
Verification of Imperative Programs using

Symbolic Execution and Forward Reasoning in

the Theorema system

Mãdãlina Eraşcu, Tudor Jebelean∗

Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria
{merascu,tjebelea}@risc.uni-linz.ac.at

Extended abstract

We present our work in progress concerning the verification of imperative pro-
grams in the Theorema system. Given an imperative program P and its speci-
fication (input condition formula IP and output condition formula OP ), we are
interested in finding the answer to the question: Is the program P correct with
respect to its specification? To answer this question we use a method which
is based on forward reasoning [4, 3], symbolic execution [2, 5] and functional
semantics [7].

The program P is represented as a term at meta-level; it contains formulae
and terms from the theory Υ in predicate logic and constructs corresponding to
the imperative language statements.

For writing imperative programs in Theorema system, we use some com-
mands for the user interface role [6] (Program, Pre, Post, FwdVCG), which
allow the definition of programs together with their specification, and impera-
tive language constructs:

� abrupt termination statements (return)

� assignments - besides simple constant and variable assignment, function
(including recursive call) call is also handled

� conditionals: If with one and two branches

Example Program["MyFactorial", Fact[↓ n],
Module[{fact}] ,
If [n == 0,
fact := 1,

∗The Theorema project is supported by FWF (Austrian National Science Foundation)
SFB project F1302. The program verification project is supported by BMBWK (Austrian
Ministry of Education, Science, and Culture), BMWA (Austrian Ministry of Economy and
Work) and by MEC (Romanian Ministry of Education and Research) in the frame of the
e-Austria Timisoara project.

1



fact := n*Fact[n - 1]];
Return[fact]
],
Pre → n ≥ 0
Post → ∀

m<n
(m|¢out)

Although our programming language contains only the return statement,
assignments and conditionals, it is still Turing complete because the presence
of conditionals and recursive call statement assures the computability property.

A very important aspect towards the verification of programs is represented
by the fact that the programs have to be well-formed. From our point of view, a
program is well-formed if every branch has a return statement and every variable
which is used in the program is initialized.

Definition 1. A program P is represented as a tuple of statements.

We express the well-formed property of the programs by defining the pred-
icate IsProgram. In the following, we consider the symbol x standing for an
input variable, t ∈ T a term from the set of terms, v ∈ V a variable from the set
of variables, V ⊂ V a set of initialized variables and ϕ a formula. The function
V ars gives the set of initialized variables occurring in a term or in a formula.

Definition 2.

(2.1) IsProgram[P ]⇐⇒ IsProgram[{x}, P ]

(2.2) IsProgram[V, 〈Return[t]〉^ P ]⇐⇒ V ars[t] ⊆ V

(2.3) IsProgram[V, 〈v : = t〉^ P ]⇐⇒
∧{ V ars[t] ⊆ V

IsProgram[V ∪ {v}, P ]

(2.4) IsProgram[V, 〈If[ϕ, PT ]〉^ P ]⇐⇒
∧{ IsProgram[V, PT ^ P ]

IsProgram[V, P ]

(2.5) IsProgram[V, 〈If[ϕ, PT , PF ]〉^ P ]⇐⇒
∧{ IsProgram[V, PT ^ P ]

IsProgram[V, PF ^ P ]

The definition (2.1) of the predicate IsProgram suggests that x is the only
initialized variable. Next we describe the well-formed property of the program
P for each kind of statement which is encountered.

Briefly describing the predicate IsProgram, we can return (2.2) a term t if
the variables composing it are initialized. An assignment (2.3) is performed just
with initialized variables. The result of an assignment is a new variable v which
can be used further in the computations (more precisely in the computations
which appear in the body of P ).

The two definitions of the predicate IsProgram, corresponding to condi-
tionals ((2.4) and (2.5)) are quite similar and express that PT , PF and P have
to be also well-formed programs.

The semantics of a program is of the following form:

F [P ] : ∀
x

∧{
pi[x]⇒ (f [x] = gi[x])

}n

i=1

2



(We consider the simplified case with just one input variable, denoted by the
symbol x. Although, our implementation handles also the case with more than
one input variable.)
Each i ∈ {1, ..., n} corresponds to a branch (path) of the program.
The symbol x stands for the input variable, x0 for its symbolic value, pi[x] is a
conjunction of first order logic formulae representing the path condition, f [x] is
the program function and gi[x] is the expression of f [x]. The expression of gi[x]
is expressed using variable, constants and functions from the theory Υ.

Definition 3.

(3.1) F [P ] = ∀
x

(
F [{x→ x0}, P ]{x0 → x}

)
(3.2) F [σ, 〈Return[t]〉^ P ] = (f [x0] = tσ)

(3.3) F [σ, 〈v := t〉^ P ] = F [σ ◦ {v → tσ}, P ]

(3.4) F [σ, 〈If[ϕ, PT ]〉^ P ] =
∧{ ϕσ =⇒ F [σ, PT ^ P ]

¬ϕσ =⇒ F [σ, P ]

(3.5) F [σ, 〈If[ϕ, PT , PF ]〉^ P ] =
∧{ ϕσ =⇒ F [σ, PT ^ P ]

¬ϕσ =⇒ F [σ, PF ^ P ]

In a first step, the program semantics (3.1) is constructed by considering the
set of replacements (with the shape {var → expr}) for all the input variables of
the program P . In the simplified case considered by us, the initial substitution
is {x→ x0}. After the whole program P is processed, we transform the constant
value x0 into an arbitrary x (by universaly quantifying the formula).

When a return statement is encountered (3.2), the program function has the
value of the term t, value taken from the substitution σ. The assignment state-
ment (3.3) updates the substitution with the variable v. When a conditional
((3.4) and (3.5)) is encountered, we have two different expressions for the pro-
gram function: one when the formula ϕσ holds, one in the opposite case. The
program function is not defined if P is the empty tuple or a tuple which does
not contain the return statement.

Program verification using symbolic execution represents an approach in
which the concrete values of the variables are replaced with symbolic values.
Thus, our programs are executed on a certain class of inputs (the symbolic
value can represent any arbitrary value from the class of inputs).

We apply symbolic execution in order to obtain the verification conditions
for imperative programs. A symbolic run, from our point of view, uses the
elements: state, assumptions (path condition) and verification conditions.

A state is a substitution specifying the values of all the initialized variables.
We also call the state the substitutions set (σ). The values occurring in this set
are symbolic.

The assumptions are a set of conditions which the inputs must satisfy in order
to reach the respective branch. These conditions are obtained by analyzing the
algorithm body. Some additional assumptions are obtained from the correctness
property of the functions which already belong to the theory and are used in
the algorithm. The correctness property means that the output condition is

3



satisfied if the input is satisfied. As a remark, the assumptions are expressed
using symbolic values (constant values in this aim) and they are logical formulae.

The verification conditions set (Φ) is represented by the logical formulae
which are generated at the end of a branch. The end of a branch is reached
when a return statement is encountered. Additionally, some supplementary
verification conditions are generated, those required by the input and output
conditions of the functions used in the program.

Each symbolic execution begins with the following configuration:

� the initial state is formed with substitutions only for the input variables

� the initial set of assumptions contains only the formula standing for the
input condition, expressed using the symbolic values for input variables

� the verification conditions set is empty

Let G be the function generating the verification conditions, Ih, Oh - predi-
cates describing the precondition (input condition), respectively the postcondi-
tion (output condition) of a function h.

Definition 4.

(4.1) G[P ] = ∀
x

(
G[{x→ x0}, {IP [x0]}, P ]{x0 → x}

)
(4.2) G[σ,Φ, 〈Return[t]〉^ P ] =

(
Φ⇒ OP [x0, tσ]

)
(4.3) G[σ,Φ, 〈v := γ〉^ P ] = G[σ ◦ {v → γσ},Φ, P ]

(4.4) G[σ,Φ, 〈v := h[γ]〉^ P ] =
∧{ Φ⇒ Ih[γσ]

G[σ ◦ {v → h[γσ]},Φ ∪ {Ih[γσ], Oh[γσ, h[γσ]]}, P ]

(4.5) G[σ,Φ, 〈If[ϕ, PT ]〉^ P ] =
∧{ G[σ,Φ ∪ {ϕσ}, PT ^ P ]

G[σ,Φ ∪ {¬ϕσ}, P ]

(4.6) G[σ,Φ, 〈If[ϕ, PT , PF ]〉^ P ] =
∧{ G[σ,Φ ∪ {ϕσ}, PT ^ P ]

G[σ,Φ ∪ {¬ϕσ}, PF ^ P ]

The verification conditions for the program P are generated as follows. We
start from the program P and, at the first step (4.1), we create the substitution
σ0 = {x → x0} and the path condition {IP [x0]}. In the next steps each state-
ment of the program P is processed. The function G has now three arguments:
the state σ, the set of assumptions generated before the statement s is processed
and the part of the program 〈s〉^ P . When a return statement is encountered
(4.2), the execution of the program stops and a verification condition is gener-
ated: the path condition must imply the postcondition of the program P . The
formula representing the postcondition depends on the input variable and the
term returned via the return statement.

We have two definitions corresponding to term assignment ((4.3) and (4.4)):
in the case of a simple assignment (4.3) no additional verification conditions
should be generated. When a function call (4.4) appears on the right-hand side
of the assignment, we have to generate an intermediary verification condition -
the existing assumptions must imply the input condition of the function. Next,

4



we update the substitution σ, the set of accumulated conditions Φ and the
tuple P of statements. We add to the set Φ the assumptions represented by
the precondition (input condition) formula of the function h (whose values for
the arguments are taken from the σ) and the postcondition (output condition)
formula of the function h (with updated values for the arguments). If these two
conditions hold then we perform the assignment, without violating any pre-,
postconditions. In this case the substitution σ is updated. We denote by γ ∈ T
a term, by γ ∈ T a sequence of terms and by h ∈ F a function with the arrity
n.

The call of the conditionals ((4.5) and (4.6)) changes the set Φ and the
program P . In the case of If with one branch, the set of assumptions is updated,
by adding the condition ϕσ to the existing set of assumptions Φ if the execution
of the program follows the True branch or ¬ϕσ if the execution follows the
False branch. In the first case the PT ^ P branch is processed, in the other
case only the P branch.

In the case of If with two branches, the only thing different from the previous
expression of G is that the tuple PT ^ P , respectively PF ^ P have to be
processed in the cases when ϕσ, respectively ¬ϕσ, holds.

Following these theoretical foundations, we used the computer algebra sys-
tem Mathematica [8] for developing a tool which provides the verification con-
ditions for the imperative programs in an automatic manner. We will check
the validity of these verification conditions (first order logic formulae) using an
algebraic-logic simplifier, special syntax constructs for writing them (like Defi-
nition, Lemma) and we will prove them (by applying various simplifiers, solvers
and provers from the Theorema library)[1].

References

[1] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa,
F. Piroi, N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger, Theo-
rema: Towards Computer-Aided Mathematical Theory Exploration, Journal
of Applied Logic 4 (2006), no. 4, 470–504 (english).

[2] P. David Coward, Symbolic Execution Systems - a review, (1988).

[3] G. Dromey, Program derivation: the development of programs from specifi-
cations, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1990.

[4] K. Sieber J. Loeckx, The Foundations of Program Verification, Wiley - Teub-
ner, 1984.

[5] J. King, Symbolic Execution and Program Testing, (1976).

[6] M. Kirchner, Program Verification with the Mathematical Software System
Theorema, Tech. Report 99-16, July 1999.

[7] J. Stroy, The Scott-Strachey approach to programming language theory, MIT
Press, 1977.

[8] S. Wolfram, The Mathematica Book, Wolfram Media, 2003.

5


