αi) :=
{

t ∈ K̄K̄m
∣

∣

∣
t(α1) = 0, . . . , t(αi) = 0, t(β) ∈ {0, 1} ,∀β ∈ K̄m\{α1, . . . , αi}

}

.

That is, any function q from Ti is always zero at only i points.
Let i = 2. Take f ∧ g ∈ T2, then f(α1)∧ g(α1) = 0 and f(α2)∧ g(α2) = 0. Let us consider
the following function;

F :=
{

h ∈ K̄K̄m
∣

∣

∣ h(α1) = 0, h(α2) = 1, t(β) ∈ {0, 1} ,∀β ∈ K̄m\{α1, α2}
}

,

and

G :=
{

h ∈ K̄K̄m
∣

∣

∣ h(α1) = 1, h(α2) = 0, t(β) ∈ {0, 1} ,∀β ∈ K̄m\{α1, α2}
}

.

Take f1 ∈ F and g1 ∈ G. Then f1 ∧ g1 ∈ T2, but f1, g1 /∈ T2. Hence, T(α1,α2) is not a

prime ideal. Even if i > 2, T(α1,...,αi) is not a prime ideal in B(K̄K̄m

). This proof is the

same as the case i = 2. Therefore, the form Tα is only the prime ideal in B(K̄K̄m

).

We define a computable ring T and operations on T which witness that T forms a von
Neumann regular ring. For an arbitrary polynomial f ∈ K[Ā], we can consider it as a

mapping f : K̄m → K̄, i.e., f ∈ K̄K̄m

. Therefore, we can define the canonical embedding

ϕ : K[Ā]→ K̄K̄m

.

Let T be the closure of the image ϕ(K[Ā]) under addition, multiplication, and inverse in

the von Neumann regular ring K̄K̄m

, thus T becomes a von Neumann regular ring.
Let’s define the following map

terT : K[Ā][X̄ ]→ T [X̄ ],

c1α1 + · · ·+ clαl 7→ terT (c1)α1 + · · ·+ terT (cl)αl,

where c1, . . . , cl ∈ K[Ā] and α1, . . . , αl ∈ pp(X̄).

We know the form of all prime ideals. Therefore, if we have B(T ) in Theorem 6.2.19, then
the theorem means the following.

Theorem 6.4.4. Let F = {f1(Ā, X̄), . . . , fs(Ā, X̄)} be a set of polynomials in K[Ā][X̄ ]
(where Ā are parameters and X̄ are variables). Furthermore, let G = {g1, . . . , gl} be the
reduced Gröbner basis of terT (F ) in T [X̄ ]. Then, for each m-tuple ā = (a1, . . . , am) ∈ K̄m,
Gā becomes the reduced Gröbner basis of the ideal 〈f1(ā, X̄), . . . , fs(ā, X̄)〉 in K̄[X̄ ]. Here
Gā denotes the set {g1ā, . . . , glā} of polynomials g1ā, . . . , glā in K̄[X̄ ] given from g1, . . . , gl

by replacing each coefficient c with c(ā). (Remember that c is an element of T ).

By the above theorem, the Gröbner bases satisfy the main property of comprehensive
Gröbner bases. Therefore, they are called “alternative comprehensive Gröbner bases”.
In fact, we need to define the algebraic structure of T to compute a Gröbner bases in
T [X̄]. That is, we need addition, multiplication, and inverse in the von Neumann regular
ring T . In [SS02, SS03], they are introduced and defined. In this thesis, we do not describe
them. If one is interested in the detail, the author strongly recommends to see [SS03]. In
the algebraic structure of T , the following definitions are required for computing Gröbner
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bases in T [X̄]. In the next section, the notations of the following definition will be applied
for describing the special types of comprehensive Gröbner bases. Therefore, we give the
following two definitions.

Definition 6.4.5 (preterrace [SS03]). A triple (s, t, r) is called a preterrace on K[Ā]
if s and t are finite sets of polynomials in K[Ā] and r = g

h
for some g, h ∈ K[Ā] which

satisfy

1. V(s) ⊆ V(t),
2. (V({g}) ∪ V({h})) ∩ (V(t)\V(s)) = ∅, i.e., g(ā) 6= 0 and h(ā) 6= 0 for any ā ∈

V(t)\V(s).

For a given preterrace p = (s, t, r), the support of p (written: supp(p)) is the set of
V(t)\V(s) ⊆ Km. For a preterrace p = (s, t, g

h
) on K[Ā] and ā ∈ Km, we define p(ā) ∈ K

by

p(ā) =

{

g(ā)
h(ā) , if ā ∈ supp(p) = V(t)\V(s),

0, otherwise.

Therefore, p can be consider as a member of T .

Definition 6.4.6 (terrace [SS03]). A finite set {p1, . . . , pl} is called a terrace on K[Ā]
of each pi (i=1,. . . ,l)is a preterrace onK[Ā] such that � (pi) 6= ∅ and supp(pi)∩supp(pj) =
∅ for any distinct i, j ∈ {1, . . . , l}. The support of a terrace t is defined by

supp(t) =
⋃

p∈t

supp(p) ⊆ Km.

Example 6.4.7. Let f = abx2y + x+ by, g = y2 + ax+ b be polynomials in C[a, b][x, y].
We consider the map tert : C[a, b][x, y] → T(a,b)[x, y] where T(a,b) is the von Neumann
regular ring of equivalence class on terrace on C[a, b]. Then,

terT (f) = [(C2−V(ab), ab)]x2y + [(C2, 1)]x + [(C2−V(b), b)]y,

terT (g) = [(C2, 1)]y2 + [(C2−V(a), a)]x + [(C2−V(b), b)]1.

The one of coefficients [(C2−V(ab), ab)] means

{

ab, if ab 6= 0,
0, otherwise.

One can notice that every coefficients has the parametric spaces and elements of C[a, b].
That is, every coefficients has preterraces (see Definition 6.4.5).

Now, since we know Algorithm 6.3.5, Theorem 6.4.4 and the structure of T [X̄ ] (which
is from [SS03]), we can construct an algorithm for computing alternative comprehensive
Gröbner bases.

Algorithm 6.4.8. ACGB(F,�) (Alternative Comprehensive Gröbner Bases)

Input F : a subset of K[Ā][X̄ ],
�: a term order on pp(X̄),

Output G : an alternative comprehensive Gröbner basis for 〈F 〉 with respect to �.

1. Compute terT (F ).
2. Compute a Gröbner basis G for 〈terT (F )〉 with respect to � in T [X̄ ] by the Algo-

rithm 6.3.5 where T is a commutative von Neumann regular ring.
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3. G is an alternative comprehensive Gröbner basis for 〈F 〉 with respect to �.

In Figure 6.1, we give the rough procedure of Algorithm 6.4.8.

Alternative comprehensive Gröbner bases have the following nice property, which do
not hold in standard comprehensive Gröbner bases [SS03].

“There exists a canonical form of an alternative comprehensive Gröbner
basis in a natural way.”

Since an alternative comprehensive Gröbner basis is already in a form of a Gröbner
basis in a polynomial ring over a commutative von Neumann regular ring, we can use a
stratified Gröbner basis as a canonical form an alternative comprehensive Gröbner basis.
By the same reason above, we can use reductions of an alternative comprehensive Gröbner
basis.

F : a set of polynomials

with parameters

terT (F ): a set of

polynomials

G: a Gröbner basis

for 〈terT (F )〉

Compute a

Gröbner basis

ACGB

K[Ā][X̄ ]
T [X̄]

(over von Neunamm regular ring)

terT

Figure 6.1 A computation method for ACGB

The algorithm ACGB has been implemented in the computer algebra systems Risa/Asir
by Suzuki in [SS03]. In the following example, we give the outputs of the program.

Example 6.4.9. Let F = {bx2y+3, axy2+bxy+b} be a set of polynomials in C[a, b][x, y],
a, b parameters, x, y variables and � the graded reverse lexicographic order such that
x � y. The Suzuki’s program outputs the following as an alternative comprehensive
Gröbner basis for 〈F 〉 with respect to �;

[[(V[b],1)]*1,

[(V[b*a]-V[b],1)]*y+[(V[b*a]-V[b],1/3*b)]*1,

[(V[0]-V[b*a],1),(V[b*a]-V[b],1)]*x+[(V[0]-V[b*a],(-3*a)/(b^2))]*y+[(V[0]



80 Chapter 6 Comprehensive Gröbner bases and von Neumann regular rings

-V[b*a],(-3)/(b)),(V[b*a]-V[b],(-3)/(b))]*1,

[(V[0]-V[b*a],1)]*y^3+[(V[0]-V[b*a],(2*b)/(a))]*y^2+[(V[0]-V[b*a],(b^2)/(

a^2))]*y+[(V[0]-V[b*a],(1/3*b^3)/(a^2))]*1].

We can understand the output as follows;







{1}, if b = 0,
{y + 1

3
b, x− 1

b
}, if ab = 0, b 6= 0,

{x+ y − 3
b
, y3 + 2b

a
y2 + b2

a2 y + b3

3a2 }, if ab 6= 0.

6.5 ACGB on varieties (ACGB-V)

In this section, we present a special type of ACGB which is called ACGB-V (ACGB
on Varieties). When there exists a constraint of parameters Ā in a form of polynomial
equations f1(Ā) = 0, . . . , fl(Ā) = 0, it is more natural to consider the range of values for
Ā to be the variety V(f1(Ā), . . . , fl(Ā)) than a whole space Km. One of the main ideas of
ACGB is that we consider a polynomial in Ā as a function fromKm toK, i.e., as a member
of KKm

that is a commutative von Neumann regular ring, and then treat it as a member
of the regular closure of K[Ā] in KKm

. When such constrains exists, we can replace KKm

by KV(f1(Ā),...,fl(Ā)). Note that the restriction of K[Ā] on KV(f1(Ā),...,fl(Ā)) is isomorphic
to a quotient ring K[Ā]/I(V(f1, . . . , fl)), where I(V(f1(Ā), . . . , fl(Ā))) denotes an ideal
of K[Ā] that consists of all polynomials vanishing at every point of V(f1(Ā), . . . ,V(Ā)).
Hence, it is isomorphic to K[Ā]/ rad(〈f1(Ā), . . . , fl(Ā)〉) in case K is an algebraically
closed field. (Here, rad(I) denotes a radical ideal of I.) The above observation leads us
to the following definition.
The basic notion of this section has been studied by the author [SSN03b, SSN03a, Nab05a].

Definition 6.5.1 (ACGB-V). Let K be an algebraically closed field, F a set of poly-
nomials in K[Ā][X̄ ] and I a polynomial ideal in K[Ā]. An ACGB-V (Alternative
Comprehensive Gröbner Basis on a Variety) of 〈F 〉 with respect to I is defined as follows.
Let T be a regular closure of the quotient ring K[Ā]/ rad(I) in the commutative von Neu-
mann regular ring KV(I). Then, there exists a stratified Gröbner basis of 〈F 〉 in T [X̄]. W
call G an ACGB-V of 〈F 〉 with respect to the ideal I.

Theorem 6.5.2. Using the same notation as in the above definition, let F =
{f1(Ā, X̄), . . . , fl(Ā, X̄)} and G = {g1(X̄), . . . , gk(X̄)} an ACGB-V of 〈F 〉 with respect
to I of K[Ā]. Then following properties hold for any m-tuple ā ∈ Km belonging to the
variety V(I):

1. Gā = {g1 ā(X̄), . . . , gkā(X̄)}\{0} is a reduced Gröbner basis of the ideal generated
by F (ā) = {f1(ā, X̄), . . . , fk(ā, X̄)} in K[X̄].

2. For any polynomial h(X̄) ∈ T [X̄ ], we have (h↓G
)ā(X̄) = hā(X̄) ↓Gā(X̄).

(Note that ā is a prime ideal in B(KKm

). For p ∈ Spec(B(R)) we let Φp : R→ Rp be the
canonical homomorphism where R is a commutative von Neumann regular ring. Then,
Gp := Φ(G). That is, Gā = Φ(G).)

Proof. This proof is exactly same as the proof of Theorem 3.2 of [SS02] or Theorem 4.3
[SS03].

Example 6.5.3. Let F be the set of polynomials {a− b, axy− bx3y− 3a, bxy− 3bx− 5b}
in Q[a, b][x, y], a, b parameters and x, y variables. Take a lexicographic order � such
that y � x. When we are interested in only values such that the ideal becomes proper,
it is more natural to construct an ACGB-V of 〈F 〉 with respect to the ideal 〈a − b〉.
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Since 〈a − b〉 is already a radical ideal, we construct a stratified Gröbner basis G of
{a−b, axy−bx3y−3a, bxy−3bx−5b} in T [x, y] where T is a regular closure of Q[a, b]/〈a−b〉.
This G is the desired ACGB − V of 〈F 〉 and has the following form using terraces:

G = {[(V(a− b)− V(a− b, a), 1)]y + [(V(a− b)− V(a− b, a), −15
2 )]x

+[(V(a− b)− V(a− b, a),−8)],
[(V(a− b)− V(a− b, a), 1)]x2 + [(V(a− b)− V(a− b, a), 2

3 )]x

+[(V(a− b)− V(a− b, a), −2
3

)]}.

We should note that the ACGB-V of 〈(a−b)+(axy−bx2y−3a)3+(bxy−3bx−5b)4, axy−
bx2y − 3a, bxy − 3bx− 5b〉 with respect to 〈a− b〉 has the same form.

6.6 Computation methods for ACGB-V
In this section, we present algorithms for computing ACGB-V. As we saw, when there is a
constraint of parameters Ā in a form of polynomial equations f1(Ā) = 0, . . . , fl(Ā) = 0, it
is more natural to consider the range of values for Ā to be the variety V(f1(Ā), . . . , fl(Ā))
than a whole space Km. First, we describe the case 〈f1(Ā), . . . , fl(Ā)〉 is a zero-
dimensional ideal in K[Ā]. Second, we generalize the method of zero-dimensional
case to general cases. These computation method is introduced by the author in
[SSN03b, SSN03a, Nab05a].

Definition 6.6.1 (Definition 6.46 [BW93]). Let I be a proper ideal of K[Ā] and
Ū ⊆ Ā. Then Ū is called independent modulo I if IŪ = I ∩ K[Ū ] = {0}. Moreover,
Ū is called maximally independent modulo I if it is independent modulo I and not
properly contained in any other independent set modulo I. The dimension dim(I) of I
is defined as

dim(I) =
{

|Ū |
∣

∣ Ū ⊂ Ā independent modulo I
}

.

We will, rather obviously, call an ideal of K[Ā] zero-dimensional if it is proper and has
dimension zero.

Definition 6.6.2 (DCGB). Let F = {f1(Ā, X̄), . . . , fl(Ā, X̄)} in K[Ā][X̄ ] and S a set of
polynomials {s1(A1), . . . , sm(Ām)}, where si(Ai) is a non-constant univariate polynomial
in K[Ai] for each i = 1, . . . ,m. A set G = {g1(Ā, X̄), . . . , gk(Ā, X̄)} of polynomials in
K[Ā][X̄ ] is called a discrete comprehensive Gröbner basis (DCGB) of 〈F 〉 with
respect to (Ā, S) if it satisfies the following:
G(ā) = {g1(ā, X̄), . . . , gk(ā, X̄)}\{0} is a Gröbner basis for 〈f1(ā, X̄), . . . , fl(ā, X̄)〉 in
K̄[X̄] for any elements ā = (a1, . . . , am) ∈ K̄m satisfying s1(a1) = 0, . . . , sm(am) = 0.

Lemma 6.6.3. Let I be a zero dimensional radical ideal in a polynomial ring K[Ā].
Then, K[Ā]/I becomes a commutative von Neumann regular ring.

Proof. Present I as an intersection of prime ideals P1, . . . , Pk of K[Ā]. Since I is zero
dimensional, each Pi is also zero-dimensional. Therefore, Pi is a maximal ideal, and
thus, we can apply the Chinese remainder theorem to obtain an isomorphism K[Ā]/I ∼=
K[Ā]/P1 × · · · ×K[Ā]/Pk. The right-hand side is a direct product of fields, hence it is a
commutative von Neumann regular ring.

Theorem 6.6.4 ([SSN03a]). Let I be a zero dimensional ideal in a polynomial
ring K[Ā], F = {f1(Ā, X̄), . . . , fl(Ā, X̄)} a set of polynomials in K[Ā][X̄ ] and
G = {g1(Ā, X̄), . . . , gk(Ā, X̄)} a stratified Gröbner basis for 〈F 〉 in a polynomial ring
(K[Ā]/ rad(I))[X̄ ] over a commutative von Neumann regular ring K[Ā]/ rad(I). Then,
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we have the following two properties for any m-tuple ā = (a1, . . . , am) ∈ K̄m belonging
to the variety V(I):

1. G(ā) = {g1(ā, X̄), . . . , gk(ā, X̄)}\{0} is a reduced Gröbner basis of the ideal gener-
ated by F (ā) = {f1(ā, X̄), . . . , fk(ā, X̄)} in K[X̄].

2. For any polynomial h(Ā, X̄) ∈ K[Ā][X̄ ], we have (h(Ā, X̄)↓G)(ā, X̄) =
h(ā, X̄) ↓G(ā,X̄).

Like the algorithm ACGB, by Theorem 6.6.4 and Algorithm 6.3.5, we can easily construct
an algorithm for computing discrete comprehensive Gröbner bases.

Algorithm 6.6.5. DCGB(F, S,�) [SSN03a]

Input F : a subset of K[Ā][X̄ ],
S: a zero-dimensional ideal in K[Ā],
�: a term order on pp(X̄),

Output G : a discrete comprehensive Gröbner basis for 〈F 〉 with respect to S.

1. Consider the map ψ : K[Ā]/ rad(S) → Ks where s = |V(rad(S))| (the number of
solutions).

2. Compute ψ(F ).
3. Compute a Gröbner basis G for 〈ψ(F )〉 with respect to � in (K[Ā]/ rad(S)([X̄ ] by

the Algorithm 6.3.5.
4. Compute ψ−1(G). There exists a map ψ−1 because K[Ā]/ rad(S) is isomorphic to
Ks.

In Figure 6.2, we give the rough procedure of Algorithm 6.6.5.

over K[Ā] over von Neumann
regular rings

F : a set of polynomials

with parameters
ψ(F ): a set of

polynomials

G: a Gröbner basis

for 〈ψ(F )〉

ψ−1(G):a comprehensive

Gröbner basis for 〈F 〉

DCGB

ψ

ψ−1

Figure 6.2 A computation method for DCGB

Compute a Gröbner
basis
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This algorithm has been implemented by the author in prolog*1. In the next example,
we give an output of the program.

Example 6.6.6. Let F = {2xy2z+x+2, aby2z+2bx+9, bx+ayz+2, a3 +4a2 +3a, 2b3−
5b2 + 3b} be a set of polynomial in C[a, b][x, y, z], a, b parameters, x, y variables and �
the graded reverse lexicographic order. Then, 〈a3 + 4a2 + 3a, 2b3 − 5b2 + 3b〉 is a zero
dimensional ideal in C[a, b]. We can use the algorithm DCGB. The program outputs the
following set G;

[(2/3*b^2-5/3*b+1),

(-2/9*a^2*b^2+5/9*a^2*b-4/9*a*b^2+10/9*a*b)*y+(32352520/138649329*a^2*b^2

-6228140/15405481*a^2*b+4717108/46216443*a*b^2-2362394/15405481*a*b)*z+(2

29518223/138649329*a^2*b^2-293241527/92432886*a^2*b+319292681/92432886*a*

b^2-394962473/61621924*a*b),

(-2/3*b^2+5/3*b)*x+(25960/104013*a^2*b^2-4860/11557*a^2*b+2692/34671*a*b^

2-1490/11557*a*b)*z+(758285/624078*a^2*b^2-2890075/1248156*a^2*b+785765/3

12039*a*b^2-3051715/624078*a*b-65/18*b^2+247/36*b),

(-2/9*a^2*b^2+5/9*a^2*b-4/9*a*b^2+10/9*a*b)*z^2+(41/24*a^2*b^2+23/6*a^2*b

+61/12*a*b^2+21/2*a*b)*z+(9001/1944*a^2*b^2-4201/1944*a^2*b+54007/3888*a*

b^2-24727/3888*a*b),

(2/9*a^2*b^2-5/9*a^2*b+4/9*a*b^2-10/9*a*b-2/3*b^2+5/3*b)*z*y^2+(1/9*a^2*b

^2-41/234*a^2*b+2/9*a*b^2-41/117*a*b-1/3*b^2+41/78*b)].

Therefore, G is a discrete comprehensive Gröbner basis. In fact, a comprehensive Gröbner
basis for 〈F 〉 is G ∪ {a3 + 4a2 + 3a, 2b3 − 5b2 + 3b}. That is, we can understand

{

G if the support is V(a3 + 4a2 + 3a, 2b3 − 5b2 + 3)

{1} if the support is C2 \V(a3 + 4a2 + 3a, 2b3 − 5b2 + 3).

Second, we describe an algorithm for computing ACGB-V. Namely, we extend the algo-
rithm DCGB to the more general situation of ACGB-V. In order to explain the algorithm
we need the following lemma.

Lemma 6.6.7 (Lemma 7.47 [BW93]). Let I ⊂ K[Ā] be an ideal and Ū ⊂ Ā be
a maximal independent set of variables with respect to I. Then, I ⊂ K(Ū)[Ā\Ū ] is a
zero-dimensional ideal.

In order to compute a maximal independent modulo I, we can apply the algorithm
DCGB for computing ACGB-V. However, we can not use the method directly for comput-
ing ACGB-V, because we have to regard Ū as a set of parameters.

For example, let I = 〈ab + b + c + 1〉, F = {bx + ay + c, cx2 + ab} where a, b, c are
parameters and x, y are variables. Then I is not a zero-dimensional ideal in Q[a, b, c], but
I{a,c} is a zero-dimensional ideal in Q(a, c)[b]. However, it is only true if a 6= −1. The
case a = −1 is overlooked, though if should not be. By I = 〈ab+ b+ c+ 1〉, there exists
a = −1. To solve this problem, we propose the following algorithm. The first key point is
to compute ACGB where Ū is a set of parameters and {Ā\U} is a set of variables. The
second key point is an information of support (or preterrace). In the following algorithm,
we use the notation supp which is from Definition 6.4.5.

*1 Prolog is a logic programming language. The author used “SICStus Prolog”.
http://www.sics.se/isl/sicstuswww/site/index.html
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Algorithm 6.6.8. Div-zero(I)

Input I : a polynomial ideal in K[Ā],
Output M = {(V,Q)|Q : a set of variables in Ā; V : a set of polynomials in K(Q)[Ā\Q]
with supp(lpp(h1)) = supp(lpp(h2)), ∀h1, h2 ∈ V }.

1. Z ← I; M ← ∅;
2. R← Compute a radical ideal of Z in K[Ā] (∗1)
3. U ← Compute a maximal independent set with respect to R in K[Ā] (∗2)
4. A ← Compute ACGB with respect to Z (and the lexicographic order �) where U

is a set of parameters and {Ā\U} is a set of variables. (We can obtain a reduced

stratified Gröbner basis in K̄K̄|U|

[Ā\U ].)

5. N ← Classify A into N which is a set of sets of polynomials in K̄K̄|U|

[Ā\U ]. N =
{N1| supports of all monomials p1 are same, and supp(p1) = supp(p2), ∀p1, p2 ∈ N1

}. That is, N1 is a set of polynomials in K̄K̄|U|

[Ā\U ] and all polynomials in N1

have a same support.
(

We can compute this N by using supports (head idempotent). This
algorithm is similar to the algorithm BC.

)

6. while N 6= ∅ do
Select J from N ; N ← N\{J}
if 〈J〉 is a zero-dimensional ideal in K(U)[Ā\U ] then
M ←M ∪ (J, U)
else
S ← Compute all combinations of polynomials of T1 where supports of all element

of J is [V(T1)− V(T2)]. (∗∗)
while S 6= ∅ do
Select s1 from s; s← s\s1
Z ← {s1 } ∪ Z
goto 2
end-while

end-if
end-while





(∗∗) Let [V(T1)−V(T2)] ⊂ K̄
K̄|U|

be a support of J where T1, T2 are sets
of polynomials in K[U ]. Then we can consider that J is restricted to T1.
So we consider about Z∪ {one of T1 } in the next step.





Remark: In (∗1) and (∗2), there exist algorithms for computing a radical ideal and a
maximal independent set U modulo I.

By the algorithm ACGB and the Remark, this algorithm clearly terminates and outputs
correctly.

By the above algorithm we can obtain zero-dimensional ideals from I in several poly-
nomial rings.
Let us consider I = 〈ab+ b+ c+1〉 again. I is already a radical ideal and {a, c} is a max-
imal independent set with respect to I in Q[a, b, c]. We can compute ACGB of I where
a, b are parameters and b is variable. Then, the algorithm ACGB outputs the following:
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[[(V[(c+ 1) ∗ (a+ 1)]− V[c+ 1], 1)] ∗ 1,
[(V[0]− V[a+ 1], 1)] ∗ b+ [(V[0]− V[(c+ 1) ∗ (a+ 1)], (c + 1)/(a + 1))] ∗ 1]. (∗)

Look at the first polynomial. Then, we have {1} when the support is [[(V((c + 1) ∗ (a +
1)) − V(c + 1)]. So we don’t need it. In the second polynomial, we classify the support
[V(0) − V(a + 1)] to [V(0) − V((a + 1)(c + 1))] and [V((a + 1)(c + 1)) − V(a + 1)] where
V(0) = C2. First we consider the support [V(0) − V((a + 1)(c + 1))]. In the support
[V(0)−V((a+1)(c+1))], we have 〈b+ c+1

a+1 〉 which is a zero-dimensional ideal in Q(a, c)[b].

Next by the algorithm, we have to consider three supports v1 = [V((a+1)(c+1))−V(a+1)],
v2 = [V((a + 1)(c + 1)) − V(c + 1)] and v3 = [V(a + 1, c + 1)] (because in the support
[V(0)− V((a+ 1)(c+ 1))], I is restricted to 〈(a+ 1)(c + 1)〉). Actually, now we have

V((a+ 1)(c + 1)) = v1 ∪ v2 ∪ v3.

(1) If we consider the support v1, then we obtain 〈b〉 from (∗)
(2) If we take the support v2, then we already consider the case.
(3) If we take the support v3, then we can obtain 〈ab+ b+ c, a+ 1, c+ 1〉 = 〈a+ 1, c+ 1〉
which is a zero-dimensional ideal in Q(b)[a, c].

Therefore by the algorithm we obtained:







〈b+ c+1
a+1
〉, zero-dim. ideal in Q(a, c)[b], supp. [V(0)− V((a+ 1)(c + 1)], (1)

〈b〉, zero-dim. ideal in Q(a, c)[b], supp. [V((a+ 1)(c + 1)) − V(a+ 1)], (2)
〈a+ 1, c+ 1〉, zero-dim. ideal in Q(b)[a, c], supp. [V(c+ 1, a+ 1)]. (3)

We already know the method of DCGB (zero-dimensional case) [SSN03b, SSN03a].
By the algorithm Div-zero, we can obtain some zero-dimensional ideals, and we apply
DCGB’s method for computing ACGB-V. However, note that when we compute DCGB
in several polynomial rings, we regard a maximal independent set as parameters. Because
these zero-dimensional ideals have parameters which are in the coefficient domain K(U) of
their polynomial ring. For example, let F = {bx+ay+c, cx2+ab} and � the lexicographic
order such that x � y.

In case (3), we regard b as a parameter when we compute comprehensive Gröbner basis :
(That is, a+ 1 = 0, c + 1 = 0, the support is [V(a+ 1, c + 1)])

[[(V[-b]-V[-1],1)]*y+[(V[-b]-V[-1],1)]*1,

[(V[0]-V[b],1)]*x+[(V[0]-V[-b],(-1)/(b))]*y+[(V[0]-V[-b],(-1)/(b))]*1,

[(V[0]-V[b],1)]*y^2+[(V[0]-V[b],2)]*y+[(V[0]-V[b^4+b],b^3+1)]*1,

[(V[b],1)]*x^2].

To obtain comprehensive Gröbner basis for {F, I}, we have to also compute ACGB in
cases (1) and (2).

In case (1) : (b+ c+1
a+1

= 0, the support is [V(0)− V((a+ 1)(c + 1))]),

[[(V[a^2+a,(-c^2-c)*a-c^2-c]-V[c*a+c,a^2+a],1),(V[(-c^2-c)*a^2+(-c^2-c)*a

]-V[(-c-1)*a],1),(V[(-c^2-c)*a^2+(-c^2-c)*a]-V[(c^2+c)*a+c^2+c],1)]*1,

[(V[(-c-1)*a^2+(-c-1)*a]-V[a^2+a],1)]*y+[(V[(-c^2-c)*a-c^2-c,(-c-1)*a^2+(

-c-1)*a]-V[a^2+a,(-c^2-c)*a-c^2-c],(c)/(a))]*1,

[(V[0]-V[(c^2+c)*a^2+(c^2+c)*a],1)]*y^2+[(V[0]-V[(c^2+c)*a^2+(c^2+c)*a],(

2*c)/(a))]*y+[(V[0]-V[(-c^5-c^4)*a^5+(-4*c^5-4*c^4)*a^4+(-5*c^5-2*c^4+6*
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c^3+4*c^2+c)*a^3+(-3*c^5+6*c^3+4*c^2+c)*a^2+(-c^5-c^4)*a],(c^3*a^3+3*c^3

*a^2+(2*c^3-3*c^2-3*c-1)*a+c^3)/(c*a^5+3*c*a^4+3*c*a^3+c*a^2))]*1,

[(V[0]-V[(c^2+c)*a^2+(c^2+c)*a],1),(V[-c^2-c,(-c-1)*a]-V[-c-1],1)]*x+[(V

[0]-V[(c^2+c)*a^2+(c^2+c)*a],(-a^2-a)/(c+1))]*y+[(V[0]-V[(-c^2-c)*a^2+(-

c^2-c)*a],(-c*a-c)/(c+1))]*1,

[(V[(c^2+c)*a+c^2+c]-V[(c^2+c)*a+c^2+c,c*a^2+c*a],1)]*x^2].

In case (2) : (b = 0, the support is [V((a+ 1)(c + 1))− V(a+ 1)]),

[[(V[c*a]-V[c],1)]*1,

[(V[0]-V[a],1)]*y+[(V[0]-V[c*a],(c)/(a))]*1,

[(V[0]-V[c*a],1)]*x^2]

Then in each case, we obtained a parametric Gröbner basis for 〈F 〉 ∪ I by using ACGB
method.

We described a natural idea to generalize the algorithm DCGB. The first key point of
this idea is what variables are regarded as parameters (or variables). Then we compute
ACGB because we need the information of the support. The second key point is that “add
an information of support to an original ideal in K[Ā]”. By the algorithm Div-zero we can
classify the original ideal I to some zero-dimensional ideals in several polynomial rings.
Then, we can apply the computation method DCGB (zero-dimensional) for computing
comprehensive Gröbner bases. This is the procedure of computing ACGB-V. Since we
need to compute a Gröbner basis in a polynomial ring over a von Neumann regular ring,
the outputs hold the nice properties of (reduced) Gröbner basis over von Neumann regular
rings. For instance, if we substitute any values for parameters of the outputs (reduced
Gröbner bases in a polynomial ring over a von Neumann regular ring), then the set
computed is always the reduced Gröbner bases.

6.7 A direct products of fields approach to comprehensive

Gröbner bases over finite fields

In this section, we propose a computation method for computing comprehensive Gröbner
bases over finite fields by using finite direct products of fields. In fact, this approach is
the same as Algorithm 6.6.5. We apply Algorithm 6.6.5 for computing comprehensive
Gröbner bases over finite fields.

As we saw some methods for computing comprehensive Gröbner bases in commutative
polynomial rings in chapter 4, 5 and 6. In polynomial rings over a finite field, theoret-
ically we can construct an algorithm for computing comprehensive Gröbner bases over
finite fields, except for the method of alternative comprehensive Gröbner bases (ACGB).
However, there are only implementations for characteristic zero fields.
The method of ACGB can not construct comprehensive Gröbner bases for positive char-
acteristic, because it needs the injection K[Ā]→ KKm

. We know that KKm

is a commu-
tative von Neumann regular ring. We can apply the theory of von Neumann regular rings
to parametric polynomials. However, if K is a finite field, then the maps K[Ā] → KKm

are not injections. Therefore, we can not use the method of ACGB for the case finite
fields. However, we can apply the method of DCGB for them. In this section, we apply
the method of DCGB for computing omprehensive Gröbner bases over finite fields. In
[Nab05b], this approach has been studied by the author.
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6.7.1 Some mathematical facts

In this subsection we show three lemmas and relations between parametric polynomials
and polynomials over von Neumann regular rings. Some of the lemmas are from [SSN03b].

Lemma 6.7.1. Let K be a field, S1, . . . , Sm non-empty finite subsets of K,
Ā = {A1, . . . , Am} indeterminate, pi(Ai) :=

∏

q∈Si
(Ai − q) for each i = 1, . . . ,m.

Let ᾱ1, . . . , ᾱM be an enumeration of the set {(a1, . . . , am)|ai ∈ Si for each i = 1, . . . ,m
} and ᾱj = (αj1, . . . , αjm) for each j = 1, . . . ,M .
Then K[Ā]/〈p1(A1), . . . , pm(Am)〉 is isomorphic to K[Ā]/〈A1 − α11, . . . , Am − α1m〉 ×
· · · × K[Ā]/〈A1 − αM1, . . . , An − αMm〉 and KM . (Recall that every direct product
of fields is a von Neumann regular ring in section 6.1. K[Ā]/〈p1(A1), .., pm(Am)〉 is
a von Neumann regular ring.) The mapping Φ from K[Ā]/〈p1(A1), . . . , pm(Am)〉 to
K[Ā]/〈A1 − α11, . . . , An − α1n〉 × · · · × K[Ā]/〈A1 − αM1, . . . , An − αMm〉 defined by
Φ(h(Ā)) = (h(ᾱ1), .., h(ᾱM )) is an isomorphism.

Proof. This is a easy consequence of the Chinese remainder theorem. 〈A1−αi1, . . . , An−
αim〉 is a maximal ideal for each i = 1, . . . ,M in K[Ā]. K[Ā]/〈A1 −αi1, . . . , An −αim〉 is
isomorphic to the field K. Hence, K[Ā]/〈p1(A1), . . . , pm(Am)〉 is isomorphic to KM .

Let F be a finite field with cardinality |F | = p, and Ā parameters which can take
any elements from F. Then we can consider all elements of F as every solutions of the
equation

∏p
j=1, qj∈F(Y − qj) = 0 where Y is a indeterminate. Hence we can consider

that parameters are constrained the equations, and thus, like the case DCGB, we have
the quotient ring F[Ā]F := F[Ā]/ 〈

∏p
j=1, qj∈F(Ai − qj) | i = 1, . . . ,m〉. Consequently,

F[A1, . . . , Am]F is isomorphic to F(pm) which is a finite direct product of field. Namely, we

can consider F[Ā]F instead of F(pm). This observation leads us to consider Gröbner bases
over commutative von Neumann regular ring for comprehensive Gröbner bases over finite
fields.

Let f be a polynomial in F[A1, . . . , Am]F[X̄ ] where A1, . . . , Am are parameters and X̄ are

variables. Then, by the above observation, we can consider f as an element of F(pm)[X̄ ].
We can apply this fact to compute Gröbner bases in F[A1, . . . , Am]F[X̄ ].

We need the following two lemmas to construct an algorithm for computing Gröbner
bases over finite fields. The following lemma directly follows from theorem 6.2.19.

Lemma 6.7.2 ([SSN03b]). Let K be a field and R := KM a von Neumann regular
ring where M ∈ N. Fix a term order on pp(Ā). Let G = {g1, g2, . . . gk} be the strati-
fied reduced Gröbner basis of an ideal 〈f1, f2, . . . , fl〉 in a polynomial ring R[X̄]. Then,

{g1
(i), g2

(i), . . . , gk
(i)} becomes the reduced Gröbner basis of the ideal 〈f1

(i), f2
(i), . . . , fl

(i)〉
in the polynomial ring K[X̄] for each i = 1, 2, . . . ,M . Where, h(i) denotes a polynomial in
K[X̄] given from a polynomial h of R[X̄] with replacing each coefficient c in h by the ith
coordinate of c. Remember that c is an element ofKM , so it has a form c = (c1, c2, . . . , cM )
for some elements c1, c2, . . . cM in K.

Lemma 6.7.3 ([SSN03b]). With the same notations and conditions in lemma 6.7.2,
let Gi = {g1

(i), g2
(i), . . . gk

(i)} for each i. Then for any polynomial h in R[X̄ ], we have
(h↓G)(i) = h(i)↓Gi

for each i. Remark that, h↓G denotes the normal form of h by the
reductions of S.

Proof. The proof is essentially same as the proof of property (2) of theorem 3.3 [SS02] or
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the proof of property 2 of the theorem 3.2 [SS03].

6.7.2 Comprehensive Gröbner bases over finite fields

In this subsection we show comprehensive Gröbner bases over finite fields, comprehensive
Gröbner bases with restricted values of parameters and membership problems of para-
metric polynomials.

• Comprehensive Gröbner bases over finite fields

We have already known the relation between parametric polynomials over finite fields
and polynomials over von Neumann regular rings in the previous subsection. We also
know Algorithm 6.3.5 for computing Gröbner basis over a von Neumann regular ring. We
are ready to state comprehensive Gröbner bases over finite fields by using a finite direct
product of fields.

Theorem 6.7.4. Let F be a finite field with cardinality |F | = p, and Ā parameters which
can take arbitrary elements from F. Then, F[Ā]F becomes a von Neumann regular ring
as is shown in the previous subsection. Let H be a finite set of polynomials in F[Ā]F[X̄ ],
where X̄ are variables. Fix a term order on pp(X̄). Considering H to be a finite set

of polynomials in Fpm

[X̄ ], construct the stratified reduced Gröbner basis G of the ideal
〈H〉 in this polynomial ring. Then we have the following properties. For any m-tuple
ā = (a1, . . . am) ∈ Fm,

1. the set of polynomials
G(ā) = {g(ā, X̄)|g ∈ G} is the reduced Gröbner basis of the ideal generated by the
set of polynomials H(ā) = {f(ā, X̄)|f ∈ H} in F[X̄ ].

2. For any h(Ā, X̄) in F[Ā][X̄],
(h(Ā, X̄)↓G)(ā, X̄) = h(ā, X̄)↓G(ā).

Remark that h(ā, X̄) denotes a polynomial in F[X̄] given from a polynomial h(Ā, X̄) by
substituting each Ai with ai.

Proof. The first property follows from lemma 6.7.1 and lemma 6.7.2, the second property
follows from lemma 6.7.1 and lemma 6.7.3.

The theorem above states that G is a comprehensive Gröbner basis for 〈H〉, because
the property 1 is the same property of comprehensive Gröbner bases. Hence, by this
theorem, we can follow Algorithm 6.3.5 for computing comprehensive Gröbner bases over
finite fields.
The next algorithm has the same notations in theorem 6.7.4.

Algorithm 6.7.5. CGBoverF(I,�) (CGB over finite fields)

Input: F : a finite set of polynomials in F[Ā][X̄ ],
� : a term order on pp(X̄),

Output: G : a comprehensive Gröbner basis for 〈F 〉 with respect to �.

1. Consider F as a set of polynomials in F(pm)[X̄ ].
(We can consider that F[Ā] has the restriction 〈

∏p
j=1, qj∈F(Ai−qj) | i = 1, . . . ,m〉.)

Recall that F[Ā]F[X̄] is isomorphic to F(pm)[X̄]. Let π be a such isomorphism map,
and compute π(F ).
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2. Compute Gröbner basis H for 〈π(F )〉 in the polynomial ring over a over von Neu-
mann regular ring.

3. Consider H as a set of polynomials in F[Ā][X̄ ]. Namely, compute π−1(H) where
π−1 is the inverse map of π.

4. G← π−1(H).

Note that for π and π−1, we can apply an algorithm of the Chinese remainder theorem.
Remark that in the author’s experience, the computation of π−1(H) is much more expen-
sive than the computation of π(F ). The most expensive part of this algorithm is π−1(F ).

In Figure 6.3, we see the rough procedure of Algorithm 6.7.5.

over finite fields with parameters over von Neumann
regular rings

F : a set of polynomials

with parameters
π(F ): a set of

polynomials

G: a Gröbner basis

for 〈π(F )〉

π−1(G):a comprehensive

Gröbner basis for 〈F 〉

π

π−1

Figure 6.3 A computation method for CGB over finite fields

Compute a Gröbner
basis

The algorithm CGBoverF has been implemented in prolog by the author. In the following
example, we see an example of the output. The computer is a PC with Celeron 600 MHz,
Memory 128 MB RAM, OS:Vine Linux 3.1*2.

Example 6.7.6. Let f1, f2 and f3 be the following polynomials in Z /13 Z[a, b][x, y, z]
where x, y, z are variables and a, b parameters (i.e. the values of parameters are from
Z /13 Z.).

{f1 := 2axy2 + 10z + 2b, f2 := 7aby2z + 2bx+ 9, f3 := bxz + ayz + 2a}.

The term order � is the graded reverse lexicographic order such that x � y � z. The
program outputs the following list of polynomials as a comprehensive Gröbner basis for
〈f1, f2, f3〉 with respect to �.

*2 The Linux distribution with integrated Japanese Environment for PCs.
http://vinelinux.org/
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(12*a^12*b^12+1),

(a^12*b^12)*z*x+(a*b^11)*z*y+(2*a*b^11),

(a^12*b^12)*y*x+(6*a*b^12)*y^2+(11*a^11*b)*z^2+(11*a^12*b^11)*y+(10*a^11*

b^2)*z,

(a^12*b^12)*x^2+(2*a^12*b^12)*z^2+(11*a^12*b^11)*x+(3*a^12*b)*z,

(a^12*b^12)*z^3+(a*b^10)*z*y+(8*a^12*b)*z^2+(12*a*b^11+11*a*b^10)*x+(a^2*

b^10)*y+(2*a*b^10+4*a*b^9),

(a^12*b^12)*z*y^2+(4*a^11*b^12)*x+(5*a^11*b^11),

(a^12*b^12)*y^3+(4*a^10*b)*z^2*y+(4*a^11*b^11)*y^2+(6*a^10*b^2)*z*y+(10*a

^10*b^12)*z+(2*a^10*b).

(CPU time: 13.690 sec.)
This list has 7 polynomials.

• Restricted values of parameters

In the previous subsection, we usually assume that the parameters can take arbitrary
values from F. However, if there exist some constraints among parameters, then it is
more natural to construct comprehensive Gröbner bases for only parameters satisfying
such constraints, like ACGB-V.

Let us consider the following example.
Let F = {a2 + 4a+ 3, b2 + 2b, ax2y + 2x+ b2y + 5, bxy2 + 2abxy + x} in Z /7 Z[a, b][x, y]
where x, y are variables and a, b are parameters whose values are taken from Z /7 Z .
Of course, we can compute a comprehensive Gröbner basis for 〈F 〉 by the algorithm
CGBoverF. However, in this case, we have F ∩ Z /7 Z[a, b] = {a2 + 4a + 3, b2 + 2b}. This
means that parameters a, b are related to a2 + 4a + 3 = 0 and b2 + 2b = 0. Therefore,
parameter a can take only 4, 6, parameter b can take only 0, 5. Hence, we do not need to
consider arbitrary values in Z /7 Z. We might use the information a = 4, 6 and b = 0, 5 to
compute a comprehensive Gröbner basis more efficient.

Let F be a set of polynomials in F[Ā][X̄ ], and F ∩ F[Ā] = H(6= ∅). Then, since F is
a finite field, V(H) is the finite set. Let |V(H)| = M which is the cardinality of V(H)
and V(H) = {ᾱi = (a1i, . . . , ami) ∈ Fm|i = 1, . . . ,M}. Then, F[Ā]/〈A1 − a11, . . . , Am −
am1〉 × · · · × F[Ā]/〈A1 − a1M , . . . , Am − amM 〉 is isomorphic to FM by lemma 6.7.1. The
mapping Φ defined by Φ(h(Ā)) = (h(ᾱ1), . . . , h(ᾱM )) where h ∈ F[Ā]. We can compute a
comprehensive Gröbner basis for 〈F 〉 and F ∩ F[Ā].
Note that if m-tuple (b1, . . . , bm) ∈ Fm does not belong to V(H), then a comprehensive
Gröbner basis for F at (b1, . . . , bm) is {1}. As there exists f ∈ H such that f(b1, . . . , bm) =
c ∈ F, c is not 0.

Example 6.7.7. Let F := {a2 + 4a+ 3, b2 + 2b, ax2y + 2x+ b2y + 5, bxy2 + 2abxy + x}
in Z /7 Z[a, b][x, y]where a, b are parameters, x, y are variables. In this case we have H :=
F ∩Z /7 Z[a, b] = {a2 +4a+3, b2 +2b}. That is, V(H) = {(a, b)|(4, 0), (4, 5), (6, 0), (6, 5)}.
By using V(H), we can compute efficiently a comprehensive Gröbner basis for 〈F 〉. The
following polynomials are the comprehensive Gröbner basis for 〈F 〉 with V (H).

If a2 + 4a+ 3 6= 0 ∧ b2 + 2b 6= 0, then
{1}.

If a2 + 4a+ 3 = 0 ∧ b2 + 2b = 0, then
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{(4b + 1), (3b)x2 + (3ab+ 5b)xy + (6ab+ 3b)y2 + (5ab+ b)x+ (4ab + b)y + (4b), (3b)y3 +
(6ab+ 2b)y2 + (4ab+ 2b)y + (5ab+ 4b), (3b)xy2 + 6abxy + (4ab+ 6b)x}.

• Membership problems

Membership problem is a basic problem in polynomial algebra. We can solve the para-
metric ideal membership problem by comprehensive Gröbner bases.

Remark 6.7.8 (Parametric ideal membership). Let f be a polynomial in K[Ā][X̄ ]
where K is a field. Let F be a set of polynomials in K[Ā][X̄ ]. Then parametric ideal
membership is defined by the following. For any m-tuple ā = (a1, . . . , am) ∈ Km, f ∈ 〈F 〉
in K[Ā][X̄ ] if and only if f(ā) in 〈Fā〉 in K[X̄], where Fā := {h(ā, X̄)|h ∈ F} in K[X̄]

We consider parametric polynomials over a finite field as polynomials over a regular ring
by. Therefore, we apply the reduction in a polynomial ring over a von Neumann regular
ring. We apply this fact for solving parametric ideal membership problems.

Theorem 6.7.9. Let F be a set of polynomials in F[Ā][X̄ ], f a polynomial in F[Ā][X̄ ]
and G a comprehensive Gröbner basis for 〈F 〉 with respect to a term order �. Then there
exists a following isomorphic mapping of the form;

Φ : F[Ā][X̄ ] −→ F(pm)[X̄ ],

by lemma 6.7.1.

Then, if Φ(f)
∗
−→Φ(G)0, then f ∈ 〈F 〉.

Proof. Φ(G) is a Gröbner basis in F(pm)[X̄] by theorem 6.7.4, and Φ(f) is a polynomial

in F(pm)[X̄]. Therefore, we can use the reduction of the theory of von Neumann regular
rings. Then, by Lemma 6.7.3 and property (2) of Theorem 6.7.4, this theorem holds.

Example 6.7.10. Let F := {7bcx2y + 2y + 5, bxz + ax + 2, 2axz2 + bx + 10}, f :=
9bcx2y + 7bxz + 7ax+ y and g := 3bcx2yz + 6yz + 6aby + 7z + 6 in Z /11 Z[a, b, c][x, y, z]
where a, b, c are parameters and x, y, z are variables. Then f belongs to ideal generated
by F and g doesn’t belong to ideal generated by F . This program was implemented in
prolog. (The computer is a PC Celeron 600 MHz, Memory 128 MB RAM, OS:Vine Linux
3.1.) The outputs are the following.

para_member([9*b*c*x^2*y+7*b*x*z+7*a*x+y],[7*b*c*x^2*y+2*y+5,b*x*z+a*x+2,

2*a*x*z^2+b*x+10],[[a,b,c],[x,y,z]],11).

Member !

yes

(CPU time: 8.970 sec.)

|?- para_member([3*b*c*x^2*y*z+6*y*z+6*a*b*y+7*z+6],[7*b*c*x^2*y+2*y+5,b*

x*z+a*x+2,2*a*x*z^2+b*x+10],[[a,b,c],[x,y,z]],11).

Not member!

yes

(CPU time: 9.030 sec.)

In our program, para_member(A,B,[P,V],F) is a function which decides whether A is a
member of B or not. First, this function computes a Gröbner basis G for ideal generated
by B over a von Neumann regular ring. Second, this function reduces A by G in the

polynomial ring over a von Neumann regular ring. If A
∗
→G 0, then the function returns
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“Member !”. Otherwise, “Not member!”. P is a set of parameters, V is a set of variables
and F is a finite field.

6.7.3 Concluding remarks

In this section, we have studied comprehensive Gröbner bases in the case where the ground
field has only finitely many elements. It has been shown that comprehensive Gröbner
bases have particularly nice properties in this special case. An algorithm was presented
for computing comprehensive Gröbner bases over finite fields, which always produces both
canonical comprehensive Gröbner bases and the simple polynomial list.
Actually, our algorithm becomes extremely expensive in both space and time complexity if
the ground field or the number of parameters are too big. However, if the cardinality of the
field and the number of parameters are small, then our approach is useful for computing
comprehensive Gröbner bases over finite fields.
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Chapter 7

Two kinds of Gröbner bases in rings of

differential operators

It is well-known that the Buchberger algorithm has been generalized to the non-
commutative Gröbner bases area via non-commutative Gröbner bases in various contexts
([Gal85, Mor86, Mor88, Mor94, Li,02, KRW90] etc). In this chapter, we describe relations
between two kinds of Gröbner bases in rings of differential operators and their algorithms
for computing their Gröbner bases. In details, we treat two domains “rings of differential
operators with coefficients in a field” and “rings of differential operators with coefficients
in a polynomial ring”. This chapter is similar to chapter 3 the case of commutative
polynomials rings. However, in this chapter, we treat non-commutative rings. This
relation has been studied in [Nab07e] by the author.

7.1 Notations

In this section we describe the notations for rings of differential operators and their related
definitions. K and L denote fields of characteristic zero such that L is an extension of K.
X̄ = {x1, . . . , xn} denotes a finite set of variables.

Let K[X̄ ] be a ring of polynomials in n variables over K. Let ∂i = ∂
∂xi

: K[X̄]→ K[X̄]

be the partial derivative by xi, 1 ≤ i ≤ n. Let K[X̄ ][D̄] := (K[X̄ ])[∂1, . . . , ∂n]
be the rings of differential operators with coefficients in K[X̄], and K[X̄, D̄] :=
K[x1, . . . , xn, ∂1, . . . , ∂n] the rings of differential operators (and variables) with co-
efficients in K. The both rings K[X̄ ][D̄] and K[X̄, D̄] have the commutation rules

xixj = xjxi, ∂i∂j = ∂j∂i, ∂ixj = xj∂i, for i 6= j, and ∂ixi = xi∂i + 1.

It is well-known that K[X̄, D̄] is a left-Noetherian associative K-algebra. By an “ideal in
K[X̄, D̄]” we always mean a left-ideal of K[X̄, D̄]. Similarly, K[X̄ ][D̄] is a left-Noetherian,
and “ideal in K[X̄ ][D̄]” we always mean a left-ideal of K[X̄][D̄].

An element p ∈ K[X̄, D̄] (or K[X̄][D̄]) can be written uniquely as a finite sum

p =
∑

(α,β)∈E

c
αβ
·XαDβ ,

whereXα = xα1
1 · · · x

αn
n , Dβ = ∂β1

1 · · · ∂
βn
n , c

αβ
∈ K\{0} andE ⊂ N2n. We call this unique

expression normally ordered expression. In other words, we have the following natural
K-vector space isomorphism between the commutative polynomial rings K[X̄, Λ̄] :=
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K[X̄, λ1, . . . , λn] and K[X̄, D̄]:

Ψ : K[X̄, Λ̄]→ K[X̄, D̄]

XαΛβ 7→ XαDβ .

Note that K[X̄, Λ̄] is a commutative rings, K[X̄, D̄] is a non-commutative ring. The
notations pp(X̄, D̄) and pp(D̄) are the set of power products of X̄∪D̄ and D̄, respectively.

Definition 7.1.1. A order � is called a term order on the set of normally ordered power
products xα∂β in K[X̄, D̄] where α, β ∈ Nn if 1 is the smallest element and xα∂β � xa∂b

implies xα+s∂β+t � xa+s∂b+t where s, t ∈ Nn. We also call � as a term order on pp(D̄)
if 1 is the smallest element and ∂a � ∂b implies ∂a+p � ∂b+p where p ∈ Nn.

Actually, in this chapter and the next chapter, we treat Gröbner bases and compre-
hensive Gröbner bases for several rings K[X̄, D̄],K[X̄ ][D̄], K[Ā][X̄, D̄] and (K[Ā][X̄])[D̄].
Due to avoid the confusion we apply the subscript X̄, {X̄, D̄}, Ā which are depend on the
coefficient domain of these rings, for the notations of the rings. As we saw the notation
of commutative polynomial rings, we use the same notations for the rings of differential
operators as follows.

Definition 7.1.2 (Notations). Let � be a term order on pp(X̄, D̄). For a non-zero
normally ordered element f =

∑

(α,β) c(α,β)
·XαDβ ∈ K[X̄, D̄] (or K[X̄ ][D̄]) where Xα =

xα1
1 · · · x

αn
n , Dβ = ∂β1

1 · · · ∂
βn
n and α, β ∈ Nn.

• We define the degree of f with respect to � as deg{X̄,D̄}(f) (or degD̄(f)). (Note

that the subscript is {X̄, D̄} (or D̄).)
• We define the leading coefficient of f as lc(f) (or lcX̄(f)). That is, lc(f) :=
cdeg{X̄,D̄}(f) ∈ K (or lcX̄(f) := cdegD̄(f) ∈ K[X̄ ]).

• We define the initial form of f as in(f) (or inD̄(f)). That is, in(f) := lc(f)XαDβ ∈
K[X̄, D̄] where deg{X̄,D̄}(f) = (α, β) = (α1, . . . , αn, β1, . . . , βn) ∈ N2n (or

inX̄(f) := lcX̄(f)XαDβ ∈ K[X̄ ][D̄]).
• The set of normally ordered monomials of f is defined by Mono(f) (or

MonoX̄(f)).
• If F is a subset of K[X̄, D̄], we define the set of initial form of F as in(F ) (or

inX̄(F )).

Remark: In section 5 and 6, we consider the two ringsK[Ā][X̄, D̄] and (K[Ā][X̄ ])[D̄]. For
the ring K[Ā][X̄, D̄], we use the notations deg{X̄,D̄}, lcĀ(f), inĀ(f) and inĀ(F ). For the

ring (K[Ā][X̄ ])[D̄], we use the notations deg{D̄}, lc{Ā,X̄}(f), in{Ā,X̄}(f) and in{Ā,X̄}(F ).

Definition 7.1.3. Fix a term order. The leading monomial lm(p) of p ∈ K[X̄, D̄] is the

commutative monomial kxα1
1 · · · x

αn
n λβ1

1 · · · λ
βn
n ∈ K[X̄, Λ̄] such that kxα1

1 · · · x
αn
n ∂β1

1 · · · ∂
βn
n

is the largest monomial with respect to � in Mono(p), where k ∈ K. We de-
fine the leading power product lpp(p) of p as the commutative power product

xα1
1 · · · x

αn
n λβ1

1 · · · λ
βn
n ∈ K[X̄, Λ̄]. That is, lc(p) lpp(p) = lm(p).

When we consider the ring K[X̄][D̄], then we apply lmX̄(p) as the leading monomial of
p ∈ K[X̄][D̄] and lppX̄(p) as the the leading power product of p.

Note that, for p ∈ K[X̄, D̄] we use the two notations in(p) and lm(p). The notation
in(p) is an element of a non-commutative ring, and the notation lm(p) is an element
of a commutative ring. For example, we have p1 = ∂1, p2 = x1 ∈ Q[x1, ∂1]. Then,
in(p1) · in(p2) = ∂1x1 = x1∂1 + 1 however, lm(p1) · lm(p2) = x1λ1 = x1∂1. Therefore,
in(p1) · in(p2) 6= lm(p1) · lm(p2).
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The concrete examples of the notations is the following.

Example 7.1.4. Let x1, x2 be variables and ∂1, ∂2 be derivation of x1, x2, respectively.
Then we have f = 2x1∂

2
1∂2 + 2x2∂

2
1∂2 + ∂1 + x1 + 3.

If we consider polynomials f as a member of Q[x1, x2, ∂1, ∂2] with a block order
�{∂1,∂2},{x1,x2}:= (∂1 �lex ∂2, x1 �lex x2) where �lex is the lexicographic order, then

• deg{x1,x2,∂1,∂2}(f) = (1, 0, 2, 1) ∈ N4,

• lc(f) = 2 ∈ Q,
• lpp(f) = x1∂

2
1∂2,

• in(f) = lm(f) = 2x1∂
2
1∂2,

• Mono(f) =
{

2x1∂
2
1∂2, 2x2∂

2
1∂2, ∂1, x1, 3

}

.

If we consider polynomials f as a member of Q[x1, x2][∂1, ∂2] with the lexicographic order
∂1 � ∂2, then

• deg{∂1,∂2}(f) = (2, 1) ∈ N2, deg{∂1} = 2,

• lc{x1,x2}(f) = 2x1 + 2x2 ∈ Q[x1, x2],

• lpp{x1,x2}(f) = ∂2
1∂2,

• in{x1,x2}(f) = lm{x1,x2}(f) = (2x1 + 2x2)∂
2
1∂2,

• Mono{x1,x2}(f) =
{

(2x1 + 2x2)∂
2
1∂2, ∂1, x1, 3

}

.

7.2 Gröbner bases in K[X̄, D̄]

In this section we quickly review an algorithm for computing Gröbner bases in K[X̄, D̄]
(Weyl algebra). The results of Buchberger [Buc65, Buc70] on Gröbner bases in polynomial
rings have been generalized by several authors to several fields. We can also generalize the
theory to K[X̄, D̄] ([Oak02, SST99, Gal85, Cas86, Cas87, OS94, Tak89]). This algorithm
is the same as the Buchberger algorithm. As we saw the Buchberger algorithm in chapter
2, basically we follow the same way for describing the algorithm.

Definition 7.2.1 (S-polynomial). Fix a term order�. We have two non-zero normally
ordered elements f = c1X

αDβ+f ′ and g = c2X
aDb+g′ whereXα = xα1

1 · · · x
αn
n , Dβ =

∂β1

1 · · · ∂
βn
n , deg{X̄,D̄}(f) = (α, β) ∈ N2n, lc(f) = c1, lpp(f) = XαDβ , deg{X̄,D̄}(g) =

(a, b) ∈ N2n, lc(g) = c2, lpp(g) = XaDb and f ′, g′ ∈ K[X̄, D̄]. Then, for the two elements
f, g, we define the S-polynomial of f and g by

Spoly1(f, g) = Xα′

Dβ′

f − c1
c2
Xa′

Db′g

where α′
i = max(αi, ai)−αi, β

′
i = max(βi, bi)−βi, a

′
i = max(αi, ai)−ai, b

′
i = max(βi, bi)−

bi.

In the next section, we introduce another type of S-polynomials. In order to distinguish
another S-polynomial from this S-polynomial, we call this S-polynomial “Spoly1”.

Next we introduce a reduction in K[X̄, D̄] which is called “Reduce1”.

Definition 7.2.2 (Reduction). Let f = c1X
αDβ +f ′ and g = c2X

aDb +g′ be normally
ordered elements in K[X̄, D̄] such that Xα divides Xa and Dα divides Db, where Xα =

xα1
1 · · · x

αn
n , Dβ = ∂β1

1 · · · ∂
βn
n , in(f) = c1X

αDβ , c1, c2 ∈ K, Xa ∈ pp(X̄), Db ∈ pp(D̄)
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and f ′, g′ ∈ K[X̄, D̄]. Note that c2X
aDb might not be the initial form of g. A reduction

r1
−→f is defined as follows:

g
r1
−→f g −

c1
c2
XsDtf,

where XsXa = Xα, DtDb = Dβ and s, t ∈ Nn.

In this thesis, we call this reduction Reduce1 (written:
r1
−→), because in the next section,

we introduce another reduction which is called Reduce2 (see Definition 7.3.1). A reduction
r1
−→F by a set F ⊆ K[X̄, D̄] is also naturally defined, like chapter 2.

Definition 7.2.3 (Gröbner basis). Let I be an ideal in K[X̄, D̄] and � a term order
on pp(X̄, D̄). A subset G ⊂ K[X̄, D̄] is called a Gröbner basis of I with respect to � if

• I is generated by G, and
• lm(I) is generated by lm(G), i.e., lm(I) = 〈lm(G)〉 where lm(I) := {lm(q)|q ∈ I}.

Using the S-polynomial Spoly1, the reduction Reduce1 and a term order, we can con-
struct an algorithm for computing Gröbner bases for an ideal generated by a given finite
subset of K[X̄, D̄]. This algorithm is exactly the Buchberger algorithm for K[X̄, D̄] as
follows.

Algorithm 7.2.4. GröbnerBasisW(F,�) (Gröbner bases in Weyl algebra)

Input F = {f1, . . . , fs} : a finite set of normally ordered elements in K[X̄, D̄],
� : a term order.

Output G: a Gröbner basis for 〈F 〉 with respect to �.
begin

G← F
P ← {(fi, fj) | 1 ≤ i < j ≤ s}
while P 6= ∅ do
Take any element (f, f ′) from P
P ← P\{(f, f ′)}
h← Spoly1(f, f ′)
r ← h ↓G (by Reduce1) (see below (∗))
if r 6= 0 then
P ← P ∪ {(g, r) | g ∈ G}
G← G ∪ {r}

end-if
end-while

return(G)
end
((∗) h ↓G denotes a normal form of h by

r1
−→G, i.e., h ↓G is irreducible by

r1
−→G)

Example 7.2.5. Let I be an ideal in Q[x1, x2, ∂1, ∂2] generated by x2∂
2
2 + x1∂2, x

2
1∂2 −

x2
1, x1∂2 + x1 and � the lexicographic order such that x1 � x2 � ∂1 � ∂2. A Gröbner

basis G for I with respect to � is G = {∂2
2x2, x1}.

The algorithm above is not efficient. The study of efficiency is an active research area
in commutative case. Actually, Many of the familiar results on Gröbner bases in K[X̄]
also hold in K[X̄, D̄]. However, the generalization of the first Buchberger’s criterion
[Buc79] does not hold. For example, let f = ∂2 + x1, g = ∂1 ∈ C[x1, x2, ∂1, ∂2]. Then,
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by the first Buchberger’s criterion, {f, g} is a Gröbner basis. However, Spoly1(f, g) =

∂1f − ∂2g = x1∂1 + 1, Spoly1(f, g)
r1
−→g 1. Hence, the Gröbner basis is {1}. Therefore,

the generalization of the criterion does not hold.

We are able to define a reduced Gröbner basis in K[X̄, D̄] like commutative polynomial
rings. The definition of reduced Gröbner bases is the following.

Definition 7.2.6 (Reduced Gröbner Bases). The reduced Gröbner basis G of an
ideal I ⊆ K[X̄, D̄] with respect to a monomial order � is a Gröbner basis such that:

1. lc(g) = 1 for all g ∈ G with respect to �,
2. for all g ∈ G, no monomial of Mono(g) lies in 〈lm(G\{g})〉.

Although a Gröbner basis may contain redundant elements, the reduced Gröbner basis
does not contain any. The reduced Gröbner is uniquely determined by an ideal and a
term order �.

Algorithm 7.2.7. RGröbnerBasisW(F,�) (Reduced Gröbner Bases)

Input F = {f1, . . . , fm} : a subset of K[X̄, D̄],
� : a term order.

Output G: a reduced Gröbner basis for 〈F 〉 with respect to �.

• We assume that RGröbnerBasisW(F ) is an algorithm which outputs the
reduced Gröbner basis with respect to � in K[X̄, D̄].

In the algorithm CGBW and the proof of Theorem 8.1.19, we need the properties of the
reduced Gröbner bases, and an algorithm for computing reduced Gröbner bases. There-
fore, we introduced the definition of reduced Gröbner bases and assumed the algorithm
RGröbnerBasisW.

7.3 Approach by Insa and Pauer for computing Gröbner bases in

K[X̄ ][D̄]

There are several results of Gröbner bases [SST99, Cas86, Cas87, OS94] in rings of differ-
ential operators, however the coefficient rings are fields (of rational function) or rings of
power series. In this section and the next section, we consider an algorithm for computing
Gröbner bases in K[X̄ ][D̄]. That is, the coefficient ring is a polynomial ring and the main
variables are D̄ := {∂1, . . . , ∂n}. In this section, first we review the Insa-Pauer algo-
rithm [IP98] which returns Gröbner bases in K[X̄ ][D̄]. The second part of this section,
we introduce Zhou-Winkler’s criterion [ZW06] for computing Gröbner basis in K[X̄][D̄].

7.3.1 Insa-Pauer’s algorithm

In [IP98], Insa and Pauer studied the theory of Gröbner bases in K[X̄][D̄]. In their
paper, they introduced a special S-polynomial and a special reduction in order to compute
Gröbner bases in K[X̄ ][D̄]. In this subsection, we describe the special S-polynomial, the
special reduction and the Insa-Pauer algorithm.

Definition 7.3.1. Let F be a set of normally ordered elements of K[X̄ ][D̄] and g =
aβ + g′ ∈ K[X̄ ][D̄] where a ∈ K[X̄], β ∈ pp(D̄) and g′ ∈ K[X̄ ][D̄]. Moreover, let
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F ′ := {f ∈ F | lppX̄(f) divides β }. If a ∈ 〈lcX̄(F ′)〉 ⊆ K[X̄ ], the element a can be

written as a =
∑

fi∈F ′ hi lcX̄(fi) where hi ∈ K[X̄ ]. Then a reduction
r2
−→f is defined as

follows:

g
r2
−→F g −

∑

fi∈F ′

hi

β

lppX̄(fi)
fi.

In this thesis, we define this reduction as Reduce2 (written:
r2
−→). Actually, reducing g

by F and reducing g by F ′ is the same. In this case, we can write the reduction g
r2
−→F ′

instead of g
r2
−→F .

In fact, we can see this reduction as “the extended Gröbner bases algorithm ” (see
chapter 2).

Definition 7.3.2 ([IP98]). Let G be a set of normally ordered elements of K[X̄][D̄] and
let I be an ideal in K[X̄][D̄] generated by G. For E ⊆ G, let

SE :=

{

(ce)e∈E

∣

∣

∣

∣

∣

∑

e∈E

ce lcX̄(e) = 0

}

.

(We can consider SE as a set of syzygies for lcX̄(E) ⊆ K[X̄].) Then for s = (ce)e∈E ∈ SE ,

Spoly2(E, s) =
∑

e∈E

ceD
max(E)−degD̄(e)e

is called S-polynomial with respect to E and s ,where

max(E) := (maxe∈E degD̄(e)1, . . . ,maxe∈E degD̄(e)n) ∈ Nn .

In this thesis, we called this special S-polynomial as “ Spoly2”.

Insa-Pauer defined the Gröbner bases in K[X̄ ][D̄] which is the following.

Definition 7.3.3 (Gröbner bases). Let I be an ideal in K[X̄][D̄] and let G be a finite
subset of I\{0}. For i ∈ Nn let

lcX̄(i, I) := 〈lcX̄(f)|f ∈ I,degD̄(f) = i〉.

Then G is a Gröbner basis of I (with respect to a term order � on pp(D̄)) if and only
if ∀i ∈ Nn the ideal lcX̄(i, I) ⊆ K[X̄] is generated by

{lcX̄(g) | g ∈ G, i ∈ degD̄(g) + Nn } .

Remark: In fact the definition is equivalent to the following. G is called a Gröbner
basis with respect to � if

• I is generated by G,
• lmX̄(I) is generated by lmX̄(G), i.e., lmX̄(I) = 〈lmX̄(G)〉 where lmX̄(I) = {lmX̄(f)|
f ∈ I}.

One might easily understand this definition than Definition 7.3.3. However, in this thesis,
we adopt Definition 7.3.3 as the definition of Gröbner basis in K[X̄ ][D̄].

A Gröbner basis in K[X̄][D̄] has a lot of properties which are well-known in polynomial
rings over a field. For instance, if G is a Gröbner basis for an ideal I in K[Ā][X̄ ], then
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∀g ∈ I, g
r2
−→G 0. In this thesis, we do not describe the detail of properties of Gröbner

bases inK[X̄][D̄] (see [IP98]). Insa-Pauer presented the following algorithm which outputs
a Gröbner basis in K[X̄][D̄].

Algorithm 7.3.4. InPaD(F,�) [IP98]

Input: F = {f1, . . . , fs}: a finite subset of K[X̄ ][D̄],
�: a term order on pp(D̄),

Output: G: a Gröbner basis of 〈F 〉 with respect to � in K[X̄][D̄].
begin

G← F ; B ← {(fi1 , fi2 . . . fip) | 1 ≤ i1 < i2 · · · < ip ≤ s, 2 ≤ p ≤ s}
while B 6= ∅ do
Take any element E from B; B ← B\{E}
SE ← Compute a syzygy module of lcX̄(E) in K[X̄]
while SE 6= ∅ do

Take any element α from SE ; SE ← SE\{α}
h←Spoly2(E,α)
r ← h ↓G (see below (∗))
if (r 6= 0) then
B ← B ∪

{

(r, gj1 , . . . , gjq
)
∣

∣ distinct elements gj1 , . . . , gjp
∈ G, 1 ≤ p ≤ |G|

}

G← G ∪ {r}
end-if

end-while
end-while

return(G)
end
((∗) h ↓G denotes a normal form of h by

r2
−→G, i.e., h ↓G is irreducible by

r2
−→G)

7.3.2 Zhou-Winkler’s criterion

Here, we describe the techniques to remove unnecessary combinations in the algorithm
InPaD. As we said earlier, we need the special S-polynomial Spoly1 and the special reduc-
tion Reduce1 in order to compute Gröbner bases in K[X̄][D̄]. In this point, this algorithm
is very complicated. Actually, there exists a criterion for eliminating unnecessary combi-
nations which is Zhou and Winkler’s work [ZW06]. By this criterion, we can improve the
algorithm InPaD. We introduce the criterion.

Definition 7.3.5 ([ZW06]). Let I be an ideal in K[X̄][D̄], E1 = {f1, . . . , fs} ⊆ I and
E2 = {g1, . . . , gt} ⊆ I. Then Spoly2s corresponding to E1 (or E2) are said to be of grade
s (or t). If s < t, then Spoly2s corresponding to E1 are said to be of lower grade than
Spoly22 corresponding to E2.

Lemma 7.3.6 ([ZW06]). Let I be an ideal in K[X̄ ][D̄]. For E = {f1, . . . , fk} ⊆ I,
if some lc(fi) is divided by lc(fj) (i 6= j, 1 ≤ i, j ≤ k) in K[X̄][D̄], then all Spoly2s
corresponding to E2 are simplified to Spoly2s of lower grade.

Theorem 7.3.7 ([ZW06]). Let G = {f1, . . . , fm} and J be the left ideal of K[X̄][D̄]
generated by G. If all Spoly2s with grade k are reduced to 0 by G, then for E =
{g1, . . . , gk, gk+1} ⊆ G with some lc(gj) divided by another lc(gi), all of Spoly2s corre-
sponding to E are reduced to 0 by G.
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Example 7.3.8. From example 5 of [IP98], we have a Gröbner basis G of 〈x1∂2, x2∂1〉
in C[x1, x2][∂1, ∂2] with the graded lexicographic order ∂1 � ∂2. This Gröbner basis was
computed by only using Spoly2s of grade 2 in [IP98].

G = {x1∂2, x2∂1, x2∂2 − x1∂1, x
2
1∂1, x1∂

2
1 + 2∂1}.

However for any three elements {fi, fj , fk} ⊂ G, there exists an lc(fl) which is divided by
another lc(fs) ∈ {fi, fj , fk}\{fl} where i, s ∈ {i, j, k}. Therefore by Theorem 7.3.7, we
ignore all Spoly2 with higher grade than 2.
For instance, select {x2∂1, x2∂2− x1∂1, x

2
1∂1}, then obviously lc(x2∂2− x1∂1) = x1 divide

lc(x1
2∂1) = x1

2.

By Theorem 7.3.7, we can improve the algorithm InPaD to more efficient one for com-
puting Gröbner bases in K[X̄][D̄].

The algorithm InPaD which includes Zhou-Winkler’s criterion, has been implemented
by the author in the computer algebra system Risa/Asir. The following example, we see
outputs of the program.

Example 7.3.9. Let F1 = {x2
2∂3∂4 + x1∂2, x3∂2 + x4∂4, ∂3 + x1∂4, x1∂2∂3 + x2∂3} and

F2 = {x2
2∂

2
3 +x1, x

2
3∂2 +∂3, ∂1∂

2
2 +x1∂3, x

2
1∂3} be subsets of C[x1, x2, x3, x4][∂1, ∂2, ∂3, ∂4].

We have the graded lexicographic order � such that ∂1 � ∂2 � ∂3 � ∂4. Then the
program outputs the following as a Gröbner basis for 〈F1〉 with respect to �

Number of the maximal grade of Spoly:

2

[-x1*x3*d4+x4*d4,d2,d3,x1*d4]

This output means that we need only Spoly2s of grade 2 for computing Gröbner basis (by
the Zhou-Winkler’s criterion), and a Gröbner basis for 〈F1〉 is

{−x1x3∂4 + x4∂4, ∂2, ∂3x1∂4}.

The program outputs the following as a Gröbner basis for 〈F2〉 with respect to �

Number of the maximal grade of Spoly:

3

[x1,d3,d2,x2*d3,x3*d3]

The maximal grade of Spoly2s is 3, and a Gröbner basis for 〈F2〉 is

{x1, ∂3, ∂2, x2∂3, x3∂3}.

7.4 Approach via block orders for computing Gröbner bases in

K[X̄ ][D̄]

Here we present another algorithm for computing Gröbner bases inK[X̄][D̄] which is much
more efficient than the algorithm InPaD. Obviously, K[X̄ ][D̄] is isomorphic to K[X̄, D̄].
By the algorithm GröbnerBasisW (or RGröbnerBasisW) and a block order with D̄ � X̄ in
K[X̄, D̄], we can obtain an efficient algorithm for computing Gröbner bases in K[X̄ ][D̄].
The key theorem is the following. Remember that we applied the same idea in chapter 3
for computing Gröbner bases in K[Ā][X̄ ]. In rings of differential operators, we can follow
the same way and obtain an efficient algorithm.
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Theorem 7.4.1. Let F be a subset of K[X̄ ][D̄]. Then, F can be seen as a subset of
K[X̄, D̄]. Let G = {g1, . . . , gs} be a Gröbner basis for 〈F 〉 in K[X̄, D̄] with respect to a
block order �D̄,X̄ := (�1,�2) (i.e, D̄ � X̄). Then, G is also a Gröbner basis for 〈F 〉 with

respect to �1 in K[X̄ ][D̄].

Proof. Take ∀h ∈ 〈F 〉 ⊆ K[X̄][D̄] such that degD̄(h) = j, then we prove that lcX̄(h) is
generated by {lcX̄(g)|g ∈ G, j ∈ degD̄(g) + Nn}. Since h can be seen as an element of
K[X̄, D̄] and G is a Gröbner basis for 〈F 〉 in K[X̄, D̄], h can be written as

h = h1g1 + · · ·+ hsgs

such that in(h) �D̄,X̄ in(h1g1) �D̄,X̄ · · · �D̄,X̄ in(hsgs) in K[X̄, D̄] where h1, . . . , hs ∈

K[X̄, D̄]. As h = h1g1 + · · · + hsgs in K[X̄, D̄], inX̄(h) = inX̄(h1g1 + · · · + hsgs) in
K[X̄][D̄]. By the block order on K[X̄, D̄], we have

inX̄(h) �1 inX̄(h1g1) �1 · · · �1 inX̄(hsgs)

in K[X̄ ][D̄]. W.l.o.g., h1g1, . . . , hkgk have the same degree of h (i.e., degD̄(h) = j) where
k ≤ s. That is,

lmX̄(h) = lmX̄(h1g1) + · · ·+ lmX̄(hkgk).

(Note that now we are considering the leading monomials in commutative ring K[X̄, Λ̄]
(see section 7.2)). Hence, we can obtain the following form;

lmX̄(h) = lmX̄(h1) lmX̄(g1) + · · ·+ lmX̄(hk) lmX̄(gk).

Since degD̄(h) = degΛ̄(h) = j and degΛ̄(g1), . . . ,degΛ̄(gs) ∈ {i | j = i+ Nn }, lcX̄(h) ∈
{lcX̄(g)|g ∈ G, j ∈ degΛ̄(g) + Nn}. Hence, by Ψ (see section 2), we have lcX̄(h) ∈
{lcX̄(g)|g ∈ G, j ∈ degD̄(g) + Nn}. Therefore, G is also a Gröbner basis in K[X̄][D̄] with
respect to �1.

Algorithm 7.4.2. D̄-GröbnerBasis(F,�1)

Input F : a finite subset of K[X̄][D̄],
�1: a term order on pp(D̄),

Output G: a Gröbner basis of 〈F 〉 in K[X̄][D̄].

1. Consider F as a subset of K[X̄, D̄].
2. Compute a Gröbner basis G for 〈F 〉 with respect to a block order �D̄,X̄ := (�1,�2)

in K[X̄, D̄].
3. Consider G as a subset of K[X̄][D̄]. Then, by Lemma 7.4.1, G is a Gröbner basis

for 〈F 〉 with respect to �1 in K[X̄][D̄].

This algorithm is exactly the same as the algorithm GröbnerBasisW. The key idea is a
block order with D̄ � X̄. If we apply the Insa-Pauer algorithm to compute Gröbner bases
in K[X̄][D̄], then we need syzygy computations as the special S-polynomials (Spoly2) and
“extended Gröbner bases algorithm” as the special reduction (Reduce2). In general, syzygy
computations and “extended Gröbner bases algorithm” are very expensive. Therefore, the
Insa-Pauer algorithm is expensive, too. However, if we apply the algorithm D̄-GröbnerBasis
to compute Gröbner bases in K[X̄ ][D̄], then we need only normal S-polynomials (Spoly1)
and reductions (Reduce1). We do not need Spoly2 and Reduce2 to compute Gröbner



102 Chapter 7 Two kinds of Gröbner bases in rings of differential operators

bases in K[X̄][D̄]. In this point, the algorithm D̄-GröbnerBasis is much more efficient and
simpler than the algorithm InPaD.

Example 7.4.3. Let I be an ideal in Q[x1, x2][∂1, ∂2] generated by x1∂2, x2∂1 + x1∂
2
1 .

We have the lexicographic order � such that ∂1 � ∂2. We compute a Gröbner basis for I
with respect to � by the algorithm D̄-GröbnerBasis.

1. First, we consider the set {x1∂2, x2∂1 + x1∂
2
1} as a subset of Q[x1, x2, ∂1, ∂2].

2. Second, we compute a Gröbner basis for I with respect to a block order
�{∂1,∂2},{x1,x2} with ∂1 � ∂2 � x1 �lex x2 where �lex is the lexicographic order.
Then, by the algorithm RGröbnerBasisW, we obtain the reduced Gröbner basis G
with respect to �{∂1,∂2},{x1,x2} as follows:

G =
{

∂2x
2
2−4∂2x2+4∂2, ∂2x1,−∂

2
2x2+2∂2

2−2∂2, (−x2+2)∂1,−x1∂1+∂2x2−2∂2

}

.

3. We can see G as a subset of Q[x1, x2][∂1, ∂2]. Therefore, a Gröbner basis for I in
Q[x1, x2][∂1, ∂2] with respect to � is G.

Now we have the following question.

“Don’t we really need the special S-polynomial Spoly2 and the special reduc-
tion Reduce2?”

If we compute a reduced Gröbner basis in K[X̄][D̄], this answer is “Yes, we do”. As we
saw the commutative case in chapter 3, the algorithm D̄-GröbnerBasis outputs sometimes
redundant elements. Therefore in order to eliminate redundant elements from the output,
we need the special reduction Reduce2. In the next section, we treat reduced Gröbner
bases in K[X̄ ][D̄].
If we need just a normal Gröbner basis in K[X̄][D̄], then this answer is “No, we don’t”.
We don’t need the special S-polynomial Spoly2 and the special reduction Re-
duce2.

7.5 Reduced Gröbner bases in rings over a polynomial ring

In chapter 3, we saw reduced Gröbner bases in (commutative) polynomial rings over a
polynomial ring. Here we also present reduced Gröbner bases in K[X̄][D̄]. In the previous
section, we saw two algorithms which compute Gröbner bases in K[X̄][D̄]. However, both
algorithms have problems to compute a reduced Gröbner basis.

For instance:
(1) : Let f1 = x2

1∂1−x1 and f2 = (x3
1−x1)∂1−x

2
1+1 be differential operators in Q[x1][∂1].

Then, a Gröbner basis of 〈f1, f2〉 is {f1, f2}, because Spoly2(f1, f2) = 0, f1
r2
−→{f2} f1 and

f2
r2
−→{f1} f2in Q[x1][∂1]. However, we have

f3 = x1 · f1 − f2 = x1∂1 − 1.

Of course, f3 is an element of 〈f1, f2〉. Moreover, we have f3|f1, f3|f2. This means
〈f3〉 = 〈f1, f2〉. That is, {f3} is a Gröbner basis, too. {f3} is simpler than {f1, f2}.
However, {f3} cannot be computed by the algorithm InPaD.

(2) : Let X̄ = {x1, x2, x3, x4}, D̄ = {∂1, ∂2, ∂3, ∂4} and F = {x1∂2−∂2+x4∂
2
3 , x1∂3+x4} ⊂
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Q[X̄][D̄]. By the algorithm 5, we compute a Gröbner basis for 〈F 〉 with respect to a block
order with D̄ � X̄ . We have the lexicographic order � such that ∂1 � ∂2 � ∂3 � ∂4 �
x1 � x2 � x3 � x4. Then the reduced Gröbner basis for 〈F 〉 with respect to � in Q[X̄, D̄]
is

{g1 = x1∂3 + x4, g2 = x1∂2 − ∂2 + x4∂
2
3 , g3 = −∂2∂3 − x4∂2 + x4∂

3
3}.

By Theorem 7.4.1, {g1, g2, g3} is a Gröbner basis for 〈F 〉 with respect to � in Q[X̄ ][D̄].
However, there exists a redundant element in the set {g1, g2, g3}. Look at g3, then

lmX̄(g3) = −∂2∂3 ∈ 〈lmX̄(g1), lmX̄(g2)〉 = 〈x1∂3, (x1 − 1)∂2〉.

That is, g3 can be written as
g3 = −∂2g1 + ∂3g2.

Thus, g3 is a redundant element. {g1, g2} is a Gröbner basis, too. However, we cannot
compute the set {g1, g2} by algorithm D̄-GröbnerBasis.

What is a reduced Gröbner basis in K[X̄][D̄]? How do we compute it?

The definition of reduced Gröbner bases is the following.

Definition 7.5.1. Let �D̄,X̄ := (�1,�2) be a block order and I an ideal in K[X̄ ][D̄].
Then, a reduced Gröbner basis G for I with respect to �1 and �X̄,D̄ is a Gröbner

basis for I in K[X̄][D̄] such that

1. For all p ∈ G, lc(p) = 1 with respect to �D̄,X̄ ,

2. For all p ∈ G, no monomial in MonoX̄(p) lies in 〈lmX̄(G\ {p})〉 in K[X̄ ][D̄] with
respect to �1,

3. For all p ∈ G, no monomial in Mono(p) lies in 〈lm(G\ {p})〉 in K[X̄, D̄] with respect
to �D̄,X̄ .

By using the two reduction Reduce1 and Reduce2, we can construct an algorithm for
computing reduced Gröbner bases in K[X̄ ][D̄].

Algorithm 7.5.2. RGB(F,�{D̄,X̄})

Input: F : a finite subset of K[X̄ ][D̄],
�{D̄,X̄}= (�1,�2): a block order such that D̄ � X̄ ,

�1 : a term order on pp(D̄),
�2: a term order on pp(X̄),

Output: G: a reduced Gröbner basis for 〈F 〉 with respect to �1 and �D̄,X̄ .
begin

G←
(

RGröbnerBasisW(F ) with respect to �1

)

or
(

InPaD(F ) with respect to �1

)

E1← 0
while E1 6= 1 do

if there exist p ∈ G such that
(

p
r1
−→{G\{p}} p1 and p 6= p1

)

or
(

p
r2
−→{G\{p}} p1 and p 6= p1

)

then

if p1 6= 0 then
G← {G\{p}} ∪ {p1}

else-if
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G← G\{p}
end-if

else-if
E1← 1
end-if

end-while
return(G)
end

Theorem 7.5.3. The algorithm RGB(F,�) terminates. The output forms a reduced
Gröbner basis for 〈F 〉 with respect to �1 and �D̄,X̄ in K[X̄ ][D̄].

Proof. In the first line, we compute a Gröbner basis for 〈F 〉 wit respect to �1 in K[X̄][D̄]
by RGröbnerBasis or InPaD. This step obviously terminates. In the first while-loop, if

there exists an element q ∈ G which can be reduced to q1 by
r1
−→{G\{p}} or

r2
−→{G\{p}},

then we have lppX̄(q) � lppX̄(q1) (lppX̄(q1) is smaller or equal than lppX̄(q) with respect

to �1). That is, the result of
r1
−→{G\{p}} or

r2
−→{G\{p}} to p in K[X̄][D̄] or K[X̄][D̄] has a

leading power product which cannot be greater than lppX̄(q) w.r.t. �1. Therefore, iter-

ated application of
r1
−→ or

r2
−→ to G will eventually terminate. This algorithm terminates.

The output is a reduced Gröbner basis.

In chapter 3, we defined two kind of reduced Gröbner bases “weak” and “strong” ones
in K[Ā][D̄]. In the ring K[X̄ ][D̄], we can define two kind of reduced Gröbner bases, too.
Actually, Definition 7.5.1 is about weak reduced Gröbner bases in K[X̄][D̄]. As we saw
in chapter 3, weak reduced Gröbner bases are not uniquely determined by a given ideal
in K[X̄][D̄]. We can easily construct string reduced Gröbner bases in K[X̄][D̄]. However,
we do not describe then in this thesis. One can easily follow the same way of chapter 3
for constructing strong ones.
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Chapter 8

Comprehensive Gröbner bases in rings

of differential operators

In this chapter we present algorithms for computing comprehensive Gröbner bases and
comprehensive Gröbner systems in K[X̄, D̄] and K[X̄][D̄] rings of differential operators.
That is, we consider non-commutative comprehensive Gröbner bases. In [KW91, Kre92],
Kredel and Weispfenning studied parametric Gröbner bases for non-commutative poly-
nomials. In these papers, they applied the Weispfenning method [Wei92] to compute
comprehensive Gröbner bases. In this chapter, we describe algorithms which are different
from the Kredel and Weispfenning approach, for computing comprehensive Gröbner bases
(and comprehensive systems) in rings of differential operators. Furthermore, these algo-
rithms have been implemented by the author in the computer algebra system Risa/Asir,
and theses algorithms are more efficient than the Kredel-Weispfenning one. Actually, our
algorithms are the generalization of the Suzuki-Sato algorithms (which we saw in chap-
ter 4) to the rings of differential operators. This chapter is bases on the author’s paper
[Nab07e].

8.1 Comprehensive Gröbner bases in K[Ā][X̄, D̄]

Here we present comprehensive Gröbner bases and comprehensive Gröbner systems in
K[Ā][X̄, D̄] rings of differential operators. Basically, we follow the Suzuki-Sato algorithm
for constructing the algorithms for computing them in K[Ā][X̄, D̄], because in general, the
Suzuki-Sato algorithm is faster than other existing algorithm. First, we treat the theory
of the stability of ideals in K[Ā][X̄, D̄].

8.1.1 The Stability of ideals

In this subsection, we describe the stability of (left) ideals under specializations in rings
of differential operators K[Ā][X̄, D̄]. First we introduce a definition of Gröbner bases in
K[Ā][X̄, D̄]. As we saw definitions of Gröbner bases in several domains, one can easily
imagine a definition of Gröbner bases which is the following.

Definition 8.1.1. Let I be an ideal in K[Ā][X̄, D̄] and � a term order on K[X̄, D̄]. A
subset G ⊂ K[Ā][X̄, D̄] is called a Gröbner basis of I with respect to � if

• I is generated by G, and
• lmĀ(I) = 〈lmĀ(G)〉 where lmĀ(I) = {lmĀ(f)|f ∈ I}.

Theorem 7.4.1 leads us to the computation method of Gröbner bases in K[Ā][X̄, D̄].
The key idea is again a block order. By block orders with X̄, D̄ � Ā and the algorithm
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GröbnerBasisW, we can compute a Gröbner basis in K[Ā][X̄, D̄]. As we saw in chapter 4,
we define the following ring homomorphism.

Every ring homomorphism π : K[Ā] → L extends naturally to a homomorphism π :
K[Ā][X̄, D̄] → L[X̄, D̄]. The image under π of an ideal I ⊆ K[Ā][X̄, D̄] generates the
extension π(I) := {π(f)|f ∈ I} ⊆ L[X̄, D̄].

Definition 8.1.2. We call an ideal I ⊆ K[Ā][X̄, D̄] stable under the ring homomorphism
π and a term order � if it satisfies

π(lmĀ(I)) = lm(π(I))

where π(lmĀ(I)) := {π(lmĀ(f))|f ∈ I} and lm(π(I)) := {lm(f)|f ∈ π(I)}.

In several papers [Bec94, Gia87, Kal97, Sat05], the stability of ideals under specialization
was studied in commutative polynomial rings. We can easily extend the concept of the
stability of ideals under specialization to the rings of differential operators. Then, the
generalization of “[Kal97, Theorem 3.1]” which is the next theorem, also holds in rings of
differential operators. This theorem is the key theorem for constructing the algorithms
for computing comprehensive Gröbner bases and comprehensive Gröbner systems.

Theorem 8.1.3 ([Kal97]). Let π be a ring homomorphism from K[Ā] to L, I an ideal
in K[Ā][X̄, D̄] and G = {g1, . . . , gs} a Gröbner basis of I with respect to a term order
�. We assume that the gi’s are ordered in such a way that there exists an r ∈ {1, . . . , s}
with π(lcĀ(gi)) 6= 0 for i ∈ {1, . . . , r} and π(lcĀ(gi)) = 0 for i ∈ {r + 1, . . . , s}. Then the
following three conditions are equivalent.

1. I is stable under π and �.
2. {π(g1), . . . , π(gq)} is a Gröbner basis of 〈π(I)〉 with respect to the term order �.
3. For every i ∈ {r + 1, . . . , s}, π(gi) is reducible to 0 modulo {π(g1), . . . , π(gq)} in
L[X̄, D̄].

Proof. This proof is exactly same as Theorem 4.3.2 and [Kal97]. Note that the ring
K[X̄, D̄] is a left Noetherian ring.

8.1.2 Comprehensive Gröbner systems

Here we present an algorithm for computing comprehensive Gröbner systems in
K[Ā][X̄, D̄]. Basically, this algorithm is the generalization of the Suzuki-Sato algorithm
(see Algorithm 4.4.3) to the rings of differential operators. As we saw earlier, for arbitrary
ā ∈ Lm, we define the canonical specialization homomorphism σā : K[Ā]→ L induced by
ā, and we can naturally extend it to σā : (K[Ā])[X̄ ]→ L[X̄ ].

Definition 8.1.4 (Comprehensive Gröbner Systems). Let F be a subset of
K[Ā][X̄, D̄], A1, . . . , Al algebraically constructible subsets of Lm and G1, . . . , Gl subsets
of K[Ā][X̄, D̄]. Let S be a subset of Lm such that S ⊆ A1 ∪ · · · ∪ Al. A finite set
G = {(A1, G1), . . . , (Al, Gl)} of pairs is called a comprehensive Gröbner system on
S for 〈F 〉 if σā(Gi) is a Gröbner basis of the ideal 〈σā(F )〉 in L[X̄ ] for each i = 1, . . . , l
and ā ∈ Ai. Each (Ai, Gi) is called a segment of G. We simply say G is a comprehensive
Gröbner system for 〈F 〉 if S = Lm.

Definition 8.1.5. Let S1, . . . , Sl and T1, . . . , Tl be finite subset of polynomials K[Ā]. A
finite set G = {(S1, T1, G1), . . . , (Sl, Tl, Gl)} of triples is also called a comprehensive
Gröbner system on S for 〈F 〉, if {(V(S1)\V(T1), G1), . . . , (V(Sl)\V(Tl), Gl)} is a com-
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prehensive Gröbner system on S for 〈F 〉. Each (Si, Ti, Gi) is also called a segment of the
comprehensive Gröbner system G.

The next two lemmas are the direct consequences of Theorem 8.1.3.

Lemma 8.1.6. Let F be a subset K[Ā][X̄, D̄]. F can be seen as a subset of K[Ā, X̄, D̄]
and we write the subset as F again. Let G be a Gröbner basis for 〈F 〉 in K[Ā, X̄, D̄] with
respect to a block order �{X̄,D̄},Ā:= (�1,�2) (i.e., {X̄, D̄} � Ā). G can be seen as a

subset of K[Ā][X̄, D̄] and we write the subset as G again. Suppose that {h1, . . . , hs} :=
{lcĀ(g)|g ∈ G} and h := LCM(h1, . . . , hs). Then, for any ā ∈ Lm\V(h), σā(G) is a
Gröbner basis for 〈σā(F )〉 with respect to �1 in L[X̄, D̄].

Proof. By Theorem 8.1.3 (3), I is stable. σā(G) is a Gröbner basis for 〈σā(F )〉 with
respect to �1.

Lemma 8.1.7. Let F be a subset K[Ā][X̄, D̄] and S a subset of K[Ā]. F can be seen as
a subset of K[Ā, X̄, D̄] and we write the subset as F again. Let G be the reduced Gröbner
basis for 〈F ∪ S〉 in K[Ā, X̄, D̄] with respect to a block order �{X̄,D̄},Ā:= (�1,�2), (i.e.,

{X̄, D̄} � Ā}). G can be seen as a subset of K[Ā][X̄, D̄] and we write the subset as
G again. Suppose that B := {b|b ∈ 〈S〉, b ∈ G}, {h1, . . . , hs} := {lcĀ(g)|g ∈ G\B} and
h := LCM(h1, . . . , hs). Then, for any ā ∈ V(S)\V(h), σā(G) is a Gröbner basis for 〈σā(F )〉
with respect to �1 in L[X̄, D̄]. Actually, we have σā(G) = σā(G\B).

Proof. If we take g ∈ G\B, then for all ā ∈ V(S)\V(h) we have σā(lcĀ(g)) 6= 0. If we
take g ∈ G ∩ B, then we have σā(g) = 0 and σā(lcĀ(g)) = 0. Of course, 〈0〉 is stable.
Therefore, G is stable under the specialization σā. By Theorem 8.1.3, σā(G) = σā(G\B)
is a Gröbner basis for 〈σā(F )〉.

By the two lemmas, we can construct an algorithm for computing comprehensive
Gröbner systems in K[Ā][X̄, D̄].

Algorithm 8.1.8. CGSW(F,�1) (Comprehensive Gröbner Systems in Weyl algebra)

Input F : a finite subset of K[Ā][X̄, D̄],
�1: a term order on pp(X̄, D̄),
(�{X̄,D̄},Ā= (�1,�2) : a block order such that X̄, D̄ � Ā on pp(X̄, D̄, Ā),

�2: a term order on pp(Ā),)
Output H: a comprehensive Gröbner system for 〈F 〉 with respect to �1 on Lm.
begin

G← RGröbnerBasisW(F,�{X̄,D̄},Ā)
if 1 ∈ G then
return({(∅, {1}, G)})
end-if

S ← {h1, . . . , hl} := {lcĀ(g)| lcĀ(g) /∈ K, g ∈ G}
if S 6= ∅ then

h← LCM(h1, . . . , hl)
H ← {(∅, {h}, G)}∪ CGSMainW(G, {h1},�1) ∪ · · · ∪ CGSMainW(G, {hl},�1)

else
H ← {(∅, {1}, G)}

end-if
return(H)
end
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Algorithm 8.1.9. CGSMainW(F,Z,�)

Input F : a finite subset of K[Ā][X̄, D̄],
Z : a finite set of polynomials in K[Ā],
�1: a term order on pp(X̄, D̄),
(�{X̄,D̄},Ā= (�1,�2) : a block order such that X̄, D̄ � Ā on pp(X̄, D̄, Ā),

�2: a term order on pp(Ā),)
Output H: a comprehensive Gröbner system for 〈F 〉 on V(Z) with respect to �1.
begin

G← RGröbnerBasisW(F ∪ Z,�{X̄,D̄},Ā)
if 1 ∈ G then

H ← ({(Z, {1}, {1})}
else

B ← {g|g ∈ G ∩K[Ā], g ∈ 〈Z〉}
S ← {h1, . . . , hl} := {lcĀ(g)| lcĀ(g) /∈ K, g ∈ G\B}
if S 6= ∅ then

h← LCM(h1, . . . , hl)
H ← {(Z, {h}, G\B)} ∪ CGSMainW(G,Z ∪ {h1},�1) ∪ · · ·

· · · ∪ CGSMainW(G,Z ∪ {hl},�1)
else
H ← {(Z, {1}, G\B)}

end-if
end-if
return(H)
end

Remark : We can apply a lot of optimization techniques [BW93, Mon02, MM06, SS03,
Wei03] to obtain small and nice outputs comprehensive Gröbner systems. For instance,
(1) : We can factorize each element of S into the set of their irreducible factors.
(2) : We can check each condition of parameters of segments for eliminating redundant
segments.
(3) : Since a leading coefficient of each polynomial of a segment does not vanish by the
specialization, we can apply Reduce1 in K(Ā)[X̄, D̄] where K(Ā) is the field of ratio-
nal functions. That is, we can obtain reduced Gröbner bases by using only Reduce1 in
K(Ā)[X̄, D̄] in each segment.
(4) : We applied the algorithm RGröbnerBasisW in the algorithms above. The algorithm
RGröbnerBasisW returns the reduced Gröbner basis in K[Ā, X̄, D̄]. However, the algo-
rithm does not return a reduced Gröbner basis in K[Ā][X̄, D̄]. Namely, the outputs has
some redundant elements. Therefore, we can eliminate these elements from the outputs.
See Algorithm 7.5.2.

Theorem 8.1.10. Let F be a finite subset of K[Ā][X̄, D̄]. Then the algorithm CGSW(F )
terminates and outputs a comprehensive Gröbner system for 〈F 〉 on Lm.

Proof. This proof is almost same as Theorem 4.4.5.
First we show the termination. The sub-algorithms RGröbnerBasisW and LCM terminates.
We prove the termination of CGSMainW. We suppose that CGSMainW(F,Z) does not ter-
minate where F ⊂ K[Ā][X̄, D̄] and Z ⊂ K[Ā], then there exists an infinite sequence
F0, F1, . . ., such that F0 = F and Fi 6= Fi+1 for i ∈ N. By the algorithm, Fl+1 = Fl ∪{hl}
for some hn ∈ K[Ā] such that hl /∈ 〈Fl〉. Hence we have 〈Fl〉 ( 〈Fl+1〉 for each l. We
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also have an infinite sequence Z0, Z1, . . . such that Z0 = Z and Zj 6= Zj+1 for j ∈ N, and
Zs+1 = Zs ∪ {hs} for each hs ∈ K[Ā] such that hs /∈ 〈Zs〉. Hence, we have 〈Zs〉 ( 〈Zs+1〉
for each s. We know that every infinite ascending chain M1 ⊆M2 ⊆ · · · of ideals of K[Ā]
stabilizes. That is, there exists N such that Mn = MN+1 = · · · = MN+j = · · · for all
0 ≤ j. Hence, 〈Zs〉 ( 〈Zs+1〉 contradicts by the fact. This means that 〈Fl〉 ( 〈Fl+1〉 is
also contradiction. Therefore, CGMainW terminates.

Next we show that, if (Z, h,G) ∈ H, then the triple (Z, h,G) forms a segment of a
comprehensive Gröbner system for 〈F 〉, i.e., σā(G) is a Gröbner basis of 〈σā(F )〉 for
each ā ∈ V(Z)\V(h). This is directly consequence of Lemma 8.1.6 and Lemma 8.1.7.
Finally, we have to prove that the conditions in H covers the whole Lm, i.e., Lm =
⋃

(P,h,G)∈H V(P )\V(h).

In the algorithm, if the first “if” of CGSW is true, then the output is {(∅, {1}, G)}. The
condition is V(∅)\V(1) = Lm. If the second “if” of CGSW is false, then the output is
{(∅, {1}, G)}. The condition is Lm. If the second “if” of CGSW is true, then we have to
consider {(∅, h,G)}∪ CGSMainW(G ∪ {h1}, {h1}) ∪ · · · ∪ CGSMainW(G ∪ {hl}, {hl}). Let us
consider a subalgorithm CGSMainW. We assume that one of inputs of CGSMainW is (F,Z)
where F ⊂ K[Ā][X̄, D̄] and Z ⊂ K[Ā]. Let G′ be a Gröbner basis of 〈F 〉 with respect to
�{X̄,D̄},Ā and let h′ = h′1 · · · h

′
l in K[Ā]. Then, the following equation always holds.

V(Z) = (V(Z)\V(h′)) ∪
⋃l

i=1 V(Z ∪ h′i).

The equation above follows by the induction on the well-founded tree of the algorithm.
Therefore, the condition of {(∅, h′, G)}∪ CGSMainW(G∪ {h′1}, {h

′
1}) ∪ · · · ∪ CGSMainW(G∪

{h′l}, {h
′
l}) is Lm.

The algorithm CGSW has been implemented by the author in the computer algebra
system Risa/Asir. We give some examples of comprehensive Gröbner systems in the fol-
lowing.

Example 8.1.11. Let F = {2a∂1 + bx2∂2 + x2, x1∂1 + ax2} be a subset of
Q[a, b][x1, x2, ∂1, ∂2], a, b parameters and x1, x2 variables, and ∂1, ∂2 partial deriva-
tives by x1, x2, respectively. Let � be the graded lexicographic orders such that
x1 � x2 � ∂1 � ∂2. We compute a comprehensive Gröbner basis for 〈F 〉 with respect to
�.

1: We compute a Gröbner basis for 〈F 〉 in Q[a, b, x1, x2, ∂1, ∂2] with respect to the
block order with x1 � x2 � ∂1 � ∂2 � a � b. Then the reduced Gröbner basis is
F1 = {ab2, a2b,−a∂1, ax2 − ab, bx2∂2 + x2, x1∂1 + ab}. By Lemma 8.1.7, if all elements
of {a, b} is not zero under specialization σ, then σ(F1) is a Gröbner basis for 〈σ(F )〉.
Moreover, if ab 6= 0, then ab2, a2b become constants. Hence, in this case the Gröbner
basis is {1}. Therefore, ({0}, {ab}, {1}) is one of the segments.

2-1: We consider the case {a = 0}. In this case we have to compute the reduced Gröbner
basis for 〈F ∪ {a}〉 with respect to x1 � x2 � ∂1 � ∂2 � a � b. Then the reduced
Gröbner basis is F2 = {x1∂1, bx2∂2 + x2, a}. By a = 0, we can eliminate a from F2.
Therefore, ({a}, {b}, F2\{a}) is one of the segments.

2-2 Next we consider the case {a = 0, b = 0}. Then the reduced Gröbner ba-
sis for 〈F ∪ {a, b}〉 is F3 = {x1∂1, x2, a, b}. We eliminate {a, b} from F3. Then
({a, b}, {1}, F3\{a, b}) is one of the segments.
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3-1 We consider the case {b = 0}. Then, the reduced Gröbner basis for 〈F ∪ {b}〉 is
F4 = {x1∂1, x2, a∂1, b}. Therefore, one of the segment is ({b}, {a}, F4\{b}).

3-2 Next we have to consider the case {b = 0, a = 0}. However, we already computed
this case in 2-2.

By the steps, we obtained a comprehensive Gröbner system which is the following;
{

({0}, {ab}, {1}), ({a}, {b}, F2\{a}), ({a, b}, {1}, F3\{a, b}), ({b}, {a}, F4\{b})
}

.

a = 0

F4\{b}, [b = 0, a 6= 0]

{1}, [ab 6= 0]

F3\{a, b}, [a = 0, b = 0]

F2\{a}, [a = 0, b 6= 0]

Input: F

b = 0

b = 0

Figure 8.1

Actually, our program outputs the following list as a comprehensive Gröbner system for
〈F 〉 with respect to �:

[b]==0, [a]!=0,

[x2,d1]

[b,a]==0, [1]!=0,

[x1*d1,x2]

[a]==0, [b]!=0,

[x1*d1,b*x2*d2+x2]

[0]==0, [a*b]!=0,

[1]

This output means :














{x2, ∂1} if a 6= 0, b = 0,
{x1∂1, x2} if a = 0, b = 0,
{x1∂1, bx2∂2 + x2} if a = 0, b 6= 0,
{1}, if ab 6= 0.

Example 8.1.12. Let F = {x1∂1+ax2∂2, bx
2
1∂2+x2} be a subset of Q[a, b][x1, x2, ∂1, ∂2],

x1, x2 variables, a, b parameters and ∂1, ∂2 the partial derivatives by x1 and x2 respectively
(i.e., ∂ixi = xi∂i + 1, i = 1, 2). Let � be the graded lexicographic order such that
x1 � x2 � ∂1 � ∂2. We compute a comprehensive Gröbner system for 〈F 〉 with respect
to �.

1: We compute a Gröbner basis for 〈F 〉 in Q[a, b, x1, x2, ∂1, ∂2] with respect to the block
order with x1 � x2 � ∂1 � ∂2 � a � b. Then the reduced Gröbner basis F1 is the
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following

F1 =
{

− ba3 − 2ba2 + ba+ 2b, (−a + 1)x2, (ba
2 + ba− 2b)x1,−x2∂2 − x∂1 + a− 1, (ba −

b)x2
1, bx

2
1∂2 + x2, bx1x2∂

2
2 − bax∂2 − x2∂1,−bx

2
2∂

3
2 + (−ba2 − 3ba+ 4b)∂2 − x2∂

2
1 ,−1

}

.

The set of every leading coefficient of F1 is

lc{a,b}(F1) =
{

− ba3 − 2ba2 + ba+ 2b,−a+ 1, ba2 + ba− 2b, ba− b, b
}

.

If all element of lc{a,b}(F1) is not zero under specialization σα where α ∈ Q2, then σα(F1)
is a Gröbner basis for 〈σα(F )〉. Therefore, ({0}, lc{a,b}(F1), F1) is one of the segments of
a comprehensive Gröbner system for 〈F 〉. In the segment ({0}, lc{a,b}(F1), F1), we can

easily simplify lc{a,b}(F1) and F1. Since −ba3−2ba2 + ba+2b = −(b)(a−1)(a+1)(a+2),

ba2 +ba−2b = b(a+2)(a−1), ba−b = b(a−1) and −1 6= 0, we can change lc{a,b}(F1) into
{b, a− 1, a+ 1, a+ 2}. Namely, if b(a− 1)(a+ 1)(a+ 2) 6= 0, F1 is a Gröbner basis under
specialization σα where α ∈ Q2 \V(b(a− 1)(a+1)(a+2)). Look at −ba3− 2ba2 + ba+2b
in F1. If b(a − 1)(a + 1)(a + 2) 6= 0, −ba3 − 2ba2 + ba + 2b is always a constant under
the specialization σα. Hence, the Gröbner basis is {1}. Therefore, one of the segments is
({0}, {b(a − 1)(a + 1)(a + 2)}, {1}).

2: We consider the case {b = 0}. Then the reduced Gröbner basis F2 for 〈F ∪ {b}〉 with
respect to the block order with x1 � x2 � ∂1 � ∂2 � a � b is the following

F2 = {b, x2, x1∂1 − a}.

The set of non-constant leading coefficient of F2\{b} is empty. Therefore we have a
segment ({b}, {1}, {x2 , x1∂1 − a}).

3-1: We consider the case {a+ 1 = 0}. Then the reduced Gröbner basis is

F3 = {a+ 1, x2, bx1, x1∂1 + 1}.

The set of non-constant leading coefficient of F3\{a+ 1} is {b}.
One of the segments is ({a+ 1}, {b}, {x2 , bx1, x1∂1 + 1}).

3-2: Next we have to consider the case {a + 1 = 0, b = 0}. Then the reduced Gröbner
basis is

F4 = {b, a + 1, x2, x1∂1 + 1}.

The set of non-constant leading coefficient of F3\{a+1, b} is empty. One of the segments
is ({a+ 1, b}, {1}, {x2 , x1∂1 + 1}).

4-1: We consider the case a+ 2 = 0. Then the reduced Gröbner basis is

F5 = {a+ 2, x2, x1∂1 + 2, bx2
1}.

The set of non-constant leading coefficient of F3\{a+ 2} is {b}.
One of the segments is ({a+ 2}, {b}, {x2 , x1∂1 + 2, bx2

1}).

4-2: We have to consider the case {a+ 2 = 0, b = 0}. Then the reduced Gröbner basis is

F6 = {b, a + 2, x1, x1∂1 + 2}.
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One of the segments is ({a+ 2, b}, {1}, {x2 , x1∂1 + 2}).

5-1: We consider the case {a+ 1 = 0}. Then the reduced Gröbner basis is

F7 = {a− 1, x2∂2 + x∂1, bx
2
1∂2 + x2,−bx1x2∂

2
2 + bx1∂2 + y∂1,−bx

2
2∂

3
2 − x2∂

2
1}.

The set of non-constant leading coefficient of F3\{a− 1} is {b}.
One of the segments is ({a− 1}, {b}, {F7\{a− 1}}).

5-2: We consider the case {a+ 1 = 0, b = 0}. Then the reduced Gröbner basis is

F8 = {b, a − 1, x2, x1∂1 − 1}.

One of the segments is ({a− 1, b}, {1}, {x2 , ∂1 − 1}).

Solution : By the steps, a comprehensive Gröbner system for 〈F 〉 is
{

({0}, {b(a − 1)(a+ 1)(a+ 2)}, {1}), ({b}, {1}, {x2 , x1∂1 − a}), ({a + 1}, {b}, {x1 , x2}),

({a+1, b}, {1}, {x2 , x1∂1+1}), ({a+2}, {b}, {x2 ,−x1∂1−2, x2
1}), ({a+2, b}, {1}, {x2 , x1∂1+

2}),

({a− 1}, {b}, {F7\{a− 1}}), ({a − 1, b}, {1}, {x2 , x1∂1 − 1})
}

.

We can see this comprehensive Gröbner system as follows















































{1} if b(a− 1)(a+ 1)(a + 2) 6= 0,
{x2, x1∂1 − a} if b = 0,
{x2, bx1, x1∂1 + 1} if a+ 1 = 0, b 6= 0
{x2, x1∂1 + 1} if a+ 1 = b = 0,
{x2, x1∂1 + 2, bx2

1} if a+ 2 = 0, b 6= 0,
{x2, x1∂1 + 2} if a+ 2 = b = 0,
{F7\{a− 1}} if a− 1 = 0, b 6= 0,
{x2, x1∂1 − 1} if a− 1 = b = 0.

Remark: Actually, the segment ({b}, {1}, {x2 , ∂1 − a}) includes the segments ({a +
1, b}, {1}, {x2 , x∂1+1}), ({a+2, b}, {1}, {x2 , x1∂1+2}) and ({a−1, b}, {1}, {x2 , x1∂1−1}).
Therefore, we can eliminate these segments from the list. We are able to compares each
condition of the parameters in the procedure. This is one of the optimization techniques
to get small and nice outputs comprehensive Gröbner systems. (In our program this
techniques has been implemented.) In this example, we followed the algorithm CGSW.

Example 8.1.13. Let F = {2∂1 + bx2∂2 + x2, x1∂1 − ax2} ⊂ Q[a, b][x1, x2, ∂1, ∂2], a, b
parameters, x1, x2 variables and ∂1, ∂2 partial derivative by x1, x2, respectively. Let � be
the graded lexicographic order such that x1 � x2 � ∂1 � ∂2. Then our program outputs
the following list as a comprehensive Gröbner system for 〈F 〉 with respect to �:

[a]==0, [b]!=0,

[b*x2*d2+x2,d1]

[b]==0, [1]!=0,

[x2,d1]

[0]==0, [b*a]!=0,

[1]
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This meaning is the following:







{bx2∂2 + x2, ∂1} if a = 0, b 6= 0,
{x2, ∂1} if b = 0,
{1}, if ab 6= 0.

Example 8.1.14. Let F = {2x1d1 + ax2d2 + 1, x2d2 + 2ax3d3 − 1, cd1d3 − bx2
2} ⊂

Q[a, b, c][x1, x2, x3, d1, d2, d3], a, b, c parameters, x1, x2, x3 variables and d1, d2, d3 par-
tial derivative by x1, x2, x3, respectively. Let � be the lexicographic order such that
d3 � d2 � d1 � x3 � x2 � x1. Then our program outputs the following list as a
comprehensive Gröbner system for 〈F 〉 with respect to �:

[2*a-1]==0, [b*c]!=0,

[x3*d3-3,x2*d2+2,d1,x2^2]

[a+1]==0, [b]!=0,

[c*d1*d3-b*x2^2,x3*d3-x1*d1,-x2*d2+2*x1*d1+1,-c*x1*d1^2-c*d1+b*x2^2*x3]

[a-1]==0, [c*b]!=0,

[x3*d3-1,d1,x2]

[b]==0, [c]!=0,

[d1*d3,-2*a^2*x3*d3+2*x1*d1+a+1,a*x2*d2+2*x1*d1+1,-2*x1*d1^2+(-a-3)*d1]

[b,c]==0, [1]!=0,

[2*a^2*x3*d3-2*x1*d1-a-1,a*x2*d2+2*x1*d1+1]

[c]==0, [b]!=0,

[2*a^2*x3*d3-2*x1*d1-a-1,a*x2*d2+2*x1*d1+1,-4*x1^2*d1^2+(6*a-8)*x1*d1-2*a^

2+3*a-1,2*x1*x2*d1+(-2*a+1)*x2,x2^2]

[0]==0, [c*b*(a-1)*(a+1)*(2*a-1)]!=0,

[1]

This meaning is the following:







































































{

x3d3 − 3, x2d2 + 2, d1, x
2
2

}

if 2a− 1 = 0, bc 6= 0
{

cd1d3 − bx
2
2, x3d3 − x1d1,−x2d2 + 2x1d1 + 1, if a+ 1 = 0, b 6= 0

−cx1d
2
1 − cd1 + bx2

2x3

}

{

x3d3 − 1, d1, x2

}

if a− 1 = 0, bc 6= 0
{

d1d3,−2a2x3d3 + 2x1d1 + a+ 1, if b = 0, c 6= 0
ax2d2 + 2x1d1 + 1,−2x1d

2
1 + (−a− 3)d1

}

{

2a2x3d3 − 2x1d1 − a− 1, ax2d2 + 2x1d1 + 1
}

, if b = c = 0,
{

2a2x3d3 − 2x1d1 − a− 1, ax2d2 + 2x1d1 + 1, if c = 0, b 6= 0,
−4x2

1d
2
1 + (6a− 8)x1d1 − 2a2 + 3a− 1,

2x1x2d1 + (−2a+ 1)x2, x
2
2

}

{

1
}

if cb(a− 1)(a+ 1)(2a − 1) 6= 0.

8.1.3 Comprehensive Gröbner bases

Here we present an algorithm for computing comprehensive Gröbner bases. In fact, we
modify the algorithm CGSW to compute comprehensive Gröbner bases.

Definition 8.1.15. Let F and G be subsets of K[Ā][X̄, D̄]. G ⊂ 〈F 〉 is called a com-
prehensive Gröbner basis for 〈F 〉 if σā(G) is a Gröbner basis for 〈σā(F )〉 for each
ā ∈ Lm.

We already saw comprehensive Gröbner systems in previous section which has condi-
tions of parameters. However, comprehensive Gröbner bases do not have conditions of
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parameters. A comprehensive Gröbner basis is a set of differential operators. In this point,
comprehensive Gröbner bases are different from comprehensive Gröbner systems. In this
section we consider an algorithm for computing comprehensive Gröbner bases. Then, we
need the following concept (which we also saw in chapter 4).

Definition 8.1.16. Let F ⊂ K[Ā][X̄, D̄], s1, . . . , sl, t1, . . . , tl ⊂ K[Ā] and G1, . . . , Gi ⊂
K[Ā][X̄, D̄]. Then a comprehensive Gröbner system {(s1, t1, G1), . . . , (sl, tl, Gl)} for 〈F 〉
is called faithful if Gi ⊂ 〈F 〉 for each i = 1, . . . , l.

Actually, we describe an algorithm for computing faithful comprehensive Gröbner sys-
tems. If {(s1, t1, G1), . . . , (sl, tl, Gl)} is a faithful comprehensive Gröbner system for 〈F 〉,
then by the definitions, G1∪· · ·∪Gl is a comprehensive Gröbner basis for 〈F 〉. Therefore,
we modify the algorithm CGSMainW (or CGSW) to compute a faithful comprehensive
Gröbner system. The key ideal which is from [SS06] is to apply a new variable U . In
[SS06], they introduced a new auxiliary variable U besides X̄ and Ā in order to com-
pute comprehensive Gröbner bases. We follow this technique to compute comprehensive
Gröbner bases in rings of differential operators. We define homomorphisms σ0 and σ1

from K[Ā][U, X̄, D̄] to K[Ā][X̄, D̄] as a specialization of U with 0 and 1 respectively, i.e.
σ0(f(U, Ā, X̄, D̄)) = f(0, Ā, X̄, D̄) and σ1(f(U, Ā, X̄, D̄)) = f(1, Ā, X̄, D̄). Before we in-
troduce the algorithm for computing comprehensive Gröbner bases, we need the following
lemma.

Lemma 8.1.17 ([SS06]). Let F and S be subsets of K[Ā][X̄, D̄]. For any g ∈ 〈(U ·
F ) ∪ (U − 1) · S)〉 ⊆ K[Ā][U, X̄, D̄], then σ0(g) ∈ 〈S〉 ⊆ K[Ā][X̄, D̄] and σ1(g) ∈ 〈F 〉 ⊆
K[Ā][X̄, D̄].

The next theorem is the main result of this section. By the following theorem, we can
construct an algorithm for computing comprehensive Gröbner bases.

Theorem 8.1.18. Let F be a subset of K[Ā][X̄, D̄], and S a subset of K[Ā]. Fur-
thermore, let G be a Gröbner basis for 〈(U · F ) ∪ (U − 1) · S〉 in K[Ā][U, X̄, D̄] with
respect to a block order �U,{X̄,D̄}:= (�1,�2) with U � {X̄, D̄}. Suppose that B1 :=

{g ∈ G|deg{X̄,D̄}(lppĀ(g)) = 0, lcĀ(g) ∈ 〈S〉}, B2 := {g ∈ G|degU (lppĀ(g)) = 0},
G′ = G\(B1 ∪ B2), {h1, . . . , hl} := {lcĀ(g)|g ∈ G′} and h = LCM(h1, . . . , hl). Then for
each ā ∈ V(S)\V(h), σā(σ

1(G)) is a Gröbner basis of 〈σā(F )〉 in L[X̄, D̄]. Actually, we
have σā(σ1(G)) = σā(σ1(G′)).

Proof. Note that any differential operator of G have a linear form of U , i.e., the degree
of U is at most 1. By Lemma 8.1.17, σ1(G) is a basis of 〈F 〉. We prove that σā(σ1(G))
is a Gröbner basis of 〈σā(F )〉. By the sets G′, B1 and B2, we have G = G′ ∪ B1 ∪ B2.
We consider three cases B1, B2 and G′. Take for all f1 ∈ B1. Then f1 can be written
as f1 = f11U + f12 where f11, f12 ∈ K[Ā] and f11 ∈ 〈S〉. By Lemma 8.1.17, σ0(f1) =
f12 ∈ 〈S〉, thus we have σā(f12) = 0. Hence, σā(f1) = 0. Take for all f2 ∈ B2. Then,
by Lemma 8.1.17, σ0(f2) = f2 ∈ 〈S〉. Hence, σā(f2) = 0. By Lemma 8.1.7, we have
σā(G) = σā(G′) which is a Gröbner basis for 〈U · F ∪ (U − 1) · S〉 in L[X̄, U, D̄]. Take
for all g ∈ G′. Then, g can be written as g = U · g1 + g2 where g1, g2 ∈ K[Ā][X̄, D̄]. By
Lemma 8.1.17, we have σ0(g) = g2 ∈ 〈S〉, thus σā(g2) = 0. That is, σā(g) = σā(U · g1).
Since every power product of σā(G′) has a variable U whose degree is 1 and U � {X̄, D̄},
σ1(σā(G′)) is a Gröbner basis of 〈σ1(σā(U ·F )∪ (U−1) ·S)〉 = 〈σ1(σā(U ·F ))〉 = 〈σā(F )〉.
Therefore, it follows that σā(σ1(G)) is a Gröbner basis for 〈σā(F )〉 in L[X̄, D̄].

Theorem 8.1.18 leads us to have the following algorithm which outputs a comprehensive
Gröbner bases. In fact, the algorithm CGBMainW returns a faithful comprehensive Gröbner
system.
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Algorithm 8.1.19. CGBW(F,�1) (Comprehensive Gröbner Bases in Weyl algebra)

Input F : a finite subset of K[Ā][X̄, D̄],
�1: a term order on pp(X̄, D̄),

Output G: a comprehensive Gröbner basis for 〈F 〉 with respect to �1.
begin

G← ∅
Z ← ∅
H ← CGBMainW(F,Z,�1)

while H 6= ∅ do
Select (s, t, E) from H; H ← H\{(s, t, E)}
G← G ∪E

end-while
return(G)
end

Algorithm 8.1.20. CGBMainW(F,Z,�1)

Input F : a finite subset of K[Ā][X̄, D̄],
Z : a finite subset of K[Ā],
�1: a term order on pp(X̄, D̄),

(

�U,{X̄,D̄},Ā= (�,�1,�2) : a block order such that U � {X̄, D̄} � Ā on pp(U, X̄, D̄, Ā),

�2: a term order on pp(Ā), �: a term order on pp(U),
)

Output G: a faithful comprehensive Gröbner system on V(S) for 〈F 〉.
begin
if 1 ∈ 〈Z〉 then
G← ∅
else
H ← RGröbnerBasisW((U · F ) ∪ ((U − 1) · Z),�U,{X̄,D̄},Ā)

B1 ← {g ∈ H|degU (lppĀ(g)) = 0}
B2 ← {g ∈ H|deg{X̄,D̄}(lppĀ(g)) = 0, lcĀ(g) ∈ 〈Z〉}
H ′ ← H\(B1 ∪B2)
S ← {h1, . . . , hl} := {lcĀ(g)|g ∈ H ′}

if S 6= ∅ then
h← LCM(h1, . . . , hl)
G← {(Z, {h}, σ1(H ′)}∪ CGBMainW(F,Z∪{h1},�1)∪· · · ∪ CGBMainW(F,Z∪{h1},�1)

else
G← {(Z, {1}, σ1(H ′)}

end-if
end-if
return(G)
end

Theorem 8.1.21. Let F be a finite subset of K[Ā][X̄, D̄]. Then the algorithm CGBW
returns a comprehensive Gröbner bases for 〈F 〉. That is, the algorithm CGBMainW returns
a faithful comprehensive Gröbner system for 〈F 〉.

Proof. Since the algorithm RGröbnerBasisW(F ) outputs the reduced Gröbner basis for 〈F 〉
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in K[Ā][U, X̄, D̄], hi ∈ K[Ā] is not in the ideal 〈Z〉. We modified the algorithm CGSW
and CGSMainW for constructing the algorithm CGBW and CGBMainW above. Hence,
the algorithm CGBMain terminates, and by Theorem 8.1.18 and Lemma 8.1.7, returns a
faithful comprehensive Gröbner system. Therefore, the algorithm CGBW terminates and
returns a comprehensive Gröbner basis.

This algorithm CGBW have been implemented by the author in the computer algebra
system Risa/Asir. In the following examples, we can see some examples of comprehensive
Gröbner bases and how the algorithm works.

Example 8.1.22. Let F = {2a∂1 + bx2∂2 + x2, x1∂1 + ax2} be a subset of
Q[a, b][x1, x2, ∂1, ∂2], a, b parameters and x1, x2 variables, and ∂1, ∂2 partial derivatives
by x1, x2, respectively. Let � be the graded lexicographic order with x1 � x2 � ∂1 � ∂2.
We compute a comprehensive Gröbner basis for 〈F 〉 with respect to �.

• We compute a faithful comprehensive Gröbner system for 〈F 〉.

1: We compute a Gröbner basis for 〈F 〉 in Q[a, b, x1, x2, ∂1, ∂2] with respect to the block
order with x1 � x2 � ∂1 � ∂2 � a � b. Then The reduced Gröbner basis is the following

F1 = {ab2, a2b,−a∂1, ax2 − ab, bx2∂2 + x2, x1∂1 + ab}.

By Lemma 4.4.2, if all elements of {a, b} is not zero under specialization σ, then σ(F1) is
a Gröbner basis for 〈σ(F )〉. Therefore, ({0}, {ab}, F1) is one of the segments of a faithful
comprehensive Gröbner basis.

2-1: Let u be a new variable. We consider the case {a = 0}. In this case we have to
compute the reduced Gröbner basis for 〈u · F ∪ (u − 1) · (a)〉 with respect to u � x1 �
x2 � ∂1 � ∂2 � a � b. Then the reduced Gröbner basis is

F2 = {ab2, a2b,−a∂1, ax2 − ab, au− a, bux2∂2 + ux2, ux1∂1 + ab}.

In case {a = 0}, ab2, a2b,−a∂1, ax2−ab, au−a are always zero. Hence, we eliminate them
from F2. Next we substitute 1 into the new variable u. Then we have the following set

F ′
2 = {bx2∂2 + x2, x1∂1 + ab}.

Therefore, one of the segments is ({a}, {b}, F ′
2).

2-2: Next we consider the case {a = 0, b = 0}. Then the reduced Gröbner basis for
〈u · F ∪ {(u− 1) · a, (u− 1) · b}〉 is

F3 = {b, a∂1, ax2, au− a, ux2, ux1∂1}.

In case {a = 0, b = 0}, b, a∂1, ax2, au− a are always zero, so we eliminate them from F3.
Next we substitute 1 into the new variable u. Then we have the following set

F ′
3 = {x2, x1∂1}.

Therefore, one of the segments is ({a, b}, {1}, F ′
3).

3-1: We consider the case b = 0. Then the reduced Gröbner basis for 〈u ·F ∪{(u−1) · b}〉
is

F4 = {ab− b, bu, au∂1, ux2, ux1∂1}.
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In case {b = 0}, ab− b, bu is always zero, so we eliminate them from F4. We substitute 1
into the new variable u. Then we have the following set

F ′
4 = {a∂1, x2, x1∂1}.

One of the segments is ({b}, {a}, F ′
4).

3-2: Next we have to consider the case {b = 0, a = 0}. However, we already computed
this case in 2-2.

By the steps, we obtained a faithful comprehensive Gröbner system

{

({0}, {ab}, F1), ({a}, {b}, F ′
2), ({a, b}, {1}, F ′

3), ({b}, {a}, F ′
4)
}

.

Therefore, a comprehensive Gröbner basis for 〈F 〉 is

F1 ∪ F
′
2 ∪ F

′
3 ∪ F

′
4 =

{

x1∂1 + ab, bx2∂2 + x2,−a∂1, ab
2, a2b, ax2 − ab

}

.

See Figure 8.2.

a = 0

F4, [b = 0, a 6= 0]

F1, [ab 6= 0]

F ′
3, [a = 0, b = 0]

F ′
2, [a = 0, 6= 0]

Input: F

b = 0

b = 0

Figure 8.2

Example 8.1.23. Let F1 = {2x2
1d1 + ax2d2, x1x2d2 + 2x2

1, bx2}, F2 = {2d1 + ad2 +
1, 2x3d2 − 1, cd1d3 − bx

2
2d1} be subsets of Q[a, b, c][x1, x2, x3, d1, d2, d3], a, b, c parameters

and x1, x2, x3 variables, and d1, d2, d3 partial derivatives by x1, x2, x3, respectively. Let
� be the lexicographic order such that x1 � x2 � x3 � d1 � d2 � d3. Then our program
outputs the following list as a comprehensive Gröbner basis for 〈F1〉 with respect to �:

[a*x2^2*d1*d2^2+(a*x2*d1-4*a*x2)*d2+16*x1,a*x2^3*d2^3+3*a*x2^2*d2^2+a*x2*

d2,b*a,b*x2,(a^2+3*a)*x2^2*d2^2+(a^2+3*a)*x2*d2]

Our program outputs the following list as a comprehensive Gröbner basis for 〈F2〉 with
respect to �:

[2*x3*d2-1,2*c*x3+c*a,a*d2+2*d1+1,-c*a*d2-c,-a*b*d2-b,2*b*x3+a*b,a*d2+2*d

1+1,2*x3*d2-1].

Example 8.1.24. Let F1 = {2x2
1d1 + ax2d2, x1x2d2 + 2x2

1, bx2}, F2 = {2x1d1 + ax2d2 +
1, x2d2 +2ax3d3−1, cd1d3−bx

2
2} be subsets of Q[a, b, c][x1, x2, x3, d1, d2, d3], a, b, c param-

eters and x1, x2, x3 variables, and d1, d2, d3 partial derivatives by x1, x2, x3, respectively.
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Let � be the lexicographic order such that x1 � x2 � x3 � d1 � d2 � d3.
Then our program outputs the following list as a comprehensive Gröbner basis for 〈F1〉
with respect to �:

[b*a,(a^2+3*a)*x2^2*d2^2+(a^2+3*a)*x2*d2,a*x2^3*d2^3+3*a*x2^2*d2^2+a*x2*d2

,a*x2^2*d1*d

2^2+(a*x2*d1-4*a*x2)*d2+16*x1,b*x2].

Our program outputs the following list as a comprehensive Gröbner basis for 〈F2〉 with
respect to �:

[-2*c*b*a^3+c*b*a^2+2*c*b*a-c*b,4*b*a^2*x3^2*d3^2+(-c*d1*d2^2+(4*b*a^2-10

*b*a)*x3)*d3+6*b,2*a*x3*d3+x2*d2-1,(c*d1*d2+2*b*a*x2*x3)*d3-3*b*x2,c*d1*

d3-b*x2^2,-2*a^2*x3*d3+2*x1*d1+a+1,-2*c*a^2*x3*d3^2+(-2*c*a^2+c*a+c)*d3+

2*b*x1*x2^2,(-2*c*a^3-2*c*a^2)*x3*d3^2+(-2*c*a^3-c*a^2+2*c*a+c)*d3,(c*b*

a+c*b)*d1,(c*a+c)*d1*d3,(-c*b*a-c*b)*x3*d3-4*c*b*a^2+c*b*a+5*c*b,8*b*a^2

*x3^2*d3^2+((c*a-c)*d1*d2^2+(8*b*a^2-20*b*a)*x3)*d3+12*b,(2*c*b*a^2+c*b*

a-c*b)*x2,((-c*a+c)*d1*d2+4*b*a*x2*x3)*d3-6*b*x2,(-c*a+c)*d1*d3-2*b*x2^2

,(2*c*b*a+2*c*b)*d1,(2*c*a+2*c)*d1*d3,(-2*c*b*a-2*c*b)*x3*d3-8*c*b*a^2+2

*c*b*a+10*c*b,(-8*c*a^3-8*c*a^2)*x3*d3^2+(-8*c*a^3-4*c*a^2+8*c*a+4*c)*d3

,12*b*a^2*x3^2*d3^2+((2*c*a-c)*d1*d2^2+(12*b*a^2-30*b*a)*x3)*d3+18*b,((-

2*c*a+c)*d1*d2+6*b*a*x2*x3)*d3-9*b*x2,(-2*c*a+c)*d1*d3-3*b*x2^2,-4*a^2*x

3*d3+4*x1*d1+2*a+2,4*b*a^2*x3^2*d3^2+(c*a*d1*d2^2+(4*b*a^2-10*b*a)*x3)*d

3+6*b].

8.2 Comprehensive Gröbner bases in (K[Ā][X̄])[D̄]

Here we describe comprehensive Gröbner bases in (K[Ā][X̄ ])[D̄] with coefficients in
K[Ā][X̄ ]. In chapter 7, we have seen the relations between Gröbner bases in K[X̄, D̄] and
Gröbner bases in K[X̄][D̄]. The key idea for computing Gröbner bases in K[X̄ ][D̄] was a
block order such that D̄ � X̄ . By this relation and the algorithm CGBW (or CGSW), we
can easily compute comprehensive Gröbner bases (or comprehensive Gröbner systems) in
(K[Ā][X̄ ])[D̄].

Theorem 8.2.1. Let I be an ideal in (K[Ā][X̄ ])[D̄]. Since (K[Ā][X̄ ])[D̄] is isomorphic to
K[Ā][X̄, D̄], the ideal I can be seen as an ideal in K[Ā][X̄, D̄] and we write the ideal as
I ′. Let G be a comprehensive Gröbner system for I ′ on Lm with respect to a block order
�D̄,X̄ := (�1,�2), (i.e., D̄ � X̄) in K[Ā][X̄, D̄]. The set G can be seen as a set of triples

in (K[Ā][X̄])[D̄] and we write the set as G again. Then G is a comprehensive Gröbner
system for I with respect to �1 in (K[Ā][X̄ ])[D̄].

Proof. We take an arbitrary segment (Si, Ti, Gi) ∈ G. Since G is a comprehensive Gröbner
system for I in K[Ā][X̄, D̄] with respect to a block order �D̄,X̄ , for any ā ∈ V(Si)\V(Ti),
σā(Gi) is a Gröbner basis for 〈σā(I)〉 with respect to �D̄,X̄ . By Theorem 7.4.1, σā(Gi) is

also a Gröbner basis for 〈σā(I)〉 in L[X̄][D̄] with respect to �1. This means that G is a
comprehensive Gröbner system for I with respect to �1 in (K[Ā][X̄ ])[D̄].

Theorem 8.2.2. Let I be an ideal in (K[Ā][X̄ ])[D̄]. Since (K[Ā][X̄ ])[D̄] is isomorphic
to K[Ā][X̄, D̄], the ideal I can be seen as an ideal in K[Ā][X̄, D̄] and we write the ideal
as I ′. Let G be a comprehensive Gröbner basis for I ′ with respect to a block order
�D̄,X̄ := (�1,�2), (i.e., D̄ � X̄) inK[Ā][X̄, D̄]. G can be seen as a subset of (K[Ā][X̄ ])[D̄]
and we write the set as G again. Then G is a comprehensive Gröbner basis for I with
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respect to �1 in (K[Ā][X̄ ])[D̄].

Proof. SinceG is a comprehensive Gröbner basis for I with respect to�D̄,X̄ inK[Ā, X̄ ][D̄],
for any ā ∈ Lm, σā(G) is a Gröbner basis for 〈σā(I)〉 with respect to �1. By Theorem 7.4.1,
σā(G) is a Gröbner basis for 〈σā(I)〉 with respect to �1 in L[X̄ ][D̄]. Therefore, G is a
comprehensive Gröbner basis for I with respect to �1 in (K[Ā][X̄ ])[D̄].

Actually, when we compute a comprehensive Gröbner basis (or system) in (K[Ā][X̄])[D̄],
we need a Gröbner basis computation with respect to a block order with D̄ � X̄ � Ā.
By using the block order and the algorithm CGBW (or CGSW), we are able to compute a
comprehensive Gröbner basis (or system) in (K[Ā][X̄ ])[D̄].

Corollary 8.2.3. Let F be a subset of (K[Ā][X̄ ])[D̄]. Since (K[Ā][X̄ ])[D̄] is isomorphic to
k[Ā, X̄, D̄], the set F can be seen as a subset of K[Ā, X̄, D̄] and we write the subset as F ′.
Let G be a Gröbner basis for 〈F ′〉 in K[Ā, X̄, D̄] with respect to �D̄,X̄,Ā:= (�1,�2,�3)

(i.e., D̄ � X̄ � Ā). G can be seen as a subset of (K[Ā][X̄ ])[D̄] and we write the subset as
G again. Suppose that {h1, . . . , hs} := {lcĀ(g)|g ∈ G\K[Ā]} and h := LCM(h1, . . . , hs).
Then, for any ā ∈ V(G ∩K[Ā])\V(h), σā(G) is a Gröbner basis for 〈σā(F )〉 with respect
to �1 in L[X̄ ][D̄].

Proof. By Theorem 8.2.2 and Theorem 7.4.1, this corollary holds.

In the following examples, we give some examples of comprehensive Gröbner bases and
systems in (C[Ā][X̄ ])[D̄].

Example 8.2.4. Let F = {x1∂1+ax2∂2, bx
2
1∂2+x2} be a subset of (C[a, b][x1, x2])[∂1, ∂2],

a, b parameters and � be the lexicographic order such that ∂1 � ∂2.

(1) : We ready to compute a comprehensive Gröbner system for 〈F 〉 with respect
to �. First, we have to compute a comprehensive Gröbner systems for 〈F 〉 in
C[a, b][x1, x2, ∂1, ∂2] with respect to a block order ∂1 � ∂2 � x1 �1 x2. In this
example �1 is the lexicographic order. Second, by the algorithm CGSW, we obtain a
comprehensive Gröbner system G as follows:

G =
{

({a + 2}, {b}, {x1∂1 + 2, x2
1, x2}), ({a + 1}, {b}, {x1 , x2}), ({a − 1}{b}, {bx2

1∂2 +

x2, bx1x2∂
2
2 − bx1∂2 − x2∂1, x2∂2 + x1∂1}), ({b}, {1}, {x2 , x1∂1 − a}), ({∅}, {b(a − 1)(a +

1)(a+ 2)}, {1})
}

.

By Theorem 8.2.1, G is also a comprehensive Gröbner system for I in (C[a, b][x1, x2])[∂1, ∂2]
with respect to �.

(2): We ready to compute a comprehensive Gröbner basis for 〈F 〉 with respect to �.
First, we have to compute a comprehensive Gröbner basis for 〈F 〉 in C[a, b][x1, x2, ∂1, ∂2]
with respect to a block order ∂1 � ∂2 � x1 �1 x2. Second, by the algorithm CGSW, we
can obtain a comprehensive Gröbner basis G as follows:

G =
{

− a3b − 2a2b + ab + 2b, bx2
1∂2 + x2,−bx

2
1∂

2
2 + x1∂1 − a, bx1x2∂

2
2 − abx1∂2 −

x2∂1, x2∂2 +x1∂1−a+1, (a−1)x2 , (a
2b+ab−2b)x1, (−a−1)x2∂2−2x1∂1 +a−1, (−ab+

b)x2
1, (−a− 2)x2∂2 − 3x1∂1 + 2a− 2

}

.

By Theorem 8.2.2, G is also a comprehensive Gröbner basis for I in (C[a, b][x1, x2])[∂1, ∂2]
with respect to �.
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Example 8.2.5. Let F = {2x1d1 + ax2d2 + 1, bx2d2 + 2ax3d3, d1d3 − x
2
2d2} be a subset

of (Q[a, b][x1, x2, x3])[d1, d2, d3], a, b parameters and x1, x2, x3 variables, and d1, d2, d3

partial derivatives by x1, x2, x3, respectively. Let � be the lexicographic order such that
d1 � d2 � d3.
Our program outputs the following list as a comprehensive Gröbner system for 〈F 〉
with respect to �:

[b]==0, [a-1]!=0,

[a*x2*d2+2*x1*d1+1,x2^2*d2,d3]

[b,a+2]==0, [1]!=0,

[-2*x2*d2+2*x1*d1+1,-x2^2*d2,d3]

[a+2]==0, [(b-4)*b]!=0,

[2*x1*d1+1,x2*d2,d3]

[b,a-1]==0, [1]!=0,

[-d1*d3,x2*d2+2*x1*d1+1,-x2^2*d2,x2*d3,x3*d3]

[a-1]==0, [b]!=0,

[d1*d3,-2*x3*d3+2*b*x1*d1+b,2*x3*d3+b*x2*d2,2*x3*d3^2+(-b+2)*d3,x2*d3]

[a+2,b-4]==0, [1]!=0,

[(d1-x2*x3)*d3,2*x3*d3-2*x1*d1-1,x3*d3-x2*d2,2*x3*d3^2+(-2*x1*x2*x3+1)*d3]

[a-1,b-4]==0, [1]!=0,

[-d1*d3,-x3*d3+4*x1*d1+2,x3*d3+2*x2*d2,x3*d3^2-d3,x2*d3]

[b-4]==0, [(a-1)*(a+2)]!=0,

[2*x1*d1+1,x2*d2,d3]

[0]==0, [(b-4)*(a-1)*(a+2)*(b)]!=0,

[2*x1*d1+1,x2*d2,d3]

Our program outputs the following list as a comprehensive Gröbner basis for 〈F 〉
with respect to �:

[(-d1+x2*x3)*d3,a*x2*d2+2*x1*d1+1,(2*x2*d2-2*x1*x2*x3+a+1)*d3,x2*x3*d3-x2

^2*d2,2*a*x3*d3+b*x2*d2,2*x3*d3^2+(-2*x1*x2*x3-a-b+3)*d3,(a+2)*x2*d3,(b-

4)*x2*d3,(a^2+a-2)*d3,((b-4)*a-b+4)*d3,(a+2)*x2*d3,2*x3*d3^2+(-2*x1*x2*x

3-a-b+3)*d3,2*a*x3*d3+b*x2*d2,(2*a-4)*x3*d3+(-b+4)*a*x2*d2+8*x1*d1+4,(-d

1+x2*x3)*d3,6*x3*d3^2+((2*a-2)*x1*x2*x3-3*a-3*b+9)*d3,-2*a*x3*d3+(4*a-b)

*x2*d2+8*x1*d1+4,(-3*d1+(-a+1)*x2*x3)*d3,2*a*x3*d3+(2*a+b)*x2*d2+4*x1*d1

+2,(-a+1)*x2*x3*d3-3*x2^2*d2,a*x2*d2+2*x1*d1+1,(-b+4)*x2*d3,b*x2*x3*d3-4

*x2^2*d2,(-4*d1+b*x2*x3)*d3,-6*x3*d3^2+(6*x1*x2*x3+(b-1)*a+2*b-5)*d3,x2*

x3*d3-x2^2*d2,(2*x2*d2-2*x1*x2*x3+a+1)*d3,(-b*a+b-4)*x3*d3-2*b*x2*d2,(b-

4)*x2*d3]

8.3 Other approaches

In chapter 5 and 6, we introduce the different approaches for computing parametric
Gröbner bases. We can also apply these approaches for rings of differential operators.

8.3.1 Nabeshima’s approach for computing comprehensive Gröbner systems

In chapter 5, we saw the new algorithm for computing comprehensive Gröbner systems in
K[Ā][X̄ ]. One can easily generalize the approach to K[Ā][X̄, D̄] and (K[Ā][X̄ ])[D̄]. We
have the following key theorem of the algorithm.

Theorem 8.3.1. Let F be a subset of K[Ā][X̄, D̄], H = {g, g1, . . . , gl} a Gröbner basis
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for 〈F 〉 with respect to �. Select g from H, and set r := 1
lcĀ(g) (r is a new variable) and

g′ := lppĀ(g) + r · (g − lmĀ(g)). Suppose that H ′ := (H\{g}) ∪ {g′} = {g′, g1, . . . , gl} ⊂
K[r, Ā][X̄, D̄], and G′ is a Gröbner basis of H ′ with respect to � in K[r, Ā][X̄, D̄]. Fur-
thermore, G :=

{

f ∈ K[Ā][X̄, D̄]
∣

∣ f 6= 0, f = lcĀ(g)k · σr=1(q), degr(q) = k ∈ N, q ∈ G′
}

and {h01, . . . , h0e} := {lcĀ(f) ∈ K[Ā] : f ∈ G}.
Then, for any ā ∈ Lm\(V(lcĀ(g)) ∪ V(h)), σā(G) is a Gröbner basis for 〈σā(F )〉 with
respect to � in L[X̄, D̄] where h = LCM(h01, · · · , h0e). (σr=1(q) means substituting 1 for
the variable r of q.)

Proof. This proof is the same as Theorem 5.2.1. Note that K[Ā][X̄, D̄] is a left Noetherian
ring.

By this theorem, we can follow the algorithm NEW in chapter 5 for computing compre-
hensive Gröbner systems in rings of differential operators.

8.3.2 The approach of von Neumann regular rings

In chapter 6, we saw the relations between comprehensive Gröbner bases and Gröbner
bases in a polynomial ring over a commutative von Neumann regular ring. That is, we
saw alternative comprehensive Gröbner bases. We can apply this approach for rings of
differential operators, too. Then, the alternative comprehensive Gröbner bases in rings
of differential operators have the good properties of reduced Gröbner bases in a ring of
differential operators over a commutative von Neumann regular ring. For instance, there
exists a canonical form of an alternative comprehensive Gröbner basis.

8.4 Applications
In this section, we give one simple example for applying the elimination property of
Gröbner bases to systems of linear differential equations.

We have the following linear differential equations.

{

2xy′′ = 0
y′′′ + ax2y′ − bxy = 0.

This system of linear ordinary differential equations can be written as

{

(2x∂2)y = 0
(∂3 + ax2∂ − bx)y = 0

where ∂ is the partial derivative ∂
∂x

and a, b are parameters. Set f1 = 2x∂2, f2 = ∂3 +

ax2∂−bx in C[x][∂]. We compute a comprehensive Gröbner system for 〈f1, f2〉 in C[x][∂].
Then, the program outputs the following as the comprehensive Gröbner system.

[a-b]==0, [b]!=0,

[d^2,-x*d+1]

[a,b]==0, [1]!=0,

[d^2]

[b]==0, [a]!=0,

[d]
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[0]==0, [(b)*(a-b)]!=0,

[1]

This output means the following;















{∂2,−x∂ + 1} if a− b = 0, b 6= 0,
{∂2} if a = b = 0,
{∂} if b = 0, a 6= 0,
{1} if b(a− b) 6= 0.

Hence, the system of linear differential equations can be reduced to :















{y′′,−xy′ + y} if a− b = 0, b 6= 0,
{y′′} if a = b = 0,
{y′} if b = 0, a 6= 0,
{y} if b(a− b) 6= 0.

Therefore;
(1) Case {a− b = 0, b 6= 0}:
Since y′′ = 0, y = cx is the general solution of the system where c ∈ C.

(2) Case {a = b = 0}:
Since y′′ = 0, y = cx is the general solution of the system where c ∈ C.

(3) Case {b = 0}:
Since y′ = 0, y = c is the general solution of the system where c ∈ C.

(4) Case {b(a− b) 6= 0}:
Since y = 0, we have only trivial solution y = 0.
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Chapter 9

Comprehensive Gröbner bases for

modules

This chapter presents algorithms for computing comprehensive Gröbner bases and com-
prehensive Gröbner systems for modules. Several algorithms [Wei92, Mon02, MM06, SS03,
SS06, Wei03] are known for computing comprehensive Gröbner bases in polynomial rings
(see chapter 4). In this chapter we consider the problem of computing comprehensive
Gröbner bases and comprehensive systems for modules. Theoretically, Gröbner basis al-
gorithms admit natural extensions to modules. However, especially in the parametric
situation, complexity is an important issue. An efficient algorithm for computation of
comprehensive Gröbner bases over polynomial rings was proposed by Suzuki and Sato
(see chapter 4 [SS06]). We describe the generalization of the Suzuki-Sato algorithm to the
module case.

By studying comprehensive Gröbner bases for modules, we can solve a lot of parametric
problems. For example, consider the problem of syzygy computations. In the ordinary
setting, computing a Gröbner basis over a module is closely related to the computation of
syzygies. In parametric setting, by computing a comprehensive Gröbner basis (or system)
we can obtain parametric syzygies (we will see this application).
Almost all results of this chapter are from the author’s paper [Nab07a].

9.1 Notations

Remember thatK and L denote fields such that L is an extension ofK. X̄ = {X1, . . . , Xn}
and Ā = {A1, . . . , Am} denote finite sets of variables such that X̄ ∩ Ā = ∅. K[Ā][X̄ ] is
the polynomial ring with coefficients in K[Ā].

We have already seen the notation of K[Ā, X̄ ]r in chapter 2. We introduce the notations
of K[Ā][X̄ ]r as follows.

Let f, g be non-zero vectors in K[Ā][X̄ ]r and �m be an arbitrary module order on
pp(X̄)r. We apply the subscript Ā for notations of K[Ā][X̄ ]r.

• The set of module power products of f that appear with a non-zero coefficient,
is written pp(f).
• The biggest module power product of suppĀ(f) with respect to �m is denoted by

lppĀ(f) and is called the leading power product of g with respect to �m.
• The coefficient corresponding to lppĀ(f) is called the leading coefficient of f with

respect to �m which is defined by lcĀ(f).
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• The product lc(f) lpp(f) is called the leading monomial of f with respect to �m

which is defined by lmĀ(f).
• The set of monomials of f is denoted by MonoĀ(f).

• If lpp(f) = Aα1
1 · · ·A

αm
m Xβ1

1 · · ·X
βn
n ei ∈ pp(Ā, X̄)r, then

deg{X̄,Ā}(lpp(f)) := (α1, . . . , αm, β1, . . . , βn) ∈ Nm+n, and

degX̄(lpp(f)) := (β1, . . . , βn) ∈ Nn. (We apply the subscript X̄ for the de-
gree.)

Example 9.1.1. Let a, b, x, y be variables and f =

(

2ax− bx+ y2

axy + 3

)

be a vector.

If we consider f as an element of Q[a, b, x, y]2 with a module order�m:= (POT,�{x,y},{a,b}

) = (POT, (x �lex y, a �lex b)), then we have the following

• pp(f) =
{

axe1, bxe1, y
2e1, axye2, e2

}

,
• lpp(f) = axe1,
• lc(f) = 2,
• lm(f) = 2axe1,
• Mono(f) =

{

2axe1, bxe1, y
2e1, axye2, 3e2

}

,

• deg{a,b,x,y}(lpp(f)) = (1, 0, 1, 0) ∈ N4, deg{a}(lpp(f)) = 1.

We have a module order �m:= (POT, x �lex y). If we consider f as a vector of
Q[a, b][x, y]2, then we have the following

• pp{a,b}(f) =
{

xe1, y
2e1, xye2, e2

}

,

• lpp{a,b}(f) = xe1,

• lc{a,b}(f) = 2a− b,
• lm{a,b}(f) = (2a − b)xe1,

• Mono{a,b}(f) =
{

(2a− b)xe1, y
2e1, axye2, 3e2

}

,

• deg{x,y}(lppĀ(f)) = (1, 0) ∈ N2, deg{y}(lppĀ(f)) = 0.

9.2 Comprehensive Gröbner systems for modules

Here we present an algorithm for computing comprehensive Gröbner systems for mod-
ules. This algorithm is the generalization of the Suzuki-Sato algorithm (see chapter 4)
to modules.
As we saw the algorithms for computing comprehensive Gröbner systems in several do-
mains, we need to consider the stability of submodules under specializations.

In order to describe the stability of submodules under specializations, we need to intro-
duce a definition of Gröbner bases in K[Ā][X̄ ]r, and an algorithm for computing them.

Definition 9.2.1. Let �m be a module order on pp(X̄)r. A finite set G = {g1, . . . , gs}
of a submodule M in K[Ā][X̄ ]r is said to be a Gröbner basis with respect to �m if

lmĀ(M) = 〈lmĀ(g1), . . . , lmĀ(gs)〉

where lmĀ(M) = {lmĀ(f)|f ∈M}.

In order to compute a Gröbner basis above, we need the following special module order.

Definition 9.2.2 (Hybrid module order 1). Let �m be a module order on pp(X̄)r

and �1 a term order on pp(Ā). Let A1X1ei, A2X2ej ∈ pp(Ā, X̄)r for 1 ≤ i, j ≤ r
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where A1, A2 ∈ pp(Ā) and X1, X2 ∈ pp(X̄). Then a hybrid module order 1 �hm1 on
pp(Ā, X̄)r is defined as follows

A1X1ei �hm1 A2X2ej ⇐⇒ X1ei �m X2ej or (X1ei = X2ej and A1 �1 A2).

This hybrid module order 1 is written as �hm1:= (�m,�1).

Remark: If �m is TOP , then we have to consider

X̄ � e1 � e2 � · · · � er � Ā.

This order is different from �m, and not TOP and POT .
If �m is POT , then we have to consider

e1 � e2 � · · · � er � X̄ � Ā.

Actually, this order is still POT , so nothing difficulties.

The following lemma tells us how to compute Gröbner bases in K[Ā][X̄ ]r.

Lemma 9.2.3. Let F be a set of vectors in K[Ā][X̄ ]r. Then, F can be seen as a set of
vectors in K[Ā, X̄ ]r. Let G = {g1, . . . , gs} be a Gröbner basis for 〈F 〉 in K[Ā, X̄]r with
respect to a hybrid module order 1 �hm1:= (�m,�1) where �m is a module order on
pp(X̄)r and �1 is a term order on pp(Ā).
Then, G can be also seen as a set of vectors in K[Ā][X̄ ]r. This set G is a Gröbner basis
for 〈F 〉 in K[Ā][X̄ ]r with respect to a module order �m.

Proof. For all h ∈ 〈F 〉 ⊆ K[Ā][X̄ ]r, we prove that lmĀ(h) is generated by {lmĀ(g)|g ∈ G}.
Since h can be seen as an element of K[Ā, X̄ ]r and G is a Gröbner basis for 〈F 〉 with
respect to �hm1 in K[Ā, X̄]r, h can be written as

h = h1g1 + · · ·+ hsgs

such that lm(h) �hm1 lm(h1g1) �hm1 · · · �hm1 lm(hsgs) in K[Ā, X̄]r where h1, . . . , hs ∈
K[Ā, X̄ ]. By the hybrid module order 1 �hm1 on pp(Ā, X̄), we also have

lmĀ(h) �m lmĀ(h1g1) �m · · · �m lmĀ(hsgs)

in K[Ā][X̄ ]r. As h = h1g1 + · · · + hsgs in K[Ā, X̄ ]r, lmĀ(h) = lmĀ(h1g1 + · · ·+ hsgs) in
K[Ā][X̄ ]r. W.l.o.g., h1g1, . . . , hkgk have the same leading power product lppĀ(h) where
k ≤ s. That is,

lmĀ(h) = lmĀ(h1g1) + · · ·+ lmĀ(hkgk).

Obviously lmĀ(higi) = lmĀ(hi) lmĀ(gi), hence

lmĀ(h) = lmĀ(h1) lmĀ(g1) + · · ·+ lmĀ(hk) lmĀ(gk).

Therefore, lmĀ(h) ∈ 〈{lmĀ(g) | g ∈ G}〉. G is a Gröbner basis for 〈F 〉 with respect to �m

in K[Ā][X̄ ]r.

Algorithm 9.2.4. GröbnerBasisM(F,�m)

Input F : a finite set of vectors in K[Ā][X̄ ]r,
�m : a module order on pp(X̄)r,

Output G: a Gröbner basis of 〈F 〉 with respect to �m in K[Ā][X̄ ]r.
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1. Consider F as a set of vectors in K[Ā, X̄ ]r.
2. Compute the reduced Gröbner basis G for 〈F 〉 with respect to �hm1= (�m,�1)

where �1 is a term order on pp(Ā).
3. Consider G as a set of vectors in K[Ā][X̄ ]r. Then, by Lemma 9.2.3, G is a Gröbner

basis for 〈F 〉 with respect to �m in K[Ā][X̄ ]r.

Remark: In the second step of the algorithm GröbnerBasisM, we compute the reduced
Gröbner basis inK[Ā, X̄ ]r. Actually, we don’t need to compute the reduced Gröbner basis.
It is sufficient to compute a (normal) Gröbner basis. However, we need the properties of
reduced Gröbner bases for proving Theorem 9.3.8 (the algorithm FCGB). Therefore we
applied them for computing Gröbner bases in K[Ā][X̄ ]r.

Every ring homomorphism π : K[Ā] → L extends naturally to a homomorphism π :
K[Ā][X̄ ] → L[X̄ ]. Moreover, we extend the homomorphism π : K[Ā][X̄ ]r → L[X̄ ]r for
modules. The image under π of a submodule I ⊆ K[Ā][X̄ ]r generates the extension
submodule π(I) := {π(f)|f ∈ I} ⊆ L[X̄]r.

Definition 9.2.5. We call a submodule I ⊆ K[Ā][X̄ ]r stable under the ring homomor-
phism π and a order �m if for each i = 1, . . . , r, it satisfies

π(lmĀ(I)) = lm(π(I))

where π(lmĀ(I)) := {π(lmĀ(f))|f ∈ I} and lm(π(I)) := {lm(f)|f ∈ π(I)}.

As we saw the stability of Gröbner bases in several domains, we can easily generalize the
theory of the stability of ideals under specialization to submodules. Then, in K[Ā][X̄ ]r,
the generalization of “Kalkbrener [Kal97] Theorem 3.1” also holds. This theorem is
the key theorem of this chapter which is the following.

Theorem 9.2.6. Let π be a ring homomorphism from K[Ā] to L, I a submodule of
K[Ā][X̄ ]r and G = {g1, . . . , gs} a Gröbner basis for I with respect to a module order �m

where r ∈ N.
We assume that the gi’s are ordered in such a way that there exists an q ∈ {1, . . . , s} with
π(lc(gi)) 6= 0 for i ∈ {1, . . . , q} and π(lc(gi)) = 0 for i ∈ {q+1, . . . , s}. Then the following
three conditions are equivalent.

1. I is stable under π and �m.
2. {π(g1), . . . , π(gq)} is a Gröbner basis for π(I) in L[X̄ ]r with respect to a module

order �m.
3. For every i ∈ {q + 1, . . . , s} the polynomial π(gi) is reducible to 0 modulo
{π(g1), . . . , π(gq)} in L[X̄]r.

Proof. This proof is almost same as Theorem 4.3.2.

For arbitrary ā ∈ Lm, we define the canonical specialization homomorphism σā :
K[Ā] → L induced by ā, and we can naturally extend it to σā : (K[Ā])[X̄ ] → L[X̄].
Moreover, we extend the homomorphism σā : K[Ā][X̄ ]r → L[X̄ ]r for modules.

The next two corollaries are the direct consequences of Theorem 9.2.6.

Corollary 9.2.7. Let �m be a module order on pp(X̄)r, F ⊂ K[Ā][X̄ ]r, G a Gröbner
basis for a submodule 〈F 〉 of K[Ā][X̄ ]r with respect to �m. Suppose that {h1, . . . , hl} =
{lcĀ(g) ∈ K[Ā]| lcĀ(g) /∈ K, g ∈ G} and h = LCM(h1, . . . , hk).
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Then for all ā ∈ Lm\V(h), σā(G) is a Gröbner basis for 〈σā(F )〉 in L[X̄ ]r with respect to
�m.

Proof. For all ā ∈ Lm\V(h), we have σā(lcĀ(g)) 6= 0 for each g ∈ G. By Theorem 9.2.6,
2 ⇐⇒ 3, σā(G) is a Gröbner basis of 〈σā(F )〉 in K[X̄]r with respect to �m.

Corollary 9.2.8. Let �m be a module order on pp(X̄)r, F = {f1, . . . , fl} be a set of
vectors in K[Ā][X̄ ]r, S a set of polynomials in K[Ā] and T = {sei|s ∈ S, 1 ≤ i ≤ r}.
Furthermore, G be a Gröbner basis of a submodule 〈F ∪ T 〉 ⊆ K[Ā][X̄ ]r with respect
to �m. Suppose that B =: {q|q ∈ G ∩ K[Ā]ei, lcĀ(g) ∈ 〈S〉, 1 ≤ i ≤ r}, {h1, . . . , hl} =
{lcĀ(g) | lcĀ(g) /∈ K, g ∈ G\B } ⊆ K[Ā] and h = LCM(h1, . . . , hk).
Then, for ā ∈ V(S)\V(h), σā(G) is a Gröbner basis of 〈σā(F )〉 in L[X̄ ]r with respect to
�m. Actually, we have σā(G) = σā(G\B).

Proof. Note that for all q ∈ B ∩ G, σā(q) = 0 for all ā ∈ V(S)\V(h). Thus, 〈G\B〉 is
stable under σā. Therefore, σā(G) = σā(G\B). Clearly, for all ā ∈ V(S)\V(h), we have
σā(lcĀ(g)) 6= 0 for each g ∈ G\B. By Theorem 9.2.6, σā(G) is a Gröbner basis of 〈σā(F )〉
in L[X̄ ]r with respect to �m.

By using the two corollaries above, we can construct an algorithm for computing com-
prehensive Gröbner systems in K[Ā][X̄ ]r. Before describing the algorithm, we have to
define comprehensive Gröbner systems in K[Ā][X̄ ]r.

Definition 9.2.9. Let F be a set of vectors in K[Ā][X̄ ]r, A1, . . . ,Al algebraically con-
structible subsets of Lm and G1, . . . , Gl subsets of K[Ā][X̄ ]r. Let S be a subset of Lm

such that S ⊆ A1 ∪ · · · ∪ Al.
A finite set G = {(A1, G1), . . . , (Al, Gl)} of pairs is called a comprehensive Gröbner
system on S for 〈F 〉 if σā(Gi) is a Gröbner basis of 〈σā(F )〉 in L[X̄ ]r for each i = 1, . . . , l
and ā ∈ Ai. Each (Ai, Gi) is called a segment of G. We simply say G is a comprehensive
Gröbner system for F if S = Lm.

Let F be a subset of K[Ā][X̄ ]r. Then, by the Corollary 9.2.7, we obtain one of segments
of a comprehensive Gröbner system for 〈F 〉 as (∅, h,G) on Lm\V(h) where the notations
are from Corollary 9.2.7. We have to consider a comprehensive Gröbner system on the
whole space Lm. Therefore, by Corollary 9.2.8, we compute other segments recursively.

In the following algorithm, we assume the algorithm factorize and LCM. The algo-
rithm factorize(h) outputs a set of all irreducible factors of h in K[Ā] where h ∈ K[Ā], and
the algorithm LCM(h1, . . . , hl) outputs the least common multiple of h1, . . . , hl in K[Ā]
where h1, . . . , hl ∈ K[Ā].

Algorithm 9.2.10. CGSM(F,�m) (Comprehensive Gröbner Systems for Modules)

Input F : a finite set of vectors in K[Ā][X̄ ]r,
�m: a module order pp(X̄)r,

Output H: comprehensive Gröbner system for 〈F 〉 with respect to �m in K[Ā][X̄ ]r.
begin

G← GröbnerBasisM(F,�m)
if e1, . . . , er ∈ G then

return({(∅, {1}, G)})
end-if

S ← {h1, . . . , hl} := {q|q ∈factorize(lcĀ(g)), lcĀ(g) /∈ K, g ∈ G}
if S 6= ∅ then
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h← LCM(h1, . . . , hl)
H ← {(∅, h,G)}∪ CGSMainM(G ∪ {h1e1, . . . , h1er} , {h1},�m)∪

· · · ∪ CGSMainM(G ∪ {hle1, . . . , hler} , {hl},�m)
else

H ← {(∅, {1}, G)}
end-if
return(H)
end

Algorithm 9.2.11. CGSMainM(F,Z,�m) (CGS Main for Modules)

Input F : a finite set of vectors in K[Ā][X̄ ]r,
Z : a finite set of polynomials in K[Ā],
�m: a module order pp(X̄)r,

Output H: comprehensive Gröbner system for 〈F 〉 with respect to �m on V(Z) in
K[Ā][X̄ ]r.

begin
G← GröbnerBasisM(F,�m)

if e1, . . . , er ∈ G then
C ← the reduced Gröbner basis for 〈Z〉 in K[Ā]
if 1 ∈ C then

H ← ∅
else

H ← {(C, {1}, {e1 , . . . , er})}
end-if

else
B ← {g|g ∈ G ∩K[Ā]ei, lcĀ(g) ∈ 〈Z〉, for some i ∈ {1, . . . , r}}
S ← {h1, . . . , hl} := {q|q ∈ factorize(lcĀ(g)), lcĀ(g) /∈ K, g ∈ G\B}
if S 6= ∅ then

h← LCM(h1, . . . , hl)
H ← {(Z, h,G\B)} ∪ CGSMainM(G∪ {h1e1, . . . , h1er} , Z ∪ {h1},�m)∪

· · · ∪ CGSMainM(G ∪ {hle1, . . . , hler} , Z ∪ {hl},�m)
else
H ← {(Z, {1}, G\B)}

end-if
end-if
return(H)
end

Remark: As we saw in Algorithm 4.4.3, we can apply a lot of optimization techniques for
getting nice and small comprehensive Gröbner systems. See the remark of Algorithm 4.4.3.

Theorem 9.2.12. The algorithm CGSM (Comprehensive Gröbner Systems for Modules)
terminates for any input of a finite subset F of K[Ā][X̄ ]r. If H is the output of
CGSM(F,�m), then H is a comprehensive Gröbner system for 〈F 〉 on Lm.

Proof. First we show the termination. Obviously, the algorithms GröbnerBasisM, LCM
and factorize terminate. We have to prove the termination of CGSMainM.
We suppose that CGSMainM(F,Z) does not terminate, then there exists an infinite se-
quence F0, F1, . . ., such that F0 = F and Fi 6= Fi+1 for i ∈ N. By the algorithm,
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Fn+1 = Fs ∪ {hs} for some hs ∈ K[Ā] such that hs /∈ 〈Fs〉. Hence we have 〈Fs〉 ( 〈Fs+1〉
for each s. We know that every infinite ascending chain M1 ⊆M2 ⊆ · · · of submodules of
K[Ā][X̄ ]r stabilizes. That is, there exists N such that MN = MN+1 = · · · = MN+l = · · ·
for all 0 ≤ l. Therefore, 〈Fs〉 ( 〈Fs+1〉 for each s contradicts by the fact. CGSMainM
terminates.
We next show that, if (Z, h,G) ∈ H, then the triple (Z, h,G) forms a segment of a com-
prehensive Gröbner system for 〈F 〉, i.e., σā(G) is a Gröbner basis of 〈σā(F )〉 for each
ā ∈ V(Z)\V(h).
Let G be a Gröbner basis of the ideal 〈F ′〉 with respect to �m in K[Ā][X̄ ]r, B :=
{g|g ∈ G ∩ K[Ā]ei, lcĀ(g) ∈ 〈Z〉, for some i ∈ {1, . . . , r}} and {h1, . . . , hl} := {q|q ∈
factorize(lcĀ(g)), lcĀ(g) /∈ K, g ∈ G\B} and h = LCM(h1, . . . , hl). Then by Corol-
lary 9.2.8, σā(G) is a Gröbner basis of 〈σā(F ′)〉 for each ā ∈ V(Z)\V(h). In fact
ā ∈ V(Z)\V(h) implies σā(G\B) = σā(G) and σā(F ′) = σā(F ). This means that σā(G)
is a Gröbner basis of 〈σā(F )〉.
We have to finally prove that the conditions in H covers the entire Lm, i.e.,

Lm =
⋃

(P,h,G)∈H

V(P )\V(h).

In the algorithm, if the first “if” of CGSM is true, then the output is
{(∅, {1}, G)}. The condition is V(∅)\V(1) = Lm.
If the second “if” of CGSM is false, then the output is {(∅, {1}, G)}. The condition is Lm.
If the second “if” of CGSM is true, then we have to consider {(∅, h,G)}∪ CGSMainM(G∪
{h1e1, .., h1er}, {h1}) ∪ · · · ∪ CGSMainM(G ∪ {hle1, .., hler}, {hl}).
Let us consider a subalgorithm CGSMainM. We assume that one of inputs of CGSMainM
is (F,Z) where F ⊆ K[Ā][X̄ ]r and Z ⊆ K[Ā]. Let G′ be a Gröbner basis of 〈F 〉 with
respect to �m in K[Ā][X̄ ]r and let h′ = h′1 · · · h

′
l in K[Ā]. Then, the following equation

always holds.

V(Z) = (V(Z)\V(h′)) ∪
l
⋃

i=1

V(Z ∪ h′i).

The equation above follows by the induction on the well-founded tree of the algorithm.
Therefore, the condition of {(∅, h′, G)}∪
CGSMain(G∪{h′1e1, . . . , h

′
1er}, {h

′
1})∪· · · ∪ CGSMain(G∪{h′le1, . . . , h

′
ler}, {h

′
l}) is Lm.

This algorithm CGSM has been implemented in the computer algebra systems singular and
Risa/Asir by the author. In the following examples, we see some examples of comprehensive
Gröbner systems, and how the algorithm works.

Example 9.2.13. Let F =

{(

ax+ 1
0

)

,

(

bx+ ay
x+ 1

)}

⊆ Q[a, b][x, y]2 and let x, y

be variables and a, b parameters. We have a module order �m= (POT,�lex) such that
x �lex y. We ready to compute a comprehensive Gröbner system for 〈F 〉 with respect to
�m.

1. First, we have to compute a Gröbner basis for 〈F 〉 in Q[a, b][x, y]2 with respect to
�m. By the algorithm GröbnerBasisM, we compute the reduced Gröbner basis for
〈F 〉 in Q[a, b, x, y]2 with respect to �hm1= (�m,�lex) such that a � b. Then the
reduced Gröbner basis is the following

F1 =

{(

0
ax2 + ax+ x+ 1

)

,

(

a2y − b
ax+ a

)

,

(

bx+ ay
x+ 1

)

,

(

ax+ 1
1

)}

.
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The set of every leading coefficient of F1 is lcĀ(F1) = {a, a2, b}. By Corollary 9.2.7,
when all elements of lc{a,b}(F1) is not zero under specialization σᾱ where ᾱ ∈ Q2

(i.e. ab 6= 0), then σᾱ(F1) is a Gröbner basis for 〈σᾱ(F )〉. Therefore, ({0}, {ab}, F1})
is one of segments of a comprehensive Gröbner system for 〈F 〉.

2. By the first step, we have one segment of a comprehensive Gröbner system for
〈F 〉. Actually, we need to consider the whole parametric spaces parameters (i.e.
we need to consider the case {ab = 0}). We have factorize(ab)= {a, b}. We
need to consider two cases {a = 0} and {b = 0}. First we consider the case
a = 0. By Corollary 9.2.8, we need to compute a reduced Gröbner basis of

H1 =

〈

F ∪

{(

a
0

)

,

(

0
a

)}〉

in Q[a, b, x, y]2 with respect to �hm1. Then the

algorithm GröbnerBasisM outputs the following

F2 =

{(

0
x+ 1

)

,

(

1
0

)

,

(

0
a

)}

.

Since we are considering the case {a = 0}, we can eliminate the vector

(

0
a

)

from

F2. Therefore, we can have

F ′
2 =

{(

0
x+ 1

)

,

(

1
0

)}

.

A triple ({a}, {1}, F ′
2) is one of segments of a comprehensive Gröbner system for

〈F 〉.

3. Similarly, we have to consider the case {b = 0}, i.e., H2 =

〈

F ∪

{(

b
0

)

,

(

0
b

)}〉

.

Then a Gröbner basis of H2 is

F3 =

{(

0
ax2 + ax+ x+ 1

)

,

(

ax+ 1
0

)

,

(

b
0

)

,

(

0
b

)

,

(

y
−x2 − x

)}

.

Since we do not need

(

b
0

)

,

(

0
b

)

in F3, we eliminate them from F3. Hence, we

have

F ′
3 =

{(

0
ax2 + ax+ x+ 1

)

,

(

ax+ 1
0

)

,

(

y
x2 − x

)}

.

Since lc{a,b}(F
′
3) = {a}, one of segments of the comprehensive Gröbner system is

({b}, {a}, F ′
3).

4. Finally, we need to consider the case {a = 0, b = 0}. That is, we compute a

Gröbner basis for H3 =

〈

F ∪

{(

a
0

)

,

(

0
a

)

,

(

b
0

)

,

(

0
b

)}〉

. The algorithm

GröbnerBasisM outputs the following Gröbner basis for H3

F4 =

{(

1
0

)

,

(

0
a

)

,

(

0
b

)

,

(

0
x+ 1

)}

.

We omit

(

a
0

)

,

(

0
b

)

from F4 because of a = b = 0. Hence, we obtain

F ′
4 =

{(

1
0

)

,

(

0
x+ 1

)}

,
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and ({a, b}, {1}, F ′
4) is one of the segments.

5. Solution : By the steps 1,2,3 and 4, a comprehensive Gröbner system for 〈F 〉 is

{({0}, {ab}, F1), ({a}, {1}, F ′
2), ({b}, {a}, F ′

3), ({a, b}, {1}, F ′
4)}.

That is,















F1 if ab 6= 0,
F ′

2 if a = 0,
F ′

3 if b = 0, a 6= 0,
F ′

4 if a = b = 0.

See Figure 9.1

b = 0

F ′
2, [a = 0]

F1, [ab 6= 0]

F ′
4, [a = 0, b = 0]

F ′
3, [a 6= 0, b = 0]

Input: F

a = 0

a = 0

Figure 9.1

Remark: In fact, the segment ({a}, {1}, F ′
2) includes the segment ({a, b}, {1}, F ′

4). There-
fore, we can eliminate the segment ({a, b}, {1}, F ′

4) from the list. In the remarks of Algo-
rithm 4.4.3, we mentioned optimization techniques for getting a small and nice compre-
hensive Gröbner system. One of the techniques is this technique “checking each parameter
space”. In this example, we just followed the algorithm. See the remark of Algorithm 4.4.3.

Example 9.2.14. Let x, y be variables and a, b parameters.

We have f1 =

(

ax− bx+ 1
ax2y + ax+ b

)

and f2 =

(

by + a
bx2 + bx+ 2

)

in Q[a, b][x, y]2. Then, our

program of singular outputs the following list which is a comprehensive Gröbner system
for 〈f1, f2〉 with respect to �m= (POT,�lex) such that x �lex y.

[b]==0, [a]!=0

_[1]=[0,x2ya2+xa2-2xa-2]

_[2]=[a,2]

[a,b]==0, [1]!=0

_[1]=[0,1]

_[2]=[1]

[a-b]==0, [b]!=0
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_[1]=[0,x2y2b2+x2yb2-x2b+xyb2+xb2-xb+yb2+b2-2]

_[2]=[1,x2yb+xb+b]

[0]==0, [(a-b)*b]!=0

_[1]=[0,x3ab-x3b2-x2y2ab-x2ya2+x2ab-x2b2+x2b-xyab-xa2+2xa-xb-yb2-ab+2]

_[2]=[yb+a,x2b+xb+2]

_[3]=[xa-xb+1,x2ya+xa+b]

The output means the following:

If b = 0, a 6= 0, then
{(

a
2

)

,

(

0
a2x2y + a2x− 2ax− 2

)}

.

If a = b = 0, then
{(

1
0

)

,

(

0
1

)}

.

If a− b = 0, b 6= 0, then
{(

1
bx2y + bx+ b

)

,
(

0
b2x2y2 + b2x2 − bx2 + b2xy + b2x− bx+ b2y + b2 − 2

)}

.

If (a− b)b 6= 0, then
{(

0
(∗1)

)

,

(

by + a
bx2 + bx+ 2

)

,

(

ax− bx+ 1
ax2y + ax+ b

)}

,

where (∗1) = abx3− b2x3− abx2y2− a2x2y+ abx2− b2x2 + bx2− abxy− a2x+2ax− bx−
b2y − ab+ 2.

9.3 Comprehensive Gröbner bases for modules

Here we present an algorithm that provides an explicit construction of a comprehensive
Gröbner basis for 〈F 〉 from any finite set F ⊂ K[Ā][X̄ ]r via the intermediate concept of
a Gröbner system.

Definition 9.3.1 (Comprehensive Gröbner Bases). Let F and G be sets of vectors
in K[Ā][X̄ ]r. G ⊂ 〈F 〉 is called a comprehensive Gröbner basis for 〈F 〉 if σā(G) is a
Gröbner basis for 〈σā(F )〉 for each ā ∈ Lm.

We already saw comprehensive Gröbner systems in previous section which has condi-
tions of parameters. However, comprehensive Gröbner bases do not have conditions of
parameters (parametric spaces). A comprehensive Gröbner basis is a set of vectors. In
this point, comprehensive Gröbner bases are different from comprehensive Gröbner sys-
tems.

In this section we consider an algorithm for computing comprehensive Gröbner bases.
Then, we need the following concept.

Definition 9.3.2. Let F be a set of vectors in K[Ā][X̄ ]r, s1, . . . , sl, t1, . . . , tl ⊂ K[Ā] and
G1, . . . , Gl ⊂ K[Ā][X̄ ]r. Then a comprehensive Gröbner system {(s1, t1, G1), . . . , (sl, tl, Gl)}
for F is call faithful if Gi ⊂ 〈F 〉 for each i = 1, . . . , l.

Actually, in this section we describe an algorithm for computing faithful comprehensive
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Gröbner systems. If {(V(s1)\V(t1), G1), . . . , (V(sl)\V(tl), Gl)} is a faithful comprehen-
sive Gröbner system for 〈F 〉, then by the definition of comprehensive Gröbner basis,
G1 ∪ · · · ∪ Gl is a comprehensive Gröbner basis for 〈F 〉. Therefore, we modify the al-
gorithm CGSMainM to compute a faithful comprehensive Gröbner system. The key idea
which is from [SS06], is to apply a new variable U . In chapter 4, we introduced a new
auxiliary variable U besides X̄ and Ā in order to compute comprehensive Gröbner bases.
We follow this technique to compute comprehensive Gröbner bases for modules.

We define homomorphisms σ0 and σ1 from K[Ā][U, X̄ ]r to K[Ā][X̄ ]r as a specialization
of U with 0 and 1 respectively, i.e. σ0(f(U, Ā, X̄)) = f(0, Ā, X̄) and σ1(f(U, Ā, X̄)) =
f(1, Ā, X̄). Before we introduce the algorithm for computing comprehensive Gröbner
bases, we need the following lemma which is also from [SS06].

Lemma 9.3.3. Let F and S be subsets of K[Ā][X̄ ]r. For any g ∈ 〈(U ·F )∪(U−1) ·S)〉 ⊆
K[Ā][U, X̄ ]r, then σ0(g) ∈ 〈S〉 ⊆ K[Ā][X̄ ]r and σ1(g) ∈ 〈F 〉 ⊆ K[Ā][X̄ ]r.

Proof. See [SS06] Lemma 3.1.

In order to construct an algorithm for computing comprehensive Gröbner bases in
K[Ā][X̄ ]r, we need the following special mix order. This order is very important for
our main result of this section. Actually, this special order always tells us what the lead-
ing monomial of a vector is under specializations. Moreover, even if we apply the special
order for computing Gröbner bases, we can still hold a simple algorithm for computing
comprehensive Gröbner bases like algorithm CGSM.

Definition 9.3.4 (Hybrid module order 2). Let �m be a module order on K[X̄ ]r.
Then, a hybrid module order 2 �hm2 on pp(U, X̄)r is defined as follows

Uα1xα2ei �hm2 U
β1xβ1ej ⇐⇒ α1 > β2 or (α1 = β2 and xα2ei �m xβ2ej),

for all α1, β1 ∈ N, α2, β2 ∈ Nn, i, j = 1, . . . , r. This hybrid module order 2 with respect
to a variable U is written as �hm2:= (U,�m).

Remark: If �m is TOP , then we have to consider

U � X̄ � e1 � e2 � · · · � er.

Actually, this order is still TOP , so nothing difficulties.
If �m is POT , then we have to consider

U � e1 � e2 � · · · � er � X̄.

This order is not �m and POT .
In fact, when we compute a comprehensive Gröbner basis, we need two special module
orders “hybrid module order 1” and “hybrid module order 2”. Since these mix
orders are very complicated, we have to be careful when we compute a comprehensive
Gröbner basis.

The next theorem is the main result of this section. By the following theorem, we can
construct an algorithm for computing comprehensive Gröbner bases.

Theorem 9.3.5. Let F be a subset of K[Ā][X̄ ]r, S′ a subset of K[Ā], S :=
{sei | s ∈ S

′, 1 ≤ i ≤ r} and �m a module order on pp(X̄)r. Let G be a Gröbner
basis of 〈(U · F ) ∪ (U − 1) · S)〉 in K[Ā][U, X̄ ]r with respect to a hybrid module order 2
�hm2= (U,�m). (We can compute this Gröbner basis by the algorithm GröbnerBasisM
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and a hybrid module order 1 “�hm1= (�m,�1)” where �1 is a term order on pp(Ā).)
Suppose that B1 := {g|g ∈ G ∩ K[Ā][U ]ei, lcĀ(g) ∈ 〈S′〉, for some i ∈ {1, . . . , r}},
B2 := {g|g ∈ G,degU (lppA(g)) = 0}, G′ := {g|g ∈ G\(B1 ∪ B2)} and {h1, . . . , hl} :=
{lcĀ(g)| lcĀ(g) /∈ K, g ∈ G′} ⊆ K[Ā].
Then for each ā ∈ V(S ′)\V(h), σā(σ1(G)) is a Gröbner basis of 〈σā(F )〉 in L[X̄ ]r with
respect to �m where h = LCM(h1, . . . , hl). Actually, we have σā(σ1(G)) = σā(σ

1(G′)).

Proof. Note that any vector of G′ has a linear form of U , i.e., the degree of U is at most
1.
It is clearly that σ1(G) is a basis of 〈F 〉 by Lemma 9.3.3. We prove that σā(σ1(G)) is a
Gröbner basis of 〈σā(F )〉. For ā ∈ V(S′)\V(h), we have σā(lcĀ(g)) 6= 0 for each g ∈ G′.
By the definition of G′, B1 and B2, we have G = G′ ∪B1∪B2. For each f ∈ B1, f can be
written as f = U ·f1ei+f2ei where f1, f2 ∈ K[Ā] for some i ∈ {1, . . . , r}. By Lemma 9.3.3,
σ0(f) = f2ei ∈ 〈S〉, thus σā(f2ei) = 0. By the definition of B1, lcĀ(f) = f1 ∈ 〈S

′〉, so
σā(f1) = 0. Hence, σā(f) = 0.
For each q ∈ B2, by Lemma 9.3.3, σ0(q) = q ∈ 〈S〉. Thus σā(q) = 0.
Even if we change a module order �m into a hybrid module order �hm2 in Theorem 9.2.6
(R = K[Ā]), the properties of Theorem 9.2.6 hold. Thus, σā(G) = σā(G\(B1 ∪ B2)) =
σā(G′) is a Gröbner basis for 〈σā(U ·F ∪(U−1) ·S)〉 with respect to the �hm2 in L[U, X̄ ]r.
For g ∈ G′, g can be written as g = U · g1 + g2 where g1, g2 ∈ K[Ā][X̄ ]r. By Lemma 9.3.3,
we have σ0(g) = g2 ∈ 〈S〉, thus σā(g2) = 0. Namely, we have σā(g) = σā(U · g1). Since
every power product of σā(G′) has a variable U whose degree is 1 and U � X̄ , σ1(σā(G′))
is a Gröbner basis of 〈σ1(σā(U ·F )∪ (U − 1) ·S〉 = 〈σ1(σā(U ·F ))〉 = 〈σā(F )〉. Therefore,
it follows that σā(σ1(G)) is a Gröbner basis for 〈σā(F )〉 in L[X̄]r.

Theorem 9.3.5 leads us to have the following algorithm which outputs a faithful com-
prehensive Gröbner system on Lm for 〈F 〉.

Algorithm 9.3.6. FCGSM(F,�m) (Faithful CGSs for Modules)

Input F : a finite set of vectors in K[Ā][X̄ ]r,
�m: a module order on pp(X̄)r,

Output G: a faithful comprehensive Gröbner system on Lm for 〈F 〉 with respect to �m.
begin

H ← GröbnerBasisM(F,�m)
if e1, . . . , er ∈ H then

G← {(∅, {1},H)}
end-if

S ← {h1, . . . , hl} := {q|q ∈ factorize(lcĀ(g)), lcĀ(g) /∈ K, g ∈ H}
if S 6= ∅ then

h← LCM(h1, . . . , hl)
G← {(∅, h,H)}∪ CGBMainM(H, {h1e1, . . . , h1er} , {h1},�m) ∪

· · · ∪ CGBMainM(H, {hle1, . . . , hler} , {hl},�m)
else

G← {(∅, {1},H)}
end-if
return(G)
end
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Algorithm 9.3.7. CGBMainM(F, S, Z,�m)

Input F : a finite set of K[Ā][X̄ ]r,
S: a finite set of vectors such that ∀q ∈ S, q ∈ K[Ā]ei,
Z: a finite set of polynomials in K[Ā],
�m: a module order on pp(X̄)r,

Output G: a finite set of triples which forms a faithful comprehensive Gröbner system
on V(Z) for 〈F 〉.
begin

H ← GröbnerBasisM(U · F ∪ ((U − 1) · S,�hm2)) where �hm2:= (U,�m)
C ← the reduced Gröbner basis for 〈Z〉 in K[Ā]

if 1 ∈ C then
G← ∅

end-if
B1 ← {g|g ∈ H ∩K[Ā][U ]ei, lcĀ(g) ∈ 〈Z〉, for some i ∈ {1, . . . , r}}
B2 ← {g|g ∈ H,degU (lppA(g)) = 0}
H ′ ← H\(B1 ∪B2)
M ← {lcĀ(g) | g ∈ H ′ }
L← {β1, . . . , βl} := {q|q ∈factorize(g), g /∈ K, g ∈M}

if L 6= ∅ then
β ← LCM(β1, . . . , βl)
G←

{

(Z, β, σ1(H ′))
}

∪ CGBMainM(F, S ∪ {β1e1, . . . , β1er} , Z ∪ {β1},�m)∪
· · · ∪ CGBMainM(F, S∪{βle1, . . . , βler} , Z∪{βl},�m)

else
G←

{

(Z, {1}, σ1(H ′)
}

end-if
return(G)
end

Theorem 9.3.8. Let F be a finite set of vectors in K[Ā][X̄ ]r. Then, the algorithm
FCGSM(F ) terminates. The output of FCGSM is a faithful comprehensive Gröbner system
on Lm for 〈F 〉.

Proof. In order to show the termination of the algorithm, it suffices to show that any
of {βje1, . . . , βjer} is not in the submodule 〈S〉 because this algorithm is almost same
as algorithm CGSM (see Theorem 9.2.12) (and we have σā(B1) = σā(B2) = 0 where ā ∈
V(S′)\V(h)). All notations of this proof is from the algorithm CGBMainM.
By the construction of βj , there exists g ∈ H (which is from GröbnerBasisM(UF ∪ (U −
1)S))) such that βj = lcĀ(g), lppĀ(g) /∈ pp(X̄)r. Therefore g can be written as

g = βjUT + g1,

where T ∈ pp(X̄)r, lppĀ(g) = U · T and g1 ∈ K[Ā][U, X̄ ]r. If βje1, . . . , βjer ∈ 〈S〉, then
βjei · (U − 1) ∈ 〈G〉 where 1 ≤ i ≤ r. Hence, lmĀ(βjei · (U − 1)) = lmĀ(βjei · U) must
be reduced by G. In the algorithm GröbnerBasisM, we compute the reduced Gröbner
basis for 〈U · F ∪ (U − 1) · S〉 in K[Ā, U, X̄ ]r with respect to a hybrid module order 2
“�hm2= (U,�hm1)” where �hm1= (�m,�1) is a hybrid module order 1. Since G is the
reduced Gröbner basis in K[Ā, U, X̄ ]r, this is the contradiction. Therefore, βjei is not in
the submodule 〈S〉.
It is an easy consequence of Theorem 9.2.12 and Lemma 9.3.3 that the output of FCGSM
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is a faithful comprehensive Gröbner system on Lm for 〈F 〉.

Algorithm 9.3.9. CGBM(F,�m) (Comprehensive Gröbner Bases for Modules)

Input F : a finite set of vectors in K[Ā][X̄ ]r,
�m: a module order on pp(X̄)r,

Output G: a comprehensive Gröbner basis for 〈F 〉 with respect to �m.
begin

G← ∅
H ←FCGSM(F,�m)

while H 6= ∅
select (h1, h2, G1) from H;
H ← H\{(h1, h2, G1)}
G← G ∪G1

end-while
return(G)
end

This algorithm CGBM has been implemented in the computer algebra system Risa/Asir
by the author. In the following example, we can see an example of comprehensive Gröbner
bases.

Example 9.3.10. Let x, y be variables and a, b parameters. We have

f1 =

(

ax− bx+ 1
ax2y + ax+ b

)

and f2 =

(

by + a
bx2 + bx+ 2

)

in Q[a, b][x, y]2. Then, our program

outputs the following list which is a comprehensive Gröbner bases for 〈f1, f2〉 with respect
to (POT,�lex) such that x �lex y.

[0,(-b*a+b^2)*x^3+(b*a*y^2+a^2*y-b*a+b^2-b)*x^2+(b*a*y+a^2

-2*a+b)*x+b^2*y+b*a-2]

[b*y+a,b*x^2+b*x+2]

[(a-b)*x+1,a*y*x^2+a*x+b]

[(-b*y-b)*x+1,-b*x^3+(a*y-b)*x^2+(a-2)*x+b]

This means;
{(

0
(∗∗)

)

,

(

by + a
bx2 + bx+ 2

)

,

(

(a− b)x+ 1
ayx2 + ax+ b

)

,
(

(−by − b)x+ 1
−bx3 + (ay − b)x2 + (a− 2)x+ b

)}

,

where (∗∗) := (−ba+b2)x3+(bay2+a2y−ba+b2−b)x2+(bay+a2−2a+b)x+b2y+ba−2.

9.4 Applications
Here we treat an application of comprehensive Gröbner systems (or comprehensive
Gröbner bases). Especially, we consider syzygies of parametric polynomials (or
vectors).

Definition 9.4.1 (Comprehensive Syzygy systems). Let f1, . . . , fk be vectors in
indexcomprehensive syzygy systems K[Ā][X̄ ]r, A1, . . . ,Al be algebraically constructible
subsets of Lm and G1, . . . , Gl be subsets of K[Ā][X̄ ]r. Let S be a subset of Lm
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such that S ⊆ A1 ∪ · · · ∪ Al. A finite set G = {(A1, G1), . . . , (Al, Gl)} of pairs is
called a comprehensive syzygy system on S for {f1, . . . , fk} if σā(Gi) is a basis
of a syzygy module of {σā(f1), . . . , σā(fk)} for each i = 1, . . . , l and ā ∈ Ai, i.e.
〈σā(Gi)〉 = Syz(σā(f1), . . . , σā(fk)) on Ai. Each (Ai, Gi) is called a segment of G. We
simply say G is a comprehensive syzygy system of F if S = Lm.

Suppose that G is a comprehensive syzygy of {f1, . . . , fk} ⊂ K[Ā][X̄ ]r. Then, for a

segment (Ai, Gi) ∈ G,







g1
...
gk






∈ 〈Gi〉 ⊆ K[Ā][X̄ ]k satisfies

k
∑

j=1

σā(gj)σā(fj) = 0,

where ā ∈ Ai.

Lemma 9.4.2. Let F = {f1, . . . , fl} be a set of vectors inK[Ā][X̄]r, S a set of polynomials
in K[Ā] and T = {sei|s ∈ S, 1 ≤ i ≤ r}. Furthermore, G = {g1, . . . , gs} be a Gröbner
basis of a submodule 〈F ∪ T 〉 ⊆ K[Ā][X̄ ]r with respect to (POT,�) where � is a term
order on pp(X̄). Suppose that B =: {q|q ∈ G ∩ K[Ā]ei, lcĀ(g) ∈ 〈S〉, 1 ≤ i ≤ r},
{h1, . . . , hl} = {lcĀ(g) | lcĀ(g) /∈ K, g ∈ G\B } ⊆ K[Ā] and
h = LCM(h1, . . . , hk). We have, for any s = 0, . . . , r − 1,

G′ := G ∩
r
⊕

i=s+1

K[Ā][X̄ ]ei, and F ′ := 〈F 〉 ∩
r
⊕

i=s+1

K[Ā][X̄ ]ei.

Then, for ā ∈ V(S)\V(h), σā(G′) is a Gröbner basis for 〈σā(F ′)〉 with respect to (POT,�).

Proof. By Theorem 9.2.6 and Corollary 9.2.8, σā(G) is a Gröbner basis of 〈σā(F )〉 for
ā ∈ V(S)\V(h). Let b ∈ 〈F ′〉, then we have to prove that there exists f ∈ G′ such that
lm(σā(f))| lm(σā(b)).
Since σā(G\B) is a Gröbner basis of σā(F ) in K[Ā]r, there exists f ∈ σā(G\B) such that
lm(f) divides σā(b). In particular,
lm(σā(f)) ∈

⊕r
i=s+1K[X̄]ei. Actually, by the assumption, we have lm(σā(f)) =

σā(lm(f)) and σā(f) 6= 0. Therefore, by these facts and the definition of the module
order (POT,�), we obtain f ∈

⊕r
i=s+1K[X̄ ]ei. In particular, f ∈ G′.

Theorem 9.4.3. Let F = {f1, . . . , fk} be a set of vectors in K[Ā][X̄]r. Consider the
canonical embedding

K[Ā][X̄ ]r ⊆ K[Ā][X̄ ]r+k

and the canonical projection

π : K[Ā][X̄ ]r+k → K[Ā][X̄ ]k.

Let S be a set of polynomials in K[Ā] and T = {sei|s ∈ S, 1 ≤ i ≤ r}. Furthermore, G =
{g1, . . . , gs} be a Gröbner basis of a submodule 〈{f1+er+1, f2+er+2, . . . , fk+er+k}∪T 〉 ⊆
K[Ā][X̄ ]r with respect to (POT,�), B =: {q|q ∈ G ∩ K[Ā]ei, lcĀ(g) ∈ 〈S〉, 1 ≤ i ≤ r},
{h1, . . . , hl} = {lcĀ(g) | lcĀ(g) /∈ K, g ∈ G\B } ⊆ K[Ā] and h = LCM(h1, . . . , hk) where �
is a term order on pp(X̄).

Suppose that {g1, . . . , gl} = {G\B} ∩
⊕r+k

i=r+1K[Ā][X̄ ]ei, then for
ā ∈ V(S)\V(h),

Syz(σā(f1), . . . , σā(fk)) = 〈σā(π(g1)), . . . , σā(π(gl))〉.
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Proof. We know that σā({f1 + er+1, f2 + er+2, . . . , fk + er+k} ∪ T ) = σā(f1) +
er+1, . . . , σā(fk) + er+k. Let us define F ′ := 〈σā(f1) + er+1, . . . , σā(fk) + er+k〉. First, we

prove that π(F ′ ∩
⊕r+k

i=r+1K[X̄ ]ei) = Syz(σā(f1), . . . , σā(fk)).

(⊆ ) Let h ∈ F ′ ∩
⊕r+k

i=r+1K[X̄ ]ei, that is,

h =

r+k
∑

v=r+1

hvev =

k
∑

j=1

bj(σā(fj) + er+j),

for suitable bj ∈ K[X̄]. This implies that
∑k

j=1 bjσā(fj) = 0 and bj = hr+j . Therefore,

π(h) ∈ Syz(σā(f1), . . . , σā(fk)).

(⊇ ) Let h = (h1, . . . , hk) ∈ Syz(σā(f1), . . . , σā(fk)), that is, we have
∑k

v=1 hvσā(fv) = 0.

Then h′ =
∑k

v=1 hv(σā(fv) + er+v) ∈ F ′ ∩
⊕r+k

i=r+1K[X̄]. Obviously, h = π(h′) ∈

π(F ′ ∩
⊕r+k

i=r+1K[X̄]ei).

Therefore, π(F ′ ∩
⊕r+k

i=r+1K[X̄ ]ei) = Syz(σā(f1), . . . , σā(fk)).

Next, we have to consider generators of Syz(σā(f1), . . . , σā(fk)). By Lemma 9.4.2,

σā(G\B) ∩
⊕r+k

i=r+1K[X̄]ei is a Gröbner basis of F ′ ∩
⊕r+k

i=r+1K[X̄]ei. Therefore,

Syz(σā(f1), . . . , σā(fk)) = π(F ′ ∩
r+k
⊕

i=r+1

K[X̄]ei)

= π(〈σā(G)〉 ∩
r+k
⊕

i=r+1

(K[X̄])ei)

= 〈π(σā(g1)), . . . , π(σā(gl))〉

= 〈σā(π(g1)), . . . , σā(π(gl))〉.

By this theorem, we can apply the algorithm CGSM for constricting an algorithm for
computing comprehensive syzygy systems. Note that in Lemma 9.4.2 the module order
is not a hybrid module order.

Algorithm 9.4.4. CSS({f1, . . . , fk},�m) (Comprehensive Syzygy Systems)

Input: f1, . . . , fk: vectors in K[Ā][X̄ ]r,
�m : a module order on pp(X̄)r,

Output: H: a comprehensive syzygy system for 〈f1, . . . , fk〉 on Lm.
begin

H ← ∅
F ← {f1 + er+1, . . . , fk + er+k}

D ← CGSM(F,�m)
while D 6= ∅ do

Select (h1, h2, G) from D
D ← D\{(h1, h2, G1)}

H ← H ∪

{(

h1, h2, π

(

G ∩
r+k
⊕

i=r+1

K[Ā][X̄ ]ei

))}

(see below (∗))

end-while
return(H)
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end
((∗) π is the canonical projection π : K[Ā][X̄ ]r+k → K[Ā][X̄ ]k, (a1, ., ar , ar+1, .., ar+k) 7→
(a1, . . . , ar).)

Theorem 9.4.5. The algorithm CSS (Comprehensive Syzygy Systems) terminates for
any input of a finite subset F of K[Ā][X̄ ]r. If H is the output of CSS(F,�m), then H is
a comprehensive syzygies system for 〈F 〉 on Lm.

Proof. Since the algorithm CGSM terminates by Theorem 9.2.12, the algorithm CSS ter-
minates. By Theorem 9.4.3 and algorithm CGSM, H is a comprehensive syzygies system
for F on Lm.

The algorithm CSS has been implemented in the computer algebra systems singular
[GMPS05] and Risa/Asir by the author.

Example 9.4.6. Let x, y be variables and a, b parameters. We have f1 = ay2 + x + 1,
f2 = bx + b and f3 = xy + a. Then, our program in singular outputs a comprehensive
syzygy system of {f1, f2, f3} as follows:

[b]==0, [a]!=0

_[1]=[0,1]

_[2]=[xy+a,0,-y2a-x-1]

[a,b]==0, [1]!=0

_[1]=[0,1]

_[2]=[xy,0,-x-1]

[a]==0, [b]!=0

_[1]=[0,xy,-xb-b]

_[2]=[b,-1]

[0]==0, [a,b]!=0

_[1]=[0,xy+a,-xb-b]

_[2]=[yb-ab,-y3a-y+a,y2ab]

_[3]=[xb+b,-y2a-x-1]

This meaning is the following:























{[0, 1, 0], [xy + a, 0,−ay2 − x− 1]} if b = 0, a 6= 0,
{[0, 1, 0], [xy, 0,−x − 1]} if a = b = 0,
{[0, xy,−bx − b], [b,−1, 0]} if a = 0, b 6= 0,
{[0, xy + a,−bx− b], [by − ab,−ay3 − y + a, aby2], if ab 6= 0.
[bx+ b,−ay2 − x− 1, 0]}

That is;

When b = 0 and a 6= 0, then two vectors





0
1
0



 ,





xy + a
0

−ay2 − x− 1



 cover all syzygies

of {f1, f2, f3}. Obviously, we have the following.

{

0 = 1 · f2,
0 = (xy + a)f1 + (−ay2 − x− 1)f3.
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When a = b = 0, then two vectors





0
1
0



 ,





xy
0

−x− 1



 cover all syzygies of {f1, f2, f3},

and these two vectors satisfy
{

0 = 1 · f2,
0 = xyf1 + (−x− 1)f3.

When a = 0 and b 6= 0, then two vectors





0
xy

−bx− b



 ,





b
−1
0



 cover all syzygies of

{f1, f2, f3}, and these two vectors satisfy
{

0 = xyf2 + (−bx− b)f3,
0 = bf1 + (−1)f2.

When ab 6= 0, then vectors





0
xy + a
−bx− b



 ,





by − ab
−ay3 − y + a

aby2



 ,





bx+ b
−ay2 − x− 1

0



 cover

all syzygies of {f1, f2, f3}, and these three vectors satisfy






0 = (xy + a)f2 + (−bx− b)f3,
0 = (by − ab)f1 + (−ay3 − y + a)f2 + (aby2)f3
0 = (bx+ b)f1 + (−ay2 − x− 1)f2.

Example 9.4.7. Let f1 = x2 + ay, f2 = x+ b, f3 = bx+ y be polynomials in C[a, b][x, y]
where a, b are parameters. We have the lexicographic order � such that x � y. Then,
the program in Risa/Asir outputs the following as a comprehensive syzygy system for
{f1, f2, f3}.

[0]==0, (b)*(a+1)!=0,

[-b^2*x-b^3,y^2+b^2*a*y,b*x^2+(-y+b^2)*x-b*y]

[-b*y+b^3,-y^2-b^2*a*y,(y-b^2)*x+(b*a+b)*y]

[0,b*x+y,-x-b]

[b]==0, (1)!=0,

[1,-x,-a]

[0,y,-x]

[a+1]==0, (b)!=0,

[b,y,-x]

[0,b*x+y,-x-b]

This output means the following
















































































−b2x− b3

y2 + b2ay
bx2 + (−y + b2)x− by



 ,





−by + b3

−y2 − b2ay
(y − b2)x+ (ba+ b)y



 ,





0
bx+ y
−x− b











,

if b(a+ 1) 6= 0,










1
−x
−a



 ,





0
y
−x











if b = 0,











b
y
−x



 ,





0
bx+ y
−x− b











, if a+ 1 = 0, b 6= 0.
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In the algorithm CSS, we apply the algorithm CGSM for computing comprehensive
syzygy systems. The algorithm CGSM computes comprehensive Gröbner systems.

Probably, one has the following question.

Question:

Can we change algorithm CGSM into CGBM (or FCGS) in the algorithm CSS
for computing “a module of syzygy” (not system) like comprehensive Gröbner
bases as follows?

Algorithm 9.4.8. CSB({f1, . . . , fk},�m) (Comprehensive Syzygy bases)

Input: f1, . . . , fk: vectors in K[Ā][X̄ ]r,
�m a module order on pp(X̄)r,

begin
F ← {f1 + er+1, . . . , fk + er+k}

H ← CGBM(F,�m) ⇐ ?

G← π(H ∩
r+k
⊕

i=r+1

K[Ā][X̄ ]ei)

end-while
return(G)
end

The answer is “NO”.
Actually, we can obtain some of (parametric) syzygies from the algorithm CSB. However,
the outputs of the algorithm can not cover all syzygies of the input F under specialization
σā for any a ∈ Lm. Consider the following.

Let a, b be parameters and x, y variables and f1 = x2 +ax+b, f2 = 2x+2, f3 = xy+a in
Q[a, b][x, y]. We have the graded reverse lexicographic order � such that x � y. Then our
program which computes a comprehensive Gröbner basis, returns the following list G as
a comprehensive Gröbner basis G of 〈(x2 +ax+ b)e1 + e2, (2x+2)e1 + e3, (xy+a)e1 + e4〉
(i.e., CGBM({(ax2 + x+ b)e1 + e2, (x+ b)e1 + e3, (xy + a)e1 + e4}), (POT,�));
G =

[[ 2*x+2, 0, 1, 0],

[ 2*y-2*b-2, -2, x+y+a-1, -2],

[ -2*a+2*b+2, 2, -x-a+1, 0], (**)

[ -2*y+2*a, 0, -y, 2],

[ 0, 2*x+2, -x^2-a*x-b, 0],

[ 0, 2*y-2*a, a*x-b*y+a^2, -2*x-2*a+2*b],

[ 0, 0, -y*x-a, 2*x+2]].

(Note that [x1, x2, x3, x4] means x1e1 + x2e2 + x3e3 + x4e4.)

By the output π(G ∩
⊕4

i=2 Q[Ā][X̄ ]ei), we can obtain the following list SY of vectors.
SY =

[[ 2*x+2, -x^2-a*x-b, 0],
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[ 2*y-2*a, a*x-b*y+a^2, -2*x-2*a+2*b],

[ 0, -y*x-a, 2*x+2]].

Does this list SY cover the all syzygies of {σā(f1), σā(f2), σā(f3)} where ā ∈ Q2?
If we take a = 1, b = 0, then
σ{1,0}(SY ) =

[[ 2*x+1, -x^2-x, 0],

[ 2*y-2, x+1, -2*x-2],

[ 0, -x*y-1, 2*x+2]].

However, a Gröbner basis for a module of syzygies of
{σ{1,0}(f1), σ{1,0}(f2), σ{1,0}(f3)} (with respect to (POT,�)) is the following list H.
H =

[[ 2, -x, 0],

[ 0, y, -2],

[ 0, x*y+1, -2*x-2]].

Obviously, the submodule 〈σ{1,0}(SY )〉 can not cover an element [2,−x, 0]. That is, we
have 〈σ{1,0}(SY )〉 6= 〈H〉.
Hence, the answer is “NO”.

Why was this happened?
In the algorithm CGBM, we have to apply a hybrid module order. Therefore, even if
the first coordinates of vectors of G become zero after substituting values into param-
eters, the first coordinates of G are not zero (by the order). Look at (**), we have
[−2 ∗ a + 2 ∗ b + 2, 2,−x − a + 1, 0]=(−2a + 3b + 2)e1 + 2e2 + (−x − a + 1)e3. If we
take {a = 1, b = 0}, then we obtain [0, 2,−x, 0] from (**). This vector can be a basis
of syzygies of {σ{1,0}(f1), σ{1,0}(f2), σ{1,0}(f3)}. However, we can not compute this basis
(vector) by algorithm the CSB.

In fact, if we apply a hybrid module order in Lemma 9.4.2 for computing Gröbner bases
in K[Ā][X̄ ]r, then Lemma 9.4.2 does not hold. In the proof of Lemma 9.4.2 we use the
property of (POT,�) which is not a hybrid module order. Therefore, Theorem 9.4.3 also
does not hold if we apply a hybrid module order. We can not apply algorithm CGBM (and
FCGSM) for computing syzygies of parametric vectors (or polynomials).

Remark: The computation of parametric syzygies cannot be computed by an immedi-
ate generalization to modules of a comprehensive Gröbner basis algorithm for syzygies;
the remark that syzygies for a special case cannot be deduced from global syzygies is
straightforward: consider any generic system, such that the generic element is regular
(hence the global syzygies are the trivial ones) and a special case is non-regular (hence
the trivial syzygies are a proper submodule). The additional syzygies have support in
a proper non-dense subset of the parameter space, hence cannot be computed globally.
The non-extensibility of syzygies is why comprehensive Gröbner bases are non-trivial (and
would be useful in case that they could be computed in practice).

9.5 Reduced Gröbner bases in K[Ā][X̄]r

In chapter 3, we saw the theory of reduced Gröbner bases in K[Ā][X̄ ] and it’s algorithms.
By this algorithms, we can obtain reduced Gröbner bases in K[Ā][X̄ ]. Now we are consid-
ering K[Ā][X̄ ]r. In the algorithm GröbnerBasisM, we need to compute a reduced Gröbner
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basis with respect to a hybrid module order 1 �hm1= (�m,�1) in K[Ā, X̄ ]r where �m

is a module order on pp(X̄)r and �1 is a term order on pp(Ā). However, the output of
GröbnerBasisM is not always a reduced Gröbner basis in K[Ā][X̄ ]r. That is, the output
has sometimes some unnecessary vectors.

For example, let a, x, y be variables and f1 =

(

ax− x+ y
1

)

, f2 =

(

ay + a
x+ a

)

vectors

in Q[a][x, y]2. Then, the output of GröbnerBasisM({f1, f2},�m) where �m= (TOP, x �lex

y � a), is the following;

g1 =

(

xy + 2x− y2

x2 + ax− y

)

, g2 =

(

(a− 1)x+ y
1

)

, g3 =

(

ax+ 2
x+ a

)

,

g4 =

(

0
(a− 1)x2 + xy + (a2 − a)x− 2

)

.

By Lemma 9.2.3, we know that {g1, g2, g3, g4} is a Gröbner basis for 〈f1, f2〉 in Q[a][x, y]2.
However, there exists a nicer Gröbner basis, because we have

lm{a}(g1) = xye1 ∈ 〈lm{a}(g2), lm{a}(g3)〉 = 〈(a− 1)xe1, aye1〉.

That is, g1 can be written as
g1 = yg2 − xg3.

This means that g1 is an unnecessary vector. That is, {g2, g3, g4} is a Gröbner basis too.
However we can not obtain this Gröbner basis {g2, g3, g4} by the algorithm GröbnerBasisM.

What is a reduced Gröbner basis in K[Ā][X̄ ]r? The definition of reduced Gröbner bases
in K[Ā][X̄ ]r is the following.

Definition 9.5.1 (Reduced Gröbner bases). Let �m be a module order pp(X̄)r, �1

a term order on pp(Ā) and �hm1= (�m,�1) a hybrid module order 1 on pp(Ā, X̄)r. Let I
be an ideal in K[Ā][X̄ ]r. Then, a reduced Gröbner basis G for I with respect to (�m,�1)
is a Gröbner basis for I in K[Ā][X̄ ]r such that

1. lc(p) = 1 for all p ∈ G with respect to �hm1,
2. for all p ∈ G, no monomial in MonoĀ(p) lies in 〈lmĀ(G\ {p})〉 in K[Ā][X̄ ]r with

respect to �m,
3. G is the reduced Gröbner basis for an ideal generated by itself 〈G〉 in K[Ā, X̄ ]r

with respect to �hm1.

In order to compute reduced Gröbner bases in K[Ā][X̄ ]r we need two reduction systems
which are the following.

Definition 9.5.2. We have a module order with a “hybrid module order 1” �hm1= (�m

,�1) where �m is a module order on pp(X̄)r and �1 is a term order on pp(Ā). Let
f = aα+ f1, g = bαβ+ g1 with lm(f) = aα in K[Ā, X̄ ]r where a, b ∈ K, α, β ∈ pp(Ā, X̄)r

and f1, g1 ∈ K[Ā, X̄ ]r. Then a reduction
r1
−→f is defined as follows:

g
r1
−→f bαβ + g1 − ba

−1β(aα + f1),

where bαβ need not be the leading monomial of g. In this paper we call this reduction

“Reduce1 ”. A reduction
r1
−→F by a set F of polynomials is also natural defined.
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In order to compute reduced Gröbner bases in K[Ā][X̄ ]r we also need the following
reduction system.

Definition 9.5.3. Let F be a finite set of vectors in K[Ā][X̄ ]r and g = aβ+g′ ∈ K[Ā][X̄ ]r

where a ∈ K[Ā], β ∈ pp(X̄)r and g′ ∈ K[Ā][X̄ ]r (i.e. aβ ∈ MonoĀ(g)). Moreover, let

F ′ := {f ∈ F | lppĀ(f) divides β } .

If a ∈ 〈lcĀ(F ′)〉, a can be written as a =
∑

fi∈F ′ hi lcĀ(fi) where hi ∈ K[Ā]. Then a

reduction
r2
−→f is defined as follows:

g
r2
−→F ′ g −

∑

fi∈F ′

hi

β

lppĀ(fi)
fi.

In this chapter, we define this reduction system as Reduce2 (written:
r2
−→).

By the two reduction systems and the algorithm GröbnerBasisM, we can construct an
algorithm for computing reduced Gröbner bases in K[Ā][X̄ ]r.

Algorithm 9.5.4. RGB(F,�m) (Reduced Gröbner bases)

Input: F : a set of vectors in K[Ā][X̄ ]r,
�m : a module order on pp(X̄)r,

Output: G: a reduced Gröbner basis for 〈F 〉 with respect to �m.
begin

G← GröbnerBasisM(F,�m)
E1← 0
E2← 0

while E1 6= 1 do
while E2 6= 2 do
if there exists p ∈ G such that

(

p
r1
−→{G\{p}} p1 and p 6= p1

)

or
(

p
r2
−→{G\{p}} p1 and p 6= p1

)

then
G← {G\{p}} ∪ {p1}

else
E2← 2

end-if
if (G is NOT the reduced Göbner basis for 〈G〉 with respect to �hm1 in K[Ā, X̄ ]r)
then
G← Compute the reduced Gröbner basis for 〈G〉 with respect to �hm1 in K[Ā, X̄ ]r

E2← 0
else
E1← 1

end-if
end-while

end-while
return(G)
end

Theorem 9.5.5. The algorithm RGB(F,�m) terminates. The output forms a reduced
Gröbner basis for 〈F 〉 with respect to a module order �m in K[Ā][X̄ ]r.



9.6 Concluding Remarks 145

Proof. In the first step, we compute a Gröbner basis for 〈F 〉 with respect to �m in
K[Ā][X̄ ]r. This step obviously terminates.

In the second, if there exists an element q ∈ G which can be reduced to q1 by
r1
−→{G\{p}}

p1 or
r2
−→{G\{p}} p1, then we have lppĀ(q) �m lppĀ(q1) (lppĀ(q1) is smaller or equal

than lppĀ(q) with respect to �m). That is, the result of applying
r1
−→ and

r2
−→ to q in

K[Ā][X̄ ]r or K[Ā, X̄ ]r has a leading power product which cannot be greater than lppĀ(q)

with respect to �m. Therefore, iterated application of
r1
−→ and

r2
−→ to G will eventually

terminate.
Next we check whether G is the reduced Gröbner basis for 〈G〉 with respect to �hm1

in K[Ā][X̄]r or not. If G is the reduced Gröbner basis for 〈G〉 with respect to �hm1 in
K[Ā][X̄ ]r, then this algorithm terminates. If not, we repeat the same procedure. We
have the fact that “every infinite ascending chain M1 ⊂ M2 ⊂ · · · of submodules of
K[Ā][X̄ ]r stabilizes.” (see books [CLO97, GMP02]) Therefore, this algorithm terminates
and outputs a reduced Gröbner basis with respect to (�m,�1) in K[Ā][X̄ ]r.

In chapter 3, we defined two reduced Gröbner bases in K[Ā][D̄]. In the module
K[Ā][X̄ ]r, we can define two reduced Gröbner bases, too. In fact, we can regard Def-
inition 9.5.1 as a definition of weak Gröbner bases in K[Ā][X̄ ]r. In this chapter, we do
not treat strong reduced Gröbner bases in K[Ā][X̄ ]r. One can easily construct them by
using the same way of chapter 3.

9.6 Concluding Remarks

In this chapter we have extended comprehensive Gröbner bases to modules, and gave algo-
rithms to compute comprehensive Gröbner bases and comprehensive Gröbner systems for
modules. Furthermore, these algorithms have been implemented in the computer algebra
systems singular [GMPS05] and Risa/Asir [NT92] by the author. (In fact, we described
the generalization of Suzuki-Sato algorithm (Algorithm 4.4.3 in chapter4).) It is possi-
ble to apply other existing algorithms for computing comprehensive Gröbner bases and
comprehensive Gröbner systems. For example, Nabeshima’s new approach for computing
comprehensive Gröbner systems (in chapter 5), and the approach of ACGB. One can eas-
ily follow the algorithms for computing them.

In general, since comprehensive Gröbner bases are huge, comprehensive Gröbner bases
in K[Ā][X̄ ]r are huge too. This means that we need high speed machines and a lot of
memory (RAM) in the machines. However, our programs in the both the computer al-
gebra systems singular and Risa/Asir still work for a lot of (easy) examples in K[Ā][X̄ ]r

where r ≤ 3, |X̄ | ≤ 3 and |Ā| ≤ 3 (OS: WindowsXP, CPU: Pentium M 1.73GHz, Memory:
512MB RAM).

We can solve a lot of parametric problems by applying comprehensive Gröbner bases
and comprehensive Gröbner systems, like Gröbner bases in K[X̄ ]. One of the applica-
tions “syzygies of parametric polynomials (or vectors)” was shown. In the future work,
we consider optimization techniques for getting small comprehensive Gröbner bases and
applications of comprehensive Gröbner bases and comprehensive Gröbner systems more.
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147

Chapter 10

Implementation: PGB package

We present a new software package in the computer algebra system Risa/Asir, named
PGB, for computing parametric Gröbner bases in various domains and related objects.
The purpose of this chapter is to illustrate how to use the package and solve problems
using the package.

In the author’s paper [Nab07b], this package was introduced.

One can download the package from the following website.

http://www.risc.uni-linz.ac.at/people/knabeshi/pgb/

One can also download the computer algebra system Risa/Asir from the following website.

http://www.math.kobe-u.ac.jp/Asir/asir.html

In this chapter, we describe the package PGB Version 1.0 (20070305). (The author will
improve and update it on the website.)

When one loads the package, then Risa/Asir gives the following message;

_________________________________________________________

PGB, Version 1.0 (20070305)

Copyright (C) Katsusuke Nabeshima.

Research Institute for Symbolic Computation (RISC-Linz),

Johannes Kepler University Linz.

A-4040, Linz, Austria.

http://www.risc.uni-linz.ac.at/people/knabeshi/pgb/

_________________________________________________________

Welcome to PGB. Enjoy!

10.1 CGBs and CGSs in commutative polynomial rings

In this section we treat the commands of PGB for computing comprehensive Gröbner
systems and comprehensive Gröbner bases in commutative polynomial rings.

10.1.1 Comprehensive Gröbner systems

Here, we introduce the commands for computing comprehensive Gröbner systems in com-
mutative polynomial rings.
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The package PGB has the following commands for computing comprehensive Gröbner
systems in a commutative polynomial ring. The following commands which have the
Suzuki-Sato algorithm, output a comprehensive Gröbner system. Each of them has differ-
ent optimization techniques for getting comprehensive Gröbner systems.

Commands:

cgs(polylist,plist,vlist,option,order),
cgs1(polylist,plist,vlist,option,order),
cgs2(polylist,plist,vlist,option,order),

cgs_re(polylist,plist,vlist,option,order),
cgs_re1(polylist,plist,vlist,option,order).

Output:

a comprehensive Gröbner system for an ideal generated by polylist
with respect to order.

• polylist : a list of polynomials.
• plist : a list of parameters.
• vlist : a list of variables.
• order : a term order on the set of power product of vlist, (see “Setting term

ordering” of the manual [NST03]. Matrix orders are available).
• option : 1 or 0. This package PGB has two kinds of form for comprehensive Gröbner

systems. One have to select 0 or 1.

When we input “0” into option, then the programs output a list of segments of a compre-
hensive Gröbner basis as follows.

cgs1([a*x^2*y^2+b*x*y+2,b*x+a*y+2],[a,b],[x,y],0,2);

[[[b],[a],[-2*x^2-a,a*y+2]],[[b,a],[1],[1]],[[a],[b],[b*x+2,-y+1]],[[0],[

b*a],[-a^3*y^4-4*a^2*y^3+(b^2-4)*a*y^2+2*b^2*y-2*b^2,b*x+a*y+2]]]

If we input “1” into option, then the programs output a list of segments of a comprehensive
Gröbner system, too. However, this output form is more intuitive than the previous one
“0”. An example of this case is the following.

cgs1([a*x^2*y^2+b*x*y+2,b*x+a*y+2],[a,b],[x,y],1,2);

[b]==0, [a]!=0,

[-2*x^2-a,a*y+2]

[b,a]==0, [1]!=0,

[1]

[a]==0, [b]!=0,

[b*x+2,-y+1]

[0]==0, [b*a]!=0,

[-a^3*y^4-4*a^2*y^3+(b^2-4)*a*y^2+2*b^2*y-2*b^2,b*x+a*y+2]

Number of segments is 4

A part of outputs [b,a] means V(a, b). That is, [b]==0, [a]!=0 means V(b)\V(a).
Two outputs above are a comprehensive Gröbner system for 〈ax2y2 + bxy+2, bx+ay+2〉
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with respect to the lexicographic order � such that x � y where x, y are variables and
a, b are parameters. The outputs mean the following;














{ay + 2,−2x2 − a}, if V(b)\V(a) [b = 0, a 6= 0],
{1}, if V(a, b) [a = b = 0],
{−y + 1, bx+ 2} if V(a)\V(b) [a = 0, b 6= 0]
{−a3y4 − 4a2y3 + (b2 − 4)ay2 + 2b2y − 2b2, bx+ ay + 2} if C2 \V(ab) [ab 6= 0].

All the commands “cgs”, “cgs1”, “cgs2” “cgs_re” and “cgs_re”,output a comprehen-
sive Gröbner system. What are differences? The differences are the optimization
techniques. In general, the outputs of comprehensive Gröbner basis or comprehensive
Gröbner systems are very big. As we saw in chapter 4, we need a lot of optimization
techniques for getting small and nice ones. Some optimization techniques have been im-
plemented in the commands. However, concerning speed, some of the techniques are
expensive. Hence, one can select a command from the list, which has some optimization
techniques for computing comprehensive Gröbner systems. Main differences are the fol-
lowing three optimization techniques;

(1) computing the reduced Gröbner basis in each segment,
(2) checking parametric spaces (conditions of parameters) of all segments at the last step,
(3) computing a reduced Gröbner basis in Q[Ā][X̄] instead of computing the reduced
Gröbner basis with respect to a block order with X̄ � Ā in Q[Ā, X̄ ]. (See chapter 3.)

The commands “cgs1” and “cgs_re1” have the technique (1). That is, the commands
output the reduced Gröbner basis in each segment.

In fact, all of the commands check whether there exists any redundant segment or
not. If there exist redundant segments, the programs remove the segments. However,
this check system is not complete, this is rough. Therefore, when the commands finish
computing, we can check again for getting a small and nice comprehensive Gröbner system.
This technique is (2). The commands “cgs”, “cgs1”, “cgs_re” and “cgs_re1” have this
technique (2).

All the commands follow the Suzuki-Sato algorithm [SS06]. In the Suzuki-Sato algorithm,
we need to compute Gröbner bases in Q[Ā][X̄ ]. As we saw in chapter 3, the algorithm
Insa-Pauer (Algorithm 3.2.8) and the algorithm GröbnerBasisB (Algorithm 3.3.2) can not
output a reduced Gröbner basis in Q[Ā][X̄ ]. Therefore, we can apply the algorithm WRGB
(Algorithm 3.5.2) for computing reduced Gröbner bases in Q[Ā][X̄ ]. The commands
“cgs_re” and “cgs_re1” have this technique (3).

The following table shows us what techniques all the commands have.

command techniques
cgs (2)
cgs1 (1), (2)
cgs2 none

cgs_re (1), (2), (3)

Concerning speed, the author recommends to use cgs (or cgs2) because sometimes com-
puting reduced Gröbner bases in each segments and computing reduced Gröbner bases in
Q[Ā][X̄ ] are very expensive.

In the following examples, we see how the commands work, and we compare some
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commands.

We compare the commands cgs and cgs1.

cgs([a*x^2*y^2+x+y,x*y+y^2,b*x^2+y],[a,b],[x,y],1,1);

[b]==0, [1]!=0,

[x,y]

[a]==0, [b]!=0,

[b*y^2+y,x+y]

[0]==0, [b*a]!=0,

[a*y,x+y,b*y^2+y]

Number of segments is 3

cgs1([a*x^2*y^2+x+y,x*y+y^2,b*x^2+y],[a,b],[x,y],1,1);

[b]==0, [1]!=0,

[x,y]

[a]==0, [b]!=0,

[b*y^2+y,x+y]

[0]==0, [b*a]!=0,

[a*y,x+y]

Number of segments is 3

We compare the commands cgs1 and cgs_re.

cgs1([a*x*z+b*x*z+a,b*z+a,(a^2+a)*x*y],[a,b],[x,y,z],0,0);

[[[b-1],[a^2+a],[(-a^2-a)*x+a,a*y,z+a]],[[b,a],[0],[]],[[a+b],[b,a],[1]],

[[a+1],[b^2-b],[(b-1)*x-b,b*z-1]],[[a],[b],[b*z]],[[b],[a],[1]],[[0],[(b

^2-b)*a^3+(b^3-b)*a^2+(b^3-b^2)*a],[b*z+a,(-a^2-a)*y,(-a^2-b*a)*x+b*a]]]

(7 segments)

cgs_re([a*x*z+b*x*z+a,b*z+a,(a^2+a)*x*y],[a,b],[x,y,z],0,0);

[[[b,a],[0],[]],[[a+b],[b,a],[1]],[[a+1],[b^2-b],[(b-1)*x-b,b*z-1]],[[a],

[b],[b*z]],[[b],[a],[1]],[[0],[b*a^3+(b^2+b)*a^2+b^2*a],[b*z+a,(-a^2-a)*

y,(-a^2-b*a)*x+b*a,(a*z-a)*x+a]]]

(6 segments)

In chapter 5, we saw the algorithm NEW for computing comprehensive Gröbner systems.
The algorithm has been also implemented. The commands for the algorithm NEW is the
following.

Commands:

cgs_con(polylist,plist,vlist,num, option,order),
cgs_con1(polylist,plist,vlist,num, option,order),
cgs_con2(polylist,plist,vlist,num, option,order).

Output:

a comprehensive Gröbner system for an ideal generated by polylist.
with respect to order.
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• num : The program select a polynomial whose number of monomials is num (see
chapter 5). If one inputs 0, then the program executes the algorithm NEW. If one
inputs “-1” in cgs_con, then cgs works (the Suzuki-Sato algorithm). If one inputs
-1 in cgs_con1, then cgs1 works (the Suzuki-Sato algorithm). If one inputs s which
is a natural number, then the algorithm NEW[s] works (see chapter 5).
• option : 1 or 0. This package PGB has two kinds of form for comprehensive Gröbner

systems. One have to select 0 or 1.

The following table shows us which kinds of techniques three commands have.

command techniques
cgs_con (2)
cgs_con1 (1), (2)
cgs_con2 none

In the following examples, we see how the commands work.

cgs_con1([x^3*y+x+y,b*x*y+a*y+1],[a,b],[x,y],0,1,2);

[0]==0, [[a],[a^3-b^3],[b]]!=0,

[b^3*a*x+(-b^2*a^4+b^5*a)*y^2+(-3*b^2*a^3-b^4*a^2)*y-2*b^2*a^2-b^4*a,(-a^

3+b^3)*y^3+(-3*a^2-b^2*a)*y^2+(-3*a-b^2)*y-1]

[a]==0, [[a^3-b^3],[b]]!=0,

[x+b^2*y^2-b,b^3*y^3-b^2*y-1]

[a-b]==0, [[a^2+3*a],[b]]!=0,

[-x+(a^2+3*a)*y+a+2,(a^3+3*a^2)*y^2+(a^2+3*a)*y+1]

[a+3,b+3]==0, [[b]]!=0,

[1]

[a,b]==0, [[b]]!=0,

[1]

[a^2+b*a+b^2]==0, [[a^3-3*a^2+9*a],[b]]!=0,

[(a^4-3*a^3+9*a^2)*x+((-b+3)*a^5+(6*b-9)*a^4+(-18*b+27)*a^3+27*b*a^2)*y+(

-b+2)*a^4+(5*b-6)*a^3+(-15*b+18)*a^2+18*b*a,(a^4-3*a^3+9*a^2)*y^2+(a^3-3

*a^2+9*a)*y+b+3]

[a^2-3*a+9,(b+3)*a+b^2-9]==0, [[b+3],[b]]!=0,

[1]

[b]==0, [[a]]!=0,

[x^3-a*x+1,-a*y-1]

Number of segments is 8

Remark that the meaning of [F]==0,[[t1], . . . ,[tl]]!=0, is

V(F )\ (V(t1) ∪ · · · ∪ V(tl)) .

In fact, V(F )\ (V(t1) ∪ · · · ∪ V(tl)) = V(F )\V(LCM(t1, t2, . . . , tk)).

The special command “sub4cgs” has been implemented for substituting arbitrary values
for parameters of a comprehensive Gröbner system.

Commands:

sub4cgs(a comprehensive Gröbner system,[[a1,v1],[a2,v2],. . .,[al,vl]])
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Procedure:
(1) The program searches some segments (A1, G1), . . . , (Al, Gl) of

a comprehensive Gröbner system such that (v1, . . . , vl) ∈ Ai, 1 ≤ i ≤ l.
(2) The program substitutes the values v1, . . . , vl for the parameters a1, . . . , al

of the set polynomials G1, . . . , Gl.
(3) The program outputs the parametric spaces, the original set of polynomials

G1, . . . , Gl and the set of polynomials G1(v1, . . . , vl), . . . , Gl(v1, . . . , vl) computed.

• a1, a2, . . . , al: parameters.
• v1, v2, . . . , vl: values.

In this example, we see how the command “sub4cgs” works.

B=cgs1([a*x^2*z^2+x*y^2+2*b,x^2+z^2+a,b*z+x],[a,b],[x,y,z],0,2);

[[[a,b^3+b],[0],[(b^2+1)*z^2,-b*z*y^2+2*b,(-2*b^4-2*b^2)*z,x+b*z]],[[a],[

b^3+b],[1]],[[b],[1],[x,z^2+a]],[[a,b^2+1],[0],[z*y^2-2,x+b*z]],[[b^2+1]

,[a],[1]],[[0],[(b^3+b)*a],[(b^2+1)*z^2+a,-b*a*y^2-a^2*z^3+(-a^3-2*b^3-2

*b)*z,x+b*z]]]

sub4cgs(B,[[a,3/4],[b,1/2]]);

[0]==0, [(b^3+b)*a]!=0,

[(b^2+1)*z^2+a,-b*a*y^2-a^2*z^3+(-a^3-2*b^3-2*b)*z,x+b*z]

[5/4*z^2+3/4,-3/8*y^2-9/16*z^3-107/64*z,x+1/2*z]

sub4cgs(B,[[a,2],[b,0]]);

[b]==0, [1]!=0,

[x,z^2+a]

[x,z^2+2]

C=cgs_con([a*x^2+b*y^2,c*x^2+y^2,2*a*x-2*c*y],[a,b,c],[x,y],0,0,2);

[[[0],[[a],[a-c*b]],[a*x-c*y,y^2]],[[a],[[c],[a-c*b]],[c*x^2,y]],[[a-c*b]

,[[a],[b^2+c]],[a*x-c*y,y^2]],[[a,c*b],[[c],[b^2+c]],[c*x^2,y]],[[a,c],[

[b^2+c]],[y^2]],[[b^2+c,a-c*b,b*a+c^2],[[a]],[a*x-c*y]],[[a,b,c],[[1]],[

y^2]]]

sub4cgs(C,[[a,-1],[b,-1/3],[c,0]]);

[0]==0, [[a],[a-c*b]]!=0,

[a*x-c*y,y^2]

[-x,y^2]

10.1.2 Comprehensive Gröbner bases

The package PGB has the following commands for computing comprehensive Gröbner
bases in a commutative polynomial ring. The following commands output a comprehen-
sive Gröbner basis. Each of them has different optimization techniques for getting nice
and small comprehensive Gröbner bases. Actually, these commands are related to the
commands for computing comprehensive Gröbner systems.
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Commands:

cgb(polylist,plist,vlist,order),
cgb1(polylist,plist,vlist,order),

cgb_re(polylist,plist,vlist,order).
cgb_re1(polylist,plist,vlist,order).

Output:

a comprehensive Gröbner basis for an ideal generated by polylist
with respect to the order.

• polylist : a list of polynomials.
• plist : a list of parameters.
• vlist : a list of variables.
• order : a term order on the set of power product of vlist(see “Setting term or-

dering” of the manual [NST03]. Matrix orders are available).

All the commands “cgb”, “cgb1”, “cgb_re” and “cgb_re1” output a comprehensive
Gröbner basis. What are differences? The differences are the optimization techniques.

The following table shows us what techniques all the commands have.

command techniques
cgb none
cgb1 (2)

cgb_re (3)
cgb_re1 (2), (3)

(see section 10.1.1)

In the following examples, we see how the commands work.

cgb([a*x*z+x*z+a,b*z^2+a,(a^2+a)*x*y+b^2],[a,b],[x,y,z],2);

[(-z*y-b*a)*x-a*y+b^2*z,(-b^2*y+b^4*z)*x+b^3*z*y+b^4,(-a*y-b^2*z)*x-b^2,(

-b^2*a-b^2)*x+b^3*z,(-a^2-a)*x+b*a*z,-a^2*y+b^2*z,(-b*z^3+z)*x-b*z^2,b*z

^2+a,-b*a*z*y-b^2,(a+1)*z*x+a]

cgb1([a*x*z+x*z+a,b*z^2+a,(a^2+a)*x*y+b^2],[a,b],[x,y,z],2);

[(-z*y-b*a)*x-a*y+b^2*z,(-b^2*y+b^4*z)*x+b^3*z*y+b^4,(-a*y-b^2*z)*x-b^2,(

-b^2*a-b^2)*x+b^3*z,(-a^2-a)*x+b*a*z,-a^2*y+b^2*z,(-b*z^3+z)*x-b*z^2,b*z

^2+a,-b*a*z*y-b^2,(a+1)*z*x+a]

cgb_re([a*x*z+x*z+a,b*z^2+a,(a^2+a)*x*y+b^2],[a,b],[x,y,z],2);

[(-b^2*a-b^2)*x+b^3*z,(-a^2-a)*x+b*a*z,-a^2*y+b^2*z,(-b*z^3+z)*x-b*z^2,b*

z^2+a,-b*a*z*y-b^2,(a+1)*z*x+a]

The special command “sub4cgb” has been implemented for substituting arbitrary values
for parameters of a comprehensive Gröbner basis.
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Commands:

sub4cgb(polylist,[[a1,v1],[a2,v2],. . .,[al,vl]])

Output:
the set of polynomials which is substituted (v1, v2, . . . , vl) for parameters (a1, a2, . . . , al)
of polylist.

• polylist : a list of polynomials.
• a1, a2, . . . , al: parameters.
• v1, v2, . . . , vl: values.

In the following example, we see how the command “sub4cgb” works.

A=cgb1([a*x^2*z^2+x*y^2+2*b,c*x^2+z^2+a,b*z+x],[a,b,c],[x,y,z],2)$

sub4cgb(A,[[a,-1],[b,0],[c,0]]);

[z^2-1,(-z^2+1)*y^2,x]

sub4cgb(A,[[a,2],[b,3],[c,2]]);

[-6*y^2+36*z^3-114*z,-18*z*y^2+57*z^6+114*z^4+36,-18*z*y^2-6*z^4-12*z^2+3

6,6*y^4-216*z^6-144*z^2+228,19*z^2+2,-3*z*y^2+18*z^4+6,(-z^2-2)*y^2+6*z^

5+12*z^3-36*z,x+3*z]

sub4cgb(A,[[a,0],[b,2/5],[c,2]]);

[-132/125*z,-8/25*z*y^2+66/125*z^6+16/25,-8/25*z*y^2+16/25,264/125,33/25*

z^2,-2/5*z*y^2+4/5,-z^2*y^2-16/25*z,x+2/5*z]

10.1.3 Faithful comprehensive Gröbner systems

Here, we treat the commands for computing faithful comprehensive Gröbner systems in
commutative polynomial rings. These commands are the main part of the commands for
computing comprehensive Gröbner bases. The following four commands output a faith-
ful comprehensive Gröbner system. Each of them has different optimization methods for
getting nice and small comprehensive Gröbner systems. (These commands are included
in the programs of the commands for computing computing comprehensive Gröbner bases
(cgb, cgb1, cgb_re and cgb_re1).)

Commands:

fcgs(polylist,plist,vlist,option,order),
fcgs1(polylist,plist,vlist,option,order),

fcgs_re(polylist,plist,vlist,option,order),
fcgs_re1(polylist,plist,vlist,option,order).

Output:

a faithful comprehensive Gröbner basis for an ideal generated by polylist
with respect to order.
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All the commands output a faithful comprehensive Gröbner system. What are differ-
ences? The differences are the optimization techniques. These differences are the same
as the commands of comprehensive Gröbner basis (see section 10.1.2).

The following table shows us what techniques all the commands have.

command techniques
fcgs none
fcgs1 (2)

fcgs_re (3)
fcgs_re1 (2), (3)

In the following example, we see how the commands work.

fcgs1([a*x^2*y^2+x+y,a*x*y^2+y,b*x^2+b*y],[a,b],[x,y],1,0);

[a]==0, [1]!=0,

[a*x+a*y^2+(a+1)*y,a*x^2+(a+1)*x+a*y]

[a+1]==0, [1]!=0,

[a*x+a*y^2+(a+1)*y,(-y+1)*x+y,a*x^2+(a+1)*x+a*y]

[b]==0, [a]!=0,

[a*x+a*y^2+(a+1)*y,(-y+1)*x+y,a*x^2+(a+1)*x+a*y]

[0]==0, [b*a^2+b*a]!=0,

[(b*a+b)*y,(b*a+b)*x,b*x+b*y^2,a*x+a*y^2+(a+1)*y,(-y+1)*x+y,b*x^2+b*y,a*x

^2+(a+1)*x+a*y]

Number of segments is 4

fcgs([a*x^2*y^2+x+y,a*x*y^2+y,b*x^2+b*y],[a,b],[x,y],1,0);

[a]==0, [1]!=0,

[a*x+a*y^2+(a+1)*y,a*x^2+(a+1)*x+a*y]

[a+1]==0, [1]!=0,

[a*x+a*y^2+(a+1)*y,(-y+1)*x+y,a*x^2+(a+1)*x+a*y]

[b,a]==0, [1]!=0,

[a*x+a*y^2+(a+1)*y,a*x^2+(a+1)*x+a*y]

[b]==0, [a]!=0,

[a*x+a*y^2+(a+1)*y,(-y+1)*x+y,a*x^2+(a+1)*x+a*y]

[0]==0, [b*a^2+b*a]!=0,

[(b*a+b)*y,(b*a+b)*x,b*x+b*y^2,a*x+a*y^2+(a+1)*y,(-y+1)*x+y,b*x^2+b*y,a*x

^2+(a+1)*x+a*y]

Number of segments is 5

fcgs_re([a*x^2*y^2+x+y,a*x*y^2+y,b*x^2+b*y],[a,b],[x,y],1,0);

[a]==0, [1]!=0,

[a*x+a*y^2+(a+1)*y,a*x^2+(a+1)*x+a*y]

[a+1]==0, [1]!=0,

[a*x+a*y^2+(a+1)*y,(-y+1)*x+y,a*x^2+(a+1)*x+a*y]

[b]==0, [a]!=0,

[a*x+a*y^2+(a+1)*y,(-y+1)*x+y,a*x^2+(a+1)*x+a*y]

[0]==0, [b*a^2+b*a]!=0,

[(b*a+b)*y,(b*a+b)*x,a*x+a*y^2+(a+1)*y,(-y+1)*x+y,a*x^2+(a+1)*x+a*y]

Number of segments is 4
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10.2 CGBs and CGSs in rings of differential operators

In this section, we introduce the commands for computing comprehensive Gröbner bases
and systems in rings of differential operators. The approaches and optimization techniques
of all the commands, are the same as the previous section. We do not describe the details.
We just show the commands, remarks and examples.

10.2.1 Comprehensive Gröbner systems

Here, we treat the commands for computing comprehensive Gröbner systems in
Q[Ā][X̄, D̄].

The package PGB has the following commands for computing comprehensive Gröbner
systems in Q[Ā][X̄, D̄]. The following commands which have the Suzuki-Sato algorithm,
output a comprehensive Gröbner system. With respect to speed, each of them has different
optimization techniques for getting comprehensive Gröbner systems.

Commands:

cgsw(polylist,plist,[[x1, ., xp],[d1, ., dp]],option,order),
cgsw2(polylist,plist,[[x1, ., xp],[d1, ., dp]],option,order),

cgsw_re(polylist,plist,[[x1, ., xp],[d1, ., dp]],option,order).

Output:

a comprehensive Gröbner system for an ideal generated by polylist
with respect to order.

• polylist : a list of differential operators (polynomials).
• plist : a list of parameters.
• [[x1, ., xp],[d1, ., dp]] : a list of variables such that xixj = xjxi, didj = djdi, xidj =
djxi, for i 6= j and dixi = xidi + 1.
• order : a term order on the set of power product of pp(x1, . . . , xp, d1, . . . , dp) (see

“Setting term ordering” of the manual [NST03]. Matrix orders are available).
• option : 1 or 0. This package PGB has two kinds of form for comprehensive Gröbner

systems. One have to select 0 or 1.

The following table shows us what techniques all the commands have.

command techniques
cgsw (2)
cgsw2 none

cgsw_re (2), (3)
(see section 10.1.1)

Note that the technique (1) “computing the reduced Gröbner basis in each segment” has
not been implemented, yet. It the author implement it, then the author will upload the
program on the PGB website.

In the following examples, we see how the commands work, and we compare some
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commands.

cgsw([a*x1*d1^2*d2+(a+1)*x1*x2*d2,x2^2*d2+b*x1,d1*d2^2],[a,b],[[x1,x2],[d

1,d2]],1,2);

[a+1]==0, [b]!=0,

[x1,d2]

[b,a+1]==0, [1]!=0,

[x2^2*d2,d1*d2]

[b]==0, [a+1]!=0,

[x2*d2,d1*d2]

[0]==0, [b*a+b]!=0,

[x1,d2]

Number of segments is 4

A=newmat(4,4,[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]);

[ 0 0 0 1 ]

[ 0 0 1 0 ]

[ 0 1 0 0 ]

[ 1 0 0 0 ]

cgsw_re([a*x1*d1^2*d2+(a+1)*x1*x2*d2,x2^2*d2+b*x1^2],[a,b],[[x1,x2],[d1,d

2]],0,A);

[[[a+1],[b],[x1^2,d2]],[[b],[a],[x2^2*d2,(a*x1*d1^2+(a+1)*x1*x2)*d2]],[[b

,a],[1],[x1*x2*d2,x2^2*d2]],[[a],[b],[x1,x2^2*d2]],[[0],[b*a^2+b*a],[x1,

d2]]]

10.2.2 Comprehensive Gröbner bases

The package PGB has the following commands for computing comprehensive Gröbner
bases in Q[Ā][X̄, D̄]. The following commands output a comprehensive Gröbner basis.
Each of them has different optimization techniques for getting nice and small comprehen-
sive Gröbner bases.

Commands:

cgbw(polylist,plist,[[x1, ., xp],[d1, ., dp]],order),
cgbw1(polylist,plist,[[x1, ., xp],[d1, ., dp]],order),

cgbw_re(polylist,plist,[[x1, ., xp],[d1, ., dp]],order).
cgbw_re1(polylist,plist,[[x1, ., xp],[d1, ., dp]],order).

Output:

a comprehensive Gröbner basis for an ideal generated by polylist
with respect to the order.

• polylist : a list of polynomials.
• plist : a list of parameters.
• [[x1, ., xp],[d1, ., dp]] : a list of variables such that xixj = xjxi, didj = djdi, xidj =
djxi, for i 6= j and dixi = xidi + 1.



158 Chapter 10 Implementation: PGB package

• order : a term order on the set of power product of vlist (see “Setting term
ordering” of the manual [NST03]. Matrix orders are available).

The following table shows us what techniques all the commands have.

command techniques
cgbw none
cgbw1 (2)

cgbw_re (3)
cgbw_re1 (2), (3)

(see section 10.1.1)

In following examples, we see how the commands work.

cgbw([a*x1*d1^2*d2+(a+1)*x1*x2*d2,x2^2*d2+b*x1^2,d1*d2^2],[a,b],[[x1,x2],

[d1,d2]],2);

[x2^2*d2+b*x1^2,x2^2*d2^2+2*x2*d2,(a+1)*x2*d2,d1*d2,b*d2]

A=cgbw_re([a*x1*d1^2*d2+(a+1)*x1*x2*d2,x2^2*d2+b*x1^2,d1*d2^2],[a,b],[[x1

,x2],[d1,d2]],2);

[b*d2,d1*d2,(a+1)*x2*d2,x2^2*d2^2+2*x2*d2,x2^2*d2+b*x1^2]

sub4cgb(A,[[a,1],[b,2]]);

[2*d2,d1*d2,2*x2*d2,x2^2*d2^2+2*x2*d2,x2^2*d2+2*x1^2]

cgbw([a*x1*d1^2*d2+(c+1)*x1*x2*d2,x2^2*d2+b*x1,c*d1*d2^2],[a,b,c],[[x1,x2

],[d1,d2]],2);

[(x1*x2^2+2*b*a)*d2^2+2*x1*x2*d2,(-a*x1*d1^3-a*d1^2-x1*x2*d1+(-c-1)*x2)*d

2,(a*x1*d1^2+(c+1)*x1*x2)*d2,(a^2*x1*d1^4+2*a^2*d1^3+2*a*x2*d1+2*b*a)*d2

,x2^2*d2+b*x1,x2^3*d2^2+(2*b*a*d1+2*x2^2)*d2,a*x2^2*d1*d2,-a*x2^2*d2^2-2

*a*x2*d2,c*x2^2*d2^2+2*c*x2*d2,(c+1)*a*x2^2*d2,-b*a*x2*d2,(-c^2-c)*x2*d2

,c*d1*d2,b*a^2*d2,b^2*a*d2,c*b*d2]

10.2.3 Faithful comprehensive Gröbner systems

Here, we introduce the commands for computing faithful comprehensive Gröbner systems
in Q[Ā][X̄, D̄]. These commands are the main part of the commands for computing
comprehensive Gröbner bases.

The following four commands output a faithful comprehensive Gröbner system. Each of
them has different optimization methods for getting nice and small comprehensive Gröbner
systems. Actually, these commands are included in the commands of comprehensive
Gröbner bases (cgb, cgb1, cgb_re and cgb_re1).

Commands:

fcgsw(polylist,plist,vlist,option,order),
fcgsw1(polylist,plist,vlist,option,order),

fcgsw_re(polylist,plist,vlist,option,order),
fcgsw_re1(polylist,plist,vlist,option,order).
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Output:

a faithful comprehensive Gröbner system for an ideal generated by polylist
with respect to order.

The following table shows us what techniques all the commands have.

command techniques
fcgsw none
fcgsw1 (2)

fcgsw_re (3)
fcgsw_re1 (2), (3)
(see section 10.1.1)

In following examples, we see how the commands work.

fcgsw1([a*x1*d1^2*d2+(a+1)*x1*x2*d2,x2^2*d2+b*x1^2,d1*d2^2],[a,b],[[x1,x2

],[d1,d2]],1,2);

[a+1]==0, [b]!=0,

[x2^2*d2+b*x1^2,x2^2*d2^2+2*x2*d2,d1*d2,b*d2]

[a+1,b]==0, [1]!=0,

[x2^2*d2+b*x1^2,d1*d2]

[b]==0, [a+1]!=0,

[x2^2*d2+b*x1^2,(a+1)*x2*d2,d1*d2]

[0]==0, [b*a+b]!=0,

[x2^2*d2+b*x1^2,x2^2*d2^2+2*x2*d2,(a+1)*x2*d2,d1*d2,b*d2]

Number of segments is 4

fcgsw([a*x1*d1^2*d2,b*x1*x2*d2,a*x2^2*d2+x1^2],[a,b],[[x1,x2],[d1,d2]],0,

1);

[[[b],[a],[a*d2,x1^2]],[[b,a],[1],[x1^2]],[[a],[b],[x1^2,b*d2*x2*x1]],[[0

],[b*a],[a*d2,x1^2,b*x1*x2*d2]]]

10.2.4 CGBs and CGSs in (Q[Ā][X̄])[D̄]

In chapter 8, we described a method for computing comprehensive Gröbner systems and
comprehensive Gröbner bases in (K[Ā][X̄ ])[D̄]. If one wants to compute comprehensive
Gröbner systems and comprehensive Gröbner bases in (K[Ā][X̄ ])[D̄], then one need to
input a block order on the position “order” of the commands for computing comprehensive
Gröbner systems and comprehensive Gröbner bases in K[Ā][X̄, D̄].

10.3 CGBs and CGSs for modules
In this section, we introduce the commands for computing comprehensive Gröbner
Gröbner bases and comprehensive Gröbner systems in Q[Ā][X̄ ]r. The approaches and
optimization techniques of all the commands are the same as section 10.1. We do not
describe the details. We just give the commands, remarks and examples.
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10.3.1 Comprehensive Gröbner systems

Here, we treat the commands for computing comprehensive Gröbner systems in Q[Ā][X̄ ]r

where r ∈ N .

The package PGB has the following commands for computing comprehensive Gröbner
systems in Q[Ā][X̄ ]r. Concerning speed and output, each of them has different optimiza-
tion techniques for getting comprehensive Gröbner systems.

Commands:

cgs_m(veclist,plist,vlist,option, t or p, order),
cgs_m1(veclist,plist,vlist,option, t or p, order).

Output:

a comprehensive Gröbner system for a submodule generated by veclist
with respect to a module order ([TOP or PTO] and order).

• veclist : a list of vectors such that all vectors have the same length.
• plist : a list of parameters.
• vlist : a list of variables.
• t or p: t means TOP and p means POT. One have to select one of both.
• order : a term order on the set of power product of vlist.

The following table shows us what techniques all commands have.

command techniques
cgs_m none
cgs_m1 (2)

Note that the techniques (1) and (2) have not been implemented yet.

There exists the following command in the package for substituting arbitrary values
for parameters of a comprehensive Gröbner system in Q[Ā][X̄ ]r.

Commands:

sub4cgsmodule(a comprehensive Gröbner system,[[a1,v1],[a2,v2],. . .,[al,vl]])
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Procedure:
(1) The program searches some segments (A1, G1), . . . , (Al, Gl) of

a comprehensive Gröbner system such that (v1, . . . , vl) ∈ Ai, 1 ≤ i ≤ l.
(2) The program substitutes the values v1, . . . , vl for the parameters a1, . . . , al

of the set polynomials G1, . . . , Gl.
(3) The program outputs the parametric spaces, the original set of polynomials

G1, . . . , Gl and the set of polynomials G1(v1, . . . , vl), . . . , Gl(v1, . . . , vl) computed.

• a1, a2, . . . , al: parameters.
• v1, v2, . . . , vl: values.

In following examples, we see how the commands work.

cgs_m([[a*x^2*y+b*x,x*y],[b*x*y^3+a*y,(b+1)*y*x+1]],[a,b],[x,y],1,t,2);

[a]==0, (b)!=0,

[b*x,y*x]

[(b*y^3-b^2-b)*x,1]

[b+1,a]==0, (1)!=0,

[-x,y*x]

[-y^3*x,1]

[b+1]==0, (a)!=0,

[(y^2-a^2*y)*x,(-y^3-a)*x]

[-y^3*x+a*y,1]

[a*y*x^2-x,y*x]

[b,a]==0, (1)!=0,

[0,1]

[b]==0, (a)!=0,

[a*y,y*x+1]

[a*y*x^2-a*y,-1]

[0]==0, (b)*(b+1)*(a)!=0,

[b*y^3*x+a*y,(b+1)*y*x+1]

[(b^2*y^2-a^2*y)*x,(-b-1)*a*y*x^2+(b*y^3-a)*x]

[a*y*x^2+b*x,y*x]

6 segments

A=cgs_m1([[a*x^2*y+b*x,x*y+x],[x+a*y,0]],[a,b],[x,y],0,p,2);

[[[0],[a],[[0,(-y-1)*x^2+(-a*y^2-a*y)*x],[a^3*y^3-b*a*y,(y+1)*x],[x+a*y,0

]]],[[a],[1],[[0,(y+1)*x],[x,0]]]]

sub4cgsmodule(A,[[a,3],[b,0]]);

[0]==0, (a)!=0,

[[0,(-y-1)*x^2+(-a*y^2-a*y)*x],[a^3*y^3-b*a*y,(y+1)*x],[x+a*y,0]]

[[0,(-y-1)*x^2+(-3*y^2-3*y)*x],[27*y^3,(y+1)*x],[x+3*y,0]]
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10.3.2 Comprehensive Gröbner bases

The package PGB has the following commands for computing comprehensive Gröbner
bases in Q[Ā][X̄ ]r. The following commands output a comprehensive Gröbner basis. Each
of them has different optimization techniques for getting nice and small comprehensive
Gröbner bases.

Commands:

cgb_m(veclist,plist,vlist, t or p, order),
cgb_m1(veclist,plist,vlist, t or p, order).

Output:

a comprehensive Gröbner basis for an ideal generated by veclist
with respect to a module order ([TOP or PTO] and order).

• veclist : a list of vectors such that all vectors have the same length.
• plist : a list of parameters.
• vlist : a list of variables.
• t or p: t means TOP and p means POT. One have to select one of both.
• order : a term order on the set of power product of vlist.
• option : 1 or 0. This package PGB has two kinds of form for comprehensive Gröbner

systems. One have to select 0 or 1.

The following table shows us which kinds of techniques all the commands have.

command techniques
cgs_m none
cgs_m (2)

(see section 10.1.1)

There exists the following command in the package for substituting any value for pa-
rameters of a comprehensive Gröbner system in Q[Ā][X̄ ]r.

Commands:

sub4cgsbmodule(veclist,[[a1,v1],[a2,v2],. . .,[al,vl]])

Output:
a set of vectors which is substituted (v1, . . . , vl) for parameters (a1, . . . , al)
of veclist.

• veclist: a list of vectors,
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• a1, a2, . . . , al: parameters.
• v1, v2, . . . , vl: values.

Commands:

ret_list(veclist)

The command arranges each vector of veclist up lengthways.

In following examples, we see how the commands work.

B=cgb_m([[a*x*y^2+b,x*y+y^2],[x*y^3+a*y,0]],[a,b],[x,y],1,p,2);

[[-b*a^2+b^2,-a*y^3*x^2+(-a*y^4+(-a^2+b)*y)*x+(-a^2+b)*y^2],[b*y^2*x+b*a,

y^3*x^2+(y^4+a*y)*x+a*y^2],[(a^2-b)*y,-y^2*x-y^3],[-a^2*y^2*x-b*a,-a*y*x

-a*y^2],[0,-y^4*x^2+(-y^5-a*y^2)*x-a*y^3],[a*y^2*x+b,y*x+y^2],[y^3*x+a*y

,0]]

C=sub4cgbmodule(B,[[a,0],[b,-1/2]]);

[[y^3*x,0],[-1/2,y*x+y^2],[0,-y^4*x^2-y^5*x],[1/2*y,-y^2*x-y^3],[-1/2*y^2

*x,y^3*x^2+y^4*x],[1/4,-1/2*y*x-1/2*y^2]]

ret_list(B);

[-b*a^2+b^2,-a*y^3*x^2+(-a*y^4+(-a^2+b)*y)*x+(-a^2+b)*y^2]

[b*y^2*x+b*a,y^3*x^2+(y^4+a*y)*x+a*y^2]

[(a^2-b)*y,-y^2*x-y^3]

[-a^2*y^2*x-b*a,-a*y*x-a*y^2]

[0,-y^4*x^2+(-y^5-a*y^2)*x-a*y^3]

[a*y^2*x+b,y*x+y^2]

[y^3*x+a*y,0]

ret_list(C);

[y^3*x,0]

[-1/2,y*x+y^2]

[0,-y^4*x^2-y^5*x]

[1/2*y,-y^2*x-y^3]

[-1/2*y^2*x,y^3*x^2+y^4*x]

[1/4,-1/2*y*x-1/2*y^2]

10.3.3 Faithful comprehensive Gröbner systems

Here, we describe the commands for computing faithful comprehensive Gröbner systems
in Q[Ā][X̄ ]r. These commands are the main part of the commands for computing com-
prehensive Gröbner bases.

The package PGB has the following commands.
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Commands:

fcgs_m(veclist,plist,vlist,option, t or p, order),
fcgs_m1(veclist,plist,vlist,option, t or p, order).

Output:

a faithful comprehensive Gröbner basis for an ideal generated by veclist
with respect to a module order ([TOP or PTO] and order).

The following table shows us what techniques all the commands have.

command techniques
cgs_m none
cgs_m (2)

(see section 10.1.1)

In the following examples, we see how the commands work.

fcgs_m1([[x*y^2+b,a*y+y^2],[x*y^2+2,a*x]],[a,b],[x,y],1,p,2);

[0]==0, (a)*(b-2)!=0,

[0,-a*y^2*x^2+(y^4+a*y^3-b*a)*x+2*y^2+2*a*y]

[-b+2,a*x-y^2-a*y]

[-y^2*x-2,-a*x]

[a]==0, (b-2)!=0,

[0,-a*y^2*x^2+(y^4+a*y^3-b*a)*x+2*y^2+2*a*y]

[-b+2,a*x-y^2-a*y]

[-y^2*x-2,-a*x]

[b-2,a]==0, (1)!=0,

[b-2,-a*x+y^2+a*y]

[-y^2*x-2,-a*x]

[b-2]==0, (a)!=0,

[b-2,-a*x+y^2+a*y]

[y^2*x+b,y^2+a*y]

4 segments

10.4 Related objects

In this section, we introduce very useful commands which are not included in the computer
algebra system Risa/Asir.

10.4.1 Gröbner bases

First we introduce a command for computing Gröbner bases in Q[X̄ ]r which is the fol-
lowing.
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Commands:

groebner_module(veclist,plist,vlist, t or p, order).

Output:
the reduced Gröbner basis for an submodule generated by veclist.

• veclist : a list of vectors such that all vectors have same length.
• plist : a list of parameters.
• vlist : a list of variables.
• order : a term order on the set of power product of vlist.
• t or p: t means TOP, and p means POT. One have to select one of both.

Second, we introduce a command for computing a Gröbner basis in Q[Ā][X̄ ] (the co-
efficient domain is the polynomial ring). In chapter 3, we introduced the algorithms for
computing Gröbner bases in polynomial rings over a polynomial ring. The following com-
mand computes a Gröbner basis in Q[Ā][X̄ ].

Commands:

regb_pp(polylist,cvlist,vlist, order).

Output:
a (weak) reduced Gröbner bases in Q[cvlist][vlist] where
Ā :=cvlist and X̄ :=vlist.

• cvlist : a list of variable.
• vlist : a list of variables such that cvlist ∩ vlist6= ∅.
• order : a term order on the set of power product of vlist.

In the following examples, we see how the commands work.

A=groebner_module([[x*y+x^2,y+1],[y^2+x,0]],[x,y],t,2);

[[y^4-y^3,y+1],[x+y^2,0],[0,(-y-1)*x-y^3-y^2]]

ret_list(A);

[y^4-y^3,y+1]

[x+y^2,0]

[0,(-y-1)*x-y^3-y^2]

regb_pp([a*x^2*z+a*y+a,a*x*z+b,(a+1)*x*z+a*b],[a,b],[x,y,z],1);

[-b*a^2+b*a+b,(a^3-a^2-a)*y+a^3-a^2-a,-b*x+a*y+a,a*z*y+a*z+b^2*a-b^2,-z*x

-b*a+b]

10.4.2 Syzygies

The computer algebra system Risa/Asir does not have a command for computing a basis
of syzygy module. However, the package PGB has the command “syzygy” for computing
a basis of syzygy module.
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Commands:

syzygy([[p1],. . .,[pl]],[vlist],order).

Output: a basis of syzygy module between p1,. . . , pl.

• p1, . . . , pl: polynomials in Q[vlist].
• vlist : a list of variables.
• order : a term order on the set of power product of vlist.

In following examples, we see how the command works.

syzygy([[x^2*y+x],[3*y^2+y+2],[x^2+x*y+3]],[x,y],2);

[[x^2+y*x+3,0,-y*x^2-x],[3*y^2+y+2,(y^2-1)*x+3*y,-3*y^3-y^2-2*y],[0,-x^2-

y*x-3,3*y^2+y+2]]

syzygy([[a^2+b+c],[a*c+1],[b^2+a*b+3*c]],[a,b,c],0);

[[c*b^2-b+3*c^2,-3*c*a+b^3+b^2+4*c*b,(-c*b+1)*a+(-c-1)*b-c^2],[b*a+b^2+3*

c,0,-a^2-b-c],[-c*a-1,a^2+b+c,0],[0,b*a+b^2+3*c,-c*a-1]]

In chapter 9, we saw the algorithm for computing comprehensive syzygy systems. The
following command is for computing comprehensive syzygy systems, i.e., the command
outputs a basis of parametric syzygy for parametric polynomials.

Commands:

p_syzygy([[p1],. . .,[pl]],[plist],[vlist],Option,order).

Output:
a comprehensive syzygy system between p1, . . . , pl.

• p1, . . . , pl: polynomials in Q[plist][vlist].
• plist : a list of parameters.
• vlist : a list of variables.
• order : a term order on the set of power product of vlist.
• option : 1 or 0. This package PGB has two kinds of form for comprehensive Gröbner

systems. One have to select 0 or 1.

In following examples, we see how the command works.

p_syzygy([[a*y^2+x+1],[b*x+b],[x*y+a]],[a,b],[x,y],1,2);

[0]==0, (b)*(a)!=0,

[b*x+b,-x-a*y^2-1,0]

[b*y-b*a,-a*y^3-y+a,b*a*y^2]

[0,y*x+a,-b*x-b]

[b]==0, (a)!=0,
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[-y*x-a,0,x+a*y^2+1]

[0,1,0]

[a,b]==0, (1)!=0,

[-y*x,0,x+1]

[0,1,0]

[a]==0, (b)!=0,

[-b,1,0]

[0,y*x,-b*x-b]

This output means the following.























{[bx+ b,−x− ay2 − 1, 0], [by − ba,−ay3 − y + a, bay2], if ab 6= 0,
[0, yx+ a,−bx− b]},

{[−yz − a, 0, x+ ay2 + 1], [0, 1, 0]}, if b = 0, a 6= 0,
{[−yx, 0, x + 1], [0, 1, 0]} if a = b = 0,
{[−b, 1, 0], [0, yx,−bx − b]} if a = 0, b 6= 0.

10.5 Concluding remarks

In chapter 5, we saw the algorithm NEW for computing comprehensive Gröbner systems.
We can easily extend the algorithm to rings of differential operators and modules. The
author has not implemented it in their domains yet. If the algorithm is implemented
in the domains, the author will upload the programs on the website http://www.risc.

uni-linz.ac.at/people/knabeshi/pgb/ (or author’s website).
Since the author likes logic programing language, the author used a lot of the “list”
structure of Risa/Asir in the package. With respect to speed, this is not good. Therefore,
the author will change the date structure to “module” which is the special date structure
of Risa/Asir. All new programs will be uploaded in the PGB website.
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[Gia87] Gianni, P. Properties of Gröbner bases under specializations. In Davenport,

J., editor, EUROCAL’87, pages 293–297. ACM Press, 1987.
[GMP02] Greuel, G-M. and Pfister, G. A Singular Introduction to Commutative Algebra.

Springer, 2002.
[GMPS05] Greuel, G-M., Pfister, G., and Schönemann, H. SINGULAR, Version 3-0-1

October 2005. Technische Universität Kaiserslautern, 2005.
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and Related Objects. 2007. preprint
http://www.risc.uni-linz.ac.at/people/knabeshi/pgb/.
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Gröber Bases. Proceedings of the CA-ALIAS. pp 105-110. RIMS, Kyoto University.

Technical reports and preprints
1. Nabeshima, K. (2007) Comprehensive Gröbner Bases for modules.
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