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Zusammenfassung

Diese Dissertation befasst sich mit der Untersuchung der symbolisch-
algebraischen Faktorisierung, der Klassifikation und von Methoden zur Inte-
gration Linearer Partieller Differentialoperatoren (LPDOs).

Ein neuer theoretischer Begriff, ein Hindernis (obstacle) zur Fak-
torisierung von LPDOs in allgemeiner Form, wird eingeführt. Damit kann
die Untersuchung von Faktorisierungsalgorithmen vereinfacht werden. Ein
volles System von Invarianten für bivariate hyperbolische LPDOs dritter
Ordnung wird gefunden. Die Faktorisierungen von LPDOs der Ordnung
zwei, drei und vier mit vollständig faktorisierbarem Symbol und ohne jede
andere Bedingung werden untersucht. Wir zeigen, dass es “irreduzible”
parametrische Faktorisierungen nur geben kann für einige wenige Typen von
Faktorisierungen. Explizite Beispiele für diese Fälle werden angeführt. Für
Operatoren der Ordnung zwei und drei wird nachgewiesen, dass eine Familie
durch höchstens eine Funktion in einer Variablen parametrisiert werden kann.
Neue Transformationen (verallgemeinerte Laplace Transformationen, gener-
alized Laplace transforms) bivariater hyperbolischer LPDO zweiter Ordnung
werden eingeführt. Als wichtige Anwendung ergibt sich die Möglichkeit der
Ausweitung der Klasse der analytisch lösbaren partiellen Differentialgleichun-
gen. Beispiele werden angegeben.

Die Resultate wurden erzielt mithilfe eines zu diesem Zweck erstellten
Programmpakets in Maple. Auch die Prozeduren zur Berechnung der Hin-
dernisse (obstacles) zur Faktorisierung und der Invarianten sind in dem Pro-
grammpaket implementiert.

Schlüsselwörter: linearer partieller Differentialoperator, Faktorisierung, In-
varianten, Transformationsmethode, symbolisches Rechnen.
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Abstract

This thesis is devoted to the study of symbolic-algebraic factorization,
classification, and integration methods for Linear Partial Differential Opera-
tors (LPDOs).

A new theoretical notion, an obstacle to factorizations of LPDOs of gen-
eral form, that simplifies the considerations of factorization algorithms is
introduced. A full system of invariants for third-order bivariate hyperbolic
LPDOs is found. The factorizations of LPDOs of orders two, three, and
four with completely factorable symbols and without any additional require-
ment are studied. We prove that “irreducible” parametric factorizations can
exist only for a few certain types of factorizations. For these cases explic-
it examples are given. For operators of orders two and three, it is shown
that a family may be parameterized by at most one function in one variable.
New transformations (Generalized Laplace Transformations) of bivariate hy-
perbolic second order LPDOs are introduced. The important application is
the possibility to extend the class of analytically solvable partial differential
equations. Examples are given.

The results have been obtained with the help of a specially created
Maple-package. Also the procedures for computing the obstacles to fac-
torizations and invariants are implemented in the package.

Keywords: linear partial differential operator, factorization, invariants, trans-
formation method, symbolic computation.
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1 Introduction

1.1 Place in Science

The solution of Partial Differential Equations (PDEs) is one of the most
important problem of mathematics, and has an enormous area of applica-
tions. The study of PDEs started in the 18th century in the works of Euler,
d’Alembert, Lagrange and Laplace as a central tool in the description of the
mechanics of continua and, more generally, as the principal mode of analyti-
cal study of models in the physical sciences. The analysis of physical models
has remained to the present day one of the fundamental concerns of the de-
velopment of PDEs. However, beginning in the middle of the 19th century,
particularly with the work of Riemann, PDEs also became an essential tool
in other branches of mathematics.

The most famous contributions to algebraical methods for the solution of
PDEs were made by Galois (Galois theory uses the technique of the contin-
uous transformation group), by Cartan (his theory makes use of the equiva-
lence method of differential geometry, which determines whether two geomet-
rical structures are the same up to a diffeomorphism), by Ritt (who studied
the integrals of algebraic differential system of equations), and by Weyl (the
famous Weyl algebra of differential operators with polynomial coefficients).

1.2 Symbolic Methods for Analytical Solutions of
PDEs

In common with many other types of mathematical problems (for example
integration), the solution of PDEs can be attacked either symbolically or
numerically. (In addition, the so-called symbolic-numeric approaches to al-
gebraic problems might be promising.) Of course, an analytical solution is
to be preferred. Indeed, using an analytical solution, one can compute a
numerical solution to any precision and on any segment of the domain, or
analyze the solution’s behavior at infinity and at extremal points; on can
explore dependence on parameters, etc. Some simple Ordinary Differential
Equations (ODEs) can often be solved analytically, but as they are more
complicated, it happens much more rarely. Only a few separate PDEs can
be solved analytically. Such solutions are often expressions in quadratures,
but it is a matter of great luck to have even such a solution.

It is difficult even to list analytically solvable PDEs. Indeed, every method
is usually an algorithm for a certain class of equations, which is used in com-
bination with change of variables, conjugations, and other transformations.
Thus, for a successful solution of a certain PDE, one has to transform it to
some known canonical form. This, however, is a very difficult problem, as
even a simple change of variables is not easy for PDEs. Moreover, the notion
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of an analytical solution is not rigorously defined. Can one consider implicit
functions? Suppose, say, as one example, we made an analytical change of
variables: (x, y) → (u, v), where

u = x + ex+y2

,

v = y + exy/(y + sin(xy)).

Can we consider the inverse functions x = x(u, v), y = y(u, v) analytically
defined?

One of the methods for extending the quantity of analytically solvable
PDEs consists in transformations of PDEs and the corresponding transfor-
mations of their solutions. Thus, based on the fact that a second-order
equation

zxy + azx + bzy + c = 0 , (1)

where a = a(x, y), b = b(x, y), c = c(x, y), can be solved if one of its factor-
izations is known, the famous method of Laplace Transformations suggests
a certain sequence of transformations of a given equation of the form (1).
Then, if at a certain step of the transformations an equation becomes fac-
torable, an analytical solution of this transformed equation — and then of
the initial one — can be found.

Another approach to the same problem lays in the factorization of a given
PDEs, possibly taken in some transformed form.

1.3 Computer Algebra Resources

Symbolic methods for the finding of analytical solutions of PDEs have been
extensively investigated by mathematicians, since the first appearance of
PDEs in the 18th century. It seems that almost all the things which can be
done by hand have already been done. Formally speaking, the transforma-
tions that have been considered are not very complicated, and any of them in
principle could be computed by hand. However, computation of a sequence
of transformations, even only a little bit advanced, is an almost impossible
task if is being done by hand.

The main distinctive feature of the modern stage in research is the possi-
bility of using computer algebra systems, which may help to solve problems
that neither Laplace nor Newton, nor 20th century mathematicians, could
hope to approach. Of course, this is not to say that all the problems that
seemed complicated before can be solved now easily. Computer algebra sys-
tems are not intelligent, and serve as advanced symbolic calculators. For
instance, the expanded form (x100 + . . . ) of the expression (x + a)100 is very
large, and yet every computer algebra system can easily factor the expanded
form back to the original. On the other hand, no computer algebra system
can simplify the expanded form of (x+a)100+2 automatically to the compact
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form shown. Because of this, the modern computer algebra systems are not
a substitute for the theoretical investigations of mathematicians, but they do
hold out the promise, or at least the hope, of moving a step or more further
than Laplace, Euler, etc.

This possibility first appeared not long ago, and not all scientists use
it to the full: mathematicians developing symbolic and algebraic methods
for PDEs are often not accustomed to use computer algebra systems, while
computer scientists do not serve usually as specialists in PDEs. Thus, now
there is a good chance to use computer algebra tools for essential progress in
the solution of PDEs.

1.4 Definitions and Notations

Consider a field K with a set

∆ = {∂1, . . . , ∂n}

of commuting derivations acting on it. We work with the ring of linear
differential operators

K[D] = K[D1, . . . , Dn] ,

where D1, . . . , Dn correspond to the derivations ∂1, . . . , ∂n, respectively.
The totality of all linear differential operators of orders 6 i with defined

left and right multiplication is a K-bimodule, which we denote by K6i. Thus
we have the filtration

· · · ⊃ K6i ⊃ K6i−1 ⊃ · · · ⊃ K60 .

Consider the associate algebra

Smbl∗ =
∑
i≥0

Smbli, Smbli = K6i�K6i−1.

K-module Smbl∗ is a commutative K-algebra, which is isomorphic to the
ring of polynomials K[X] = K[X1, . . . , Xn] in n variables. The image of the
operator L ∈ K[D] by the natural projection is some element SymL of K[X].
Actually, the is a homogeneous polynomial corresponding to the sum of the
highest terms. We use the notation

D(i1,...,in) := Di1
1 . . . Din

n ,

and define the order as follows:

|D(i1,...,in)| = ord(D(i1,...,in)) := i1 + · · ·+ in ,

and in addition the order of the zero operator is −∞.
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For a homogeneous polynomial S ∈ K[X] we define the operator Ŝ ∈
K[D], which is the result the substitution of the operator Di for each variable
Xi, that is for

S =
∑

|J |=k

sJXJ

the corresponding operator is

Ŝ =
∑

|J |=k

sJDJ ,

where J ∈ Nn. If there is no danger of misunderstanding we use just S to
denote the operator Ŝ.

By Ki[D] we denote the set of all operators in K[D] of order i.
Thus, any operator L ∈ K[D] is of the form

L =
∑

|J |≤d

aJDJ , (2)

where aJ ∈ K, J ∈ Nn and |J | is the sum of the components of J . Then the
polynomial

SymL =
∑

|J |=d

aJXJ

is the symbol of L.
One can recollect the components of the sum (2) so that the components

of one order are in the same group. Denote the sum of all components of
order i ≤ d by Li. We say that Li is the i-th component of L. Now the
operator L ∈ K[D] can be written as

L =
d∑

i=0

Li . (3)

For an operator L ∈ K[D] the operation of is

L → Lt(f) =
∑

|J |≤d

(−1)|J |DJ(aJf) ,

where f ∈ K.
Let K∗ denotes the set of invertible elements in K. Then for L ∈ K[D]

and every g ∈ K∗ we consider the gauge transformation

L → g−1Lg .

We also can say that this is the operation of . Then an algebraic differential
expression I in coefficients of L is invariant under the gauge transformations
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if it is unaltered under the these transformations. Trivial examples of an
invariant are coefficients of the symbol of the operator.

An operator L ∈ K[D] is said to be hyperbolic (separable) if its symbol
is completely factorable (all factors are of first order) and each factor has
multiplicity one.

We use the usual abbreviations:

• LPDO for Linear Partial Differential Operator,

• LODO for Linear Ordinary Differential Operator,

• LPDE for Linear Partial Differential Equation,

• LODE for Linear Ordinary Differential Equation.

1.5 Laplace Transformations Method of Integration

The classical Laplace cascade method [7] (or as in some literature it is called
the ) has been known since the end of the 18th century. It is the oldest known
algebraic method of integration of partial differential equations. The method
does for second-order linear hyperbolic equations on the plane, which has the
normalized form

zxy + azx + bzy + c = 0, (4)

where a = a(x, y), b = b(x, y), c = c(x, y).
Now we highlight the main points, while the exhaustive exposition may

be found in [7, 14, 12]. For a given second-order partial differential equation
of the form (4), consider the corresponding differential operator

L = Dx ◦Dy + aDx + bDy + c. (5)

This operator can be rewritten in the following ways:

L = (Dx + b) ◦ (Dy + a) + h = (Dy + a) ◦ (Dx + b) + k, (6)

where
h = c− ax − ab, k = c− by − ab (7)

are known as the , while two representations (6) are said to be incomplete
factorizations of the operator L. Note, that the operator L is factorable if
and only if h or k is zero.

I. Suppose h or k is equal zero. Then the operator L is factorable, and
whence the equation (4) is integrable. Indeed, if, for example, h = 0, we have
L = (Dx + b)(Dy + a), and the problem of determination of all the integrals
of the equation (4) is reduced to the problem of the integration of the two
first order equations: {

(Dx + b)(z1) = 0,
(Dy + a)(z) = z1.
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Accordingly one gets the general solution of the initial equation (4):

z =
(
A(x) +

∫
B(y)e

R
ady−bdxdy

)
e−

R
ady (8)

with two arbitrary functions A(x) and B(y).
II. Suppose now that h and k do not vanish. Then one can apply two

L → L1 and L → L−1, which are defined by the substitutions

z1 = (Dy + a)(z), z−1 = (Dx + b)(z) . (9)

Such the transformations preserve the equations’ form (4). Indeed, we have

L → L1 = Dx ◦Dy + a1Dx + b1Dy + c1 , (10)

a1 = a− ∂y(ln|h|) ,

b1 = b ,

c1 = c + by − ax − b∂y(ln|h|) ,

and
L → L−1 = Dx ◦Dy + a−1Dx + b−1Dy + c−1 , (11)

a−1 = a ,

b−1 = b− ∂x(ln|k|) ,

c−1 = c− by + ax − a∂x(ln|k|) .

The Laplace invariants of the new operators can be expressed in terms of the
invariants of the initial operator, thus, for the operators L1 and L−1, we have

h1 = 2h− k − ∂xy(ln|h|), k1 = h,
h−1 = k, k−1 = 2k − h− ∂xy(ln|k|).

The invariants k1, and h−1 are certainly non-zero. So we have to check
whether the invariants h1 and k−1 are zero, that is whether the new oper-
ators L1 and L−1 are factorable. If for example h1 = 0, we solve the new
equation L1(z1) = 0 in quadratures as described above. Then using the
inverse substitution

z =
1

h
(z1)−1, (12)

we obtain the complete solution of the original equation L(z) = 0. One
considers the case k−1 = 0 analogously. If neither h1, nor k−1 equal zero, we
can apply the Laplace transformations again.

Thus, in the generic case, we obtain two sequences:

· · · → L−2 → L−1 → L,
L → L1 → L2 → . . .
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The inverse substation (12) implies L = h−1(L1)−1h, and one can prove that
the Laplace invariants do not change under such substitution. This means
that essentially we have one chain

· · · ↔ L−2 ↔ L−1 ↔ L ↔ L1 ↔ L2 ↔ . . . , (13)

and the corresponding chain of invariants

· · · ↔ k−2 ↔ k−1 ↔ k ↔ h ↔ h1 ↔ h2 ↔ . . . (14)

In that way one iterates the Laplace transformations until one of the Laplace
invariants in the sequence (14) vanishes. In this case, one can solve the corre-
sponding transformed equation in quadratures and using the same differential
substitution (9) obtains the complete solution of the original equation.

What is more, one may prove (see for ex. [12]) that if the chain (14) if
finite in both directions, then one may obtain a quadrature free expression
of the general solution of the original equation.

Example 1.1. [34] As a straightforward computation shows, for the equation

zxy − n(n + 1)

(x + y)2
z = 0

the chain (13) has the length n in either direction.
For example, for n = 1 we have the short chain L−1 ↔ L ↔ L1, where

L = Dxy − 2

(x + y)2
,

L1 = Dxy +
2

x + y
Dx − 2

(x + y)2
,

L−1 = Dxy +
2

x + y
Dy − 2

(x + y)2
.

And the corresponding chain (14) of the Laplace invariants is

0 ↔ k ↔ h ↔ 0 .

Since the Laplace invariant h is zero for L1, then L1 is factorable, and the
equation L1(z1) = 0, z ∈ K can be analytically solved (see (8)):

z1 =
1

(x + y)2

( ∫
B(y)(x + y)2dy + A(x)

)
.

Using the substitution (12), we compute the solution of the initial equa-
tion:

z =
1

h
Dx(z1) =

1

2
A(x)+

1

(x + y)

(
(x+y)

∫
(x+y)B(y)dy−

∫
(x+y)2B(y)dy−A(x)

)
.

Though the Laplace transformations method is one of the important
methods of symbolic integration of the PDEs of the form zxy+azx+bzy+c = 0,
it leads to solutions not very often. In the chapter 5 a generalization of this
method is suggested.
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1.6 Variations of the Laplace Method

A hundred years later after Laplace, Darboux suggested [7] an explicit inte-
gration method of non-linear second-order scalar equations of the form

F (x, y, z, zx, zy, zxx, zxy, zyy) = 0. (15)

The idea is to consider a linerization of the equation (15). For example, for
a second order hyperbolic non-linear equation

zxy = f(x, y, z, zx, zy) (16)

one considers the substitution z(x, y) → z(x, y) + εu(x, y) and cancels the
terms with εn, n > 1. Thus, one has the linearized equation P (u) = 0, where
P is the linearized operator

P = Dx ◦Dy +
∂f

∂zx

Dx +
∂f

∂zy

Dy +
∂f

∂z
.

Then one apply the Laplace method. The relationship between the Laplace
invariants of the linearized operator P and Darboux integrability of the initial
equation (16) was established by Sokolov, Ziber, Startsev [30, 31], who proved
that a second order hyperbolic non-linear equation is Darboux integrable if
and only if the both Laplace sequences are finite. Later Anderson, Juras, and
Kamran [1, 2, 15] generalized this to the case of the equations of the general
form (15) as a consequence of their analysis of higher degree conservation
laws for different types of partial differential equations.

In [8, 9] Dini suggested a generalization of the Laplace transformations for
certain class of second-order operators in the space of arbitrary dimension.
But no general statement was given on the range of applicability of his trick.
Recently, Tsarev proved [35] that for a generic second-order linear partial
differential operator in three-dimensional space,

L =
∑

i+j+k≤2

aijk(x, y, z)DxDyDz

there exist two Dini transformations L → L1 and L → L−1 under the as-
sumption that its principal symbol factors.

There were also several attempts to generalize the Laplace method to
some systems of equations. Thus, Athorne and Yilmaz [3, 4] proposed a
special transformation, which is applicable to systems whose order coincides
with the number of independent variables. A serious effort to generalize the
classical theory to operators of higher order (in two independent variables)
was undertaken in [23]. Recently Tsarev described another procedure [35],
which generalizes the Cascade Method to the case of arbitrary order hyper-
bolic operators.
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1.7 Grigoriev-Schwarz Factorization Algorithm

In this section a recent result of Grigoriev and Schwarz [10] is presented in
the form of a theorem, the proof of which is the algorithm of factorization
of LPDOs. This algorithm extends the factorization of the symbol of an
operator to a factorization of the operator, or concludes that there is no such
factorization. The authors call it Hensel descent algorithm, since it is close
in nature to the Hensel lifting algorithm of factorizations of polynomials.

Theorem 1.2. Let L ∈ K[D], and its symbol be factored into two coprime
factors:

SymL = S1 · S2 . (17)

Then there exists at most one factorization of the form

L =
(
Ŝ1 + G

)
◦

(
Ŝ2 + H

)
,

where G,H ∈ K[D] and ord(G) < ord(Ŝ1), ord(H) < ord(Ŝ2).

Proof. Consider L,G, H as the sums of their components:

L =
d∑

i=0

Li , G =

k1−1∑
i=0

Gi , L =

k2−1∑
i=0

Hi

where d = ord(L), k1 = ord(Ŝ1), k2 = ord(Ŝ2). Then the considered factor-
izations has the form

d∑
i=0

Li =
(
Ŝ1 + Gk1−1 + · · ·+ G0

)
◦

(
Ŝ2 + Hk2−1 + · · ·+ H0

)
.

When equates the components of the both sides of equality, one gets the
following system in the corresponding to the operators Hi and Gj homoge-
neous polynomials, which we denote by the same letters:





Ld−1 = S1 ·Hk2−1 + Gk1−1 · S2 ,
Ld−2 = S1 ·Hk2−2 + Gk1−2 · S2 + Pd−2 ,
. . .
Li = S1 ·Hi−k1 + Gi−k2 · S2 + Pi ,
. . .

where Pi are some expressions of derivatives of Hk2−j, Gk1−j with j < i.
Thus, if one solves the system in descent order, the polynomials Pi can be
considered as known. Also here Li stands for the homogeneous polynomial
corresponding to the component Li of L.
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Consider one equation of the system:

Li = S1 ·Hi−k1 + Gi−k2 · S2 + Pi.

It is equivalent to a linear algebraical system in coefficients of the polynomials
Hi−k1 and Gi−k2 . Since S1 and S2 are coprime, then there is at most one
solution of the system, and so is for the equation. Thus, at every step one
either gets the next components of H and G, or (in the case the linear
algebraic system is unfeasible) concludes that there is no factorization of the
operator L that extends the polynomial factorization of the symbol (17).

By induction on the number of factors one proves the following theorem:

Theorem 1.3. Let L ∈ K[D], and

SymL = S1 · S2 . . . Sk ,

where S1, . . . , Sk be coprime. Then there exists at most one factorization

L = F1 ◦ · · · ◦ Fk ,

such that
SymFi

= Si , i = 1, . . . k .

Example 1.4. Consider operator

L = Dxyy + Dxx + Dxy + Dyy + xDx + Dy + x .

It is not hyperbolic, therefore, not every factorization of its symbol has co-
prime factors. However, there is, for example, factorization of the symbol

SymL = (X) · (Y 2) ,

which has coprime factors. The corresponding factorizations of L has the
form

L = (Dx + G0) ◦ (Dyy + H1 + H0) ,

where G0 = r, H1 = aDx + bDy, and H0 = c, where r, a, b, c ∈ K. Equates
the components on the both sides of the equality:





L2 = (aX + bY )X + rY 2 ,
L1 = (c + ra + ax)X + (bx + rb)Y ,
L0 = rc + cx ,

(18)

where Li stands for the homogeneous polynomial corresponding to the com-
ponent Li of L, that is

L2 = X2 + XY + Y 2, L1 = xX + Y, L0 = x .

15



Solve the system (18) in descent order. Consider the first equation. This
equation in polynomials is equivalent to a linear algebraical system in their
coefficients: 




1 = a ,
1 = b ,
1 = r ,

which gives us
a = b = r = 1 .

Thus, solving of the first equation of the system (18) we determine all the
coefficients of H1 and G0.

After substitution of 1 for a, b, r, the second equation of the system (18)
has the form:

xX + Y = (c + 1)X + Y ,

that gives us
c = x− 1 ,

that makes the last (third) equation of the system (18) become an identity.
Therefore operator L can be factored as follows:

L = (Dx + 1) ◦ (Dyy + Dx + Dy + x− 1) .

1.8 Contributions of this Thesis

The results expounded in this thesis extend and generalize existing theorems
and algorithms for Linear Partial Differential Operators (LPDOs). Specifical-
ly, improvements are made in the symbolic-algebraic factorization of LPDOs,
in the classification of LPDOs, and in integration methods for them. Each
chapter of the thesis except this one — the introduction — and the last one
— conclusion — is devoted to one topic in the list above.

1.8.1 Obstacles to Factorizations of LPDOs

Chapter 2 is devoted to the factorization properties of LPDOs. The key idea
is a shift in emphasis from complete factorization to partial factorization. Us-
ing the Grigoriev-Schwarz factorization algorithm (section 1.7) I introduce
the notions of partial factorizations of LPDOs and common obstacles to their
factorization. The first notion allows me to establish Theorem 2.9, a gener-
alization of the Grigoriev-Schwarz Theorem (given above as theorem 1.3) to
the case of non-coprime factors of the initial factorization of the operator’s
symbol.

Although for operators of order two the common obstacles are the Laplace
invariants of the same operator (see section 1.5), for operators of orders
higher than two the obstacles do not enjoy good properties. Therefore, I
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introduce a certain algebraic structure, which I call the ring of obstacles
(section 2.5). For types of factorizations in which the symbols of the factors
are pairwise coprime, the symbols of all common obstacles to factorization
belong to the same class in the ring of obstacles. Then I define the obstacles
to the factorization of a certain factorization type as the class of the symbols
of the common obstacles to factorizations of the same type.

I establish some properties of obstacles to factorizations in section 2.6.
For example, obstacles to the factorization of an operator L are invariant with
respect to the gauge transformations L → g−1Lg. In addition, the obstacles
for operators of order two and three have been computed explicitly in the
last sections of chapter 2. The computation of the obstacles for operators
of orders two and three (for order two they are the Laplace invariants) have
been implemented in my Maple-package, described in Chapter 6.

The results of this chapter have been published [26, 27].

1.8.2 A Full System of Invariants for Third-Order Hyperbolic LP-
DOs

Chapter 3 addresses the problem of finding a full system of invariants for
LPDOs with respect to gauge transformations L → g−1Lg, g ∈ K∗. A full
system is successfully found for operators of the form

L = DxDy(pDx+qDy)+a20D
2
x+a11Dxy +a02D

2
y +a10Dx+a01Dy +a00 , (19)

where all the coefficients belong to K. Recall that by the classical definition,
an invariant of an operator is a function of the operator’s coefficients which
is not altered by transformations of the operator in a certain way.

I used the invariance of obstacles to find twelve invariants of LPDOs of
the form above. Eight of these invariants can be expressed in terms of the
other four, and therefore I found four independent invariants. Although these
four invariants are already useful, it is highly preferable to have a full system
of invariants. Such a system uniquely defines the class of an operator with
respect to the considered transformations. Thus, the invariant properties
of operators can be described in terms of invariants, and moreover some
normalized form of an operator can be easily found.

The four invariants obtained from the theory of obstacles do not form a
full system. However, I found a fifth invariant by a separate method, and
proved that these five invariants together form a full system of invariants.
Thus, I showed that the theory of obstacles provides us with an easy way
to obtain some invariants for hyperbolic LPDOs of arbitrary orders, but the
problem of finding a full system of invariants for the general case remains
open.

These results have been published. The case q = p = 1, in the notation
of equation (19) is considered in [24], and in the newly submitted paper [25]
the general case was considered.
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The computation of the five invariants has been implemented in my
Maple-package (chapter 6).

1.8.3 Parametric Factorizations of Non-Separable LPDOs

Up to now, most of the activity in factorization has concentrated on the sep-
arable case (e.g. hyperbolic operators) and there is as yet a lack of knowledge
about the non-separable case, meaning that the symbol is non-separable, e.g.
parabolic operators. There is a distinction in kind between these two cases.
For a separable LPDO on the plane a factorization is determined unique-
ly by a factorization of the operator’s symbol (principal symbol) [10]. In
contrast, for the non-separable case, not only is uniqueness lost, but even
parametric factorizations (families of factorizations) may appear. Therefore,
in chapter 4, I study parametric factorizations of LPDOs. I investigate the
case of non-separable LPDOs of orders two, three and four on the plane. I
prove that families of factorizations can exist only for a few certain types of
factorizations. For these cases I give explicit examples. For the operators of
orders two and three it is shown that a family may be parameterized by just
one function in one variable (the function may be the constant function).

Chapter 4 gives the first non-trivial example of a parametric factorization
of an LPDO of high order. Specifically, I have found the following fourth-
order irreducible family of factorizations:

Dxxyy =
(
Dx+

α

y + αx + β

)(
Dy+

1

y + αx + β

)(
Dxy− 1

y + αx + β
(Dx+αDy)

)
,

where α, β ∈ K\{0} (see Example 4.12).
As with the previous chapters, the results have been obtained with the

help of my Maple-package (chapter 6).
The results have been accepted for publishing [28].

1.8.4 Generalized Laplace Transformations

Generally speaking, the final goal of all the investigations of LPDOs is the
solution of the corresponding LPDEs. Factorization is one of the solution
methods for LPDEs. Another important method is one based on transfor-
mations. Transformations can be used in two different ways. The first way
applies certain transformations to a given LDPO until some LPDO with a
known analytical solution is obtained. Then one computes the solution of
the original LPDO. The second way consists in applying certain transforma-
tions to LPDOs which already have a known analytical solution. This leads
to new analytically solvable LPDOs, and therefore one can extend the class
of LPDOs which have a known analytical solution. In chapter 5, I suggest
new transformations of LPDOs that help to find new classes of analytically
solvable LPDEs.
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In section 5.2 I suggest some new transformations (I call them GL-
transformations) for LPDOs of arbitrary orders and in multidimensional
space. The idea appeared through considering a definition that is not com-
monly used of Laplace transformations. Thus, GL-transformations generalize
the Laplace ones.

I prove some properties of GL-transformations for LPDOs of general form,
and then concentrate on LPDOs of the form

L = Dx ◦Dy + aDx + bDy + c ,

where all the coefficients belong to K. For this case, all possible GL-
transformations are described. Finally, I show several examples of appli-
cations of GL-transformations.

The results of the chapter have been submitted for publication [29].

1.8.5 A Maple Package for LPDOs with Parametric Coefficients

In chapter 6 I introduce my package, implemented inMaple, which has been
an essential computational tool, used to obtain the results of this thesis. The
package is useful for the consideration of LPDOs with symbolic coefficients.
Basic arithmetic operations, Laplace invariants and transformations, invari-
ants for third-order bivariate LPDOs, obstacles to factorizations and factor-
izations of LPDOs of orders two and three (Grigoriev-Schwarz algorithm) are
implemented in the package.

Among the distinctive features of the package, I would like to mention
that LPDOs are kept as a set of coefficients, and, therefore, one has easy
access to them. This is in contrast to previous representations of LPDOs in
Maple, from which coefficients could be extracted only with great difficulty.
Another feature of the package is the absence of restrictions on the number
of variables, on the orders of considered LPDOs, and on the parameters
occurring in the operators. The only thing one has to declare at the beginning
of every worksheet is a list of variables. However, this information is usually
known.
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2 Obstacles to Factorizations of

Linear Partial Differential Operators

2.1 Introduction

The Laplace Cascade method and all its generalizations and variations essen-
tially use factoring of a linear partial differential operator of a certain form.
They work on the assumption that there is a constructive factorization algo-
rithm to factor an LPDO of a certain form. In the classical Laplace Cascade
method the factorization problem is completely investigated and relatively
easy. Indeed, an LPDO of the form

L = Dx ◦Dy + aDx + bDy + c

can possibly have only the following factorizations:

L = (Dx + b) ◦ (Dy + a), L = (Dy + a) ◦ (Dx + b).

The first factorization is realized if and only if the Laplace invariant h van-
ishes, while the second one if and only if the Laplace invariant k equals zero.

For an ordinary linear differential operator L the Loewy uniqueness the-
orem [18] states that if

L = P1 ◦ · · · ◦ Pk = P̃1 ◦ · · · ◦ P̃t

are two different irreducible factorizations, then they have the same number
of factors (that is k = t) and the factors are pairwise “similar” in some trans-
posed order. In the scope of the Loewy-Ore theory there is a factorization
algorithm for LODOs over the field Q(x, y) of rational functions.

Unfortunately not much is known about factorization properties of LP-
DOs. One of the main problems of the LPDOs case lies in non-uniqueness
of factorizations. There is an interesting example given by Landau [5]: the
operator

L = D3
x + xD2

xDy + 2D2
x + (2x + 2)DxDy + Dx + (2 + x)Dy

has two factorizations into different numbers of irreducible factors:

L = Q ◦Q ◦ P = R ◦Q ,

for the operators

P = Dx + xDy, Q = Dx + 1, R = Dxx + xDxy + Dx + (2 + x)Dy .

Note that the second-order operator R is absolutely irreducible, that is one
cannot factor it into product of first-order operators with coefficients in any
extension of Q(x, y).
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Due to the fast development of the integration algorithms for PDEs in-
volving its factorization, the problem of construction of an efficient factor-
ization algorithm has been quite popular over the last decades.

One important direction of the development has been attacking of the
non-uniqueness of factorizations, and inventing new definitions of factoriza-
tions [33, 17, 11]. Then the conventional factorization becomes the special
case of the generalized factorization, and some analogues of the Loewy-Ore
uniqueness theorem can be proved. In one of the earliest attempts [17] the
factoring of a linear homogeneous partial differential system is treated as
finding superideals of a left ideal in the ring of LPDOs rather than factoring
a single LPDO, and a generalization of the Beke-Schlesinger algorithm for
factoring LODOs, whose coefficients belong to Q(x, y) has been given. The
algorithm is based on an algorithm for finding hyperexponental solutions of
such ideals. In [11] a given LPDO is considered as a generator of a left
D-module over an appropriate ring of differential operators. In this alge-
braic approach decomposing a D-module means finding overmodules which
describe various parts of the solution of the original problem.

Another direction was founded by Miller [21], who was first to think about
some analogue of well-known Hensel lifting of polynomial theory for LPDOs.
The scientist has been considering LPDOs of order two and three only. In
[10] Grigoriev and Schwarz generalize the idea to the LPDOs of arbitrary
order (see in detail in the section 1.7).

Despite of all these results, and many others (for ex. [3, 36, 34]), the gen-
eral factorization problem remained open. All the theories are either pure
theoretical, and do not provide an algorithmic way of establishing factoriz-
ability of a given LPDO, or treat some special class of LPDOs.

In this chapter I study properties of factorizations of LPDOs over a field.
The starting point is the algorithm of Grigoriev–Schwarz, which extends a
factorization (into coprime factors) of the operator’s symbol to a factorization
of the whole operator. At the first step of the algorithm, only the highest
terms of the factors of a factorization are known. At every succeeding step,
either we determine the next component in each factor, or we conclude that
there is no such factorization. In the latter case we lose all of the information
about the operator that we obtained implicitly during the execution of the
algorithm. Here, I suggest that the information can be used, and introduce
the notions of partial factorizations and common obstacles.

The partial factorizations help to prove Theorem 2.9 below, which states
that a factorization is uniquely defined from a certain moment on (here we
do not require that the initial factorization of the operator’s symbol has
coprime factors). Theorem 1.3 of Grigoriev-Schwarz is a particular case of
this theorem.

For the operators of order two the common obstacles are the invariants of
Laplace, however, for operators or higher order the common obstacle is not so
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good notion, and does not enjoy useful properties like invariance under gauge
transformations L 7→ g(x, y)−1Lg(x, y)). Some examples can be seen in [16].
On the other hand we would like to describe all factorable (or unfactorable)
LPDOs in some algebraic terms, and understand what actually prevents an
LPDO to be factorable. Thus we suggest to consider some special algebraic
structure, which we call the ring of obstacles. Then one can prove that the
symbols of all common obstacles belong to the same class of this factor ring.
We call this class the obstacle to factorizations. Obstacles to factorization
enjoy some important properties, for example uniqueness, invariability w.r.t.
the Gauge transformations.

The last property leads us to an application in the invariants finding area.
Thus, a full system of invariants w.r.t. the gauge transformations L → g−1Lg
is found in the chapter 3.

The results of this chapter have been published [26, 27].

2.2 Partial Factorizations

Definition 2.1. Let L ∈ K[D] and suppose that its symbol has a decompo-
sition SymL = S1 . . . Sk. Then we say that the factorization

L = F1 ◦ · · · ◦ Fk, where SymFi
= Si , ∀i ∈ {1, . . . , k},

is of the (S1)(S2) . . . (Sk).

Definition 2.2. Let for some operators L, for Fi ∈ K[D], i = 1, . . . , k and
for some t ∈ {0, . . . , ord(L)}

ord(L− F1 ◦ · · · ◦ Fk) < t (20)

holds. Then we say that F1 ◦· · ·◦Fk is a partial factorization of order t of the
operator L. If in addition Si = SymFi

, i = 1, . . . , k (so SymL = S1 . . . Sk),
then this partial factorization is of the factorization type (S1) . . . (Sk).

Remark 2.3. Every usual factorization of L ∈ K[D] is a partial factorization
of order 0.

Remark 2.4. Let L ∈ K[D], ord(L) = d. Then for every factorization of
the symbol SymL = S1 . . . Sk the corresponding composition of operators

Ŝ1 ◦ · · · ◦ Ŝk is a partial factorization of order d.

Let L ∈ K[D] and F1 ◦ · · · ◦Fk be a partial factorization of order t. Note
that the condition (20) still holds if we change any term whose order is less
than or equal to t− (d−dj) in any factor Fj, j ∈ {1, . . . , k}. Thus we obtain
new partial factorizations of order less than or equal t. Then we naturally
introduce the following definition.
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Definition 2.5. Let L ∈ K[D], SymL = S1 . . . Sk, ord(Si) = di, i = 1, . . . , k
and

F1 ◦ · · · ◦ Fk, F ′
1 ◦ · · · ◦ F ′

k

be partial factorizations of orders t and t′ respectively. Let t′ < t, then
F ′

1 ◦ · · · ◦ F ′
k is an extension of F1 ◦ · · · ◦ Fk if

ord(Fi − F ′
i ) < t− (d− di), ∀i ∈ {1, . . . , k} .

Example 2.6. Consider the fifth-order operator

L = (D2
x + Dy + 1) ◦ (D2

xDy + DxDy + Dx + 1) .

Compositions of the type

(D2
x + . . . ) ◦ (D2

xDy + . . . ) ,

where ellipses mean arbitrarily chosen terms of lower orders, are partial fac-
torizations of order 5. Their extensions are the following fourth-order partial
factorizations of the type

(D2
x + Dy + . . . ) ◦ (D2

xDy + DxDy + . . . ).

Remark 2.7. Let L ∈ K[D]. Then F1 ◦ · · · ◦Fk is a partial factorization of L
of the type (S1) . . . (Sk) if and only if F1 ◦ · · · ◦Fk is an extension of a partial
factorization S1 ◦ · · · ◦ S2.

2.3 Generalization of Grigoriev-Schwarz Theorem

Consider an operator L ∈ K[D] of some order d, and some factorization of
its symbol

SymL = S1 · S2 .

Then the corresponding composition of operators Ŝ1 ◦ Ŝ2 is a partial factor-
ization of the operator L, and

L = Ŝ1 ◦ Ŝ2 + R ,

for some R ∈ K[D] of order less than d.

Suppose S1 and S2 are coprime, then by the Grigoriev-Schwarz Theo-
rem 1.3, there exists at most one extension of this partial factorization to a
factorization of the whole operator L .

Suppose now that there exists a nontrivial common divisor of S1 and S2.
Then the uniqueness of the extension is not necessarily the case.
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Example 2.8. Consider the operator of Landau [5]

L = D3
x + xD2

xDy + 2D2
x + (2x + 2)DxDy + Dx + (2 + x)Dy,

which is a frequently cited instance of an operator that has two factorizations
into different numbers of irreducible factors (that is, factors that cannot be
factored into factors of smaller orders):

L = (Dx+1)◦(Dx+1)◦(Dx+xDy) = (D2
x+xDxDy+Dx+(2+x)Dy)◦(Dx+1).

The same operator L (the symbol of L is X3 + xX2Y ) has a whole family of
factorizations into two factors with the symbols S1 = X and S2 = X(X +
XY ) respectively:

L =
(
Dx+1+

1

x + f1(y)

)
◦
(
D2

x+xDxDy+(1− 1

x + f1(y)
)Dx+(x+1− x

x + f1(y)
)Dy

)
,

where f1(y) ∈ K is a functional parameter.

Though there is no uniqueness of factorization in this case, we may for-
mulate the following theorem:

Theorem 2.9. Let L ∈ K[D] be of some order d, and a factorization of its
symbol be known:

SymL = S1 · S2 ,

where the greatest common divisor of S1 and S2 be some homogeneous poly-
nomial S0 of order s.

Then for every (d− d0)th order partial factorization of the type (S1)(S2),
there is at most one extension to a complete factorization of L of the same
type.

To prove the theorem we will use the following two propositions.

Proposition 2.10. Let S1, S2, p be homogeneous polynomials, in an arbi-
trary number of variables, of orders d1, d2, s (0 < s < d1 + d2) respectively.
Let, in addition, S1 and S2 be coprime. Then there exists at most one pair
(u, v) of homogeneous polynomials u and v of orders s − d1 and s − d2 re-
spectively, such that

S1 · u + S2 · v = p . (21)

Proof. Suppose there are two pairs (u1, v1) and (u2, v2) that satisfy the equa-
tion (21). Then

S1 · (u1 − u2) + S2 · (v1 − v2) = 0 ,

that implies
S1 · (u1 − u2) = S2 · (v2 − v1) .
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Since the polynomials S1 and S2 are coprime, S1 divides (v2− v1). However,

ord(v2 − v1) ≤ s− d2 < d1 + d2 − d2 = d1 .

Thus, ord(v2 − v1) < ord(S1). Contradiction.
The second fact is the generalization of Proposition 2.10 to the case of

non-coprime polynomials.

Proposition 2.11. Let S1, S2, p be homogeneous polynomials of orders d1,
d2, s respectively and in an arbitrary number of variables. Let a polynomial
S0 of order d0 be the greatest common divisor of S1 and S2, and 0 < s < d1+
d2−d0. Then there exist at most one pair (u, v) of homogeneous polynomials
u and v of orders s− d1 and s− d2 respectively, such that

S1 · u + S2 · v = p. (22)

Proof. Divide the both sides of the equation (22) by the polynomial S0. Then
use the proposition 2.10.

To prove Theorem 2.9 is enough to prove the following lemma.

Lemma 2.12. Let L ∈ K[D], SymL = S1 · S2, ord(L) = d, and let the
greatest common divisor of S1 and S2 be a homogeneous polynomial S0 of
order s. Then for every t-th (t ≤ (d− d0)) order partial factorization of the
type (S1)(S2), there is at most one (up to lower order terms) extension to the
partial factorization of order t− 1 of the same type.

Proof. If d0 = 0, then the statement of the lemma is implies from Theorem
1.3. If d0 > 0, consider the general form of a complete factorization of L,
that extends the given t-th order partial factorization:

L =

(
Ŝ1 +

k1−1∑
j=0

Gj

)
◦

(
Ŝ2 +

k2−1∑
j=0

Hj

)
, (23)

where k1 = ord(S1), k2 = ord(S2) and Gj ∈ Kj[D], Hi ∈ Ki[D], j =
0, . . . , (k1 − 1), i = 0, . . . , (k2 − 1). By comparing components of order t− 1
on the both sides of the equality (23), we get

Lt−1 = Ht−k1−1 · S1 + Gt−k2−1 · S2 + Pt−1, (24)

where Pt−1 is a homogeneous polynomial of order t, which is determined
uniquely by the polynomials Gi, Hj, i > t − k1 − 1, j > t − k2 − 1, which
are components of order t of the given partial factorization. We assume that
polynomials Gi, Hi are 0 for i < 0.

Now, since t − 1 < d − d0, we may apply proposition 2.11: there is at
most one solution of equation (24). Thus there exists at most one extension
to a partial factorization of order t− 1.
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Corollary 2.13. Let L ∈ K[X], SymL = S1 ·S2, and S1 and S2 be coprime.
Then there is at most one factorization of L of the type (S1)(S2). Thus the
theorem is a generalization of the Grigoriev-Schwarz Theorem 1.3.

Corollary 2.14. In the case of ordinary differential operators, the greatest
common divisor of S1 and S2 is

gcd(S1, S2) = Xd0 , where d0 = min(ord(S1), ord(S2)).

Then for every partial factorization of order

max
(
ord(S1), ord(S2)

)− 1

there is at most one extension to a complete factorization.

Corollary 2.15. Let L ∈ K[D], SymL = S1 · S2, and let S1 be coprime with
S2. Then for every t, t < ord(L) there is at most one (up to lower order
terms) partial factorization of order t.

2.4 Factorable with Certain Type LPDOs

Reformulate Theorem 1.3:

Theorem 2.16. Let L ∈ K[D], SymL = S1 · S2 . . . Sk and let S1, . . . , Sk

be coprime. Then there exists at most one factorization of the type
(S1)(S2) . . . (Sk).

Consider LPDOs with the same symbol and describe the quantity of those
of them that are factorable with a certain factorization type.

Theorem 2.17. Consider the variety of all the operators in K[D] that have
the symbol Sym = S1 . . . Sk, ord(Si) = di, i = 1, . . . , k. Then the codimen-
sion of the subvariety of the operators that have a factorization of the type
(S1)(S2) . . . (Sk) equals

(
n + d− 1

n

)
−

k∑
i=1

(
n + di − 1

n

)
.

Proof. Consider the problem of the factorization of L of the type
(S1)(S2) . . . (Sk) in the general form:

L =
(
S1 +

d1−1∑
i=0

G1
i

)
◦ · · · ◦

(
Sk +

dk−1∑
i=0

Gk
i

)
, (25)

where Gj
i denotes the i-th component in the j-th factor. Compare compo-

nents of orders t, 0 ≤ t ≤ ord(L)− 1 on both sides of (25), then we have

Pt = (Sym/S1) ·G1
t−d+d1

+ · · ·+ (Sym/Sk) ·Gk
t−d+dk

, (26)

26



where Pt is a homogeneous polynomial of order t, which is determined unique-
ly by the polynomials Gi, Hj, i > t−k1, j > t−k2, and so it is known if we
solve equations (26) in “descent” order, that is if we start with t = ord(L)−1,
and reduce t by one at each succeeding step.

Polynomials Gi, Hj, i > t − k1, j > t − k2, and so Pt are determined
uniquely: it is an immediate consequence of the following lemma:

Lemma 2.18. Let S1, . . . , Sk are pairwise coprime homogeneous polynomials
of orders d1, . . . , dk respectively. Denote S = S1 . . . Sk. Then there is at most
one tuple (A1, . . . , Ak) such that

Pt = (S/S1) · A1 + · · ·+ (S/Sk) · Ak, (27)

where ord(Pt) = t, t < ord(S), and ord(Ai) + ord(S/Si) = t.

Proof. Assume we have two such tuples: (A′
1, . . . , A

′
k) and (A′′

1, . . . , A
′′
k).

Consider the difference of the equations corresponding to them, so we have

0 = (S/S1) ·B1 + · · ·+ (S/Sk) ·Bk, (28)

where Bi = A′
i−A′′

i , i = 1, . . . , k. Without loss of generality we may assume
B1 6= 0 and rewrite equation (28) in the form

−(S/S1) ·B1 = (S/S2) ·B2 + · · ·+ (S/Sk) ·Bk.

Every component on the right is divisible by S1, while (S/S1) is not so. Thus,
B1 is divisible by S1, and so ord(B1) ≥ ord(S1).

On the other hand, we have ord(Ai)+ord(S/Si) = t and t < ord(S), that
is ord(Ai) < ord(Si), and so ord(B1) < ord(Si). This is a contradiction with
the results of the previous paragraph.

The factorization exists if the system of all the equations (26), t = d −
1, . . . , 0 is compatible. The codimension equals the number of independent
equations in the coefficients of the operator.

For every t we have the linear equation (26) in the polynomials
G1

t−d+d1
, . . . , Gk

t−d+dk
, which is equivalent to the system of linear equations in

their coefficients. Let the system be A · ~g = ~c, where A is the matrix of the
system. The system has a unique solution, and so the rank of the matrix A
equals the number v of variables. That is the columns of the matrix A are
linearly independent.

The system A · ~g = ~c is compatible when vector ~c belongs to a v-
dimensional affine space, generated by the columns of A. The length of
vector ~c equals the number of equations in the system. Thus the codimen-
sion of the solution space is the difference between the number of equations
and the number of variables.

Now the codimension of the variety of all the operators that have factor-
izations of the type (S1)(S2) . . . (Sk) equals the difference between the number
of equations and the number of variables at all the steps together. This can
be computed using the following combinatorial fact:
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Lemma 2.19. The cardinality of the set

{M = xd1
1 . . . xdn

n | d1 + · · ·+ dn = t}

of monomials in n independent variables x1, . . . , xn is
(

n+t−1
t

)
=

(
n+t−1
n−1

)
.

The theorem about codimension is proved.

Example 2.20. Consider all second-order operators in K[Dx, Dy] with the
symbol S1 · S2, where S1, S2 are certain coprime homogeneous operators of
the first order. By Theorem 2.17, the codimension of the variety of all the
operators that have a factorization of the type (S1)(S2), is 1.

One may find explicit formulae for the equation which defines this variety.
Let, for example,

Ŝ1 = Dx, Ŝ2 = Dy .

Consider all the operators of the form

L = DxDy + a10Dx + a01Dy + a00 .

Such an operator has a factorization of the type (S1)(S2) if and only if coef-
ficients a10, a01, a00 satisfy the condition

a00 − a10a01 − ∂x(a10) = 0 .

Example 2.21. Consider all third-order operators in K[Dx, Dy] with the
symbol S1 · S2, where S1, S2 are certain coprime homogeneous operators of
first and second orders respectively. By Theorem 2.17, the codimension of
the variety of all the operators that have a factorization of the type (S1)(S2),
is 2.

If we consider a factorization of the type (S1)(S2)(S3), where S1, S2, S3

are coprime homogeneous operators of the first order, then, by Theorem 2.17,
the codimension is 3.

2.5 Obstacles to Factorizations

Even the LPDOs with a factorable symbol happen to be factorable quite
rarely. On the other hand one can always introduce the following notion.

Definition 2.22. Let L ∈ K[D], SymL = S1 . . . Sk. An operator R ∈ K[D]
is called a to factorization of the type (S1)(S2) . . . (Sk) if there exists a
factorization of this type for the operator L−R and R has minimal possible
order.

Example 2.23. Consider the operator

L = Dxy + aDx + by + c ,
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where all the coefficients belong to K. Then regardless whether it is fac-
torable or not, one can present L in the form

L = (Dx + b) ◦ (Dy + a) + h = (Dy + a) ◦ (Dx + b) + k,

where

h = c− ax − ab, k = c− by − ab

are the Laplace invariants.

Naturally, common obstacles are closely related to partial factorizations:

Proposition 2.24. Let L ∈ K[D], SymL = S1 . . . Sk. A common obstacle to
a factorization of the type (S1) . . . (Sk) is of order t if and only if the minimal
order of a partial factorization of this type is t + 1.

Though common obstacles are the natural generalization of the Laplace
invariants, they do not preserve the important properties of those. Neither
common obstacles nor their symbols are unique in general, or invariant (w.r.t.
the gauge transformations L → g−1Lg). On the other hand we would like
to describe all factorable (or unfactorable) LPDOs in some algebraic terms,
and understand what actually prevents an LPDO to be factorable. Thus, we
suggest to consider the following algebraic structure:

Definition 2.25. Let L ∈ K[D] and SymL = S1 · S2 · · · · · Sk. Then we say
that the to factorizations of the type (S1) . . . (Sk) is the factor ring

K(S1, . . . , Sk) = K[X]/I,

where

I =

(
SymL

S1

, . . . ,
SymL

Sk

)

is a homogeneous ideal.

Example 2.26. In the case of two factors (k = 2), the ring of obstacles is

K(S1, S2) = K[X]/(S1, S2).

Now we prove an important property of rings of obstacles.

Theorem 2.27. Let L ∈ K[D] and SymL = S1 · S2 . . . Sk, where Si, i ∈
{1, . . . , k} are pairwise coprime. Then the symbols of all common obstacles
to factorization of the type (S1) . . . (Sk) belong to the same class in the factor-
ring K(S1, . . . , Sk).
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Proof. Denote di = ord(Si), i ∈ {1, . . . , k} and let t be the order of common
obstacles. In the same way as in the proof of Theorem 2.17, we obtain the
equation (26), that is the symbol of every common obstacle can be written
in the form

Pt − ((SymL/S1) ·G1
t−d+d1

+ · · ·+ (SymL/Sk) ·Gk
t−d+dk

),

where Pt is known, uniquely determined and the same for all common obsta-
cles polynomial. Thus all common obstacles belong to the class [Pt] of the
factor-ring K(S1, . . . , Sk).

Definition 2.28. We say that the class of common obstacles in the ring of
obstacles is the obstacle to factorization.

Remark 2.29. Every element of this class is again a common obstacle.

2.6 Properties of Obstacles to Factorizations

Definition 2.30. We say that two types of factorizations (S1) . . . (Sk) and
(b1S1) . . . (bkSk) are similar, if b1, . . . , bk ∈ K and b1 . . . bk = 1.

Theorem 2.31. For an operator in K[X] the rings of obstacles and the
obstacles of similar types are the same.

Proof. Consider an operator L ∈ K[D] and two similar types of factorizations
of L: (S1) . . . (Sk) and (b1S1) . . . (bkSk), where bi ∈ K, i = 1, . . . , k. Then
the homogeneous ideals (S1, . . . , Sk) and (b1S1, . . . , bkSk) are the same, thus
the rings of obstacles are also.

Every common obstacle of the type (S1) . . . (Sk) and of order d0 may be
written as

P = L− (Ŝ1 + T1) ◦ · · · ◦ (Ŝk + Tk), (29)

where Ti is the sum of components of orders di − 1, . . . , d− di − d0 + 1, and
ord(P ) = d0.

There exist T ′
1, . . . , T

′
k such that T ′

i is the sum of components of orders
di − 1, . . . , d− di − d0 + 1 and

(S1 + T1) ◦ · · · ◦ (Sk + Tk) = (b1S1 + T ′
1) ◦ · · · ◦ (bkSk + T ′

k).

Thus P is a common obstacle of order d0 of the type (b1S1) . . . (bkSk). On
the other hand, we know that the rings of obstacles K(S1, . . . , Sk) and
(b1S1, . . . , bkSk) are the same. Thus obstacles are the same also.

Theorem 2.32. Let L ∈ K[D], and P be a common obstacle to factoriza-
tions of L. Then g−1Pg will be a common obstacle for the gauge transformed
operator g−1Lg, where g ∈ K∗.
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Proof. Consider a common obstacle (29) for L of order d0. Then we have

g−1Pg = g−1Lg − g−1 ◦ (S1 + T1) ◦ Πk−1
j=2(Si + Ti) ◦ (Sk + Tk) ◦ g.

There exist T ′
1, . . . , T

′
k such that T ′

i is the sum of components of orders di −
1, . . . , d− di − d0 + 1 and

g−1Pg = g−1Lg − (g−1S1 + T ′
1) ◦ Πk−1

j=2(Si + T ′
i ) ◦ (gSk + T ′

k).

Corollary 2.33. Obstacles are invariant under the gauge transformations
L → g−1Lg.

Proof. Under the gauge transformations common obstacles are conjugated,
and so symbols of common obstacles are the same.

Theorem 2.34. Let n = 2, L ∈ K[D], ord(L) = d, and let SymL =
S1 . . . Sk, where Si, i ∈ {1, . . . , k} are pairwise coprime. Thus the ring of
obstacles K(S1, . . . , Sk) is 0 to order d− 1. (That is, non-zero obstacles may
be only less than or equal to d− 2.)

Proof. Denote di = ord(Si), i ∈ {1, . . . , k} and repeat the reasoning of the
proof of Theorem 2.17. Thus we write equation (26) for t = d− 1:

Pd−1 = (SymL/S1) ·G1
d1−1 + · · ·+ (SymL/Sk) ·Gk

dk−1.

It has at most one solution w.r.t. G1
d1−1, . . . , G

k
dk−1. Consider the correspond-

ing system of equations in their coefficients. By Lemma 2.19 the number of
equations in this system is d, the number of variables is d also. Thus the
system has a unique solution, and so we have a partial factorization of order
d− 1.

Theorem 2.35. Let L ∈ K[D] be a bivariate hyperbolic of order d. Then
for each type of factorization, a common obstacle is unique.

Proof. Let the type of the factorizations be (S1) . . . (Sd), and let P be a
common obstacle for this type. Let the order of common obstacles be p.
Assume there is another common obstacle for this type, then it is of the form

P + (SymL/S1) · A1 + ... + (SymL/Sd) · Ad,

where Ai are some homogeneous polynomials of orders pi = p −
ord(SymL/Si) = p− (d− 1). That is p ≥ d− 1.

On the other hand, by Theorem 2.34, the ring of obstacles is 0 to order
d− 1, and so p ≤ d− 2.
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2.7 Bivariate Operators of Order Two

Consider a second-order hyperbolic operator L ∈ K[Dx, Dy] in such a system
of coordinate that the symbol of L is XY . By Theorems 2.34 and 2.35,
both common obstacles to factorizations of L have order 0 and are uniquely
defined. We compute explicit formulas.

Theorem 2.36. Let

L = Dx ·Dy + aDx + bDy + c,

where a10, a01, a00 ∈ K. Then obstacles of types (X)(Y ), (Y )(X) are

c− ab− ∂x(a),
c− ab− ∂y(b)

respectively.

Proof. A factorization of L of type (X)(Y ) has the form

L = (Dx + g00) ◦ (Dy + h00) ,

where g00, h00 are some elements of K. Comparing components of order 1 on
the right and on the left, we have

(a− h00)Dx + (b− g00)Dy = 0 , (30)

that is a = h00, b = g00. Now we compute the obstacle as

L− (Dx + b) ◦ (Dy + a) = c− ab− ∂x(a).

One may find the obstacle for type (Y )(X) analogously.

Remark 2.37. The obtained obstacles are the invariants of Laplace [34].

2.8 Bivariate Operators of Order Three

Consider some operator L ∈ K[Dx, Dy] of order three. Let the symbol of L
be

SymL = S1 · S2 · S3 ,

then the following types of factorizations are possible: six types of factoriza-
tion into three factors:

(S1)(S2)(S3), (S1)(S3)(S3), (S2)(S1)(S3), (S2)(S3)(S1), (S3)(S1)(S2), (S3)(S2)(S1),

and six types of factorization into two factors:

(S1)(S2S3), (S2)(S1S3), (S3)(S1S2), (S1S2)(S3), (S1S3)(S2), (S2S3)(S1).
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2.8.1 Factorizations into Two Factors

The theory introduced above applies for the case of pairwise coprime symbols
of factors. That is, if the considered type is (S1)(S2S3), then S1 and S2S3

should be coprime. Taking this and the symmetry into account, we restrict
ourselves to considering two important special cases: factorization of the type
(X)(X2 + XY ) for an operator with symbol X2Y + XY 2 and of the type
(X)(Y 2) for an operator with symbol XY 2.

Note that by Theorem 2.34 common obstacles of these types may be of
orders one and zero only, in the first case a common obstacle is not unique.

Theorem 2.38. Let

L = ŜymL + a20Dxx + a11Dxy + a02Dyy + a10Dx + a01Dy + a00,

where all aij ∈ K.
Let SymL = XY (X + Y ), then

Obst(X)(Y X+Y Y ) =
(
a2

02 − a11a02 + a01 + ∂x(a02 − a11)
)
Dy+

a00 − a02a10 + a2
02a20 + 2a02∂x(a20)− ∂x(a10) + a20∂x(a02) + ∂xx(a20),

is a common obstacle to factorizations of L of type (X)(Y X + Y Y ).
Let SymL = X2Y , then

Obst(Y )(XX+XY ) =
(
a10 − a20a11 − ∂y(a11)

)
Dx+

a00 − a20a01 + a2
20a02 + 2a20∂y(a02)− ∂y(a01) + a02∂y(a20) + ∂yy(a02),

is a common obstacle to factorizations of L of type (Y )(XX).

Proof. All factorizations of type (X)(Y X + Y Y ) have the form

L = (Dx + G0) ◦ (Dxy + Dyy + H1 + H0) , (31)

where G0 = g00 ∈ K, H1 = h10Dx + h01Dy ∈ K[Dx, Dy], H0 = h00 ∈ K.
Compare components of order 2 on both sides of equality (31), then we get
a system of linear equations in coefficients h10, h01, g00:





a20 = h10,

a11 = h01 + g00,

a02 = g00.

We find the unique solution of the system. Then, we compare coefficients in
Dx on the both sides of (31), and so we get

h00 = a10 − a20a02 − ∂x(a20).

Now we may compute a common obstacle as P = L − (Dx + G0) ◦
(Dxy + Dyy + H1 + H0).

One may find the obstacle for type (Y )(XX) analogously.
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Example 2.39. Consider operator

L = DxDy(Dx + Dy) + aDx + bDy + c ,

where a = a(x, y), b = b(x, y), c = c(x, y) - parameters. Below we demon-
strate common obstacles to factorizations into two factors and the corre-
sponding partial factorizations. There are three factorizations’ types, where
the first factor is of order one, and the second is of order two:

L = Dx ◦ (Dxy + Dyy + Dy + a) + bDy + c− ax ,

L = Dy ◦ (Dxx + Dxy + Dx + b) + aDx + c− by ,

L = (Dx + Dy + 1) ◦ (Dxy + a) + (b− a)Dy + c− ax − ay .

Also there are three factorizations’ types, where the first factor is of order
two, and the second is of order one:

L = (Dxy + Dyy + Dy + a) ◦Dx + bDy + c ,

L = (Dxx + Dxy + Dx + b) ◦Dy + aDx + c ,

L = (Dxy + a) ◦ (Dx + Dy + 1) + (b− a)Dy + c− a .

There are no other types of factorizations into two factors. I computed this
example using my package for LPDOs with symbolic coefficients (see chapter
6).

2.8.2 Factorizations into Three Factors

Here we restrict ourselves in considering of an important special case of the
hyperbolic third-order operators in K[Dx, Dy]: the operators with the symbol

XY (X + Y ) .

The common obstacles for the general case are found analogously, but they
are too large to present them on the paper. An easy way to have them
computed is to use my package (see the chapter 6 for details). For the
same reason, it is enough to consider here the case of the factorization type
(X)(Y )(X + Y ).

Note that in this case a common obstacle may be of orders 1 and 0 only
(Theorem 2.34) and it is unique (Theorem 2.35).

Theorem 2.40. Let

L = DxDy(Dx + Dy) + a20Dxx + a11Dxy + a02Dyy + a10Dx + a01Dy + a00,

where all aij ∈ K. The common obstacle of type (X)(Y )(X + Y ) is

Obst(X)(Y )(X+Y ) = (a10 − a20a11 + a2
20 − ∂x(a20) + ∂y(s2))Dx+

(a01 − a02a11 + a2
02 + ∂x(−a11 + a02))Dy+

a00 + a20a02s2 + s2∂x(a20) + (a20∂x + ∂xy + a02∂y)(s2),

where s2 = a20 − a11 + a02.
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Proof. Every factorization of type (X)(Y )(X + Y ) has the form:

L = (Dx + g0) ◦ (Dy + h0) ◦ (Dx + Dy + f0) . (32)

Compare components of order 2 and get the only solution

h0 = a20, g0 = a02, f0 = a11 − a02 − a20.

Now, we may compute the common obstacle as the difference of the left and
the right sides of the equation (32).

Example 2.41. Consider the operator

L = DxDy(Dx + Dy) + aDx + bDy + c

of the example 2.39. The common obstacles to factorizations and the corre-
sponding partial factorizations are

L = Dx ◦Dy ◦ (Dx + Dy + 1) + R ,

L = Dx ◦ (Dx + Dy + 1) ◦Dy + R ,

L = Dy ◦Dx ◦ (Dx + Dy + 1) + R ,

L = Dy ◦ (Dx + Dy + 1) ◦Dx + R ,

L = (Dx + Dy + 1) ◦Dx ◦Dy + R ,

L = (Dx + Dy + 1) ◦Dy ◦Dx + R ,

where
R = aDx + bDy + c .

Thus, all the common obstacles to factorizations into three factors of this
operator L are the same.

Also, since the common obstacle is unique, we conclude that the factor-
ization into three factors exists for L if only if the parameters a, b, c are zero
simultaneously.

I computed this example using my package for LPDOs with symbolic
coefficients (see chapter 6).

2.9 Conclusion

The concept of obstacles to factorization provides us with a new tool for the
general purpose for studying and describing all factorable LPDOs. The foun-
dations of the theory have been laid, and now some further investigations,
such as the description of functorial properties, the computation of obstacles
and obstacle rings, and the generalization to the case of non-coprime factors
of the symbol are planned.
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The common obstacles have been implemented in Maple (see in more
detail in the chapter 6).

The results of the following chapter serve as an example of the application
of obstacle theory.
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3 Invariants of Linear Partial Differential

Operators

3.1 Introduction

The Laplace Cascade method essentially uses quantities h, k known as the
Laplace invariants. They are indeed invariants (that is unaltered) under the
gauge transformations

L 7→ g(x1, x2)
−1 ◦ L ◦ g(x1, x2),

which corresponds to the linear transformation of the dependent variable

z = λ(x, y)z, λ(x, y) 6= 0 (33)

in the corresponding equation L(z) = 0.
The search of invariants is a classical problem in the classification of

PDEs. Indeed, whenever we know a full system of invariants for a certain
class of equations under the certain transformations, we may easily solve
the equivalence problem, as well as uniquely classify a number of simple
equations in terms of their invariants, or describe some invariant properties
of the considered class of equations. For example, the equation of the form

zxy + azx + bzy + c = 0, (34)

where a = a(x, y), b = b(x, y), c = c(x, y), the Laplace invariants h and k
together form a full system of invariants w.r.t. Gauge transformations of a
dependent variable, i.e. any other invariant can be expressed in terms of
these two [7]. So there is an easy way to judge whether two equations of the
form (34) are Gauge equivalent. Thus, it was proved that the equation of
the form (34) is Gauge equivalent to the wave equation

zxy = 0

whenever h = k = 0.
Whereas the operators of order two are very actively investigated (clas-

sical Laplace’s hyperbolic second-order LPDOs, scalar hyperbolic non-linear
LPDOs (for ex. [1, 2]), etc), for the hyperbolic operators of high orders not
much is known.

A method to obtain some invariants for an hyperbolic operator of arbi-
trary order has been mentioned in [35]. As well as in the paper [16] a method
to compute some invariants for operators of order three is suggested.

In this chapter I present a complete set of invariants for bivariate third-
order hyperbolic operators.

The five invariants of the obtained complete system of invariants have
been implemented in Maple (see in more detail in the chapter 6).

The results have been partially published [24]. The rest has been submit-
ted [25].
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3.2 Connection of Obstacles to Factorizations with In-
variants

Consider in K[Dx, Dy] a hyperbolic LPDO of order three. The symbol of
such the operator has the form

(α1X + β1Y )(α2X + β2Y )(α3X + β3Y ) ,

where all the coefficients belong to K, and the factors are pairwise coprime.
In an appropriate system of coordinates, the symbol has the form XY (pX +
qY ), where p, q ∈ K and neither p, nor q is equal to zero, and the operator
has the normalized form

L = DxDy(pDx+qDy)+a20D
2
x+a11Dxy +a02D

2
y +a10Dx+a01Dy +a00 , (35)

where the coefficients belong to K. Accumulate all the knowledge of the
chapter 2 about the (common) obstacles to factorizations of such operators
in the following theorem:

Theorem 3.1. [24] For an LPDO of the form (35) consider its factorizations
into first-order factors. Then

1. the order of common obstacles is zero or one;

2. a common obstacle is unique for each factorization type, and therefore,
the corresponding obstacles consist of just one element;

3. there are 6 common obstacles to factorizations into exactly three fac-
tors;

4. the symbol of a common obstacle is an invariant w.r.t. the gauge trans-
formations L → g−1Lg.

3.3 Computing of Invariants

First of all, since the symbol of the LPDO L does not altered under the gauge
transformations L → g−1Lg, then the symbol, and therefore, the coefficients
of the symbol are invariants w.r.t. these transformations. Thus, p and q are
invariants.

Now we use Theorem 3.1 to compute a number of invariants for the
operator L. Suppose for a while that

p = 1 .

Denote the factors of the symbol SymL = XY (X + qY ) of L:

S1 = X, S2 = Y, S3 = X + qY .
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Denote the common obstacle to factorizations of the type (Si)(Sj)(Sk) by
Obstijk.

Then the coefficient at Y of the symbol of the common obstacle Obst123

is

(a01q
2 + a2

02− (3qx + a11q)a02 + qxqa11− ∂x(a11)q
2 + q∂x(a02)+ 2q2

x− qxx)/q
2 .

By Theorem 3.7 this expression is invariant w.r.t. gauge transformations
L → g−1Lg. Since the term (2q2

x − qxx)/q
2 and multiplication by q2 does

not influence on being an invariant (because q is an invariant), the following
expression is invariant also:

I4 = a01q
2 + a2

02 − (3qx + a11q)a02 + qxqa11 − ∂x(a11)q
2 + q∂x(a02) .

The coefficient at Y of the symbol of the common obstacle Obst213 is

(I4− (∂x(a20)q
2−∂y(a02)q+a02qy)q+a02qy)q−qxqyq+qxyq

2 +2q2
x−qxxq)/q

2 .

Again the expressions in q can be omitted, while I4 is an invariant itself.
Therefore,

I2 = ∂x(a20)q
2 − ∂y(a02)q + a02qy

is an invariant.
Similarly, we obtain the invariants

I1 = 2a20q
2 − a11q + 2a02 ,

I3 = a10 + a20(qa20 − a11) + ∂y(a20)q − ∂y(a11) + 2a20qy .

Generally speaking, by Theorem 3.1, there are six different obstacles to
factorizations into exactly three factors. In fact, all the coefficients of the
symbols of the common obstacles can be expressed in terms of four invariants

I1, I2, I3, I4 .

Denote the symbol of the common obstacle Obstijk by Symijk. The direct
computations justify the following theorem:

Theorem 3.2.

q2Sym123 = (q2I3 + I2 − qxyq + qyyq
2 + qxqy)Dx + (I4 + 2q2

x − qxx)Dy ,
q2Sym132 = (i2 + I2)Dx + (I4 + 2q2

x − qxx)Dy ,
q2Sym213 = (q2I3 + q2qyy)Dx + i3Dy ,
q2Sym231 = (q2I3 + q2qyy)Dx + i1Dy ,
q2Sym312 = (i2 + I2)Dx + (i1 + I2q)Dy ,
q2Sym321 = i2Dx + i1Dy ,

where

i1 = I4 − 2∂x(I1)q + 4qxI1 − 2I2q ,

i2 = q2I3 − 2∂y(I1)q + 2I1qy + I2 ,

i3 = I4 − I2q − qxqyq + qxyq
2 + 2q2

x − qxxq .
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Note that neither of the obtained invariants I1, I2, I3, I4 depends on the
“free” coefficient a00 of the operator L, and, therefore, we need at least one
another.

3.4 A Full System of Invariants for Third Order LP-
DOs

Theorem 3.3. For some non-zero q ∈ K consider the operators of the form

L = DxDy(Dx +qDy)+a20D
2
x +a11Dxy +a02D

2
y +a10Dx +a01Dy +a00 , (36)

where the coefficients belong to K. Then the following is a full system of
invariants of such an operator w.r.t. the gauge transformations L → g−1Lg:

I1 = 2a20q
2 − a11q + 2a02 ,

I2 = ∂x(a20)q
2 − ∂y(a02)q + a02qy ,

I3 = a10 + a20(qa20 − a11) + ∂y(a20)q − ∂y(a11) + 2a20qy ,

I4 = a01q
2 + a2

02 − (3qx + a11q)a02 + qxqa11 − ∂x(a11)q
2 + q∂x(a02) ,

I5 = a00 − 1

2
∂xy(a11) + qx∂y(a20) + qxya20 +

(
2qa20 +

2

q
a02 − a11 + qy

)
∂x(a20)− 1

q
a02a10 − a01a20 +

1

q
a20a11a02 .

Thus, an operator L′ ∈ K[D]

L′ = DxDy(Dx +qDy)+b20D
2
x +b11DxDy +b02D

2
y +b10Dx +b01Dy +b00 (37)

is equivalent to L (w.r.t. the gauge transformations L → g−1Lg) if and only
if their corresponding invariants I1, I2, I3, I4, I5 are equal.

Remark 3.4. Since the symbol of an LPDO L does not alter under the gauge
transformations L → g−1Lg, we consider the operators with the same symbol.

Proof. 1. The direct computations show that the five expressions from the
statement of the theorem are invariants w.r.t. the gauge transformations
L → g−1Lg. One just has to check that these expressions do not depend on
g, when calculate them for the operator g−1Lg. Basically, we have to check
the fifth expression I5 only, since the others are invariants by construction.

2. Prove that these five invariants form a complete set of invariants,
in other words, the operators L and L′ are equivalent (w.r.t. the gauge
transformations L → g−1Lg) if and only if their corresponding invariants are
equal.

The direction “⇒” is implied from 1. Prove the direction “⇐”. Let

I ′1, I
′
2, I

′
3, I

′
4, I

′
5
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be the invariants computed from the coefficients of the operator L′ by the
formulas from the statement of the theorem, and

Ii = I ′i, i = 1, 2, 3, 4, 5 . (38)

Look for a function g = ef , f, g ∈ K, such that

g−1Lg = L′ . (39)

Equate the coefficients of Dxx, Dyy on both sides of (39), and get

∂y(f) = b20 − a20 , (40)

∂x(f) = (b02 − a02)/q . (41)

In addition, the assumption I2 = I ′2 implies

(b20 − a20)x = ((b02 − a02)/q)y.

Therefore, there is only one (up to a multiplicative constant) function f ,
which satisfies the conditions (40) and (41).

Consider such the function f . Then substitute the expressions

b20 = a20 + fy , (42)

b02 = a02 + qfx . (43)

for b20, b02 in (39), and prove that it holds for g = ef .
Subtracting the coefficients of Dxy in g−1Lg from that in L′ we get

b11 − a11 − 2fx − 2qfy ,

which equals

2q(I1 − I ′1) ,

which is zero by the assumption (38). Now we can substitute

b11 = a11 + 2fx + 2qfy .

Analogously, subtracting the coefficients of Dx,Dy in g−1Lg from those
in L′, correspondingly, we get

b10 − a10 − 2a20fx − a11fy − 2fxy − 2fxfy − qfyy − qf 2
y =

I ′3 − I3 = 0 ,

b01 − a01 − 2a02fy − a11fx − 2qfxy − 2qfxfy − fxx − f 2
x =

I ′4 − I4 = 0 .
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Now we can express b10 and b01. Now, subtracting the “free” coefficient of
g−1Lg from that of L′, we get

b00 − a00 − a10fx − a01fy − a20(fxx + f 2
x)− a11(fxy + fxfy)− a02(fyy + f 2

y )−
fxxy − 2fxyfx − fyfxx − fyf

2
x − qfxfyy − qfxf

2
y − qfxyy − 2qfyfxy =

I ′5 − I5 = 0 .

Thus, we proved that for the chosen function f , the equality (39) holds, and
therefore, the operators L and L′ are equivalent.

Thus, a full system of invariants for the case p = 1 has been found. Now
we give the formulas for the general case.

Theorem 3.5. For some non-zero p, q ∈ K consider the operators of the
form

L = DxDy(pDx+qDy)+a20D
2
x+a11Dxy +a02D

2
y +a10Dx+a01Dy +a00 , (44)

where the coefficients belong to K. Then the following is a full system of
invariants of such an operator w.r.t. the gauge transformations L → g−1Lg:

I1 = 2a20q
2 − a11pq + 2a02p

2 ,

I2 = ∂x(a20)pq
2 − ∂y(a02)p

2q + a02p
2qy − a20q

2px ,

I3 = a10p
2 − a11a20p + 2a20qyp− 3a20qpy + a2

20q − ∂y(a11)p
2 + a11pyp + ∂y(a20)pq ,

I4 = a01q
2 − a11a02q + 2a02qpx − 3a02pqx + a2

02p− ∂x(a11)q
2 + a11qxq + ∂x(a02)pq ,

I5 = a00p
3q − p3a02a10 − p2qa20a01 +

(pI1 − pq2py + qp2qy)a20x + (qqxp
2 − q2pxp)a20y

+(4q2pxpy − 2qpxqyp + qqxyp
2 − q2pxyp− 2qqxppy)a20

+(
1

2
pxyp

2q − pxpypq)a11 − 1

2
p3qa11xy +

1

2
a11xpyp

2q +
1

2
a11ypxp

2q

+p2a02a20a11 + pqpxa20a11 − 2pxq
2a2

20 − 2p2pxa20a02 .

Proof. Since p 6= 0 we can multiply (44) by p−1 on the right, and get some
new operator

L1 = DxDy(Dx +
q

p
Dy) +

a20

p
D2

x +
a11

p
Dxy +

a02

p
D2

y +
a10

p
Dx +

a01

p
Dy +

a00

p
.

The invariants of the operator L and L1 are the same. We compute the
invariants of the operator L1 by the formulas of the Theorem 3.3, and get
the invariants of the statement of the current theorem up to multiplication
by integers and p, q.
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Example 3.6. For some p, q, c ∈ K consider the simple operator

L = DxDy(pDx + qDy) + c . (45)

Compute the full system of invariants of Theorem 3.5 for L:

I1 = 0 ,

I2 = 0 ,

I3 = 0 ,

I4 = 0 ,

I5 = p3qc .

Thus, every LPDOs in K[Dx, Dy] with the symbol XY (pX+qY ) that has the
same set of values for these five invariants is equivalent to the simple operator
(45). The fact is useful, since the operators equivalent to the operator (45)
are not trivially looking. Such the operators has the form

L = DxDy(pDx + qDy) + pfyD
2
x + (2pfx + 2qfy)Dxy + qfxD

2
y +

(2pfxy + 2pfxfy + qfyy + qfyfy)Dx + (pfxx + pfxfx + 2qfxy + 2qfxfy)Dy +

c + pfxxy + 2pfxyfx + pfyfxx + pfyf
2
x + qfxfyy + qfxf

2
y + qfxyy + 2qfyfxy ,

for some f ∈ K.

3.5 Invariants for LPDOs of Arbitrary Orders

Consider hyperbolic LPDOs in K[Dx, Dy] (of arbitrary order). Accumulate
all the knowledge of the chapter 2 about the (common) obstacles to factor-
izations of such operators in the following theorem:

Theorem 3.7. [24] Consider a hyperbolic operator L ∈ K[Dx, Dy] of order
d, and the factorizations of L into first-order factors. Then

1. the order of common obstacles less than or equal to d− 2;

2. a common obstacle is unique for each factorization type, and, therefore,
the corresponding obstacles consist of just one element;

3. there are d! common obstacles;

4. if d = 2, then the common obstacles of order 0 are the Laplace invari-
ants;

5. the symbol of a common obstacle is an invariant.

Thus, in much the same way it was done for the case d = 3, one can find a
number invariants w.r.t. the gauge transformations L → g−1Lg for operators
of arbitrary order. One of the difficulty lays in the large expressions, which
appear already for third-order operators, when consider them in general form.
The outlet can be in the guessing of the forms of invariants by analyzing the
structure of the obtained invariants for third-order operators.
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3.6 Conclusion

Consider operators of the form

L = DxDy(pDx + qDy) + a20D
2
x + a11Dxy + a02D

2
y + a10Dx + a01Dy + a00 ,

where all the coefficients belong to K. This is the normalized form for hy-
perbolic bivariate LPDOs of order three. A full system of invariants with
respect to the gauge transformations L → g−1Lg for such operators has been
found. A way to find a number of invariants for operators of higher order
has been suggested.

Whenever we have a full system of invariants for a given class of Lin-
ear Partial Differential Operators (LPDOs), we have an easy way to judge
whether two operators of the class are equivalent. This means that it is pos-
sible to classify some of the corresponding partial differential equations in
terms of their invariants. Naturally, classification has an immediate applica-
tion to the integration of PDEs. Indeed, to solve a given PDE, we consider
the corresponding LPDO and compute its basic invariants; the invariants
then allow us to determine the normal form of the operator.

Furthermore, a full system of invariants for a certain class of operators
can be used for the description of all the invariant properties of the operators,
by expression the properties in terms of the invariants of the full system. For
instance, it can be interesting to describe the properties “to be factorable
with a certain type of factorization” and “to have an obstacle ring of a
certain form” using the full system.
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4 Parameterized Factorizations of

Linear (Partial/Ordinary) Differential Op-

erators

4.1 Introduction

The factorization of the Linear Partial Differential Operator (LPDO)

L =
∑

i1+···+in≤d

ai1...inDi1
1 . . . Din

n ,

where the coefficients belong to some differential ring, is an important tech-
nique, used by modern algorithms for the integration of the corresponding
Linear Partial Differential Equation (LPDE) L(f) = 0 (Mostly these in-
tegration algorithms are advanced modifications and generalizations of the
Laplace transformation method). Over the last decade, a number of new
modifications of the classical algorithms for the factorization of LPDOs (for
example, [10, 11, 26, 27, 33, 34]) have been given. However, so far most of
the activity has addressed the hyperbolic case, and there is as yet a lack of
knowledge concerning the non-hyperbolic case.

There is a distinction in kind between the two cases. A factorization of a
hyperbolic LPDO on the plane is determined uniquely by a factorization of
the operator’s symbol (principal symbol) (see Theorem 1.3 and [10]). Thus,
the operator (5) may have at most one factorization of each of the forms
(Dx + . . . ) ◦ (Dy + . . . ) and (Dy + . . . ) ◦ (Dx + . . . ). On the other hand for
the non-hyperbolic operator Dxx there is the stereotypical example

Dxx = Dx ◦Dx =
(
Dx +

1

x + c

) ◦ (
Dx − 1

x + c

)
,

where c is an arbitrary parameter. A more significant example is provided by
the Landau operator L = Dxx(Dx+xDy)+2Dxx+2(x+1)Dxy+Dx+(x+1)Dy,
which factors as

L =
(
Dx + 1 +

1

x + c(y)

)
◦

(
Dx + 1− 1

x + c(y)

)
◦

(
Dx + xDy

)
, (46)

where the function c(y) is arbitrary. This shows that some LPDOs may
have essentially different factorizations, and, further, that the factors may
contain arbitrary parameters or even functions. Thus we may have families
of factorizations.

An LPDO is hyperbolic if its symbol is completely factorable (all factors
are of first order) and each factor has multiplicity one. In the present chapter
we consider the case of LPDOs of orders two, three, and four, that have com-
pletely factorable symbols, without any additional requirement. We prove
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that “irreducible” (see Definition 4.3) families of factorizations can exist only
for a few certain types of factorizations. For these cases explicit examples are
given. For operators of orders two and three, it is shown that a family may
be parameterized by at most one function in one variable. The investiga-
tions cover the case of ordinary differential operators as well. Some related
remarks about parametric factorizations for ordinary differential operators
may be found in [32].

The results of this chapter has been accepted for publishing [28].

4.2 Definitions

Definition 4.1. Let L, F1, . . . , Fk ∈ K[D]. A factorization L = F1 ◦ · · · ◦ Fk

is said to be of the factorization type (S1) . . . (Sk), where Si = SymFi
for all

i.

Definition 4.2. Let L ∈ K[D]. We say that

L = F1(T ) ◦ · · · ◦ Fk(T ) (47)

is a family of factorizations of L parameterized by the parameter T if, for
any value T = T0, we have that F1(T0), . . . , Fk(T0) are in K[D] and L =
F1(T0)◦· · ·◦Fk(T0) holds. Here T is an element from the space of parameters
T. Usually T is the Cartesian product of some (functions’) fields, in which
the number of variables is less than that in K.

We often consider families without mentioning or designating the corre-
sponding operator; we define the symbol and the order of the family to be
equal to symbol and order of the operator.

Definition 4.3. We say that a family of factorizations (47) is reducible, if
there is i, 1 ≤ i ≤ k, such that the product

F1(T ) ◦ · · · ◦ Fi(T )

does not depend on the parameter T (in this case the product Fi+1(T ) ◦ · · · ◦
Fk(T ) does not depend on the parameters as well). Otherwise the family is
reducible.

Thus, the family (46) is reducible. However, the product of the first two
factors does not depend on the parameter, while the factors themselves do.
So we have an example of a second-order irreducible family of factorizations.

Remark 4.4. Note that any irreducible family of the type (S1)(S2)(S3) serves
as an irreducible family of the types (S1S2)(S3) and (S1)(S2S3) as well. In-
deed, the irreducibility of the family of the type (S1)(S2)(S3) means that the
product of the first and the second factors, as well as that of the second one
and the third one, depends on the parameter.

Analogous property enjoys the families of arbitrary orders.
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Theorem 1.3 can be reformulated as

Theorem 4.5. [10] Let L ∈ K[D], and SymL = S1 . . . Sk, and let the Si

be pairwise coprime. There is at most one factorization of L of the type
(S1) . . . (Sk).

The theorem implies that, for instance, there are no irreducible families
of the types (X)(Y 3) or (X2)(Y 2).

Remark 4.6. The properties of factorizations, such as the existence of the
factorizations, or the number of parameters, or again the number of variables
in parametric functions, are invariant under a change of variables and the
gauge transformations L 7→ g−1Lg, g ∈ K, of the initial operator.

Definition 4.7. We say that a partial differential operator L ∈ K[D] is
almost ordinary if it is an ordinary differential operator in some system of
coordinates (transformation’s functions belong to K).

4.3 The Linearized Problem

The basic tool in our study of families of factorizations will be their . Let an
operator L ∈ K[D] have a family of factorizations

L = M1(T ) ◦M2(T ) ,

parameterized by some parameters T = (t1, . . . , tk), with M1(T ),M2(T ) ∈
K[D]. By means of a multiplication by a function from K, one can make
the symbols of M1(T ) and M2(T ) independent of the parameters. Take some
point T0 as an initial point, make the substitution T → T0 + εR, and equates
the coefficient at the power ε. This implies

F1 ◦ L2 + L1 ◦ F2 = 0. (48)

where we have denoted the initial factorization factors by Li = Mi(T0), and
Fi = Fi(R) for i = 1, 2.

Below in this chapter we apply the linearization to obtain some important
information about families of factorizations.

4.4 Second-Order Operators

Theorem 4.8. A second-order operator in K[Dx, Dy] has a family of factor-
izations (in some extension of the field K) if and only if it is almost ordinary.
Any such family is unique for a given operator. Further, in appropriate vari-
ables it has the form

(
Dx + a +

Q

W + f1(y)

)
◦

(
Dx + b− Q

W + f1(y)

)
,

where Q = e
R
(b−a)dx, W =

∫
Qdx, a, b ∈ K, and f1(y) ∈ K is a parameter.
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Proof. Consider a second-order operator L ∈ K[Dx, Dy]. By a change of
variables we can make the symbol of L equal to either X2 or XY . In the
latter case, L has no family of factorizations because of Theorem 1.3.

Consider the case SymL = X2. Then operator L has a factorization
only if it is ordinary. Suppose we know one factorization: L = L1 ◦ L2 =
(Dx +a)◦(Dx +b), where a, b ∈ K, and we are interested in deciding whether
there exists a family. Consider the linearized problem, that is the equation
(48) w.r.t. F1, F2 ∈ K: F1 ◦ L2 + L1 ◦ F2 = 0. The equation always has a
solution {

F1 = f1(y)e(b−a)x,
F2 = −F1,

where f1(y) ∈ K is a parameter function. Thus, any family can be parame-
terized by only one function of one variable.

In fact, such a family always exists, and it is given explicitly in the state-
ment of the theorem. Moreover, one can prove straightforwardly that such a
family is unique for a given operator L.

4.5 Third-Order Operators

Theorem 4.9. Let a third-order operator in K[Dx, Dy] with the completely
factorable symbol has an irreducible family of factorizations. Then it is almost
ordinary.

Any such family depends by at most three (two) parameters if the number
of factors in factorizations is three (two). Each of these parameters is a
function of one variable.

Proof. Consider a third-order operator L in K[Dx, Dy]. For the symbol SymL

only the following three are possible: it has exactly three, two, or no coprime
factors. In the first case no family is possible because of Theorem 4.5.

Suppose exactly two factors of the symbol are coprime. Thus, in
some variables the symbol of L is X2Y . Consider factorization in-
to two factors. Then the following types of factorizations are possible:
(X)(XY ), (Y )(X2), (XY )(X), (X2)(Y ). By Theorem 4.5, there is no family
of factorizations of the types (Y )(X2), (X2)(Y ). Because of the symmetry, it
is enough to consider just the case (X)(XY ). Indeed, if there exists a family
of the type (XY )(X) for some operator L of the general form

L =
∑

|J |≤d

aJDJ ,

aJ ∈ K, then the adjoint operator

Lt(f) =
∑

|J |≤d

(−1)|J |DJ(aJf).
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has a family of the type (X)(XY ), and the number of parameters in the
family is the same.

Thus, we consider a factorization of the factorization type (X)(XY ):

L = L1 ◦ L2 = (Dx + r) ◦ (Dxy + aDx + bDy + c),

where r, a, b, c ∈ K as the initial factorization for some family of factorizations
of the factorization type (X)(XY ). By means of the gauge transformations,
we make the coefficient a equal zero in this initial factorization (of course,
the coefficient at Dx in the second factor of other factorizations of the family
may be still non-zero). To study possible families in this case, we consider
the linearized problem: the equation F1 ◦ L2 + L1 ◦ F2 = 0 w.r.t. F1 = r1,
F2 = a10Dx + a01Dy + a00, where r1, a10, a01, a00 ∈ K. The only non-trivial
solution is

a10 = a00 = 0, r1 = −a01, a01 = f1(y) ·Q,

where Q = e
R
(b−r)dx and f1(y) ∈ K is a parameter, while

c = 0

is a necessary condition of the solution’s existence. Therefore, every family
of the type (X)(XY ) is parameterized by one function of one parameter (can
be a constant function). Secondly, the initial factorization has the form

L = (Dx + r) ◦ (Dx + b) ◦Dy , (49)

that is the operator L itself has very special form.
Now, if we consider a factorization of the family in general form, namely

L̃1 ◦ L̃2 = (Dx + r̃) ◦ (Dxy + ãDx + b̃Dy + c̃) ,

where all the coefficients belong to K, and equates the corresponding product
to the expression (49), we obtain

ã = c̃ = 0,

and so any factorization of the family has the form

L = (Dx + r̃) ◦ (Dx + b̃) ◦Dy .

Therefore, only reducible families of factorizations into two factors may exist
in this case. Then, by Remark 4.4, there is no any irreducible family of
factorizations into any number of factors in this case.

Consider the case in which all the factors of the symbol SymL are the
same (up to a multiplicative function from K). Then one can find vari-
ables in which the symbol is X3. Note that any irreducible factorization of
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the factorization type (X)(X)(X) is an irreducible factorization of the types
(X)(X2) and (X2)(X) also. Then because of the symmetry only one of two
types (X)(X2) and (X2)(X) has to be considered. Therefore, it is suffi-
cient to consider the factorization type (X)(X2). Thus, consider an initial
factorization of the form

L = L1 ◦ L2 = (Dx + r) ◦ (Dxx + aDx + bDy + c)

where r, a, b, c ∈ K. Under the gauge transformations we may assume a = 0
(while the coefficient at Dx in the second factor of other factorizations of the
family may be still non-zero). Consider the linearized problem (48) for such
the initial factorization: the equation F1 ◦ L2 + L1 ◦ F2 = 0 w.r.t. F1 = r1,
F2 = a10Dx + a01Dy + a00, where r1, a10, a01, a00 ∈ K. The only non-trivial
solution is a01 = 0, r1 = −a10, a00 = −ra10 − ∂x(a10), provided both

b = 0

and ca10+r2a10+2r∂x(a10)+a10∂x(r)+∂xx(a10) = 0. The solution of the latter
equation depends on two arbitrary function in the variable y. Therefore, any
family of the type (X)(XX) is parameterized by two functions of one variable
(can be constant functions), and such a family may exist only for an almost
ordinary operator L. This implies that a family of the factorization type
(X)(X)(X) may exist only for an almost ordinary operator L.

Any irreducible family of the type (X)(X)(X) serves as an irreducible
family of the type (X)(XX). Therefore, a family of the type (X)(X)(X)
can have two parameters (functions in one variables), that appear in the
corresponding family of the type (X)(XX), and additional parameters, that
can appear when we consider two last factors separately. By the theorem 4.8,
there is at most one additional parameter (a function in one variable). Thus,
for the family of the type (X)(X)(X) the maximal number of parameters is
three, and these parameters are functions in one variable (may be constant
functions). This agrees with [33].

The theorem implies that for an operator (with the completely factorable
symbol), that is not almost ordinary, only reducible families may exist. Any
such family is obtained by the multiplication (on the left or on the right) of a
second-order family by some non-parametric first order operator. Note that
this second-order family should be almost ordinary, by Theorem 4.8.

Example 4.10. The family of the Landau operator (46) is reducible, which
is obtained from a second-order family.

4.6 Fourth-Order Operators

Here we start with an example of a fourth-order irreducible family for an
almost ordinary operator.
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Example 4.11. The following is a fourth-order irreducible family of factor-
izations:

Dxxxx =
(
Dxx +

2

x + 2f1(y)
+ y

)(
Dxx − 2

x + 2f1(y)
+ y

)
,

where f1(y) ∈ K is a parameter.

Unlike the irreducible families of orders two and three, an irreducible
fourth-order family need not be almost ordinary.

Example 4.12. The following is a fourth-order irreducible family of factor-
izations:

Dxxyy =
(
Dx+

α

y + αx + β

)(
Dy+

1

y + αx + β

)(
Dxy− 1

y + αx + β
(Dx+αDy)

)
,

where α, β ∈ K\{0}. Note that the first two factors commute.
Again, we actually have several examples here. Namely, for the same

operator Dxxyy, we have families of the types (X)(XY 2), (XY )(XY ) and
(X)(Y )(XY ).

Theorem 4.13. In K[Dx, Dy], irreducible fourth order families of factoriza-
tions with a completely factorable symbol exist only for factorizations of the
types (XY )(XY ) and (X2)(X2).

Proof. For the symbol Sym of the family, there are exactly four possibilities:
to have exactly four, three, two or no different factors.

I. Case of four different factors. No family is possible because of Theorem
4.5.

II. Case of three different factors. In this case, in appropriate variables, the
symbol has the form SymL = X2Y (αX + Y ), where α ∈ K\{0}. At first
consider factorizations into two different factors. Then by Theorem 4.5 and
because of the symmetry (in the same sense as it is in the proof of Theorem
4.9), it is enough to consider the types of factorizations (XY )(X(αX + Y ))
and (X)(XY (αX + Y )).

1) Case of the type (XY )(X(αX + Y )). We prove that there is no irre-
ducible family of this type. Let

L1 ◦ L2 = (Dxy + a1Dx + b1Dy + c1) ◦ (αDxx + Dxy + a2Dx + b2Dy + c2) ,

where all coefficients are in K, be the initial factorization of such a family.
Then under the gauge transformation we may assume b2 = 0 (while the
coefficient at Dy in the second factor of any other factorization of the family
may be still non-zero). Consider the linearized problem: the equation F1 ◦
L2 + L1 ◦ F2 = 0 w.r.t. F1, F2 ∈ K[D] and ord(F1) = ord(F2) = 1. The only
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non-trivial solution is parameterized by a function f1(y) ∈ K and exists only
under two conditions on the coefficients of L1 and L2:

c1 = ∂y(b1) + b1a1 and c2 = ∂xx(α)− ∂x(a2). (50)

Thus, if a family exists, then the coefficients of the initial factorization L1◦L2

satisfy the two conditions (50).
Now we come back to the initial problem and look for a family of factor-

izations in the general form:

L1 ◦ L2 = (L1 + S1) ◦ (L2 + S2) ,

where S1, S2 are arbitrary first-order operators in K[D]. This gives us a
system of equations in the coefficients of S1 and S2. The system together
with the conditions (50) has a unique non-trivial solution. The corresponding
(to this solution) family of factorizations is complete, that is, both factors
are factorable themselves:

L1 ◦ L2 =

(Dy + a1)◦
(
Dx + b1 + Q

W+f1(y)

)
◦
(
Dx − Q

W+f1(y)

)
◦
(
αDx + Dy + a2 − ∂x(α)

)
,

where Q = e−
R

b1dx and W =
∫

Qdx and f1(y) is the only parameter function.
Now it is clear that the first and the last factors do not depend on a param-
eter, and so any factorization of any family of the type (XY )(X(αX + Y ))
is reducible.

2) Case of the type (X)(XY (αX + Y )). There is no irreducible family of
this type either. To prove this we consider a factorization of this type,

L1 ◦L2 = (Dx + c1) ◦ (Dxxy + Dxyy + aDxx + bDxy + cDyy + dDx + eDy + f),

where all the coefficients belong to K, as the initial factorization of a family
of factorizations. Under the gauge transformations we may assume c = 0
(note that the analogous coefficients in the other factorizations of the family
do not necessary become zero). Proceeding as in the previous case, we also
get that there is only one non-trivial solution, which is parameterized by a
function f1(y) ∈ K. Also we have two conditions which provide the existence
of such an equation:

e2 = b2c2 + ∂x(b2)− α∂x(c2)− αc2
2 − 2∂x(α)c2 − ∂xx(α)

f2 = d2c2 + ∂x(d2)− a2∂x(c2)− a2c
2
2 − 2∂x(a2)c2 − ∂xx(a2) .

Now, we use the obtained conditions for the initial problem, where a
family of factorizations is considered in general form. Thus, we get that
if such a family exists, then the second factor of the family can be always
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factored into first and second-order operators, and the second-order operator
does not depend on the parameter:

L1 ◦ L2 =
(
Dx + c1 + m00

)
◦

(
Dx + c2 −m00

)
◦(

αDx + Dy + a2Dx + (b2 − αc2 − ∂x(α))Dy + d2 − a2c2 − ∂x(a2)
)
,

where only m00 ∈ K may depend on a parameter. Thus any family (if it
exists) of the type (X)(XY (αX + Y )) is reducible.

Finally, by Remark 4.4, we conclude that there is no an irreducible family
of factorizations into any number of factors.

III. Case of two different factors of the symbol. Then there exist variables
in which the symbol has either the form X2Y 2 or XY 3. At first consider
factorizations into two factors. By Theorem 4.5 and because of the symmetry,
it is enough to consider types of factorizations (X)(XY 2) and (XY )(XY ) in
the case of the symbol X2Y 2, and the types (Y )(XY 2) and (XY )(Y 2) in the
case XY 3.

1) Case of the type (X)(XY 2). Let us prove that there is no irreducible
family of this type. As we did in the cases above, we consider an initial
factorization of the family in general form:

L1 ◦ L2 = (Dx + c1) ◦ (Dxyy + aDxx + bDxy + cDyy + dDx + e1Dy + f),

with all coefficients in K, and by means of gauge transformations we assume
c = 0 (the coefficients at Dyy in the second factor of other factorizations
of the family may be still non-zero). Then solve the linearized problem:
the equation F1 ◦ L2 + L1 ◦ F2 = 0 w.r.t. F1, F2 ∈ K[D] and ord(F1) =
0, ord(F2) = 2. This leads us to two necessary conditions of existence of
such a family: e1 = ∂x(b), f = ∂x(d) − ∂xx(a). Then we apply this to the
initial problem. That is consider a family of factorizations in general form (in
much the same way as in the case I.1)), and obtain that every such family,
if it exists, can be factored further, that is the second factor of such a family
(which has the symbol XY 2) can be always factored itself into two factors,
and the right factor does not depend on any parameter. More precisely, we
have

L1◦L2 =
(
Dx+c1+

Q

W − f1(y)

)(
Dx− Q

W − f1(y)

)(
Dyy+aDx+bDy+d−∂x(a)

)
,

where Q = e−
R

c1dx, W =
∫

Qdx. Thus, there is no irreducible family of this
type.

2) Case of the type (XY )(XY ). In this case a family can exist: see the
Example 4.12.

3) Case of the type (Y )(XY 2). We prove that there is no irreducible
family of this type. Indeed, consider a factorization of this type:

L1 ◦ L2 = (Dy + c1) ◦ (Dxyy + aDxx + bDxy + cDyy + dDx + e1Dy + f),
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with all coefficients in K, as the initial factorization of a family of factoriza-
tions. By gauge transformations we may assume the coefficient at Dyy in this
initial factorization is zero, that is c = 0. The linearized problem is the equa-
tion F1 ◦L2 +L1 ◦F2 = 0 w.r.t. F1, F2 ∈ K[D] and ord(F1) = 0, ord(F2) = 2.
This equation has a non-trivial solution, provided a = 0 and

d = e−2
1 (bfe1−be1∂y(e1)+e2

1∂y(b)+3f∂y(e1)−e1∂y(f)−2(∂y(e1))
2+e1∂yy(e1)−f 2)

Then, when we consider the corresponding family of factorizations in general
form, we may apply these conditions, and easily get that such a family cannot
exist.

4) Case of the type (XY )(Y 2). We prove that there is no irreducible
family of this type. Indeed, consider a factorization of the considering type:

L1 ◦ L2 = (Dxy + a1Dx + b1Dy + c1) ◦ (Dyy + a2Dx + b2Dy + c2)

with all coefficients in K, as the initial factorization of a family of factoriza-
tions. By the gauge transformations we may assume c2 = 0. The linearized
problem is the equation F1 ◦ L2 + L1 ◦ F2 = 0 w.r.t. F1, F2 ∈ K[D] and
ord(F1) = 1, ord(F2) = 1. The equation has a non-trivial solution, which
depends on two parameter functions f1(x), f2(x) ∈ K, and the existence is
provided by the conditions

a2 = 0, c1 = b1a1 + ∂x(a1).

Thus, a family may exist only if the considered operator L has the form

L = (Dxy + a1Dx + b1Dy + b1a1 + ∂x(a1)) ◦ (Dy + b2) ◦Dy

for some a1, b1, b2 ∈ K. Then, one may prove that in this case any family of
factorization has the form

L = (Dxy + . . . ) ◦ (Dy + . . . ) ◦Dy ,

meaning that is there is no irreducible fourth-order family of the type
(XY )(Y 2).

Now, consider a factorization into three or four factors. Then either the
factor on the left, or that on the right of this factorization is of order one.
Therefore, by Remark 4.4, such a factorization cannot exist as they cannot
exist in the cases 1) and 3).

IV. Case of no different factors of the symbol. Then there exist variables
such that the symbol is X4. Consider factorizations into two factors. Then,
by Theorem 4.5 and because of the symmetry, it is enough to consider types
of factorizations (X)(X3) and (X2)(X2).
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1) Case of the type (X)(X3). Prove that there is no irreducible family of
the type (X)(X3). Consider a factorization of the type (X)(X3):

L1 ◦ L2 = (Dx + c1) ◦ (Dxxx + aDxx + bDxy + cDyy + dDx + eDy + f) ,

where all coefficients are in K. Solving the linearized problem, we get that a
family in this case may be parameterized by only one function in one variable,
and such a family may exist provided two conditions on the initial coefficients
hold (one of them is just c = 0). Then, when we look for a family in general
form, one may prove that such families indeed can exist, but all such families
are reducible.

2) Case of the type (X2)(X2). Here we have the Example 4.11 of a family
of factorizations depended on one functional parameter in one variable. In
fact the maximal number of parameters in this type of factorization is four
[33].

Finally, by Remark 4.4, an irreducible families into four and three factors
cannot exist as they cannot exist in the case 1).

4.7 Conclusion

For second, third and fourth order LPDOs on the plane with completely
factorable symbols, we have completely investigated what factorization types
admit irreducible parametric factorizations. For these factorization types,
examples are given. Note the our method is general and we cover the case of
ordinary operators as a particular case. For operators of orders two and three,
we describe in addition the structure of their families of factorizations. For
the partial operators of order four, the question remains open (for ordinary
operators, the possible number of parameters in a family of factorizations
has been investigated in [33]). For the case of partial differential operators
we would surmise that no more than two or one parameters (which could be
functions) are possible. Generalizations to LPDOs with arbitrary symbols
(without the complete factorization assumption), to high order LPDOs, and
to those in multiple-dimensional space are of interest also.
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5 Generalized Laplace Transformations

5.1 Introduction

Though the problem of solving Partial Differential Equations (PDEs) has
been intensively studied since Newton’s time, yet the number of PDEs that
can be solved analytically remains small. Even solutions expressed as quadra-
tures are not common. For example, the simple-looking hyperbolic PDE

zxy + azx + bzy + c = 0, a = a(x, y), b = b(x, y), c = c(x, y) (51)

can be solved only in some particular cases (see for example [22]). One of
the methods for finding an analytical solution of an equation such as (51)
requires the factorization of the corresponding Linear Partial Differential
Operator (LPDO).

Another method for expanding the number of analytically solvable PDEs
consists in transforming the PDEs and obtaining the corresponding transfor-
mations of their solutions. The oldest transformation algorithm for equation
(51) is the Laplace Cascade method (see in the section 1.5), known since the
18th century.

The method tries to apply transformations to a given LPDO until the
operator becomes factorable, in which case we can solve the corresponding
equation. In the same time, there is a relation between the solution spaces
of the initial and this transformed factorable operator. In that way, some
PDEs may be solved. In the general case, the process does not terminate,
and we have an infinite sequence of transformed operators, none of which is
factorable. In that way, the Laplace Cascade Method is a method to solve
PDEs of the form zxy + azx + bzy + c = 0, which is one of the important
methods of symbolic integration. However, it leads to solutions not very
often.

The classical Laplace Method has been the subject of many generaliza-
tions: to non-linear PDEs [1, 7, 2], high-order PDEs [35], to PDEs in multi-
dimensional spaces [9], to systems of PDEs [4], etc. All of these general-
izations of the Laplace Transformations extend the class of the considering
PDEs. However, as a different direction, one may think about some new
transformations for the original type of equation (51) .

In the present chapter of the thesis, we introduce such new transforma-
tions, which generalize the Laplace ones. The idea comes from the following
observation: for an operator

L = Dx ◦Dy + aDx + bDy + c , (52)

where a = a(x, y), b = b(x, y), c = c(x, y), the classical Laplace transforma-
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tions L → L1, L → L−1 can be defined by the equalities
(
Dy + a− ln(h)y

)
◦ L = L1 ◦

(
Dy + a

)
,

(
Dx + b− ln(k)x

)
◦ L = L−1 ◦

(
Dx + b

)
,

where h = c− ax − ab and k = c− by − ab are two Laplace invariants.

Now, it seems natural to look for more general transformations L → L̃1

defined by some equality of the form
(
pDx + qDy + r

)
◦ L = L̃1 ◦

(
p1Dx + q1Dy + r1

)
, (53)

where all the coefficients depend on two variables x and y.
Here, we present some such transformations, which immediately lead us

to new classes of analytically solvable PDEs. Some interesting examples are
given explicitly.

The results of this chapter has been submitted for publishing [29].

5.2 Generalized Laplace Transformations for LPDOs
of Arbitrary Order

Here we consider Linear Partial Differential Operators (LPDOs) of arbitrary
order in a multi-dimensional space.

Definition 5.1. Let L,L1,M, M1 ∈ K[D]. We say that L1 is the result of a
Right Generalized Laplace transformation (R-transformation) of an operator
L and write

L1 = ϕ1(L,M,M1) ,

if Sym(L1) = Sym(L), ord(M) = ord(M1) = 1 and

M ◦ L = L1 ◦M1 . (54)

Definition 5.2. Let L,L−1,M, M−1 ∈ K[D]. We say that L1 is the result of
a Left Generalized Laplace transformation (L-transformation) of an operator
L and write

L−1 = ϕ−1(L,M, M−1),

if Sym(L−1) = Sym(L), ord(M) = ord(M−1) = 1 and

L ◦M = M−1 ◦ L−1. (55)

Remark 5.3. There is a certain symmetry between L- and R-transformations,
namely, if L1 = ϕ1(L,M, M1), then L = ϕ−1(L1,M1,M).

Remark 5.4. The assumption that the symbols of L and L1 are equal imme-
diately implies Sym(M) = Sym(M1) and Sym(M) = Sym(M−1).

57



Remark 5.5. By the Theorem [10], if Sym(L) is coprime with the symbol
Sym(M), then there is at most one pair (L1,M1), such that M ◦L = L1 ◦M1.
If those symbols are not coprime, there is an example

Dxy +
1

x + k
= ϕ1

(
Dxy, Dx, Dx − 1

x + k

)
,

where k is a parameter.

Remark 5.6. The kernel of L is mapped to the kernel of L1 by the substitution
z → M1(z), while the kernel of L−1 is mapped to the kernel of L1 by the
substitution z → M(z).

We use the notation
Lα = α ◦ L ◦ α−1

for any invertible function α ∈ K and any operator L ∈ K[D].

Theorem 5.7. If L1 = ϕ1(L, M,M1) in K[D], then

a) Lβ
1 = ϕ1(L

α, βMα−1, βM1α
−1) ,

b) Lα
1 = ϕ1(L

α, Mα, Mα
1 )

for any invertible functions α, β ∈ K. If L−1 = ϕ−1(L,M, M−1) in K[D],
then

a) Lβ
−1 = ϕ−1(L

α, αMβ−1, αM−1β
−1) ,

b) Lα
−1 = ϕ−1(L

α, Mα, Mα
−1)

for any invertible functions α, β ∈ K.

Proof. As L1 = ϕ1(L,M, M1), we have M ◦ L = L1 ◦M1. Then
a) (β ◦M ◦ α−1) ◦ (α ◦ L ◦ α−1) = (β ◦ L1 ◦ β−1) ◦ (β ◦M1 ◦ α−1), and so

we are done;
b) (α−1 ◦M ◦ α) ◦ (α−1 ◦ L ◦ α) = (α−1 ◦ L1 ◦ α) ◦ (α−1 ◦M1 ◦ α).
The statements about ϕ−1 are proved analogously.

Corollary 5.8. The existence of an R- or L- transformation of L with the
result L̃ depends on the equivalence classes (w.r.t. the operation L → Lα)of
those operators only. Therefore this existence property can be expressed in
terms of operator’s invariants.

Remark 5.9. Let us consider bivariate case, that is the operator M has the
form

M = pDx + qDy + r .

Then the quantity p/q is unaltered under transformations of the form M →
Ma−1, M → aM .

The direct computation proves the following result.
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Theorem 5.10. Let L,L1,M, M1 ∈ K[Dx, Dy]. If

ϕ1(L,M, M1) = L1 ,

then
ϕ1(L + A ◦M1,M, M1) = L1 + M ◦ A ,

where A ∈ K[Dx, Dy], ord(A) ≤ ord(L)− 2.

Theorem 5.11. Let the operators L1, L−1 ∈ K[Dx, Dy] are the result of the
classical Laplace transformations of an operator L ∈ K[D], L = Dx ◦ Dy +
aDx + bDy + c. Then

L1 = ϕ1(L,Dy + a1, Dy + a),
L−1 = ϕ1(L,Dx + b1, Dx + b),

where a1 = a− hy/h, b1 = b− kx/k, and h = c− ax− ab, k = c− by − ab are
the Laplace invariants of L.

There exist analogous formulas in terms of ϕ−1.

Proof. Using the expressions for coefficients of L1 (see (10)) and L−1 (see
(11)) for the classical Laplace transformations, one checks that

(Dy + a1) ◦ L = L1 ◦ (Dy + a),
(Dx + b1) ◦ L = L−1 ◦ (Dx + b).

In that way the classical Laplace Transformations are two particular
examples of the L- and R- transformations of the hyperbolic operators
L = Dx ◦ Dy + aDx + bDy + c. In the next section we look for the oth-
er L- and R-transformations of those operators.

5.3 L- and R-transformations of Dx ◦Dy + aDx + bDy + c

Consider a second-order hyperbolic partial differential operators L ∈
K[Dx, Dy] in the canonical form:

L = Dx ◦Dy + aDx + bDy + c . (56)

Since the properties of the L-transformations are completely symmetric to
those of the R-transformations, we formulate most of results for the R-
transformations only.

Direct computations prove the following theorem.

Theorem 5.12. Let M,M1 ∈ K[D], and ϕ1(L,M, M1) be an R-
transformation of the operator L of the form (56). If

M = pDx + qDy + r , (57)

then
M1 = pDx + qDy + r + q

py

p
+ p

qx

q
− px − qy . (58)
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Therefore, in this case the operator M1 is completely determined by the
operator M , and so if we consider L- or R-transformations of the operators
of the form (56), we may omit M1 and write

L1 = ϕ1(L,M).

In order to find new R-transformations of the operator L (56), we look for
some operators L1,M ∈ K[Dx, Dy] of the forms L1 = Dxy +a1Dx +b1Dy +c1

and (57), such that

M ◦ L = L1 ◦M1 . (59)

The cases p = 0 and q = 0 will be considered later in the section 5.5.
Now we consider the case p 6= 0, q 6= 0. Suppose p 6= 1 and there is an
R-transformation L1 = ϕ1(L,M, M1), then by the Theorem 5.7, there is the
R-transformation Lβ

1 = ϕ1(L, βM, βM1), where β = 1/p. Then without loss
of generality we may assume

p = 1.

Substitute the expressions for L,L1,M1,M into the equality (59) and expand
the products. Then from the coefficients at D2

x, D2
y and Dx we have in order

a1 = a ,
b1 = b− qx

q
,

c1 = c + bx

q
+ by − qx

q

(
a + b

q
− r

q
− 2 qx

q2

)
− rx

q
− qxx

q2 .

Therefore, the operators L1 and M1 are determined for given operators
L and F . However, two conditions to be satisfied are still left (these condi-
tions are obtained from the coefficient at Dy and from the free one). They
are algebraic-differential expressions in a, b, c, q, r with derivatives up to the
second order.

It is not trivial to solve these two equations, however, it is not obligatory
to do this in the general case. Indeed, the main purpose of the current
investigations is to extend the class of PDEs with known analytical solution.
Thus, below we concentrate on the special case

q = 1,

that is the case of R-transformations, where the operator M has the symbol
X + Y .

Definition 5.13. We call such R-transformations (X + Y )-R-
transformations.
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5.4 (X + Y )-R-Transformations

Here we use all the notation of the previous section. Consider the (X + Y )-
R-transformations

L1 = ϕ1(L,Dx + Dy + r), r ∈ K.

By the corollary 5.8, the property of existence of a R-transformation is in-
variant w.r.t. the operation L → Lα. Therefore, we may always choose a
function α, such that the coefficients at Dx and Dy in the operator Lα are
equal. Thus, without loss of generality we can assume

b = a.

In this case,
M1 = M ,
L1 = L + ax + ay − rx ,

and the condition M ◦ L = L1 ◦M1 implies

Dx(r) = Dy(r) , (60)

(Dx + Dy)c− r(Dx + Dy)a− a(Dx + Dy)r

+rDx(r)−Dxy(r) = 0 . (61)

The first equality (60) implies that r(x, y) is a function of (x + y), or equiv-
alently, of (x + y)/2:

r(x, y) = R(u) = R((x + y)/2)

for some function R = R(u) of one variable. Consider the linear change of
variables

u = (x + y)/2, v = (x− y)/2 .

It implies Du = Dx + Dy, Dv = Dx −Dy. Thus, the last condition (61) has
the form

Du(c)−RDu(a)− aDu(R) + RDu(R)/2−Duu(R)/4 = 0,

where a, c are understood as functions of the variables u and v. This implies

Du(c−Ra + R2/4−Du(R)/4) = 0.

Therefore,
c−Ra + R2/4−Du(R)/4 = K(v).

for some function K(v) of one variable, and so

c(u, v) = a(u, v)R(u)−R(u)2/4 + Ṙ(u)/4 + K(v).
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where Ṙ(u) = Du(R).
Now by the operation L → Lα, we may transform the obtained results to

the general case, that is the coefficient a is not obligatory equal the coefficient
b. In that way, we proved the following theorem:

Theorem 5.14. An (X + Y )-R-transformation of an operator L = Dxy +
aDx + bDy + c ∈ K[Dx, Dy] exists if and only if

a = a0 + αy ,
b = a0 + αx ,

c = a0R(u)−R(u)2/4 + Ṙ(u)/4 + K(v)/2
+a0αx + a0αy + αxy + αxαy ,

where u = (x + y)/2, v = (x− y)/2, and

a0 = a0(x, y) , α = α(x, y)

are arbitrary functions of two variables, and R(u), K(v) are arbitrary func-
tions of one variable.

In this case the operators M = M1 has the form

Dx + Dy + R(u) + αx + αy.

Remark 5.15. Let a given operator L = Dxy + aDx + bDy + c there is an
(X + Y )-transformation, then in general (but not always) it is unique.

Straightforward computation shows that the following theorem holds.

Theorem 5.16. For the operator L and the (X + Y )-transformed operator
described in the Theorem 5.14, we may compute their Laplace invariants h, k
(7) and the invariant m = h− k. For the initial operator L they are

h = a2 −R(u)a + (R2(u)− Ṙ(u))/4−K(v) + ax ,

k = a2 −R(u)a + (R2(u)− Ṙ(u))/4−K(v) + ay ,
m = ax − ay ,

while those of the transformed operator L1 are

h1 = a2 −R(u)a + (R2(u) + Ṙ(u))/4−K(v)− ay ,

k1 = a2 −R(u)a + (R2(u) + Ṙ(u))/4−K(v)− ax ,
m1 = ax − ay ,

that is
h1 = h + Ṙ(u)/2− ax − ay ,

k1 = k + Ṙ(u)/2− ax − ay ,
m1 = m .
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Example 5.17. There is an R-transformation of the operator L = Dxy +
(1/2− xy):

ϕ1(L,Dx + Dy + x + y) = Dxy + (−1/2− xy) .

In the theorem 5.14 this transformation corresponds to the choice

R(u) = 2u ,
K(v) = 2v2 .

The invariants of the transformed operator are

h1 = h + 1 ,
k1 = k + 1 ,
m1 = m = 0 ,

where h, k, m are the invariants of the initial operator L.

Example 5.18. There is a LT-transformation of the operator L = Dxy +
1 + (x− y)4 − (x + y)2:

ϕ1(L,Dx + Dy + 2(x + y)) = Dxy − 1 + (x− y)4 − (x + y)2 .

In the theorem 5.14 this transformation corresponds to the choice

R(u) = 4u ,
K(v) = 8v2 .

The invariants of the transformed operator are

h1 = h + 2 ,
k1 = k + 2 ,
m1 = m = 0 ,

where h, k, m are the invariants of the initial operator L.

5.5 X– and Y –transformations

Consider now the cases p = 0 and q = 0, which were not considered in the
section 5.3.

Definition 5.19. An R-transformation ϕ1(L,M) is an X-transformation if
SymM = X. Analogously, we define an Y -transformation.

Consider the operators in K[Dx, Dy], that are of the form

L = Dx ◦Dy + aDx + bDy + c .
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By the Theorem 5.11, whenever the Laplace invariant k = ab− c + by of
the operator L does not vanish, there exist an operator L−1, such that

(Dx + b− kx/k) ◦ L = L−1 ◦ (Dx + b) .

Thus, the Laplace transformation L → L−1 is an X-transformation of the
operator L. However, some other X-transformations of the same operator L
may exist. Let us look for some functions a1, b1, c1, r, r1 ∈ K such that

(Dx + r) ◦ L = (Dxy + a1Dx + b1Dy + c1) ◦ (Dx + r1). (62)

Expand the products on the both sides of the equality (62), and com-
pare the coefficients. Then from the equality of the coefficients at Dxx, one
immediately gets

a1 = a.

Now since for the X-transformation of Laplace we have r1 = b, we suggest
to represent r1 as

r1 = b + ρ ,

where ρ is a function in K. We substitute this for b1 into the equality 62,
and obtain

b1 = r − ρ ,
c1 = a(r − ρ− b) + ax − by + c− ρy ,
r = b + ρ− ρx/ρ ,

and the condition

ρ

(
c

ρ

)

x

− (ab)x + R = 0, (63)

where
R =

ρx

ρ
(ab + by + ρy) + ρ(by − ax + ρy)− (b + ρ)xy ,

to be satisfied. The equation (63) can be solved w.r.t. c:

c = −ρ(

∫
(−bax−abx+

ρx(ab + by + ρy)

ρ
+ρ(by−ax+ρy)−bxy−ρxy)ρ

−1dx+R (y))

In that way, we describe all possible X-transformations (Y -
transformations can be described analogously) in the following theorem:

Theorem 5.20. Let

L1 = ϕ1(Dx ◦Dy + aDx + bDy + c,Dx + r),

where all the coefficients belong to K. Then

c = −ρ(

∫
(−bax − abx +

ρx(ab + by + ρy)

ρ
+ ρ(by − ax + ρy)− bxy − ρxy)ρ

−1dx + R (y)) ,

r = b + ρ− ρx/ρ ,

L1 = Dxy + aDx + (b− ln(ρ)x)Dy + c + ax − by − ρy − aln(ρ)x ,

where a, b, ρ are arbitrary functions in K[Dx, Dy].
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For the operator Dxy the classical Laplace transformations are not de-
fined, while their generalizations, X-transformations (Y -transformations) ex-
ist.

Example 5.21. Let

L1 = ϕ1(Dx ◦Dy, Dx + r),

where all the coefficients belong to K. Then

r = −ln(B(x))x ,

L1 = Dx ◦Dy +
B(x)A(y)y

(A(y)− ∫
B(x)dx)2

(Dy + 1) ,

where A(y), B(x) are arbitrary one-variable functions in K[Dx, Dy]. Note
that all these L1 are factorable.

5.6 New Integrable PDEs

One of the main applications of transformations methods is an extension
of the number of PDEs with known analytical solution. Namely, by the
remark 5.6, the solution of the transformed equation L1(z1) = 0 can be
easily computed from that of L(z) = 0. In that way, we may apply the
R-transformations ϕ1 to all PDEs with known analytical solutions (see them
for example in [22]), and thus get new classes of solvable PDEs.

On the other hand, the L-transformations ϕ−1 provides us with a method
of PDEs’ integration. Indeed, we may apply these transformations to a given
PDE as long as we get an PDE with known solution. Then the analytical
solution of the initial PDE can be found.

1. The classical example of a successive application of the Laplace Cas-
cade method are equations of the form

uxy − c

(x + y)2
= 0 , (64)

where c is a constant. It is stated [34] that the process will be infinite unless

c = n(n + 1) .

Therefore, whenever c = n(n + 1) the analytical solution of (64) may be
found.

It is astonishing, that all these PDEs are the members of just one sequence
of our (X+Y )-transformations! At the same time they all cannot be members
of some sequence of Laplace Transformations.
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The sequence of (X +Y )-transformations, which enumerates all the equa-
tions of the form (64) with c = n(n + 1), starts with the clearly integrable
equation ∂xy(u) = 0:

Dxy

R=− 1
u−→ Dxy − 2

(x+y)2

R=− 2
u−→ Dxy − 6

(x+y)2

R=− 3
u−→

Dxy − 20
(x+y)2

R=− 4
u−→ . . . , (65)

where R = R(u) is a function from the theorem 5.14, which is required
to define an (X + Y )-transformation. The solution of the initial equation
∂xy(u) = 0 is u = F (x) + G(y), where F (x) and G(y) are arbitrary functions
of one variable. Then the solution of the equation (∂xy − 2

(x+y)2
)(u) = 0 is

computed as follows:

M1(F (x) + G(y))

= (Dx + Dy + R((x + y)/2))(F (x) + G(y))

= −2
F (x) + G(y)

x + y
+ F (x)x + G(y)y .

The solutions of the equation corresponding to any other operator of the
sequence (65) is computed analogously.

2. In fact, the sequence (65) of (X + Y )-transformations of the operator
Dxy is just a particular case of a parameterized one:

Dxy

R=− 1
u−k1−→ Dxy − 2

(x + y)2 − 4k1(x + y) + 4k2
1

R=R(u,k2)−→ . . .

where k1, k2, etc. are constant parameters. Again the solutions of all the
operators of the sequence can be computed explicitly. In other words, we
have a new class of PDEs, which can be solved analytically.

3. The following is an example of an X-transformation:

Dxy +
(
b− 1

x + y

)
Dy −W =

ϕ1

(
Dxy + bDy , Dx + b + x + y − 1

x + y

)
,

where A(x) is an arbitrary one-variable function in K, and

b = A(x)− y +

∫
Wdy ,

W = (x + y)e
x(x+2y)

2 .

The initial operator Dxy +bDy is factorable, that is the corresponding PDE is
analytically integrable. Therefore, the analytical solution of the transformed
PDE can be found also. Note that the transformed PDE is not factorable.
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4. Consider the operator

L = Dxy + ADx + ADy ,

where A is a constant in K. The corresponding equation L(z) = 0 can be
solved analytically [22]. There are X +Y -transformations of the operator L:

ϕ1

(
L,Dx + Dy + R

(
(x + y)/2

))
= L− Ṙ((x + y)/2)

2
,

where
R (u) = 2A−B tanh (Bu + C) ,

B and C are arbitrary constants. Therefore, the analytical solution of the
equation (L− 1

2
Ṙ((x + y)/2))(z) = 0 can be computed.

5.7 Conclusions

In view of important possible applications, such as extending the number of
analytically solvable LPDEs, or the construction of a new integration method,
or the normalization of LPDOs, GL-transformations are very interesting as a
subject for further investigations. In the present chapter the basic properties
of GL-transformations have been proved. Based on these properties, one
can conjecture some new hypotheses. For example, it seems likely that for
LPDOs of some (not very restricted) forms, there always exist an entire
family of GL-transformations parameterized by functions in one variable.

67



6 A Maple-Package for Linear Partial Dif-

ferential Operators with Parametric Coef-

ficients

6.1 Introduction

The previous chapters in this thesis have been used to expound the new
theoretical results obtained. The present chapter is devoted to an exposition
of a new computational package, which was used for obtaining the theoretical
results of the thesis. What is more, the new results have now themselves been
incorporated into the package.

Formally speaking, it would be possible to obtain all of the results under
discussion by hand. Although it is not a particularly difficult task to calcu-
late the obstacles to factorizations of LPDOs of order two, nor are the results
of one or two applications of the Laplace transformations. However, the com-
putation of only slightly longer sequences of transformations is already an
almost impossible task, if it is done by hand. In particular, large expressions
were immediately in evidence when I made the computations for the Gen-
eralized Laplace transformations theory in chapter 5. Equally challenging
were the expressions generated during the finding of the fifth invariant of the
complete system of invariants (chapter 3).

I have used the Computer Algebra system Maple [20]. Although symbol-
ic algorithms for LPDOs have been quite actively investigated as a research
area of Computer Algebra, there is no convenient package for the purposes
of this thesis in Maple. For this reason, I made a developed a new pack-
age, LPDO manipulations, which provides the basic manipulations and some
algorithms for LPDOs of arbitrary order and in an arbitrary number of vari-
ables. It is important that the LPDOs may have symbolic coefficients. It is
hoped that beyond the confines of this thesis, the package will be helpful for
scientists working in the present topic or in related areas.

The theoretical results of this thesis constitute a special part of the pack-
age.

6.2 Other Packages

Consider the existing packages available in Maple.

6.2.1 Package Ore Algebra

The package Ore Algebra is one of the main tools for LPDOs in Maple.
Unfortunately, it is mostly concentrated on the cases in which the coefficients
are polynomials or rational functions. For example, an attempt to compute
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the composition of such two simple operators as Dx and Dy +sin(x) proceeds
as follows.

> restart:

> with(Ore_algebra):

> # declare an Ore algebra:

> A:=skew_algebra(diff=[Dx,x],diff=[Dy,y]):

> # declare the operators L1, L2:

> L1:=Dx:

> L2:=Dy+sin(x):

> # compute the composition of L1 and L2:

> M:=skew_product(L1,L2,A);

Error, (in Ore_algebra:-skew_product)

skew polynomials must be members of the algebra

The procedure skew product outputs an error because the sine function is
being used. To treat LPDOs whose coefficients contain some special functions
— such as sine — or some parameters in the Ore algebra package, one needs
to describe them in advance, when one declares an Ore algebra. For example,
the following code computes the composition of Dx and Dy + q(x, y), where
q(x, y) is some parameter function.

> restart:

> with(Ore_algebra):

> A:=skew_algebra(diff=[Dx,x],diff=[Dy,y], func=[q]):

> L1:=Dx:

> L2:=Dy+q(x,y):

> # compute the composition of the two operators:

> M:=skew_product(L1,L2,A);

M := Dx Dy+Dx q(x,y)+diff(q(x,y),x)

Nevertheless, the problem of treating LPDOs with parametric coefficients
in Ore algebra is not completely solved, because in most symbolic-algebraic
algorithms for LPDOs, one cannot predict what parameters will appear dur-
ing the execution of the algorithms. For instance, a typical cause of the
appearance of new parameters is the solution of differential equations. Con-
sider, for example, the following code, which solves the equation qx = qy.

> Eq1:=diff(q(x,y),x)=diff(q(x,y),y):

> pdsolve(Eq1,q(x,y));
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q(x,y) = _F1(y+x)

Thus, the new parameter function F1(y + x) has been introduced. On
the one hand, one could in principle determine what new parameters have
been introduced and redeclare the Ore algebra. On the other hand, new
parameters appear in the program very often, and it is not very convenient
(and not efficient) to continually search for new parameters and frequently
have to re-declare the Ore algebra.

6.2.2 Package Ore Tools

This package treats univariate differential operators only. Just as in the case
of the Ore Algebra package, this one concentrates on the cases in which the
coefficients are polynomials or rational functions.

The important feature of this package is the OrePoly structure, which
keeps a differential operator as a list of its coefficients:

> restart:

> with(OreTools):

> # define the differential algebra:

> A := SetOreRing(x, ’differential’);

A := UnivariateOreRing(x, differential)

> L := OrePoly(1/x, -2/(x*(1+x)), 1);

2

L := OrePoly(1/x, - ---------, 1)

x (1 + x)

Convert this OrePoly structure to the corresponding linear functional
equation, by applying it to a function f(x):

> Apply(L, f(x), A);

/d \

2 |-- f(x)| / 2 \

f(x) \dx / |d |

---- - ----------- + |--- f(x)|

x x (1 + x) | 2 |

\dx /

6.2.3 Package PDEtools

The package PDEtools treats partial differential equations, rather than op-
erators. It serves as a collection of commands and routines for finding an-
alytical solutions for partial differential equations, both for linear and for
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non-linear equations. Unfortunately, there is lack of special techniques for
linear-equation methods in this package.

6.3 Description of the New Package

6.3.1 General Description

The new package, LPDO manipulations, serves as a tool for investigations
in the area of symbolic-algebraic algorithms for LPDOs. Here is a list of the
basic features of the package.

• The number of independent variables is arbitrary, their names being
listed at the beginning of each worksheet. Usually one knows the inde-
pendent variables in advance.

• LPDOs of arbitrary orders are allowed.

• Arbitrary parameters are allowed. One need not declare them in ad-
vance.

• Easy access to the coefficients of LPDOs. Some packages keep the LP-
DOs as an expression, that is as a polynomial-like structure. If one
needs to extract a certain coefficient, the operation can be made by
means of some supplied procedure. However, when one treats LPDOs,
one mostly manipulates the coefficients, that is one writes the formu-
lae in terms of coefficients, etc. So it is more efficient to maintain
coefficients, rather than expressions.

For example, package Ore Algebra keeps LPDOs as expressions, while
package Ore Tools keeps LODOs as an array of their coefficients.

• The basic arithmetic (addition, subtraction, composition) of LPDOs is
implemented.

• The operations of transposition and conjugation of LPDOs is imple-
mented.

• Application to a function is implemented. Thus, one can convert an
LPDO to the corresponding differential equation, which can be treated
then by other packages of Maple.

Now we list some more advanced features, which are in the package al-
ready.

• Laplace invariants.
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• Invariants w.r.t. gauge transformations L → g−1Lg for operators of
the form

L3 = DxDy(pDx+qDy)+a20D
2
x+a11Dxy+a02D

2
y +a10Dx+a01Dy+a00 ,

(66)
where all the coefficients are functions in the variables x and y. See
them in the chapter 3.

• Equivalence test for LPDOs of the forms (66) and

DxDy + aDx + bDy + c ,

where all the coefficients are functions in the variables x and y. Namely,
a test to judge whether two LPDOs are equivalent w.r.t. the gauge
transformations L → g−1Lg is implemented.

• Obstacles to factorizations of second- and third- order LPDOs (see
chapter 2).

• Factorization of second- and third- order LPDOs (Grigoriev-Schwarz
algorithm, see section 1.7).

• Laplace transformations L → L1 and L → L−1(see section 1.5).

6.3.2 List of External Procedures

Here I list all the exported (available for usual users) procedures of my pack-
age.

• LPDO set vars(vars::list) – declares the independent variables. It is
obligatory to declare them at the beginning of each worksheet. The
argument is the list of the independent variables.

• LPDO nvars() – returns the number of variables.

• LPDO create() – creates an operator of degree 0 with the free coeffi-
cient equaled 0.

• LPDO create0(a00) – creates an LPDO of degree 0 with the free coef-
ficient equaled to a00.

• LPDO degree(L) – returns the degree of the operator L.

• LPDO simplify(L) – simplifies (in Maple sense) the coefficients of
LPDO L.

• LPDO expand(L) – expands (in Maple sense) the coefficients of L.
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• LPDO factor(L) – factors (in Maple sense) the coefficients of L.

• LPDO print(L) – prints non-zero coefficients of the operator L. Each
of them is given in the form

[i1, . . . , in] A

which means that the coefficient at DJ in L is the expression A.

• LPDO inc(L1,L2) – sets the operator L1 to be the sum of the operators
L1 and L2.

• LPDO set value(L,f ,J ::list) – sets the coefficient of DJ in the operator
L equaled f .

• LPDO add value(L,f ,J ::list) – adds to the coefficient of DJ in the
operator L the function f .

• LPDO value(L,J ::list) – returns the coefficient at DJ in the operator
L.

• LPDO add(L1, L2) – returns the sum of two LPDOs L1 and L2.

• LPDO minus(L1, L2) – returns the difference of two LPDOs L1 and
L2.

• LPDO mult1(f, L) – returns the result of the multiplication of the
operator L by the function f on the left.

• LPDO mult(L1, L2) – returns the composition of operators L1 and L2.

• LPDO conj(L, f) – returns the result of the gauge transformation:
f−1Lf .

• LPDO apply(L, f) – applies the operator L to the function f .

• LPDO transpose(L) – returns the transposed to L operator.

The following procedures address the important case of bivariate LPDOs.
To describe some of them we use the notations x, y for variables, though any
other notations can be used (just declare them by LPDO set vars).

• LPDO create2(a20, a11, a02, a10, a01, a00) – creates the operator

a20Dxx + a11Dxy + a02Dyy + a10Dx + a01Dy + a00 .

This is the short form of declaration of second-order bivariate operators.

73



• LPDO create1(a10, a01, a00) – creates the operator

a10Dx + a01Dy + a00 .

This is the short form of declaration of first-order bivariate operators.

• LPDO Lapl h(L) – returns the Laplace invariant h (see section 1.5).
The argument L is required to be an LPDO with the symbol XY .

• LPDO Lapl k(L) – returns the Laplace invariant k (see section 1.5).
The argument L is required to be a LPDO with the symbol XY .

• LPDO Inv(n, L) – for n = 1, . . . , 5 returns the invariant number n of
the full system of invariants of the operator L (see chapter 3 for details).
The operator L should have the symbol of the form

XY (pX + qY ).

• LPDO obstacle( r1, s1, r2, s2, r3, s3, L) – computes common obstacles
to factorizations into three factors. The procedure returns the list of
four elements, where the first three elements are the factors of the in-
complete factorization of L of the factorization type (S1)(S2)(S3) given
in order, while the last element of the list is the obstacle to factoriza-
tions of L of that type. Here

Si = riX + siY , i = 1, 2, 3 .

Naturally it is required that

SymL = S1 · S2 · S3 ,

and Si are coprime. Also L is expected to be bivariate. Note that by
Theorem 2.35, the obstacle and the corresponding incomplete factor-
ization are unique in this case.

When the last element of the list that the procedure outputs zero,
then one can conclude that the operator L is factorable, and the first
three elements of the list are the factors of the factorization of L of the
factorization type (S1)(S2)(S3) given in order.

• LPDO obstacle2(r1, s1, p20, p11, p02, L, i) – computes common obstacles
to factorizations into two factors. The factorization type is (S1)(S2), if
i = 12, and (S2)(S1), if i = 21, where

S1 = r1X + s1Y , S2 = p20X
2 + p11XY + p02Y

2 .
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The procedure returns the list of three elements, where the first two
of those are the factors of the incomplete factorization given in order,
while the last element of the list is the obstacle to factorizations.

It is required that
SymL = S1 · S2 ,

S1, S2 are coprime, and L is bivariate.

When the last element of the list that the procedure outputs zero, then
one can conclude that the operator L is factorable, and the first two
elements of the list are the factors of the factorization of L given in
order.

• LPDO Laplace trans(i,L) – returns the result of the Laplace transfor-
mation

L → L1 ,

if i = 1, and the result of the Laplace transformation

L → L−1 ,

if i = −1 (see section 1.5). The argument L is required to be an LPDO
with the symbol XY .

6.4 Examples of Worksheets

6.4.1 Declaration of an LPDO

The package works with an arbitrary number of variables, arbitrary parame-
ters, and coefficients. The only restriction is that the number of independent
variables, and their names should be declared at the very beginning. For
example, declare the independent variables x, y:

> LPDO__set_vars([x,y]):

To work with an operator, we declare its name:

> L2:=LPDO__create():

At this stage, L2 is a zero-operator, that is the operator, that multiplies
by zero. Then one can change the operator, describing the coefficients of its
standard representation, that is of the representation of the form

L2 =
∑

|J |≤d

aJDJ .

For example, declare the operator

L2 = Dy + q(x, y) .
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> LPDO__set_value(L2,1,[0,1]):

> LPDO__set_value(L2,q(x,y),[0,0]):

Print the operator:

> LPDO__print(L2);

[0, 0], q(x, y)

[0, 1], 1

Also there are short forms of declarations of operators of orders zero, one,
two. For example, the code

> LPDO__create2(a20(x,y),a11(x,y),a02(x,y),a10(x,y),a01(x,y),a00(x,y)):

declares the operator

a20(x, y)D2
x+a11(x, y)DxDy+a02(x, y)D2

x+a10(x, y)Dx+a01(x, y)Dy+a00(x, y) ,

and the code

> L1:=LPDO__create1(1,0,0):

> LPDO__print(L1);

[1, 0], 1

declares the operator
Dx .

6.4.2 Basic Arithmetics

Now consider an example from section 6.2.1, which shows that package
Ore Algebra requires the declaration of parametric coefficients in advance.
Now, in the new package we are not bound by those requirements:

> M:=LPDO__mult(L1,L2):

> LPDO__print(M);

d

[0, 0], -- q(x, y)

dx

[1, 0], q(x, y)

[1, 1], 1

Other basic arithmetical operations as addition and subtraction can be
executed in the following way:
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> A:=LPDO__add(L1,L2):

> LPDO__print(A);

[0, 0], q(x, y)

[1, 0], 1

[0, 1], 1

> S:=LPDO__minus(L1,L2):

> LPDO__print(S);

[0, 0], -q(x, y)

[1, 0], 1

[0, 1], -1

Perform the conjugation by the function f(x, y) = x+y (the gauge trans-
formation) and the transposition of the operator L2:

C:=LPDO__conj(L2,f(x,y)):LPDO__print(C);

/d \

q(x, y) f(x, y) + |-- f(x, y)|

\dy /

[0, 0], ------------------------------

f(x, y)

[0, 1], 1

> T:=LPDO__transpose(L2):

> LPDO__print(T);

[0, 0], q(x, y)

[0, 1], -1

Remark 6.1. An operator is kept as a one-dimensional array of coefficients,
and so there is easy access to any coefficient of the standard representation
of the operator.

For example, show the coefficient of the operator M (we defined it above
when demonstrated the multiplication of LPDOs) at Dxy:

>LPDO__value(M,[1,1]);

1

Apply the operator L1 to a function f(x, y):

77



LPDO__apply(L1,f(x,y));

d

-- f(x, y)

dx

Thus, one gets the corresponding to L1 differential expression written in the
standard Maple way.

6.4.3 Computing of Invariants

Compute five invariants (chapter 3) w.r.t. gauge transformations for the
operator

L3 := DxDy(xDx + yDy) + Dx + 1 .

> L3:= LPDO__create():

> LPDO__add_value(L3, x, [2,1]):

> LPDO__add_value(L3, y, [1,2]):

> LPDO__add_value(L3, 1, [1,0]):

> LPDO__add_value(L3, 1, [0,0]):

> I1 := LPDO__Inv(1,L3);

I1 := 0

> I2 := LPDO__Inv(2,L3);

I2 := 0

> I3 := LPDO__Inv(3,L3);

2

I3 := x

> I4 := LPDO__Inv(4,L3);

I4 := 0

> I5 := LPDO__Inv(5,L3);

3

I5 := x y

Now, every operator L33, that can be obtained from L3 by conjugation
has the same set of invariants. For example, consider the conjugation of L3
by the function f(x, y) = x.

> C3:=LPDO__conj(L3,x);

x + 1

[0, 0], -----

x

[1, 0], 1

[1, 1], 2

[0, 2], y/x

[2, 1], x

[1, 2], y
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> I1 := LPDO__Inv(1,C3);

I1 := 0

> I2 := LPDO__Inv(2,C3);

I2 := 0

> I3 := LPDO__Inv(3,C3);

2

I3 := x

> I4 := LPDO__Inv(4,C3);

I4 := 0

> I5 := LPDO__Inv(5,C3);

3

I5 := x y

In much the same way, the equivalence’s test procedure LPDO equiv
compares the invariants and output “false” or “true”.

6.4.4 Computing of Obstacles to Factorizations

Compute the common obstacles from the examples 2.41 and 2.39. There we
consider the operator

L = DxDy(Dx + Dy) + aDx + bDy + c ,

where a = a(x, y), b = b(x, y), c = c(x, y) - parameters. Compute a common
obstacle to factorizations into two factors, for example, a common obstacle
to factorizations of the type

(X)(Y )(X + Y ) .

> L:= LPDO__create2(0, 1, 0, a(x,y),b(x,y), c(x,y)):

> LPDO__add_value(L, 1, [2,1]):

> LPDO__add_value(L, 1, [1,2]):

> res:=LPDO__obstacle2(1,0,0,1,1,L,12):

> LPDO__print(res[1]);

[1, 0], 1

> LPDO__print(res[2]);

[0, 0], a(x, y)

[0, 1], 1

[1, 1], 1

[0, 2], 1

> LPDO__print(res[3]);

/d \

[0, 0], c(x, y) - |-- a(x, y)|

\dx /

[0, 1], b(x, y)
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Then the following code produces common obstacles to factorizations of
the types

(Y )(XX + XY ), (X + Y )(XY ) .

> res:=LPDO__obstacle2(0,1,1,1,0,L,12):

> LPDO__print(res[1]);

> LPDO__print(res[2]);

> LPDO__print(res[3]);

> res:=LPDO__obstacle2(1,1,0,1,0,L,12):

> LPDO__print(res[1]);

> LPDO__print(res[2]);

> LPDO__print(res[3]);

If the first factor is of order two (and, therefore, the second is of order
one), then we execute the procedure with the same arguments except the last
one, which gets the value 21. Thus, the following code produces common
obstacles to factorizations of the types

(XY + Y Y )(X), (XX + XY )(Y ) , (XY )(X + Y ) .

> res:=LPDO__obstacle2(1,0,0,1,1,L,21):

> LPDO__print(res[1]);

> LPDO__print(res[2]);

> LPDO__print(res[3]);

> res:=LPDO__obstacle2(0,1,1,1,0,L,21):

> LPDO__print(res[1]);

> LPDO__print(res[2]);

> LPDO__print(res[3]);

> res:=LPDO__obstacle2(1,1,0,1,0,L,21):

> LPDO__print(res[1]);

> LPDO__print(res[2]);

> LPDO__print(res[3]);

Compute the common obstacle to factorizations of the type XY (X + Y )
for the operator L:

> res:=LPDO__obstacle(1,0,0,1,1,1, L):

> LPDO__print(res[1]);

[1, 0], 1

> LPDO__print(res[2]);

[0, 1], 1
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> LPDO__print(res[3]);

[0, 0], 1

[1, 0], 1

[0, 1], 1

> LPDO__print(res[4]);

[0, 0], c

[1, 0], a

[0, 1], b

Therefore, we have

L = DxDy(Dx + Dy + 1) + aDx + bDy + c .

Generalize the problem: consider the operator

L = DxDy(Dx + qDy) + aDx + bDy + c

with q = q(x, y). The following code computes the common obstacle to
factorizations of the factorization type (X)(Y )(X + qY ):

> LPDO__set_value(L, q(x,y), [1,2]):

> LPDO__print(L):

[0, 0], c(x, y)

[1, 0], a(x, y)

[0, 1], b(x, y)

[1, 1], 1

[2, 1], 1

[1, 2], q(x, y)

> res:=LPDO__obstacle(1,0,0,1,1,q(x,y), L):

LPDO__print(res[1]);

d

-- q(x, y)

dx

[0, 0], - ----------

q(x, y)

[1, 0], 1

> LPDO__print(res[2]);

[0, 1], 1

> LPDO__print(res[3]);
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/d \ /d \

-q(x, y) - |-- q(x, y)| + |-- q(x, y)| q(x, y)

\dx / \dy /

[0, 0], - ----------------------------------------------

q(x, y)

[1, 0], 1

[0, 1], q(x, y)

> LPDO__print(res[4]);

The last command produces

Obst(X)(Y )(X+qY ) = (a− qxy/q + qyy + qxqy/q
2)Dx +

(b + qx/q + 2q2
x/q

2 − qxx/q)Dy +

c + 3qxqxy/q
2 − qxqyy/q − 2qyq

2
x/q

3 − qxxy/q + qxyy + qyqxx/q
2 .

6.4.5 Factorization of LPDOs

Naturally, when a common obstacle is zero, one concludes that the considered
LPDO is factorable. Consider the example from the section 1.7, where the
Grigoriev-Schwarz algorithm is applied to compute factorization

L = (Dx + 1) ◦ (Dyy + Dx + Dy + x− 1) .

The following shows how one can compute it by means of only one procedure:

> L:= LPDO__create2(1, 1, 1, x, 1, x):

> LPDO__add_value(L, 1, [1,2]):

> res:=LPDO__obstacle2(1,0,0,0,1,L,12):

> LPDO__print(res[1]);

[0, 0], 1

[1, 0], 1

> LPDO__print(res[2]);

[0, 0], x - 1

[1, 0], 1

[0, 1], 1

[0, 2], 1

> LPDO__print(res[3]);

0
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6.4.6 Computing of Invariants and Transformations of Laplace

Consider the code computing the example 1.1. At first, we declare the oper-
ator L and compute its Laplace invariants h and k.

> L:= LPDO__create2(0, 1, 0, 0, 0, -2/(x+y)^2):

> h:=LPDO__Lapl_h(L);

2

h := --------

2

(x + y)

> k:=LPDO__Lapl_k(L);

2

k := --------

2

(x + y)

Then, since both h and k are not zero, we can apply the both Laplace
transformations to the operator L, and compute their Laplace invariants h1,
k1 and h−1, k−1:

> L1:=LPDO__Laplace_trans(1,L):

> LPDO__print(L1):

2

[0, 0], - --------

2

(x + y)

2

[1, 0], -----

x + y

[1, 1], 1

> h1:=LPDO__Lapl_h(L1);

h1 := 0

> k1:=LPDO__Lapl_k(L1);

2

k1 := --------

2

(x + y)

> L_1:=LPDO__Laplace_trans(-1,L): LPDO__print(L_1);

2

[0, 0], - --------

2

(x + y)

2
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[0, 1], -----

x + y

[1, 1], 1

> h_1:=LPDO__Lapl_h(L_1);

2

h_1 := --------

2

(x + y)

> k_1:=LPDO__Lapl_k(L_1);

k_1 := 0

Since h1 = 0 and k−1 = 0, both L1 and L−1 are factorable, and, therefore,
solvable. The formula (8) that one uses in such the case is implemented in
pdsolve:

> EqL1:=LPDO__apply(L1,z1(x,y)):

> res:=pdsolve(EqL1,z1(x,y)); assign(res);

The procedure pdsolve returns the solution

z1 =
1

(x + y)2

( ∫
F1(y)(x + y)2dy + F2(x)

)
,

where F1(y) = B(y) and F2(x) = A(x) are some parameter functions.

Finally, compute the solution of L(z) = 0 from the solution of L1(z1) = 0:

> z:=collect(simplify((1/h)*diff(z1(x,y),x)),diff);

The last line gives us

z =
1

2
F2(x)+

1

(x + y)

(
(x+y)

∫
(x+y) F1(y)dy−

∫
(x+y)2 F1(y)dy− F2(x)

)
.

Verify that this is the solution of L(z) = 0:

> LPDO__apply(L,z);

0
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6.5 Conclusion

The package LPDO manipulations is a new tool to work with LPDOs with
parametric coefficients. For future I plan to add to the package the following:

• the Laplace Cascade method of integration (section 1.5),

• the factorization algorithm of Grigoriev and Schwarz for arbitrary order
LPDOs (section 1.7),

• some other algorithms for LPDOs.

Another important and necessary direction of development of the package
is the implementation of some transformations methods for LPDOs. Indeed,
most of the known methods works for LPDOs of certain form, and for a given
operator we need to find a related to it (in some sense) operator that has the
form required by implemented the methods.
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7 Conclusion

One of the main goals of the whole theory of LPDOs is the finding of solutions
of LPDEs and systems of LPDEs. Therefore, it is important to think about
ways in which one can apply the results obtained here and elsewhere to the
solution of LPDEs, even though this is broaching a very general and abstract
problem of the theory.

The factorization of LPDOs is one important technique for solving
LPDEs, which is the reason why, for different kinds of LPDOs, studies of
the properties of factorizations and then the construction of factorization al-
gorithms have been at the center of attention during the last decades. Two
chapters of the present thesis have been devoted to factorization problems.
In chapter 2, I have studied factorizations of LPDOs, having an arbitrary
order and having an arbitrary number of independent variables, that satisfy
the condition that the symbols of the factors of the factorizations are pairwise
coprime. In other words, if one considers some operator L with the symbol
SymL, then only factorizations

L = F1 ◦ · · · ◦ Fk ,

where Fi, i = 1, . . . , k are pairwise coprime are considered. This requirement
is necessary because most of the results of the chapter essentially use the
algorithm of Grigoriev-Schwarz (see section 1.7), which requires that any
considered factorization has such a property. In contrast, one advantage
of introducing the rings of obstacles, as has been defined above, is that no
such requirement is needed, and it is worthwhile to try to extract some
properties of factorizations in the general case. Also, for both general and the
special cases which have been considered here, one can study the functorial
properties of rings of obstacles.

The notion of obstacle rings has already been fruitful, but generalizations
are possible. For example, the notion of factorization has itself been general-
ized in, for example, [33]. This generalization is very interesting, and seems
to be a promising path to future extensions of existing results. Specifically,
it seems that it will be interesting to explore the notion of obstacle rings for
these generalized factorizations.

The advantages of generalizing obstacles to cases in which the symbols of
the factors are not coprime have already been pointed out. However, there is
another possibility, which I suggested in chapter 4. The main feature of this
case lays in the fact that no uniqueness of factorizations can be expected, in
contradistinction to the case that was considered in the theory of obstacle,
where there is at most one factorization (see section 1.7) of an operator.
In addition, in the case of non coprime symbols, parametric factorizations
can appear. In chapter 4, I have considered the linearization of the space of
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parameters that appear in a factorization, so as to study the possible number
of parameters and to describe LPDOs that admit parametric factorizations.

Factorization, it must be remembered, is only one method for solving
LPDEs. Other methods include transformational ones, which consist in ap-
plying certain transformations to a given operator. Once we obtain, as a re-
sult, an LPDO whose corresponding LPDE has a known analytical solution,
then the properties of the transformations allow us to compute the solutions
of the initial LPDE from those of the transformed operator. In chapter 5,
I have introduced new transformations, called GL-transformations. These
transformations apply to operators of an arbitrary order and in an arbitrary
number of independent variables. I described the properties of such trans-
formations when they are applied to operators of the form

L = Dxy + aDx + bDy + c , (67)

where a = a(x, y), b = b(x, y), c = c(x, y). It is worth noting that not much
has been established about the general case. Here is an opportunity of fu-
ture work, in which the properties of transformations applied more generally
might be established. Also for a future, there is the interesting possibility
of generalizing the idea of GL-transformations to cases in which even the
operator M , which is involved in the defibrination of such transformations,
is of order higher than one.

The idea of generalized factorizations was pointed out above. Since this
generalization of factorization (see for example [33]) is based on the clas-
sical Laplace transformations, it is then a natural idea to attempt similar
generalizations based on the GL-transformations, rather than the Laplace
ones.

Also on the topic of transformations, one may recall the gauge transfor-
mations given by L → g−1Lg of an LPDO L. The classical Laplace invariants
(7) are invariants with respect to these transformations. Moreover, these in-
variants form a full system of invariants of operators of the form given in (67),
that is to say, any other invariant can be expressed in terms of those two. In
chapter 3, I have given explicit formulae for five invariants for operators of
the form

L = DxDy(pDx + qDy) + a20D
2
x + a11Dxy + a02D

2
y + a10Dx + a01Dy + a00 ,

where again all the coefficients depend on independent variables x and y. The
invariants also form a full system. The question of extending the methods
and results to obtaining similar full systems of invariants for operators of
higher orders remains open.

Finally, the package described in chapter 6 has been an indispensable
tool for exploring the properties of LPDOs and obtaining the results giv-
en in this thesis. In addition to enhancing the capabilities of Maple in
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the area of LPDOs, the package offers the possibility of implementing all
well-known algorithms in this area of research. For example, the important
algorithm of Grigoriev—Schwarz can be made available to all Maple users,
as can algorithms developed in this thesis. The development of computer
algebra systems in general has revolutionized mathematical research. These
days, many mathematicians routinely speak of “experimental mathematics”,
and the capacity to experiment with LPDOs, to extend algorithms such as
Grigoriev—Schwarz to high orders, etc., could yield a great harvest of new
results.
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