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Abstract

We investigate the problem of approximate factorization of linear partial differential
operators of arbitrary order and in arbitrarily many variables. Given any such operator
L and a specified factorization of its symbol, we define the associated ring of obstacles
to the factorization of L extending the specified factorization of the symbol. We derive
some facts about obstacles and give an exhaustive enumeration of obstacles for operators
of order two and three.

Introduction

We consider the problem of the factorization of Linear Partial Differential Operators (LPDO)
over some function space. We start with the approach of Grigoriev and Schwarz [2], who
gave an algorithm for factorization of such operators with separable symbol. In each step
of this algorithm one has to solve a system of linear equations, which was proved to have
at most one solution. So in each step one either finds the next homogeneous component of
factors in the factorization or stops and concludes that there is no factorization.

We suggest to use the information obtained by the algorithm even in the case of non-
existence of any factorization, that is to describe what actually prevents a factorization.
We introduce the notion of a common obstacle to factorization. The idea goes back to
Laplace, who found his famous invariants as the common obstacles for second order strictly
hyperbolic operators, as described in [4]. Some particular cases of this idea are considered
in [3].

A common obstacle is not unique in general. However, we prove that all common
obstacles belong to the same class in the ring of obstacles, which is the factor ring of the
ring of differential operators modulo the homogeneous ideal generated by the factors of
the symbol. We say that this class of common obstacles is the obstacle, which is defined
uniquely.

The paper is organized as follows: in Section 1 we fix some notation. In Section 2,
we introduce the notion of a common obstacle. Then, in Section 3, we define the ring of
obstacles and the uniquely determined obstacle. Uniqueness, order estimation, and behavior
of families of factorizations are investigated. In Section 4 and 5 exact formulae for all
obstacles of second and third order operators are determined.



1 Notation

Let K be a commutative ring of functions with 1 in the variables x1,...,x,. Consider a
differential ring

K[Xy,..., Xy
where the differential variables X1,....X, correspond to the usual partial derivations
Oy .-, 0q, respectively. We use the notation

X (in) .= xU  Xin
and define the (total) order in the usual fashion:
‘X(ll,,ln)‘ — OT‘d(X(il ..... ln)) = il + o4 ZTL

The differential polynomial ring K[X7,..., X,] is graded by the total order. The elements
of K[Xy,...,X,] are linear partial differential operators, which we abbreviate as LPDO.
Consider L € K[X1,...,X,] of order d and with the coefficients ay € K, .J € N", that is

d
L = Z aJXJ:ZL’iv (]'>
|J]|<d =0

where L; = {a; X’ | ord(X”’) =i} is called a homogeneous component of L of order i [1].
The homogeneous component L, is called the symbol of L and denoted by Symrp.
Now, we define operations in K[X7y,..., X,]: for two LPDOs L (1) and

M:ZbJXJ
J<r

we define the common operation of operator composition:

LxM:= Z arX’ (bJaJ)a
H|<d,]J|<r

the operation of the polynomial multiplication:

L-M:= Y (abyx™7).
1<d,|T|<r

2 Common Obstacle

In this section let L be an LPDO and let its symbol Symy, be decomposed as Symp = S1-S5s.
Definition 2.1. We say that a factorization L = Lq x Lo such that
Symr, =S and Symp, = 59

is of the type (S1)(S2) (or an extension of the factorization Symy = Sy - S3).



Example 2.2. Consider the second order operator
M = (" 4+ y) 05, + (x + (6" + y)y) Doy, + Y0y, + Oy + (T + )0y
The decomposition of the symbol
Symar = (e + ) X2+ (x + (e + y)y) XY? + 2yY? = ((e” + y) X + 2V ) (X +yY)
can be extended to the factorization
M = ((e" +y)0r + 20y + 1) x (O + y0y).

Remark 2.3. In general, not every decomposition of the symbol can be expanded into a
factorization of the operator.

Definition 2.4. An LPDO R € K[X},...,X,] is called a common obstacle to factorization
of the type (S1)(S2) if there exists a factorization of the type (S1)(S2) for the operator
L — R and R has minimal possible order.

Obviously, a common obstacle is not uniquely defined.
Remark 2.5. A common obstacle always exists, although it may be equal to 0.
Theorem 2.6. Let L be an LPDO in two variables, ord(L) = d, and Symy = Si-So, where

S1 and Sy are coprime. Then the order of a common obstacle to a factorization of the type
(S1)(S2) is less or equal to d — 2.

Remark 2.7. Let deg(S1) = deg(S2) = 1 and the number n of variables be 2. Then a
common obstacle to factorization of the type (S7)(S2) has order less or equal to 0. That is,
any common obstacle is a zero order operator.

Remark 2.8. Let deg(S1) = 1, deg(S2) = 2 and the number n of variables be 2. Then a
common obstacle to factorizations has order less or equal to 1.

3 Ring of obstacles

In this section let L € K[Xy,...,X,] and Sym, = S - S, where S; and Sy are coprime.
Denote the orders of Sy and Ss by k and [, respectively.

Definition 3.1. We define the ring of obstacles as the factor ring
I((Sl, SQ) = K'[Xh e ,Xn]/<51, SQ>,
where (S, Ss) is the homogeneous ideal generated by S; and Ss.

When L has no factorization of the type (S1)(S2), one may, nevertheless, apply the
algorithm of Grigoriev and Schwarz [2] to L, looking for a factorization of such a type. In
this way, at every step one has to solve an equation in order to find the next homogeneous
components of the factors of L. So, either there is a solution and we may proceed one more
step, or, otherwise, we stop and have a common obstacle, which is necessarily unique by
construction.



Definition 3.2. We call the common obstacle obtained by the above algorithm the main
obstacle.

Definition 3.3. We define the obstacle to factorizations of the type (S1)(S2) as the whole
coset of the main obstacle in K (S, S2).

Theorem 3.4. Any common obstacle belongs to the same coset in K(S1,Ss), that is the
obstacle is uniquely defined as an element of the ring K(S1,52).

Remark 3.5. So, the common obstacle is not unique, but there are the main obstacle and
the obstacle, which are uniquely defined.

Remark 3.6. The factorization of L of the type (S1)(S2) exists if and only if the obstacle
equals zero. The factorization of L of the type (S1)(S2) exists if and only if the main
obstacle is zero.

Theorem 3.7. The dimension of the ring of obstacles K(S1,S52) in order d < k +1 is

<n+d_1>—X(d—k)<n+d_k_1>—X(d—l)<n+d_l_1>,

n-—1 n—1 n-—1

where

0 otherwise.

(e) im {1 ife>0,

Example 3.8. Let £ = [ = 1. Then by the theorem 3.7 the dimension of the ring of
obstacles

e in order 0 is 1,
e in order 1 is n — 2.

Example 3.9. Let £k =1 and [ = 2. Then by the theorem 3.7 the dimension of the ring of
obstacles

e in order 0 is 1,

e inorder 1 isn —1,

n2—n—2
5 .

e in order 2 is

Theorem 3.10. Let f be an arbitrary function in K. Then the obstacle for the type (S -
%)(52 - f) agrees with the obstacle for the type (S1)(S2).



4 Obstacle for second order LPDO

In this section we assume that n = 2, i.e. we are in the case of two variables, and L €
K[X;, Xs] is an LPDO of second order. Suppose its symbol is decomposed as Symp = S1-5o,
where S; and Sy are coprime. Because of theorem 3.10, it is enough to find the obstacle
only in the case where the coefficients in X7 in S; and Sy are 1. So we may consider

S1=X1 +aXy, Sy=Xi+BXo,
where o, 5 € K, as the general forms of S; and Ss. Then the LPDO L may be written as
L= Sl ' SQ + a10X1 + angg + apQ,

for some aig,ag1,a00 € K. In this situation we can give an exact formula for the main
obstacle of this type.

Theorem 4.1. The main obstacle of the type (S1)(S2) is

02 — a1pC + aopQ,

where )
€= (0x(B) + ady(B) + aroa — apt) -
a—p3
Remark 4.2. The main obstacle to a factorization of the type is (S2)(S1) is
02 — ajpoc + apo,
where 1
c= ﬁ——a (Oz(a) + BIy(a) + aroff — aoy) .

Remark 4.3. So, now, from the formulae it is clear, that the obstacle to factorization of the
type (S1)(S2) is not the same as that of the type (S2)(S1).

Remark 4.4. As mentioned at the beginning of this section, the obstacle in the case S; =
X1, 55 = X5 can be obtained from Theorem 4.1 by a change of variables. But for a second
order operator it is easy to consider the case S; = X1, 52 = X5 separately. Namely, we may
find that the obstacle Py for the type (X1)(X5) is

P; = agy — 0y, (a10) — ajpan:
and the obstacle P for the type (X3)(X7) is
Py = agy — 0y, (ap1) — arpao:.

Remark 4.5. One may note that the obtained obstacles P; and P, are exactly the Laplace
invariants of a strictly hyperbolic second order LPDO [4] .



5 Obstacle for third order LPDO

In this section we assume that n = 2, i.e. we are in the case of two variables, and L €
K[X;,X5] is an LPDO of third order. Suppose its symbol is decomposed as

SymL = Sl . SQ . 53.

Because of Theorem 3.10, we may assume that the coefficients in X7 in Sy and Sy are 1.
So, we may say that the following are the general forms for Sy, So, Ss:

S1 = X1 +51Xg, 52 =X +52X9, 53 =X+ 53X,

where s1, 83,83 € K. Thus, in this section we may consider the following as the general form
of L:
L=Sl-SQ'53+L2+L1+LOa
where
Ly = an X7 + a1 X1 Xy + ae X3, Ly = a10X1 + a1 X2, Lo = agg

and all a;; € K.

In he following we determine the main obstacle to the factorization of L for every
combination of Sy, S, S3 into two factors of the form (S;)(S;S) or (S;Sk)S;. It is convenient
to introduce the following notation.

Definition 5.1. For a, 3,7 € K and s € {—1, 1} we define
det(aaﬁa’y’ S) = 8(7 - Oé)(ﬁ - Oé),

1
prole, 8,7, 8) = —————((=B7 + Ba + ya)ay — aar + ap).
det(av, 8,7, s)
poi(a, B,7,s) 1= W@éﬁ%@o — Byair + (—a+ B+ 7)ags),
1 2
poo(a, B,7,s) 1= W(a az — aayy + ap2),

Pi(a,B,7) == (a10 — Si(p1o(a. 8,7, 8)) + goopor (a. 3,7, 8)) - X1+
(ao1 + S1(po1 (. 8,7 8)) + goopor (@, B, 7, 8)) - X2 + ao.
Py(a, 8,7) := a10X1 + (ap1 — (S1- S2 + p1o(7, B, , 1) X1+
po1 (7, B, a, 1) X2) (7)) Xa + ago — (S1 - S2)(poo (7, B, e, 1)).
Remark 5.2. Note that in the pr(«, 3,7, s), I € {(10),(01),(00)} and P («, 3, ) the second

and the third variables commute, while in P(«, 3,7) the first and the second variables
commute.

Theorem 5.3. For the types (S;)(S; - Sk) and (S; - S) - (S;i), where S; is coprime with
Sj - Sk, the main obstacles are Py (s, 55, si) and Pa(sj, sy, s;), respectively.
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