Decompositions of Natural Numbers:
From A Case Study in Mathematical Theory Exploration *

Adrian Craciun and Madalina Hodorog
Institute e-Austria
Timigoara, Romania
{acraciun, mhodorog }@ieat.ro

Abstract

In the context of a scheme based exploration model
proposed by Bruno Buchberger, we investigate the idea
of decomposition, applied in the exploration of natural
numbers. The free decomposition problem (i.e. whether
an element can always be decomposed with respect to
an operation) can be arbitrarily difficult, and we illus-
trate this in the theory of natural numbers. We con-
sider a restriction, the decomposition in domains with
a well-founded partial ordering: we introduce the no-
tions of irreducible elements, reducible elements w.r.t.
a composition operation, decomposition of domain el-
ements into irreducible ones, and also the problem of
irreducible decomposition which we then solve.

Natural numbers can be classified as a decomposition
domain, in which we know how to solve the decompo-
sitton problem. This leads to the prime decomposition
theorem.

Key words: Systematic Theory FEzxploration,
Knowledge Schemes, Prime Decomposition, Theorema.

1 Introduction

The challenge of the computer playing a more im-
portant role as a practical tool for the working math-
ematician has been raised and is being addressed by
research communities (see Calculemus [2], MKM [1]),
building on results in automated reasoning, computer
algebra, logic and mathematics, as well as recent com-
puter technology development (communications, pro-
cessing power).

As a contribution towards meeting this challenge -
specifically providing computer support to the devel-
opment of mathematical theories, Bruno Buchberger

*Work supported by EU Marie Curie Project MERG-CT-
2004-012718: SYSTEMATHEX.

recently proposed a theory exploration model based on
knowledge schemes, see [3, 4]. In this model, knowledge
schemes respresent abstractions of mathematical ideas,
and they are used in the development of mathematical
theories.

The work presented in this paper is a case study
of mathematical theory exploration using Buchberger’s
exploration model. We give an overview of the scheme
based exploration model, with examples of the explo-
ration process in the theory of natural numbers (Sec-
tion 2), present the idea of free decomposition and its
instantiations in natural number theory (Section 3),
consider decomposition in domains with a well-founded
partial ordering and the problem of irreducible decom-
position in such domains (Section 4). Natural numbers
can be classified as a decomposition domain, hence we
have a solution to the irreducible decomposition prob-
lem for naturals, see Section 5. Section 6 mentions
related work, while Section 7 contains concluding re-
marks and points to future work. The Appendix of
this paper contains a list of knowledge schemes used.

Throughout this paper, we use the notational con-
ventions of THEOREMA, see [4].

2 Systematic Exploration of Mathe-
matical Theories

First, a remark concerning the language frame of our

discussion. We use:

e First order logic with equality, together with the
associated inference rules to express mathematical
facts, and reason about them. The language is
untyped, and (unary) predicates are used to ex-
press domain information (“types” or “sorts”). A
fragment of this language can be used for program-
ming: universally quantified formulae, with finite
ranges, and recursion, using substitution and re-
placement as computational engines.

e Higher order logic (with the restriction that higher
order variables appear only universally quantified)
are used to express knowledge schemes.

In particular, the THEOREMA language provides such
a language frame.

Mathematical Theories: A mathematical theory
T consists of:

e The first order language L describing the theory.
It contains predicate symbols (including ‘=" and
one or more unary predicates used to describe the
“types” of objects), function symbols (including
the identity) and constant symbols.

e The knowledge base KB of the theory (a collection
of first-order formulae over the language L£).

e The reasoning mechanism IR of the theory (rea-
soning methods available to the developer of the
theory, including first order predicate logic cal-
culus and rewriting, plus theory-specific inference
rules).

Example 1 (The Theory of Natural Numbers).

o Ly :<<i5—nat, =), (T,id), <0>>, where is-nat is the

unary predicate symbol that characterizes natu-
ral numbers, T is an unary function symbol (the
successor function), id is the identity (unary).

e [CBy consists of the equality axioms, plus the well-
known Peano axioms (generation, uniqueness and
the induction principle). The induction principle
cannot be formulated in first-order logic, therefore
the axiom is lifted to the level of inference. In fact,
the same happens to the substitutivity axioms for
equality.

e TRy consists of first order predicate logic calcu-
lus, equality reasoning, and the induction infer-
ence rule.

For more details, see [7].

Knowledge Schemes: are higher order formulae

that capture “interesting” mathematical knowledge.
Knowledge schemes are available at various levels of

abstraction: some (e.g. algebraic structures, relations)

are independent of mathematical theories, while others

are not (see examples below).

Ezample 2 (Theory independent scheme).

Y (is-semigroup[p, op] <

plopz, 9] :
p[z,vy,z]/\{ oplz, oply, 2]] = oplop[z,y], 2])

where p (unary “sort” predicates), op (binary func-
tions) are higher order variables and is-semigroup is a
special higher order constant (name, unique identifier

of the scheme schemes). See also is-monoid, is-group
in the Appendix.

Other theory independent schemes are relation

structures, such as is-preorder, is-partial-ordering,
is-strict-partial-ordering, see Appendix.
Ezample 8 (Theory-dependent schemes). Consider the
theory of natural numbers, as introduced in Ezample
2. The following scheme captures the idea of a binary
function defined recursively in terms of unary func-
tions:

; v h(is—rec—nat—bmary—fct—Ir[f, g, h] &
95

flz, 0] = glx] ‘
is—nZ[w,y] /\ { f[m,y+] = h[f[.’l?,y”)

The recursive structure of the above scheme reflects
the inductive structure of natural numbers. In fact, a
whole range of schemes can be constructed using the
inductive structure of a particular domain, see the Ap-
pendix for more examples.

Exploration: An exploration situation consists of
a theory being developed, together with a library of
knowledge schemes.

The basic steps that can be taken in the develop-
ment of a theory 7 = (£, KB,ZR) are:

- Add concepts to the language and explore
their properties. Concepts in mathematical theo-
ries are functions, predicates or constants. Mathemat-
ical theories are augmented with the introduction of
new functions or predicates, by definition. Definition
schemes can be instantiated with a new symbol (which
is added to the language L), for the concept being de-
fined, and with symbols from £ corresponding to the
concepts used to define the new concept.

- Add propositions to the knowledge base. A
first step in the development of a knowledge base at-
tached to a theory is to derive “interesting, useful”
consequences of the axioms/definitions: modify the
statements of the axioms/definitions by exploiting their
structure (e.g. if an axiom about left neutral element is
present in KB, try to prove the right neutral property),
or derive consequences by forward reasoning.

Then investigate structural properties of the con-
cept (commutative, associative, etc. for binary func-
tions, equivalence or an ordering for binary predicates,
etc.), which are proposed by instantiation of proposi-
tion schemes.

The aim of this type of exploration round is to “sat-
urate” ICB, i.e. to add “all interesting” consequences of
an initial knowledge base. This is, however, necessarily
an incomplete process (in most of the cases) and could
lead to an explosion in the number of propositions.

- Solve problems. Problems can be introduced in
the theory by instantiations of problem schemes. A
method for solving algorithmic problems in the context
of scheme-based systematic theory exploration, syn-
thesis by lazy thinking, was proposed by Bruno Buch-
berger, see [4]. It consists of the following:

e a solution for the problem is proposed by selection
of an algorithm scheme available,

e this is instantiated with new symbols (not present
in the language) and a correctness proof is set up,

e the proof will very likely fail, due to the new sym-
bols,

e the failed proof is analysed and conjectures on the
new symbols are formulated, that allow the proof
to get over the failure,

e the conjectures are specifications (problems) of the
new symbols, and either retrieve concepts that ver-
ify the specifications, or the synthesis process is
repeated.

- Add new inference rules to the inference mech-
anism. The way to add new inference rules to ZR is
to lift knowledge to the level of inference. This is a pro-
cess very common in mathematics. As a result of lifting
knowledge to inference, TR and B are updated.

Developing Natural Numbers Theory in The
Scheme Based Exploration Model. We already
presented details of the initial development of the the-
ory of natural numbers in [7]. We now give a “trace”
(“script”) in the form of scheme instantiations, for this
development.

Introducing function symbols: is-rec-nat-binary-
fet-1r[+,id, T| generates the definition for the usual
addition, +. Instantiations of knowledge schemes gen-
erate properties of +:

e is-rec-nat-binary-fct-1+,id, *] (an equivalent def-
inition);

o is-semigrouplis-nat, +] (i.e. sort and the associa-
tivity properties);

e is-monoid[is-nat, 4+, 0] (in addition, the neutral el-
ement property, which is already part of the defi-
nition);

e none of the possible instantiations for the
is-group knowledge scheme can be proved
(is-group|is-nat, +, 0, id), is-group|is-nat, +,0, T]).
We then attempt to solve the problem of find-
ing an inverse for natural numbers, i.e. invent &
such that is-grouplis-nat,+,0,0]. We apply the
lazy thinking synthesis method which gives that
no such function exists, see [7].

In the same way, using the knowledge schemes we

generate new notions and their properties: the multi-

A

plication *, the exponentiation ” and the predecessor

~ function symbols.

Introducing predicate symbols: The weak less-
than relation < is given by is-rec-nat-binary-rel-2[<
,id, T]. is-rec-nat-binary-rel-2[<, ¥, id] gives the strict
variant <. Properties of < are obtained from further
instantiations:

o is-strict-partial-ordering[is-nat, <] (i.e. the ir-
reflexivity, the transitivity and the asymmetry
properties);

o is-strict-total-ordering|[is-nat, <] (the
property).

totality

Introducing a new inference mechanism: With
the strict-less than predicate symbol (<) we can intro-
duce a new inference mechanism, the complete induc-
tion principle, and prove it is correct, see [7].

More Examples: The complete induction rule al-
lows us to write new recursive knowledge schemes,
which will generate new notions and their properties:
the subtraction (—), the quotient, the remainder, and
the greatest common divisor function symbols; is-nat-
step-recr-pred-0-1-1]|, False, idp, True] generates the
definition of divides | (idp is the identity function on
the boolean domain). Properties of |:
o is-preorder|[is-nat,|] (i.e. the reflexivity and the
transitivity properties);
e is-partial-ordering[is-nat,|] (i.e. the antisymmetry
property).
Because | is a weak partial ordering, we introduce in
the language its strict version (proper divides, <).

3 Free Decomposition Problem

We describe here the idea (scheme) of free! (bi-
nary) decomposition, i.e. whether in a domain any
element can be decomposed into two others, w.r.t. a bi-
nary operation, and free decomposition with pivot, i.e.
whether any element can be decomposed into a given
element and something else, w.r.t. a binary operation.

The free decomposition knowledge scheme:

V (FD[Obj7p17p27®]<:>

: T=YQ® z).
obj,p1,p2,®

v
obj[z]objy,z]
p1lz] p2[y,2]

The knowledge scheme for binary free decomposition

1 Frree refers to the fact that the operation used in the decom-
position, as well as the predicates characterizing the variables
can be chosen arbitrarily.

with pivot:

Y (FBDplobj, p1, p2, p3, ®)] <
obj,p1,p2,p3,®
J r=y®z).
obj[z,y] objz] Y)
p1x],p2[y] p3(2]

It turns out that instantiations of free decomposi-
tions can lead to arbitrarily complex problems, e.g.:

F D[is-nat, is-odd-greater-2, is-prime, +] <
r=y+z,

is-nat[x) is-natly,z]

is-odd[z] Az >2is-primely,z]

which is the Goldbach conjecture.
The free decomposition with pivot is potentially eas-
ier to handle, e.g.:

F BDplis-nat, true, is-positive, true, | <
v 1 z=yx*z.

is-nat[z,y] is-nat(z]
is-positively]

In the right formula of this scheme instantiation, we
apply skolemization to eliminate the existential quan-
tifier, which leads to the following problem:

=y *qlz,yl,

is-nat[z,y]
is-positively|

i.e. whether any natural number x can be decomposed
into a positive y and something else.

Applying the lazy thinking method, we attempt to
“invent” the appropriate function ¢ that solves this
problem. The problem turns out to be unsolvable (fol-
lowing certain proof failures during lazy thinking), but
a modification of this problem (suggested by these fail-
ures) can be solved:

Vo x=yxqlz,y] +rz,y]

is-nat[z,y]
is-positive[y]

with the solution being the usual quotient and remainer
functions for naturals (the quotient remainder theo-
rem). The details of the lazy thinking synthesis can
be found in [6, 7].

4 Decomposition w.r.t. Well-Founded
Orderings

In this section, we introduce the idea of decompo-
sition into irreducible elements, w.r.t. a well-founded
partial ordering. We give the corresponding schemes,
and derive some properties of these schemes.

Well Founded Partial Orderings, Minimal Ele-
ments:
vV (is-well-founded[<, e, 0bj] <
<,e,obj
is-strict-partial-ordering[<, obj] | »
/\{ is-minimal-elementle, <, obj])

V (is-minimal-elementle, <, obj| <

e,<,obj
(objle] A ¥ e <))
objz]
x<e
The above schemes capture the idea of a well-
founded partial ordering <, with a minimal element
e, on a domain described by o0bj.

Compatible Composition: We now introduce the
idea of a compatible composition operation, i.e. if a non-
trivial object is the result of composition of two other
nontrivial objects (w.r.t. a well-founded partial order-
ing), this operation is compatible with the ordering if
the composed object is “larger” than its components:

2 v b.(is—compatible—composition[@,<,e,obj] &
,<,e,obj
is-well-founded[<, e, obj]
A

(=yQz)=y<aziz<z))
objlz,y,z]

e<z,e<y,e<z

Irreducible Elements w.r.t. a Well Founded
Partial Ordering: For a domain with a well-
founded partial ordering, the scheme introducing the
predicate for irreducible elements is:
YV (is-irreducible-property[P, <, e, obj] <
P,<,e,obj
is-well-founded[<, e, obj]
A ¥ Plale Y ytz)’

objz] obj[y]

e<x e<y
In the same time, in a domain with a compatible com-
position w.r.t. the partial ordering, we can also formu-
late the scheme introducing the predicate for elements
that are composed:

v (is-comp-prop|is-comp, Q), <, e, obj] <
is-comp,<,e,,0bj

is-compatible-composition|), <, e, 0bj]

YV is-com FR=S = T = z
A objlz] Pl objly],objz] v)
e<x e<y,e<z

A Composed Object is not Irreducible: It
should be obvious that the two ideas introduced above
are connected: elements that are composed are not ir-
reducible. Since schemes are higher order formulae, we

use the “arbitrary but fixed” rule to prove their prop-
erties.

Assume, on a domain described by obj, with predi-
cates <, P, is-comp, function), constant e (now ar-
bitrary but fixed constants), that:

is-well-founded|<, e, obj],

is-irreducible-property[P, <, e, obj],

is-comp-prop|is-comp, @), <, e, obj].
Then, bv[](is—comp[®] [z] = —P[x]).

objlx

e<w

We skip the proof here (it is simple, by predicate
logic).

Decomposition Domains: are domains with a
well-founded partial ordering, a compatible operation,
s.t. any nontrivial reducible element is the composition
of two nontrivial elements:

vV (is-decomposition-domain|obj, ®, P, <,e] <
®,<,e,0bj

is-compatible-composition|®, <, e, 0bj]
is-irreducible-property| P, <, e, obj]

v 1 z=y®z)
A obj[x] obj[y,z] Y
—Plz]he<z e<y
e<z

Irreducible Decomposition: For a domain with ir-
reducible elements and a compatible composition oper-
ation, the scheme for introducing the notion of decom-
position into irreducible elements is:

v (is-irred-decomp[is-D, <, e, ®, P] <
is-D,obj,<,e,®,P

is-compatible-composition|®, <, e, obj]
is-irreducible-property| P, <, e, obj]
Plz] = is-D[|x], z]
-Plz] =
A v is-Dly © D, x| <)
objy],is-ms[obj][D]
obj[z] Ply]
e<w Yy <z
A is-D|D,x © y]

where is-ms[obj][D] represents the multiset D of ob-
jects obj (we use | | to denote a multiset), ® represents
the insertion operation for multisets, and © represents
the division operation for objects obj.

The Problem of Irreducible Decomposition:
We want to solve the problem of decomposition into
irreducible elements:

V is-D[Declz], z], (&)
objlz]
e<x

)

that is for any obj x, with e < z, find an algorithm
Dec such that the is-D problem defined by the is-irred-
decomplis-D, <, e, ®, P| scheme holds.

For solving this problem we propose the following
algorithm:

Algorithm[” decomposition” , any[obj|x], obj[y],
is-list[obj][Z]], with| P[y]],
Dec[z] = Dec|x, list-Irred|z]]
Declz, ()] = [| [|
_J yODecroyy—Zl<=y<x
Declz,y — Z] = { Declz, Z] < otherwise

where list-Irred[z] is a function that gives the list of
all irreducible elements, up to x, where “up to” means
that our well-founded ordering < can be embedded in
some other well-founded ordering, and the algorithm
can generate all the irreducible elements up to z (like
the sieve of Eratosthenes, for natural numbers).

It is easy to see, that, in fact, if we make the above
assumption about list-Irred|x], with not irreducible,
by an easy proof, the irreducible elements y from the
list such that y £ x, do not influence the result, and
are just discarded (branch “otherwise” in the algorithm
above). If x is irreducible, then the list contains only x
itself. In the following we assume this assumption for
list-Irred.

Correctness of the Irreducible Decomposition
Algorithm: The algorithm terminates (the binary
version of the function Dec terminates). This is due
to a lexicographic ordering (< for the first argument
and the length of lists for the second).
We prove by well-founded induction w.r.t. < that
V is-D[Dec[z], z]. ({)

objlz]

e<x
Proof. Take arbitrary but fixed zy such that obj[z]
and e < xg.

Assume bv[](y < xo = is-D[Decly],y]), (1)
0071y
e<y

Show is-D[Dec|zg], zo)-
Case Plzo]:

By definition of is-irreducible-decomp, we have to
prove is-D[Dec|xq, (xo)], o).

Using the multisets property (xo) = xg — (), we
have to prove:

is-D[Dec[zq, z¢ — ()], xo].

By definition of Dec, we have to prove is-D[zo ®
Dec|zg S x9, ()], 2], i.e. is-D[zg ® (), xo]. By the mul-
tisets properties, it follows is-D[|xo |, xo].

Case = P[xo]:

]

)

We have to show is-D[Dec[zg, list-Trredxo]], zo].
Case list-Irredzo] = ():
From the specifications of list-Irred follows

dz0.
obzg[y]y 0

Ply]
Therefore, necessarily, g = e, which is false, so for-

mula () holds.

Case list-Irred|xg] = yo — Zo:

We have to show is-D[Dec[zg, yo — Zo), To]-

Case yo < zg :

By definition of Dec, we have to show is-D[Dec[zo S
Y0, Yo — Zo}, o © Yo

But x0©yg < o, so from (1) we know is-D[Dec[z¢S
y(ﬂ7 o © ’y(ﬂ7 i.e.

is-D[Dec|zg © yo, list-Irred[xzo © yol], zo © yo]. (D)

Only two cases are possible (from the specifications
of list-Irred).

If yo <20 © yo, then lst-Irredjzg © yo| = yo — Zo,
and we are done.

If yo 9 xo © yo, then list-Irred[zo © yo] = Zo.

From the definition of Dec (otherwise branch)

Declzo © yo,yo — Zo) = Declzo © yo, Zo].

With this the goal follows immediately from formula
(D).

Case zg < yo: The assumptions on list-Irred guar-
antee that this case is not needed.[]

Uniqueness of the Irreducible Decomposition:

We have just shown that the irreducible decomposi-
tion problem has a solution (given by the algorithm
Dec). In fact, from the definition of irreducible decom-
position, it follows immediately that if we have two
decompositions, these have to be equal: indeed, for
any irreducible element y in one decomposition of z,
we have y < x, that is, it necessarily has to be in any
decomposition of x. The proof works by induction on
multisets.

Summary (Irreducible Decomposition in De-
composition Domains):

We have introduced an abstract notion of irreducible
elements w.r.t. a well-founded partial ordering, and
then the problem of decomposition into irreducible ele-
ments on such domains, proposed a solution (provided
we can find an enumeration - list-Irred - of irreducible
elements) and proved the solution is correct.

Note that this algorithm is not the only solution: a
divide-and-conquer scheme can also be applied, which
would lead to a proof similar to the one presented in [9],

for decomposition of natural numbers. However, it is
easy to prove that whatever the method, the result is
unique. We can now use the results we obtained in any
decomposition domain, i.e. the problem of irreducible
decomposition is reduced to the problem of classifying
a domain as a decomposition domain.

5 Prime Decomposition of Natural
Numbers

Natural Numbers Form A Decomposition Do-
main:

We prove:
is-decomposition-domain|is-nat, *, is-prime, <, 1], i.e.
is-compatible-composition|x, <, 1, is-naf] (1)
is-irreducible-property[is-prime, <, 1, is-nat] ~ (2)

A v 3

is-nat(x) is-natly,z]
—is-prime[z]Aldz 1dy,14z

vy (3) -

Formula (1) is proved by contradiction using the prop-
erties of | and <. Formula (2) holds because it repre-
sents the definition for the is-prime predicate symbol.
Formula (3) is proved using the gquotient-remainder
theorem with the divisibility properties (which already
provides the decomposition).

Irreducible Decomposition of Natural Numbers:

For the decomposition domain de-
termined above, the instantiation
is-irred-decomplis-D, is-nat, <, 1, *, is-prime] gives

the definition for the irreducible decomposition
of natural numbers. The problem of decomposition
(which for natural numbers is the prime decomposition
theorem?) has a solution, provided by the appropriate
instantiation of the Dec algorithm. In particular, it is
easy (although not efficient, perhaps), to enumerate
the list of primes up to an element.

Another irreducible decomposition is possible
for the instantiation is-irred-decomp|is-D1,is-nat, <
, 0,4, is-irred-plus]. The decomposition problem states
that any natural number can be decomposed in an
unique way in sum of irreducible elements w.r.t. -+,
i.e. in sum of 1’s.

6 Related Work

Other systems are also concerned with the auto-
mated invention of mathematical concepts and theo-
rems from the number theory.

2Primes and irreducible elements coincide for natural num-
bers.

AM program, see [8], re-invented some concepts
from the number theory: the prime numbers, the
highly composite numbers, the fundamental theorem
of arithmetic, and Goldbach’s conjecture. AM started
with elementary concepts as sets and bags, and used
certain heuristics to produce conjectures involving the
concepts. Even though AM rather used a theorem
proposer than a theorem prover, the program offered
a methodology for computer-supported invention of
mathematical concepts.

Starting with few definitions, HR represents mathe-
matical concepts as data-tables and invents new mathe-
matical notions from old ones using certain production
rules, see [5]. Some results of the HR program in num-
ber theory are: the re-invention of the prime numbers
and square numbers, the invention of the refactorable
numbers (the integers for which the number of divisors
is itself a divisor).

MATHSAID generates automatically mathematical
concepts, starting with an initial set of axioms and then
filters the interesting theorems, see [10].

7 Discussion

Summary. We presented a fragment from a case
study of exploration in the theory of natural numbers,
using a scheme based theory exploration model. We
presented the model, an overview of the first stages of
exploration and we investigated how various versions
of the idea of decomposition can be used in our explo-
ration. In fact, we explore the notion of decomposition
at an abstract level, where we solve the problem of
decomposition in decomposition domains. A classifica-
tion of natural numbers as decomposition domain leads
to an immediate solution for the irreducible (prime) de-
composition of natural numbers.

Exploration vs. Formalization. We want to make
clear that what we are doing is exploration, i.e. dif-
ferent users can choose different exploration paths
(“scripts”), where every step is completely formal?.
The theory is developed by instantiation of schemes, in
their various roles (definitions, properties, problems).
Exploration can be done arbitrarily, however schemes
can give a measure of interestingness (the more prop-
erties that can be traced back to schemes it fulfils, the
more interesting a notion is).

The purpose of our case study is to evaluate the
scheme-based exploration model: is it suitable for do-
ing what it claims, can the explorer “invent” signifi-

3We want to distinguish from formalization as taking a
fixed theory development path (e.g. a math book) and prov-
ing/verifying it in some system.

cant results? In this paper we showed that indeed this
is possible, the idea of decomposition leads to the “in-
vention” of the quotient-remainder theorem, and of the
prime decomposition theorem. In fact we compare the
theory generated to a well-known textbook [9], and the

results are encouraging.

Status of the Implementation. We used THEO-
REMA to carry out the case study: all the schemes
presented are formulated in the system. We have a
prototype mechanism to handle scheme instantiations.
However, it is the user who has to provide the appro-
priate substitutions. This can be further improved by
automating the choice of possible instantiations from
the language (signature) of the theory.

Most of the proofs involved in our case study are
done automatically using the available provers of THE-
OREMA. However, in particular the proof of correctness
of the irreducible decomposition is still work in progress
(the proof in this paper is close to what the system will
produce). This is due to the fact that this needs un-
derlying multiset theory (including inference support),
which is lacking at the moment.

The management of the exploration process is done
(manually) by the user. Tools to assist this process
(query, knowledge retrieval, transport, etc.) would
greatly help the exploration process.

While we are not at a stage where all the aspects
of theory exploration are supported by the system, we
believe that case studies such as the one presented in
this paper, which are in part “pen-and-paper” can help
achieve the goal of full computer support: they help
the design of provers, theory exploration tools, specifi-
cations for theory exploration frameworks.

Scheme Based Insight. Arguably, somebody who
studies decomposition domains such as described in
this papers, already knows about natural numbers.
Note, however, that Buchberger’s exploration model
provides a methodology for exploring/inventing math-
ematics. Once the user is familiar with the explo-
ration mechanism, and with a few mathematical ideas
(schemes), (s)he can explore freely many theories. Re-
member that many mathematics courses take students
on fixed paths, with often little room for experimenta-
tion. We believe that the scheme based model has a
great didactic value, and it should be pursued both as
a research and teaching tool.

References

[1] Asperti, A., Buchberger, B., Davenport, J., edi-
tors: Mathematical Knowledge Management: Sec-

[10]

ond International Conference, MKM 2003, Berti-
noro, Italy, February 16-18, 2003, volume 2594
of Lecture Notes in Computer Science. Springer
Berlin/Heidelberg, 2003.

Benzmiiller, C.: The CALCULEMUS Research
Training Network: A Short Overview. In Proceed-
ings of the 11th Symposium on the Integration of
Symbolic Computation and Mechanized Reasoning
(CALCULEMUS 2003), pages 1-16, Rome, Italy,
2003. MMIIT ARACNE EDITRICE S.R.L.

Buchberger, B.: Algorithm—Supported Mathe-
matical Theory Exploration: A Personal View
and Strategy. Lecture Notes in Artificial Intel-
ligence, Springer, Tth Conference on Artificial
Intelligence and Symbolic Computation(Research
Institute for Symbolic Computation, Hagenberg,
Austria) (Proceedings of AISC 2004):16, Septem-
ber.

Buchberger, B., Craciun A., Jebelean T., Kovacs
L., Kutsia T., Nakagawa K., Piroi F., Popov N.,
Robu J., Rosenkranz M., Windsteiger W.: The-
orema: Towards Computer-Aided Mathematical
Theory Exploration. Journal of Applied Logic, 4,
pages 470-504, 2006.

Colton, S.: Automated Theory Formation in
Pure Mathematics. Distinguished Dissertations,
Springer Verlang, 2002.

Craciun, A., Hodorog M.: The Quotient—
Remainder Theorem for Naturals: Discovery by
Lazy Thinking. Technical Report no.06-05, IeAT,
2006.

Hodorog, M., Craciun, A.: Scheme-Based System-
atic Exploration of Natural Numbers. Proceedings
of SYNASC 2006, 8th International Workshop on
Symbolic and Numeric Algorithms for Scientific
Computing Timisoara, Romania (2006), pages 23-
34, Timisoara, Romania, September 26-29 2006.
IEEE Computer Society Press.

Lenat, D.: An Artificial Intelligence Approach to
Discovery in Mathematics. PhD thesis, Stanford
University, 1976.

Manna, Z., Waldinger, R.: The Deductive Founda-
tions of Computer Programming Addison-Wesley
Publishing Co, SUA (1993).

McCasland, R., Bundy, A., Smith, P.: Ascertain-
ing Mathematical Theorems. Electronic Notes in
Theoretical Computer Science, 151(1), 2006.

p,0p,zero

p,r

Appendix: Library of Knowledge Schemes for
the Systematic Exploration

Independent Knowledge Schemes

Algebraic Knowledge Schemes

YV (is-monoid[p, op, zero] & N { oplz, zero] =

YV (is-group|p, op, zero,inv] &
Pp,0p,zero,inv
v A is-monoid[p, op, zero])
plz] oplx, inv[z]] = zero

Relational Knowledge Schemes

, rlz, z]
Y (is-preorderp,r] & V /\{ (rlz, 9] Arly, 2]) = rlz, 2]

plz,y,2]

vV (is-partial-ordering|p, r] <
p,r

v oA {
plz,y]

V (is-strict-partial-ordering[p, r] <
pyr

is-preorder|p, r]
(rlz,yl Arfy,a]) =z =y

))

_‘(T[x>x])
(rlz,yl Arly, 2]) = rlz, 2])
rlz,yl = ~(rly, z])

b

v oA

plz,y,2]

YV (is-strict-total-ordering[p, r] <
p,T

v /\{
plz,y]

Knowledge Schemes Dependent on the The-

is-strict-partial-ordering|p, r]) :
rlz,y] Vrly,zl Ve =y

ory of Natural Numbers

fV h(is—rec—nat—binary—fct—]l[f, g, h]
.95
f10,y] = gly] ’
N
is-nat[z,y] /\ { f[$+u y] = h[f[l‘, y]])
Vh(is-rec-nat—binary—r@l-?[ﬁ g,h] &

.9,
f1,0] © gl] :
; { fla.yt] & (hla.y) v flzy)

is-nat[z,y]

Y (is—nat-step—recr-rel-0-1-1[r, q, s, const] <

7,q,5,const

const <y=0
_ vt (rlz,y] < qlz,y] STy
is—nat[z,y] slrlz,y — z]] <= otherwise

V (is—nat-step—recl-fct—1-1[f, g, h] <

v Uleal={

is—nat[z,y]
y>0

f.9.h

=xr <y
< otherwise

gl7]
hlflz —y,yl]

is-semigroup|p, op

))-

)

)

)

