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Abstract

In this paper we investigate the discretization of an elliptic bound-
ary value problem in 3D by means of the hp-version of the finite ele-
ment method using a mesh of tetrahedrons. We present several bases
based on integrated Jacobi polynomials in which the element stiffness
matrix has O(p3) nonzero entries, where p denotes the polynomial de-
gree. The proof of the sparsity requires the assistance of computer
algebra software. Several numerical experiments show the efficiency of
the proposed bases for higher polynomial degrees p.

AMS-subjects: 65N30, 65N35, 33C45 (primary), 65N22, 65N55, 65Q05
(secondary)
Key words: High order Finite Elements, Orthogonal polynomials, Computer
algebra, Solution of discretized equations

1 Introduction

In this paper, we investigate the following boundary value problem: Let
Ω ⊂ R3 be a bounded domain and let A(x, y, z) be a 3× 3 matrix which is
symmetric and uniformly positive definite in Ω. Find u ∈ H1

Γ1
(Ω) = {u ∈

H1(Ω), u = 0 on Γ1}, Γ1 ∩ Γ2 = ∅, Γ1 ∪ Γ2 = ∂Ω such that

a4(u, v) :=
∫

Ω
(∇u)TA(x, y, z)∇v =

∫
Ω
fv +

∫
Γ2

f1v := 〈f, v〉Ω + 〈f1, v〉Γ2

(1)
holds for all v ∈ H1

Γ1
(Ω). Problem (1) will be discretized by means of

the hp-version of the finite element method using tetrahedral elements 4s,
s = 1, . . . , nel. Let 4̂ be the reference tetrahedron and Fs : 4̂ → 4s be the
(possibly nonlinear) isoparametric mapping to the element 4s. We define
the finite element spaceM := {u ∈ H1

Γ1
(Ω), u |4s= ũ(F−1

s (x, y, z)), ũ ∈ Pp},
where Pp is the space of all polynomials of maximal total degree p.

By Ψ = (ψ1, . . . , ψN ), we denote a basis for M in which the functions
ψ1, . . . , ψnv are the usual hat functions. The high order functions
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ψnv+(j−1)(p−1)+1, . . . , ψnv+j(p−1) correspond to the edge ej of the mesh, and
vanish on all other edges, i.e. satisfy the condition ψnv+(j−1)(p−1)+k−1 |el

=
δj,lpk, where pk is a polynomial of degree p, k = 2, . . . , p. The support of
an edge function is formed by those elements, which have ej in common.
One defines (p−1)(p−2)

2 face shapes which are polynomial on the defining face
and vanish on all other faces. The support of these face-based functions is
formed by the two elements sharing the defining face. The remaining basis
functions are interior bubble functions consisting of a support containing
one element only. These functions vanish on each face of the mesh. With
this definition, the basis functions ψi can be divided into four groups,

• the vertex functions,

• the edge bubble functions,

• face bubble functions,

• the interior bubble functions,

locally on each element 4s, and globally on Ω.
The Galerkin projection of (1) onto M leads to the linear system of

algebraic finite element equations

KΨu = f, where KΨ = [a∆(ψj , ψi)]
N
i,j=1 , f

p
= [〈f, ψi〉+ 〈f1, ψi〉Γ2 ]

N
i=1 .

(2)
The global stiffness matrix KΨ can be expressed by the local stiffness ma-
trices on the elements, i.e.

KΨ =
nel∑
s=1

RT
s KsRs, (3)

where Ks is the stiffness matrix on the element 4s and Rs denotes the
connectivity matrix for the numbering of the shape functions on 4s and Ω.

Using the vector u, an approximation up = Ψu of the exact solution u
of (1) can be built from the usual finite element isomorphism. In the case
of smooth solutions u in parts of the domain Ω, spectral methods, [19], and
finite elements of high order (p-version), see e.g. [28], [31], and the references
therein, have become more and more popular in the last twenty years. For
the h-version of the FEM, the polynomial degree p of the shape functions
on the elements is kept constant and the mesh-size h is decreased. This is
in contrast to the p-version of the FEM in which the polynomial degree p is
increased and the mesh-size h is kept constant. Both ideas, mesh refinement
and increasing the polynomial degree, can be combined. This is called the
hp-version of the FEM.

The advantage of the p-version in comparison to the h-version is that the
solution converges faster to the exact solution with respect to the number of
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unknowns N . However, the choice of a basis Ψ in which the element stiffness
matrix Ks has O(N) nonzero matrix entries is a difficult question. In the
one-dimensional case, e.g. for the differential equation −u′′+u = f , one can
take the primitives of orthogonal polynomials in order to get a sparse system
matrix, see e.g. [18]. In the 2D and 3D case, the choice of a basis which
is optimal due to condition number and sparsity of KΨ is not so clear. In
[7], several bases have been investigated regarding their condition number.
In the case of tensor product elements 4s like quadrilaterals and hexahe-
drons and a constant diffusion matrix A, one can take tensor products of
integrated Legendre polynomials, see e.g. [6], [18]. Then, the element stiff-
ness matrix Ks has O(N) nonzero matrix entries and KΨ can be computed
in O(N) operations via (3). However, in the case of a general quadrilateral
(hexahedral in 3D) element 4s with nonparallel opposite edges (faces), most
of the orthogonality relations of the reference element case disappear and
Ks (and hence KΨ) has, in general, O(p6) matrix entries. Using a quadra-
ture rule, the cost in order to obtain KΨ is O(p9). In [23], tensor products
of Lagrangian polynomials on the grid of the Gauss-Lobatto points are pro-
posed. Then, the cost for computing Ks by a quadrature rule is O(p5). This
approach can be extended to the tetrahedral case by the Duffy transforma-
tion, [14], see also [19]. If the diffusion function A is piecewise constant, the
cost for the generation of the stiffness matrix can be reduced to O(p4) by
the technique of precomputed arrays; see [25], [19]. However, the choice of
a basis in which Ks has O(N) matrix entries for some elements 4s is more
difficult. In [30], a new basis for triangular and tetrahedral elements has
been proposed. This basis has many nonzero entries, see [29]. A proof for
the sparsity of the element stiffness matrix with O(p3) nonzero entries is still
an open problem in the literature. In [13], another basis for the triangular
case is proposed. Moreover, it is proved that the element stiffness matrix
has O(p2) nonzero entries. In comparison to the basis in [30], the weight of
the Jacobi polynomials in y-direction is increased.

In this paper, we investigate several basis functions for tetrahedral el-
ements. On one element, we have to define 1

6(p + 1)(p + 2)(p + 3) shape
functions. We prove that the element stiffness matrix Ks has O(p3) nonzero
matrix entries in the case of piecewise constant coefficients A(x, y, z) on the
elements 4s and affine linear mappings Fs. Moreover, each nonzero matrix
entry can be computed in O(1) operations. So, the matrix vector multi-
plication and the generation of the stiffness matrix can be done in O(N)
arithmetical operations. One example of these bases is the basis proposed
in [30]. The proof of the sparsity of the system matrix requires the assis-
tance of a computer algebra system. For another example where computer
algebra software (esp. symbolic summation techniques) have been applied
to a problem arising in the hp-version of FEM see [8]. There the construc-
tion of low energy edge and vertex shape functions for triangles is described,
for which cheap recurrence relations have been derived applying recently
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developed computer algebra algorithms for hypergeometric summation. A
comment on linking symbolic to numerical computation in the context of
hp-FEM can be found in [26].

In section 2, we formulate and prove the most important properties of
Jacobi polynomials and their primitives. In section 3, the shape functions
on the reference tetrahedron 4̂ are defined and the main result of this paper,
Theorem 3.3, is formulated. The computational properties of the element
stiffness matrix are summarized in section 4. In section 5, we derive a simple
Domain Decomposition (DD) preconditioner for the block of the interior
bubbles. In section 6 we describe how Theorem 3.3 can be proved in an
algorithmic manner. We have executed this proof by the aid of a program
we implemented in the computer algebra system Mathematica. In section
7, we give some remarks for an efficient implementation of the computation
of the element stiffness matrix. In the appendix, we give the reader an
impression of the computation of the nonzero matrix entries of the element
stiffness matrix using our Mathematica program.

Throughout this paper, the reference tetrahedron 4̂ denotes the tetra-
hedron with the vertices (−1,−1,−1), (1,−1,−1), (0, 1,−1) and (0, 0, 1).
The parameter nel denotes the number of elements and p denotes the poly-
nomial degree. By Fs, we denote the isoparametric mapping from 4̂ to the
tetrahedron 4s.

2 Properties of Jacobi polynomials with weight
(1− x)α

For the definition of our basis functions on the reference element, Jacobi
polynomials are required. In this section, we summarize the most impor-
tant properties of Jacobi polynomials. We refer the reader to the books of
Abramowitz and Stegun, [1], Andrews, Askey and Roy, [5], and Tricomi,
[32], for more details. Moreover, we state and prove some properties which
only hold for polynomials with weight (1− x)α(1 + x)0.

For n ∈ N0, α, β > −1, let

pα,β
n (x) =

1
2nn!(1− x)α(1 + x)β

dn

dxn

(
(1− x)α(1 + x)β(x2 − 1)n

)
(4)

be the nth Jacobi polynomial with respect to the weight function (1 −
x)α(1 + x)β. The function pα,β

n (x) is a polynomial of degree n, i.e. pα,β
n ∈

Pn((−1, 1)), where Pn is the space of all polynomials of degree n on the
interval. In the special case α = β = 0, the functions p0,0

n (x) are called
Legendre polynomials. Moreover, let

p̂α,β
n (x) =

∫ x

−1
pα,β

n−1(y) dy n ≥ 1, p̂α,β
0 (x) = 1 (5)
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be the nth integrated Jacobi polynomial.
We would like to mention that the integrated Jacobi polynomial (5) can

be expressed in terms of Jacobi polynomials (4) with modified weights, i.e.

p̂α,β
n (x) =

2
n+ α+ β − 1

[
pα−1,β−1

n (x)− pα−1,β−1
n (−1)

]
, (6)

for α > 0 or β > 0. This is easy to see, since the derivatives of Jacobi
polynomials are again Jacobi polynomials with shifted parameters, i.e.

d
dx
pα,β

n (x) =
n+ α+ β + 1

2
pα+1,β+1

n−1 (x),

see [5].
In the following, we use only the Jacobi and integrated Jacobi polyno-

mials with weight (1− x)α, i.e. β = 0. Therefore, we omit the second index
β in (4), (5). In this case, relation (6) simplifies to

p̂α
n(x) =

2
n+ α− 1

pα−1,−1
n (x),

where Jacobi polynomials with negative index β = −1, α > −1 are defined
as

pα,−1
n (x) =

1 + x

2
n+ α

n
pα,1

n−1(x).

The orthogonality with respect to the weight function (1 − x)α/(1 + x)
for n ≥ 1 is immediate from the corresponding orthogonality relation of
Jacobi polynomials pα,1

n (x). For α = 0, i.e. integrated Legendre polynomials
p̂0

n(x) ∼ p−1,−1
n (x), we are in a limiting case, for which the well known

identity p̂0
n(x) = x2−1

2(n−1)p
1,1
n−2(x) exists.

The following two lemmas summarize the properties of Jacobi and inte-
grated Jacobi polynomials which have been proved in [13].

Lemma 2.1. Let pα
n be defined via (4). Moreover, let j, l ∈ N0 and α > −1.

Then, we have

pα−1
n (x) =

1
α+ 2n

[
(α+ n)pα

n(x)− npα
n−1(x)

]
, (7)

pα
n+1(x) =

2n+ α+ 1
(2n+ 2)(n+ α+ 1)(2n+ α)
×

(
(2n+ α+ 2)(2n+ α)x+ α2

)
pα

n(x)

− n(n+ α)(2n+ α+ 2)
(n+ 1)(n+ α+ 1)(2n+ α)

pα
n−1(x), n ≥ 1. (8)

Moreover, the integral relations∫ 1

−1
(1− x)αpα

j (x)pα
l (x) dx = ρα

j δjl, where ρα
j =

2α+1

2j + α+ 1
, (9)∫ 1

−1
(1− x)αpβ

j (x)ql(x) dx = 0 (10)

∀ql ∈ Pl, α− β ∈ N0, j > l + α− β
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hold.

Lemma 2.2. Let l, j ∈ N0. Let pα
n and p̂α

n be defined via (4) and (5). Then,
the identities

p̂α
n(−1) = 0, n ≥ 1, (11)

p̂α
n(x) =

2n+ 2α
(2n+ α− 1)(2n+ α)

pα
n(x) +

2α
(2n+ α− 2)(2n+ α)

pα
n−1(x)

− 2n− 2
(2n+ α− 1)(2n+ α− 2)

pα
n−2(x), n ≥ 2, (12)

p̂α
n+1(x) =

2n+ α− 1
(2n+ 2)(n+ α)(2n+ α− 2)
× ((2n+ α− 2)(2n+ α)x+ α(α− 2)) p̂α

n(x)

−(n− 1)(n+ α− 2)(2n+ α)
(n+ 1)(n+ α)(2n+ α− 2)

p̂α
n−1(x), n ≥ 1, (13)

p̂α
n(x) =

2
2n+ α− 1

(
pα−1

n (x) + pα−1
n−1(x)

)
, n ≥ 1, (14)

and the integral relations∫ 1

−1
(1− x)αp̂α

j (x)p̂α
l (x) dx = 0 if |j − l| > 2, (15)∫ 1

−1
(1− x)αp̂β+1

j (x)ql(x) dx = 0 (16)

∀ql ∈ Pl, α− β ∈ N0, j > l + 1 + α− β

hold.

The most important results are the formulas (12) and (8). With relation
(8), we are recursively able to compute function values of the Jacobi poly-
nomials. Relation (12) gives a simple connection between the Jacobi and
the integrated Jacobi polynomials.

Finally, we prove three properties of the Jacobi polynomials which have
not been presented in [13].

Lemma 2.3. Let j ∈ N. Let pα
n and p̂α

n be defined via (4) and (5). Then,

(α− 1)p̂α
j (y) = (1− y)pα

j−1(y) + 2pα−2
j (y), α > 1, (17)

4(α+ j − 2)pα−2
j−1 (y)+

(2α− 4)pα−2
j (y) = (1− y)

(
(2− 2j)pα

j−2(y) + αpα
j−1(y)

)
(18)

+(α+ 2j − 2)(α− 1)p̂α
j (y), α > 1,

ypα
j−1(y)− jp̂α

j (y) =
1

2j + α− 2
(
−αpα

j−1(y) + (2j − 2)pα
j−2(y)

)
,

α > −1 (19)

with pα
−1(y) = 0.
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Proof. We start with the proof of (17). Using (8), we can represent

(1− y)pα
j−1(y) = − 2j(j + α)

(2j + α− 1)(2j + α)
pα

j (y)

− (2j − 2)(j + α− 1)
(2j + α− 2)(2j + α− 1)

pα
j−2(y)

+
(2j + α− 2)(2j + α) + α2

(2j + α− 2)(2j + α)
pα

j−1(y). (20)

Using (7) twice, we conclude that

2pα−2
j (y) = 2

α− 1 + j

α+ 2j − 1
· α+ j

α+ 2j
pα

j (y)

−4
α− 1 + j

α+ 2j − 2
· j

α+ 2j
pα

j−1(y)

+2
j

α+ 2j − 1
j − 1

α+ 2j − 2
pα

j−2(y). (21)

Adding (20) and (21) and using (12), we obtain

(1− y)pα
j−1(y) + 2pα−2

j (y) =
(2j + 2α)(α− 1)

(2j + α− 1)(2j + α)
pα

j (y)

+
2(α− 1)α

(2j + α− 2)(2j + α)
pα

j−1(y)

− (2j − 2)(α− 1)
(2j + α− 1)(2j + α− 2)

pα
j−2(y)

= (α− 1)p̂α
j (y).

This proves (17). Next, we prove (18). Using (17) for pα
j−2 and pα

j−1, we
have

(1− y)
(
(2− 2j)pα

j−2(y) + αpα
j−1(y)

)
(22)

+(α+ 2j − 2)(α− 1)p̂α
j (y) = (α− 1)

(
−(2j − 2)p̂α

j−1(y)
+ (2α+ 2j − 2)p̂α

j (y)
)

+(4j − 4)pα−2
j−1 (y)− 2αpα−2

j (y).

Next, we simplify the right hand side of the previous equation. Using (14)
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and (7), we obtain

−(2j − 2)p̂α
j−1(y)+

+(2α+ 2j − 2)p̂α
j (y) =

4(j + α− 1)
2j + α− 1

(pα−1
j (y) + pα−1

j−1 (y))

− 4(j − 1)
2j + α− 3

(pα−1
j−1 (y) + pα−1

j−2 (y))

=
4(j + α− 1)
2j + α− 1

pα−1
j (y)− 4j

2j + α− 1
pα−1

j−1 (y)

+
4(j + α− 2)
2j + α− 3

pα−1
j−1 (y)− 4(j − 1)

2j + α− 3
pα−1

j−2

= 4(pα−2
j (y) + pα−2

j−1 (y)). (23)

Now, we insert (23) into (22) which proves (18).
Finally, we prove (19). First, we obtain from (12) that

ypα
j−1(y) = 2j

α+ j

(2j + α− 1)(2j + α)
pα

j (y) (24)

− α2

(2j + α)(2j + α− 2)
pα

j−1(y)

+(2j − 2)
j + α− 1

(2j + α− 1)(2j + α− 2)
pα

j−2(y).

Secondly, using (8) we get

jp̂α
j−1(y) = 2j

α+ j

(2j + α− 1)(2j + α)
pα

j (y) (25)

+2j
α

(2j + α)(2j + α− 2)
pα

j−1(y)

−(2j − 2)
j

(2j + α− 1)(2j + α− 2)
pα

j−2(y).

Subtracting (25) from (24), we conclude that

ypα
j−1(y)− jp̂α

j (y) =
1

2j + α− 2
(
−αpα

j−1(y) + (2j − 2)pα
j−2(y)

)
.

This is (19) and completes the proof.

Remark 2.4. The relations (7)-(19) can also be generated and proven with
the RISC-summation packages, e.g. [20, 27, 33].

3 Element stiffness matrix

In this section, we define the shape functions on the reference element 4̂.
Then, we formulate our main theorem stating that the element stiffness
matrix has O(p3) nonzero matrix entries. The parameter p denotes the
polynomial degree.
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3.1 Definition of the shape functions

Let 4̂ be the reference tetrahedron with the vertices A,B,C, and D, the
edges e1, . . . , e6, and the faces F1, . . . , F4, see Figure 1.

e1

e2e3

e4 e6
e5

F1

F2
F3

e1=AB

A=(−1,−1,−1) B=(1,−1,−1)

D=(0,0,1)

C=(0,1,−1)

e2=BC

e3=AC

e4=AD

e5=BD

e6=CD

F1= ABC

F2= ACD

F3= BCD

F4= ABD

∆
∆
∆
∆

Figure 1: Notation of the faces, edges and vertices on the reference element
4̂.

Now, we split the definition of the shape functions into the vertex, edge
bubble, face bubble and interior bubble functions:

• The vertex functions are defined as the usual hat functions, i.e.

φA/B(x, y, z) =
1− 2y − z ± 4x

4
, φC(x, y, z) =

1 + 2y − z

2
,(26)

φD(x, y, z) =
1 + z

2
.

Let ΦV = [φA, φB, φC , φD] denote the basis of the hat functions.

• The edge bubbles are defined as

φe1,i(x, y, z) = p̂0
i

(
4x

1− 2y − z

) (
1− 2y − z

4

)i

, i = 2, . . . , p,

φe2/e3,j(x, y, z) =
1− 2y − z ± 4x

4
p̂0

j

(
2y

1− z

) (
1− z

2

)j

,

j = 1, . . . , p− 1,

φe4/e5,k(x, y, z) =
1− 2y − z ∓ 4x

4
p̂0

k(z), k = 1, . . . , p− 1,

φe6,k(x, y, z) =
1 + 2y − z

2
p̂0

k(z), k = 1, . . . , p− 1. (27)

We denote by

Φe =
[
{φe1,i}p

i=2 , {φe2,j}p−1
j=1 , {φe3,j}p−1

j=1 ,

{φe4,k}p−1
k=1 , {φe5,k}p−1

k=1 , {φe6,k}p−1
k=1

]
9



the basis of all edge bubble functions.

• The face bubble functions are

φF1,i,j(x, y, z) = p̂0
i

(
4x

1− 2y − z

) (
1− 2y − z

4

)i

×p̂2i−a
j

(
2y

1− z

) (
1− y

2

)j

i ≥ 2, j ≥ 1, i+ j ≤ p,

φF2/3,j,k(x, y, z) =
1− 2y − z ∓ 4x

4
p̂0

j

(
2y

1− z

) (
1− y

2

)j

(28)

×p̂2j+2−b
k (z), j, k ≥ 1, j + k ≤ p− 1,

φF4,i,k(x, y, z) = p̂0
i

(
4x

1− 2y − z

) (
1− 2y − z

4

)i

p̂2i−b
k (z),

i ≥ 2, k ≥ 1, i+ k ≤ p.

We denote by

ΦF =
[
{φF1,i,j}i+j=p

i=2,j=1 , {φF2,j,k}j+k=p−1
j,k=1 ,

{φF3,j,k}j+k=p−1
j,k=1 , {φF4,i,k}i+k=p

i=2,k=1

]
the basis of all face bubble functions.

• The interior bubbles read as

φijk(x, y, z) = p̂0
i

(
4x

1− 2y − z

) (
1− 2y − z

4

)i

×p̂2i−a
j

(
2y

1− z

) (
1− y

2

)j

p̂2i+2j−b
k (z),

i+ j + k ≤ p, i ≥ 2, j, k ≥ 1. (29)

The parameters a, b ∈ N0 satisfy the following assumptions

0 ≤ a ≤ 4, a ≤ b ≤ 6. (30)

Moreover, ΦI = [φijk]
i+j+k≤p
i≥2,j≥1,k≥1 denotes the basis of the interior bub-

bles.

Let
Φ = [ΦV ,Φe,ΦF ,ΦI ]

be the basis of all shape functions. The interior bubbles coincide with the
functions given in [30], see also [19], if a = b = 0.

10



Remark 3.1. With the same arguments as presented in [13], it can be
proved that the edge bubbles (27) corresponding to the edge e vanish on all
other edges. The face bubbles (28) corresponding to the face F vanish on all
other faces. The interior bubbles are zero on all faces. Hence, the functions
are linearly independent and spanΦ = Pp.

Remark 3.2. To define the global shape functions, we adapt the number-
ing method developed in [2], i.e. the mapping Fs transforms the vertices
V 1, . . . , V 4 on 4̂ to the vertices v1, . . . , v4 of the FE mesh on 4s with
]v1 < ]v2 < ]v3 < ]v4. The construction of our face bubbles (28) requires a
characteristic vertex on each face. Due to our construction, the vertex with
the largest number is the characteristic vertex on each face. Moreover, the
face bubbles are

φF2/3,i,k(r, s) =
1− 2r

1−s

2
p̂0

i−1

(
2r

1− s

) (
1− s

2

)i

p̂2i−b
k (s),

r − 1 ≤ 2s ≤ 1− r,−1 ≤ r ≤ 1

φF1/4,i,k(r, s) = p̂0
i

(
2r

1− s

) (
1− s

2

)i

p̂2i−a
k (s),

r − 1 ≤ 2s ≤ 1− r,−1 ≤ r ≤ 1.

There exists a simple basis transformation matrix W between the two bases[
p̂0

i (t)
]p

i=2
and

[
(1− t)p̂0

i−1(t)
]p

i=2
, [13]. This matrix W is a pentadiagonal

and upper triangular matrix. Using the arguments proposed in [13], the
continuity of the face bubbles along element boundaries can be enforced. With
the same arguments, the continuity of the edge bubbles can be enforced as
well.

Let

Â =

 a11 a12 a13

a12 a22 a23

a13 a23 a33

 ∈ R3×3

be a diffusion matrix with constant coefficients. We introduce

K̂Â =
∫
4̂

(∇Φ)T Â∇Φ (31)

as the stiffness matrix with respect to the functions (26)-(29) on the reference
tetrahedron. Moreover, let

K̂Â,I =
[
aÂijk,i′j′k′

]i+j+k=p,i′+j′+k′=p

i,i′=2,j,j′,k,k′=1
(32)

=
[∫

4̂
(∇φijk)T Â∇φi′j′k′

]i+j+k=p,i′+j′+k′=p

i,i′=2,j,j′,k,k′=1

be the block of K̂Â which corresponds to the interior bubbles.
Now, we are in the position to formulate the main theorem of this paper.
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Theorem 3.3. Let K̂Â be defined via equation (31). Then, this matrix has
(p+1)(p+2)(p+3)

6 rows and columns. If condition (30) is satisfied, each row
has a bounded number of nonzero entries and the number of total nonzero
entries is O(p3). Moreover, the entry aI

ijk,i′j′k′ of the matrix K̂I,I (32) is
zero if |i−i′| 6∈ {0, 2}, or |i+j−i′−j′| > 3+a, or |i+j+k−i′−j′−k′| > 2+b.

Proof. The proof is given in section 6.

Remark 3.4. As presented in [13, Theorem 3.2], the result can be extended
to the case of a general tetrahedron.

4 Properties of the interior block of the element
stiffness matrix

In this section, we present the most important computational properties
for the matrix K̂I,I (32) which corresponds to the interior block of the ele-
ment stiffness matrix. In several numerical experiments, we investigate the
nonzero pattern, the number of nonzero entries and the condition number
for the bases (29) for several values of a and b. Finally, the time for the
generation of the matrix K̂I,I and the matrix vector multiplication K̂I,Ix is
measured. All computations are performed on a 2 GHz workstation.

Figure 2 displays the nonzero pattern of the matrix K̂I,I , i.e. the block
of the interior bubbles for the Laplacian, using the basis functions

φijk(x, y, z) = p̂0
i

(
4x

1− 2y − z

) (
1− 2y − z

4

)i

p̂2i
j

(
2y

1− z

) (
1− z

2

)j

p̂2i+2j
k (z),

i+ j+k ≤ p, i ≥ 2, j, k ≥ 1, i.e. the functions (29) with a = b = 0. A typical
stencil like structure of the nonzero entries can be observed.

Figure 3 displays the averaged numbers of nonzero entries for the matrix
K̂I,I for several values of a and b. If 0 ≤ a ≤ b ≤ 6, the averaged number of
nonzero entries per row are bounded by a constant ca,b which is independent
of the polynomial degree p. This constant depends on the special choice of
a and b and is the lowest one for a = b = 0. The optimality of the number
of nonzero entries per row for a = b = 0 is a consequence of the proof
of Theorem 3.3. In general, one obtains ca,b = 3(7 + 2a)(5 + 2b). In the
case b < a, our assumption (30) is violated. Since the averaged number of
nonzero entries per row increases with p, this assumption is necessary to
prove Theorem 3.3.

Figure 4 displays the maximal and the inverse of the minimal eigenvalue
of the diagonally preconditioned matrix K̂I,I . In all cases, the maximal

12
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Figure 2: Nonzero pattern of the interior bubbles for p = 10 (left) and p = 32
(right) with a = b = 0.
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Figure 3: Averaged number of nonzero entries for the interior bubbles per
row.
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Figure 4: Maximal and minimal eigenvalue of the diagonally preconditioned
matrix K̂I,I .
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Figure 5: Time for assembling K̂I,I (left) and for K̂I,Ix (right) for several
polynomial degrees.

eigenvalue is bounded by a constant of about 7 . . . 15. The minimal eigen-
value λmin depends strongly on the choice of a and b. From the numerical
results, one can conclude that λ−1

min grows as O(pmax{4,4+2a,4+2b,4+2a+2b}).
So, the condition number grows at least with p4. The optimal order for the
condition number can be achieved if a, b ≤ 0. In combination with Theorem
3.3, the basis with a = b = 0 should be preferred since it yields to the lowest
number of nonzero entries and the best condition number.

A last example shows the significance of the usage of sparse shape func-
tions. Figure 5 displays the time for the generation of the matrix K̂I,I and
the multiplication K̂I,Ix for several polynomial degrees and the parameter
choices (a, b) ∈ {(1, 2), (1,−2), (−1,−4)}. Due to Theorem 3.3, the number
of nonzero entries is O(p3), O(p4) and O(p5), respectively. In the exper-
iments, we computed the nonzero matrix entries with a sum-factorization
algorithm. The remaining one-dimensional integrals are computed recur-
sively using (7) and (13) using the product recurrence given in [26]. From
the results one can see that an assembling time of about three seconds is
required for p = 36 if a = 1, b = 2. In the same time, the matrix for p = 24
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can be generated if a = 1, b = −2, or, the matrix for p = 20 can be gener-
ated if a = −1 and b = −4. For all polynomial degrees the sparse basis with
a = 1 and b = 2 should be preferred against the two another ones.

5 Application: A preconditioner for the interior
bubbles

In this section, we derive a simple preconditioner for the block of the interior
bubbles. It is well known from the literature that preconditioned gradient
methods (pcg-methods) with DD preconditioners of Dirichlet-Dirichlet-type
are among the most efficient iterative solvers for systems of type (2), cf.
[6], [4], [18], [21]. Corresponding to the partition of basis functions Ψ =
[ΨV ,ΨE ,ΨF ,ΨI ] = [ΨC ,ΨI ], i.e. C = V ∪ E ∪ F , let

KΨ =
[
KC KCI

KIC KI

]
=

[
I KCIK−1

I

0 I

] [
S 0
0 KI

] [
I 0

K−1
I KIC I

]
(33)

be the block structure of the stiffness matrix with the Schur-complement
S = KC − KCIK−1

I KIC . Our domain decomposition preconditioner for the
matrix KΨ will be of the form

C =
[
I −ET

0 I

] [
CS 0
0 CI

] [
I 0
−E I

]
, (34)

where

• CI is a preconditioner for KI ,

• CS is a preconditioner for the Schur-complement
S = KC −KCIK−1

I KIC and

• E is the matrix representation of an extension operator acting from
the edges of the elements into the interior.

Preconditioners for the Schur-complement have been proposed in [16] and
[21]. For CI , a wavelet preconditioner has been developed for hexahedral
elements in [12]. The papers [6], [3] and [24] deal with the extension operator
for the p-version of the FEM using triangular or tetrahedral elements. In
[9], see also [17], an algebraic analysis of a preconditioner of type (34) is
given.

Now, we propose a relatively simple preconditioner CI for KI and (based
on this) a matrix representation E for the extension operator of the form
(34). By (3), the global stiffness matrix is the result of assembling local
stiffness matrices K̃s, i.e. KΨ =

∑nel
s=1R

T
s K̃sRs. Let

C0 =
nel∑
s=1

RsC0R
T
s , where C0 =

∫
4̂

(∇Φ̃(x, y, z))T∇Φ̃(x, y, z) d(x, y, z).

(35)
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In this matrix, the stiffness matrix for the Laplacian on the reference element
is assembled on each element. According to (33), (34), we consider a block
decomposition of C0, i.e.

C0 =
[
CC CCI

CIC CI

]
. (36)

and define the preconditioner

C1 =
[
I CCIC−1

I

0 I

] [
CS 0
0 CI

] [
I 0

C−1
I CIC I

]
(37)

for KΨ, where CS is a preconditioner for the Schur complement and CI and
CIC are taken from (36). Now, we formulate

Theorem 5.1. Let C1 be defined via (37). Moreover, let CS be a precon-
ditioner for the Schur complement such that C−1

S v requires not more than
O(p6) operations and

c1 (CSv, v) ≤ (Sv, v) ≤ c2 (CSv, v) ∀v (38)

and some constants c1, c2. Then, κ(C1
− 1

2KΨC1
− 1

2 ) = O( c2
c1

). The operation
C−1

1 u requires O(p6) operations.

Proof. The proof is similar to the proof of Theorem 4.2 in [13]. Using
[18], we can prove that κ(C0

− 1
2KΨC0

− 1
2 ) = O(1). Hence, the first assertion

κ(C1
− 1

2KΨC1
− 1

2 ) = O( c2
c1

) follows from (38) immediately.
To prove the complexity argument for C−1

1 u, we investigate the nonzero
pattern for the matrix K̂I,I . Due to Theorem 3.3, see also Figure 2, the
nonzero pattern has the structure of a 3D-finite difference stencil. Let (V,E)
be the corresponding graph of the matrix K̂I,I . (V,E) has an O(N2/3)
separator property and therefore the method of nested dissection, [15], yields
a total cost of O(N2) = O(p6), see [22].

6 Proof of Theorem 3.3.

In this section, we prove the main theorem of this paper using several auxil-
iary results. In a first step, we give a formula for the gradient of the interior
bubble functions (29). Before we formulate an auxiliary result which sim-
plifies the computation of the gradient.

We start be formulating a lemma that simplifies the computation of the
gradient of the interior bubble functions (29). Let ga(x),b,c,α,j : R 7→ R be
defined via

ga(x),b,c,α,j(y) = p̂α
j

(
ax

b− cy

) (
b− cy

a

)j

. (39)
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Lemma 6.1. Let p̂α
j be the integrated Jacobi polynomial (5) and let the

function ga(x),b,c,α,j : R 7→ R be defined via (39). Then,

g′a(x),b,c,α,j(y) =
c

a(2j + α− 2)

(
b− cy

a

)j−1

(40)

×
(
−αpα

j−1

(
ax

b− cy

)
+ (2j − 2)pα

j−2

(
ax

b− cy

))
.

Proof. Let w =
(

ax

b− cy

)
. Using the chain and the product rule, we get

g′a(x),b,c,α,j(y) =
c

a

(
b− cy

a

)j−1 (
wpα

j−1(w)− jp̂α
j (w)

)
. (41)

Next, we insert (19) into (41) and obtain

g′a(x),b,c,α,j(y) =
c

a(2j + α− 2)

(
b− cy

a

)j−1

×
(
−αpα

j−1

(
ax

b− cy

)
+ (2j − 2)pα

j−2

(
ax

b− cy

))
which proves the lemma.

The following lemma gives a formula for the gradient of the interior
bubble functions (29).

Lemma 6.2. Let φijk(x, y, z) be defined via (29). With the abbreviations

r =
1− 2y − z

4
and s =

1− z

2
the following relations hold.

∂φijk

∂x
(x, y, z) = p0

i−1

(x
r

)
ri−1 p̂2i−a

j

(y
s

)
sj p̂2i+2j−b

k (z), (42)

∂φijk

∂y
(x, y, z) =

1
2
p0

i−2

(x
r

)
ri−1 p̂2i−a

j

(y
s

)
sj p̂2i+2j−b

k (z)

+p̂0
i

(x
r

)
ri p2i−a

j−1

(y
s

)
sj p̂2i+2j−b

k (z), (43)

∂φijk

∂z
(x, y, z) = − 2i− a

4j + 4i− 4− 2a
p̂0

i

(x
r

)
ri p2i−a

j−1

(y
s

)
sj−1 p̂2i+2j−b

k (z)

+
2j − 2

4j + 4i− 4− 2a
p̂0

i

(x
r

)
ri p2i−a

j−2

(y
s

)
sj−1 p̂2i+2j−b

k (z)

+p0
i−2

(x
r

)
ri−1 p̂2i−a

j

(y
s

)
sj p̂2i+2j−b

k (z)

+p̂0
i

(x
r

)
ri p̂2i−a

j

(y
s

)
sj p2i+2j−b

k−1 (z) (44)
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Proof. The relations (42) and (43) have been proved in [13].
To prove (44), we write the dependence in z direction in the following

way:

φijk(x, y, z) = g2(y),1,1,2i−a,j(z) g4(x),1−2y,1,0,i(z) p̂
2i+2j−b
k (z)

with the function g defined via (39). Using the product rule, we obtain

∂φijk

∂z
= g′2(y),1,1,2i−a,j(z)g4(x),1−2y,1,0,i(z)p̂

2i+2j−b
k (z)

+g2(y),1,1,2i−a,j(z)g
′
4(x),1−2y,1,0,i(z)p̂

2i+2j−b
k (z)

+g2(y),1,1,2i−a,j(z)g4(x),1−2y,1,0,i(z)p
2i+2j−b
k−1 (z).

Now, we insert (40) and obtain

∂φijk

∂z
=

1
4j + 4i− 4− a

(
1− z

2

)j−1

g4(x),1−2y,1,0,i(z)p̂
2i+2j−b
k (z)

×
(
−(2i− a)p2i−a

j−1

(
2y

1− z

)
+ (2j − 2)p2i−a

j−2

(
2y

1− z

))
+g2(y),1,1,2i−a,j(z)

1
4

(
1− 2y − z

4

)j−1

×p0
j−2

(
4x

1− 2y − z

)
p̂2i+2j−b

k (z)

+g2(y),1,1,2i−a,j(z)g4(x),1−2y,1,0,i(z)p
2i+2j−b
k−1 (z),

or with the abbreviations r =
1− 2y − z

4
and s =

1− z

2
,

∂φijk

∂z
= − 2i− a

4j + 4i− 4− a
p̂0

i

(x
r

)
ri p2i−a

j−1

(y
s

)
sj−1 p̂2i+2j−b

k (z)

+
2j − 2

4j + 4i− 4− a
p̂0

i

(x
r

)
ri p2i−a

j−2

(y
s

)
sj−1 p̂2i+2j−b

k (z)

+
1
4
p0

i−2

(x
r

)
ri−1 p̂2i−a

j

(y
s

)
sj p̂2i+2j−b

k (z)

+p̂0
i

(x
r

)
ri p̂2i−a

j

(y
s

)
sj p2i+2j−b

k−1 (z).

This proves the lemma.

Now, we are able to prove Theorem 3.3.

Proof. We present only a proof for the block of interior bubbles. The
face, edge and vertex bubbles can be interpreted as special cases of the
interior bubbles for i = 0, 1, j = 0, or, k = 0. More precisely, we have
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φF1,i,j(x, y, z) = φij0(x, y, z) and φF4,i,k(x, y, z) = φi0k(x, y, z) with p̂α
0 (ξ) =

1. For φF2/3,j,k, the situation is similar. Let p̂0
1(x) = 1±x

2 . Then, one obtains

φ1,j,k(x, y, z) =
1− 2y − z ∓ 4x

4
p̂2−a

j

(
2y

1− z

) (
1− z

2

)j

p̂2j+2−b
k (z).

So, the only difference to the functions (28) is the choice of the weight
parameter in p̂2−a

j

(
2y

1−z

)
, which is 0 in (28). Using (7), we can represent

each polynomial p̂0
i (ξ) as the sum of not so many polynomials p̂2−a

i (ξ), where
a ≤ 2. This proves a sparsity with O(p2) nonzero matrix entries for the
block between the interior bubbles and the face bubbles. In the case a ≥ 3,
a direct computation shows that the integrals in x-direction are zero for

i ≥ 4, whereas integrals of the type
∫ 1

−1
(1 − y)γ p̂0

j (y)p̂
0
j′(y) dy have to be

investigated in y-direction. Using (16), the sparsity can be shown.
Now, let us focus on the block of the interior bubbles. Since all zero en-

tries base on the orthogonality relation (9) the result can easily be extended
to the remaining blocks.

In order to compute the entries of the inner block of the stiffness matrix
K̂I,I we have to evaluate integrals of the form∫

4̂

∂

∂ζ
φi,j,k

∂

∂ζ
φi′,j′,k′ d(x, y, z), ζ = x, y, z. (45)

Note that if the coefficient matrix A is not a diagonal matrix then we also
have to consider the mixed terms ∂

∂ζφi,j,k
∂
∂ηφi′,j′,k′ , with

(ζ, η) ∈ {(x, y), (x, z), (y, z)}. They are treated in complete analogy to the
following and we will comment below on the nonzero pattern of these blocks.

We transform the integration domain from the reference tetrahedron to
the cube (−1, 1)3 using the Duffy transformation

w =
4x

1− 2y − z
, dx =

1− 2y − z

4
dw,

and
w =

2y
1− z

, dy =
1− z

2
dw.

After applying this Duffy transformation (45) has the form∫
4̂

∂

∂ζ
φi,j,k

∂

∂ζ
φi′,j′,k′ d(x, y, z) =:

∫ 1

−1

∫ 1

−1

∫ 1

−1
Î(r, s, z) dr ds dz, (46)

where r = x(1−y)(1−z)
4 and s = y(1−z)

2 . Due to the tensor product like struc-
ture of the basis functions we have thereby decoupled the integrals over x, y
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and z. Now we use the results of Lemma 6.2 to compute the partial deriva-
tives and perform the above substitution. Thus we obtain 21 integrands
adding up to

Î(r, s, z) = Î(1)(r, s, z) +
5∑

l=2

Î(l)(r, s, z) +
21∑
l=6

Î(l)(r, s, z).

The first integrand stems from the product of the x-partial derivatives, the
next four from the product of the y-partial derivatives and the last 16 from
the product of the z-partial derivatives. The integrands

Î(l)(r, s, z) = clpx,1(r)px,2(r)
(

1− s

2

)i+i′+γy

×py,1(s)py,2(s)
(

1− z

2

)i+i′+j+j′+γz

pz,1(z)pz,2(z),

l = 1, . . . , 21, for K̂I,I in the indicated order are listed in Table 1 omitting
the constants.

These integrands already illustrate the complexity of the problem of
determining the nonzero pattern of the system matrix. We have tackled this
problem with a program we implemented in the computer algebra software
Mathematica. This program explicitly computes the entries of K̂I,I using
the identities stated in section 2 for all parameters a, b in the valid range,
i.e. with 0 ≤ a ≤ 4, a ≤ b ≤ 6. The intermediate steps can be documented
and checked via output, yet the formulae do not posses a nice closed form,
which is why they are not stated here. The program can also be used for
solving the subproblem of determining the nonzero pattern for the analogue
family of interior bubbles for triangles.

Our Mathematica program evaluates the integrals from left to right,
starting by integrating with respect to x, which is clear from the dependence
of the parameters. To determine the values of the integrals the orthogonality
relation (9) is used. Hence the polynomials under the integral have to be
rewritten as Jacobi polynomials pα

n where α corresponds to the appearing
weights i+ i′ + γy and i+ j + i′ + j′ + γz. This concept follows the lines of
the proof described in [13].
We present now our algorithm for the simplification of the integral∫ 1

−1
(1− ζ)γqn1(ζ)qn2(ζ) dζ, (47)

where qn1(ζ) and qn2(ζ) can be either Jacobi or integrated Jacobi polyno-
mials of degree n1 and n2 respectively, and γ is the appearing weight.

Algorithm.

Input: Integrand (47).
Output: Mass matrix entries with band structure.
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px,1 px,2 γy py,1 py,2 γz pz,1 pz,2

Î(1) p0
i−1 p0

i′−1 −1 p̂2i−a
j p̂2i′−a

j′ 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(2) p̂0
i p̂0

i′ 1 p2i−a
j−1 p2i′−a

j′−1 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(3) p0
i−2 p̂0

i′ 0 p̂2i−a
j p2i′−a

j′−1 0 p̂−b+2i+2j
k p̂

−b+2(i′+j′)
k′

Î(4) p̂0
i p0

i′−2 0 p2i−a
j−1 p̂2i′−a

j′ 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(5) p0
i−2 p0

i′−2 −1 p̂2i−a
j p̂2i′−a

j′ 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(6) p̂0
i p̂0

i′ 1 p̂2i−a
j p̂2i′−a

j′ 2 p
−b+2(i+j)
k−1 p

−b+2(i′+j′)
k′−1

Î(7) p̂0
i p̂0

i′ 1 p2i−a
j−2 p̂2i′−a

j′ 1 p̂
−b+2(i+j)
k p

−b+2(i′+j′)
k′−1

Î(8) p̂0
i p̂0

i′ 1 p2i−a
j−1 p̂2i′−a

j′ 1 p̂
−b+2(i+j)
k p

−b+2(i′+j′)
k′−1

Î(9) p0
i−2 p̂0

i′ 0 p̂2i−a
j p̂2i′−a

j′ 1 p̂
−b+2(i+j)
k p

−b+2(i′+j′)
k′−1

Î(10) p̂0
i p̂0

i′ 1 p̂2i−a
j p2i′−a

j′−2 1 p
−b+2(i+j)
k−1 p̂

−b+2(i′+j′)
k′

Î(11) p̂0
i p̂0

i′ 1 p̂2i−a
j p2i′−a

j′−1 1 p
−b+2(i+j)
k−1 p̂

−b+2(i′+j′)
k′

Î(12) p̂0
i p̂0

i′ 1 p2i−a
j−2 p2i′−a

j′−2 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(13) p̂0
i p̂0

i′ 1 p2i−a
j−1 p2i′−a

j′−2 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(14) p̂0
i p̂0

i′ 1 p2i−a
j−2 p2i′−a

j′−1 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(15) p̂0
i p̂0

i′ 1 p2i−a
j−1 p2i′−a

j′−1 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(16) p0
i−2 p̂0

i′ 0 p̂2i−a
j p2i′−a

j′−2 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(17) p0
i−2 p̂0

i′ 0 p̂2i−a
j p2i′−a

j′−1 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(18) p̂0
i p0

i′−2 0 p̂2i−a
j p̂2i′−a

j′ 1 p−b+2i+2j
k−1 p̂

−b+2(i′+j′)
k′

Î(19) p̂0
i p0

i′−2 0 p2i−a
j−2 p̂2i′−a

j′ 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(20) p̂0
i p0

i′−2 0 p2i−a
j−1 p̂2i′−a

j′ 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(21) p0
i−2 p0

i′−2 −1 p̂2i−a
j p̂2i′−a

j′ 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Table 1: Integrands for K̂I,I , where β = i+ j, (i′ + j′) = i′ + j′
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1. FOR i=1 to 2 DO

2. IF (qni is integrated Jacobi polynomial) THEN
Transform integrated Jacobi polynomials to Jacobi polynomials using
relations (12), (14) or (17) depending on the relation between the
polynomial parameter α and the weight parameter γ,

(a) (1−ζ)γ p̂α
n(ζ), γ−α ≥ 0 : transform integrated Jacobi polynomials

to Jacobi polynomials with same parameter α using (12).

(b) (1− ζ)γ p̂α
n(ζ), α = γ+1 : transform p̂α

n(ζ) to Jacobi polynomials
with parameter α− 1 using relation (14).

(c) (1− ζ)γ p̂α
n(ζ), α = γ + 2 : Use the mixed relation (17) to obtain

p̂γ+2
n (ζ) =

1
γ + 1

(
2pγ

n(ζ) + (1− ζ)pγ+2
n−1(ζ)

)
.

- ENDIF

3. Rewrite the Jacobi polynomials pα
n(ζ) in terms of Jacobi polynomials

fitting to the appearing weights (1 − ζ)γ (γ − α > 0) by lifting the
polynomial parameter α using (7) (γ − α)-times, i.e.

pα
n(ζ) =

γ−α∑
m=0

(−1)k

(
γ − α
m

)
(n+ γ −m)γ−α−m nm

(2n+ γ −m+ 1)γ−α+1

×(2n− 2m+ γ + 1)pγ
n−m(ζ),

where ak = a(a− 1) · . . . · (a− k + 1) denotes the falling factorial.

- ENDFOR

4. Evaluate the integrals using the orthogonality relation (9).

The algorithm interrupts, if α > γ+2 in step 2 or α > γ in step 3. The out-
put of the program are the rational functions to which the original integrals
evaluate. Thereby also the maximal bandwidth for each of these integrals is
returned.

Our Mathematica program is executed with the integrand Î(l)(r, s, z) as
input and applies the above algorithm to all possible integrals. Evaluating
the x-integrals gives a bounded number of candidates bx with i − i′ = bx,
in which at least one integral can be nonzero. Then, for all candidates bx,
the algorithm is applied to evaluate the y-integrals. This gives a bounded
number of candidates by with j−j′ = by, in which at least one integral can be
nonzero. Finally, the algorithm is applied to the z-integrals for all candidates
bx and by. Again, the algorithm gives a bounded number of candidates bz
with k−k′ = bz, in which at least one integral can be nonzero. We point out
that for the integrand Î(l)(r, s, z) the algorithm never interrupts, i.e. never
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runs into the cases α > γ + 2 in step 2 or α > γ in step 3. This is due to
our assumption b ≥ a ≥ 0.

For a = 1 and b = 2 the output of the program is summarized in Table
2. Since |i− i′| ∈ {0, 2}, |i+ j− i′− j′| ≤ 4 and |i+ j+k− i′− j′−k′| ≤ 4 for
each of the integrands Î(l), l = 1, . . . , 21, the maximal number of nonzero
entries per row is bounded by 3 · 9 · 9 = 243. This proves the sparsity for
a = 1 and b = 2.

For the remaining 24 cases satisfying 0 ≤ a ≤ b ≤ 6, a ≤ 4, each of the
terms |i − i′|, |i + j − i′ − j′| and |i + j + k − i′ − j′ − k′| is bounded by a
constant, which depends on a and b, too.

In the appendix A, we present an example how the algorithm proceeds
for a = 1, b = 2 and the integrand Î(7).

We close this proof by stating the nonzero pattern of the blocks contain-
ing the mixed terms ∂

∂ζφi,j,k
∂
∂ηφi′,j′,k′ , (ζ, η) ∈ {(x, y), (x, z), (y, z)}.

i− i′ i− i′ + j − j′ i− i′ + j − j′ + k − k′

Î(1) {0} {−2, . . . , 2} {−4, . . . , 4}
Î(2) {−2, 0, 2} {−2, . . . , 2} {−4, . . . , 4}
Î(3) {0, 2} {−2, . . . , 2} {−4, . . . , 4}
Î(4) {−2, 0} {−2, . . . , 2} {−4, . . . , 4}
Î(5) {0} {−2, . . . , 2} {−4, . . . , 4}
Î(6) {−2, 0, 2} {−4, . . . , 4} {−4, . . . , 4}
Î(7) {−2, 0, 2} {−2, . . . , 4} {−4, . . . , 4}
Î(8) {−2, 0, 2} {−3, . . . , 3} {−4, . . . , 4}
Î(9) {0, 2} {−3, . . . , 3} {−4, . . . , 4}
Î(10) {−2, 0, 2} {−4, . . . , 2} {−4, . . . , 4}
Î(11) {−2, 0, 2} {−3, . . . , 3} {−4, . . . , 4}
Î(12) {−2, 0, 2} {−2, . . . , 2} {−4, . . . , 4}
Î(13) {−2, 0, 2} {−3, . . . , 1} {−4, . . . , 4}
Î(14) {−2, 0, 2} {−1, . . . , 3} {−4, . . . , 4}
Î(15) {−2, 0, 2} {−2, . . . , 2} {−4, . . . , 4}
Î(16) {0, 2} {−3, . . . , 1} {−4, . . . , 4}
Î(17) {0, 2} {−2, . . . , 2} {−4, . . . , 4}
Î(18) {−2, 0} {−3, . . . , 3} {−4, . . . , 4}
Î(19) {−2, 0} {−1, . . . , 3} {−4, . . . , 4}
Î(20) {−2, 0} {−2, . . . , 2} {−4, . . . , 4}
Î(21) {0} {−2, . . . , 2} {−4, . . . , 4}

Table 2: Nonzero pattern for integrals Î(1), . . . , Î(21), a = 1, b = 2.

We compute the partial derivatives again using the result of Lemma 6.2
and perform the Duffy transformation r = x(1−y)(1−z)

4 and s = y(1−z)
2 to

23



obtain the integrals,∫
4̂

∂

∂x
φi,j,k

∂

∂y
φi′,j′,k′ d(x, y, z) :=

23∑
l=22

∫ 1

−1

∫ 1

−1

∫ 1

−1
Î(l)(r, s, z) dr ds dz

∫
4̂

∂

∂x
φi,j,k

∂

∂z
φi′,j′,k′ d(x, y, z) :=

27∑
l=24

∫ 1

−1

∫ 1

−1

∫ 1

−1
Î(l)(r, s, z) dr ds dz

∫
4̂

∂

∂y
φi,j,k

∂

∂z
φi′,j′,k′ d(x, y, z) :=

35∑
l=28

∫ 1

−1

∫ 1

−1

∫ 1

−1
Î(l)(r, s, z) dr ds dz

with the integrands

Î(l)(r, s, z) = clpx,1(r)px,2(r)
(

1− s

2

)γy+i+i′

py,1(s)py,2(s)

×
(

1− z

2

)γz+i+i′+j+j′

pz,1(z)pz,2(z).

The correct structure of the integrands is listed in Table 3. Applying our

px,1 px,2 γy py,1 py,2 γz pz,1 pz,2

Î(22) p0
i−1 p0

i′−2 −1 p̂2i−a
j p̂2i′−a

j′ 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(23) p0
i−1 p̂0

i′ 0 p̂2i−a
j p2i′−a

j′−1 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(24) p0
i−1 p̂0

i′ 0 p̂2i−a
j p̂2i′−a

j′ 1 p̂
−b+2(i+j)
k p

−b+2(i′+j′)
k′−1

Î(25) p0
i−1 p̂0

i′ 0 p̂2i−a
j p2i′−a

j′−2 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(26) p0
i−1 p̂0

i′ 0 p̂2i−a
j p2i′−a

j′−1 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(27) p0
i−1 p0

i′−2 −1 p̂2i−a
j p̂2i′−a

j′ 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(28) p̂0
i p̂0

i′ 1 p2i−a
j−1 p̂2i′−a

j′ 1 p̂
−b+2(i+j)
k p

−b+2(i′+j′)
k′−1

Î(29) p0
i−2 p̂0

i′ 0 p̂2i−a
j p̂2i′−a

j′ 1 p̂
−b+2(i+j)
k p

−b+2(i′+j′)
k′−1

Î(30) p̂0
i p̂0

i′ 1 p2i−a
j−1 p2i′−a

j′−2 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(31) p̂0
i p̂0

i′ 1 p2i−a
j−1 p2i′−a

j′−1 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(32) p0
i−2 p̂0

i′ 0 p̂2i−a
j p2i′−a

j′−2 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(33) p0
i−2 p̂0

i′ 0 p̂2i−a
j p2i′−a

j′−1 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(34) p̂0
i p0

i′−2 0 p2i−a
j−1 p̂2i′−a

j′ 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Î(35) p0
i−2 p0

i′−2 −1 p̂2i−a
j p̂2i′−a

j′ 0 p̂
−b+2(i+j)
k p̂

−b+2(i′+j′)
k′

Table 3: Integrands for the mixed terms ∂
∂ζφi,j,k

∂
∂ηφi′,j′,k′ ,.

program to evaluate these integrals we obtain the following results,
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• ∫
4̂

∂

∂x
φi,j,k

∂

∂y
φi′,j′,k′ d(x, y, z) 6= 0

if |i− i′| = 1, |i− i′+ j− j′| ≤ 1+a and |i− i′+ j− j′+k−k′| ≤ 2+ b.

• ∫
4̂

∂

∂x
φi,j,k

∂

∂z
φi′,j′,k′ d(x, y, z) 6= 0

if |i− i′| = 1, |i− i′+j−j′| ≤ 2+a and |i− i′+j−j′+k−k′| ≤ 2+b.

• ∫
4̂

∂

∂y
φi,j,k

∂

∂z
φi′,j′,k′ d(x, y, z) 6= 0

if |i−i′| ∈ {0, 2}, |i−i′+j−j′| ≤ 2+a and |i−i′+j−j′+k−k′| ≤ 2+b.

This completes the proof of Theorem 3.3.

We close this section with the following three technical remarks on the
proof of Theorem 3.3.

Remark 6.3. The proof shows that this result can easily be extended to the
case of a convection reaction diffusion equation of the form

−∇ · A∇u+~b · ∇u+ cu = f

with piecewise constant coefficients ~b and c. This result is a direct conse-
quence of the representation

φijk(x, y, z) =
k∑

m=k−2

κmp̂
0
i

(x
r

)
ri p̂2i−a

j

(y
s

)
sj−1 p2i+2j−b

m (z)

with the abbreviations r =
1− 2y − z

4
and s =

1− z

2
and some real numbers

κm, cf. (12). This structure is similar to the last summand of ∂φijk

∂z (x, y, z)
in (44). With the same arguments as in the proof of Theorem 3.3, the
sparsity for the parts of the stiffness matrix corresponding to the integrals∫ 1
−1

∫ 1
1

∫ 1
−1 Î

(l)(r, s, z), l = 6, 7, 8, 9, 10, 11, 18, can be shown. This proves the
remark.

Remark 6.4. In step 3 of this algorithm polynomials down to degree n−γ+α
are introduced. Hence, this transformation is a costly one as it increases the
number of terms significantly, especially if a, b are far from the ideal case
a = b = 0.

Remark 6.5. Case (c) in step 2 only occurs if we choose a = 0 or a = b.
One example is the y-integration of Î(17) for i′ = i− 2. A direct evaluation
of the integrand Î(17) yields to a dense matrix. However, the y-integration
of Î(14)+ Î(15)+ Î(17) is sparse. Here, the relation (18) has to be used. More
details on how to handle these exceptions can be found in [10].
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7 Remarks to the efficient implementation

In this section, we present some details concerning the implementation of
the basis functions. The implementation of the basis functions within a
finite element program requires two steps

• the assembling of the stiffness matrix,

• the evaluation of function values in a postprocessing step.

The evaluation of the function values can be performed with the aid of the
recursion formulas (12), (8) and (13). The assembling of the stiffness matrix
using our basis functions can be computed in O(1) flops per nonzero matrix
entry by explicit formulas. However, the formulas are quite long. A more
efficient way is to use a sum factorization technique. The remaining one-
dimensional integrals are computed recursively via (7) and (13) using the
product recurrence given in [26].

The algorithm consists of two steps

• the recursive computation of all required one-dimensional integrals of
the form

M = [mn1,n2]n1,n2 =
[∫ 1

−1
(1− ζ)γqn1(ζ)Qn2(ζ) dζ

]
n1,n2

, (48)

where qn1(ζ) and Qn2(ζ) can be either Jacobi or integrated Jacobi
polynomials of degree n1 and n2 respectively, and γ is the appearing
weight.

• the computation of the element stiffness matrices using sum factoriza-
tion.

The computation of the matrix entries mn1,n2 uses an idea which has been
presented in [26]. The product qn1(ζ)Qn2(ζ) is transformed with the aid of
the recursion formulas (8) and (13), i.e.

qn1(ζ)Qn2(ζ) = (η1ζqn1−1(ζ) + η2qn1−1(ζ) + η3qn1−2(ζ))Qn2(ζ)
= η2mn1−1,n2 + η3mn1−2,n2 + η1qn1−1(ζ)ζQn2(ζ)
= η2mn1−1,n2 + η3mn1−2,n2

+η1qn1−1(ζ) (η4Qn2+1(ζ) + η5Qn21(ζ) + η6Qn2−1(ζ))
= (η1η5 + η2)mn1−1,n2 + η3mn1−2,n2

+η1η4mn1−1,n2+1 + η1η6mn1−1,n2−1, (49)

where ηi, i = 1, . . . , 6 are some coefficients depending on n1, n2, and the
polynomials q and Q. Now, the computation of (48) can be done as follows.
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1. Determine the band structure of M using (12), (17), (14), (7) and (9),
cf. the Algorithm or the orthogonality relations (16) and (10). Let
mn1,n2 = 0 if n1 − n2 > b1 and n1 − n2 < −b2.

2. Set mn1,n2 = 0 for all 0 ≤ n1, n2 ≤ p.

3. Compute mn1,n2 for n1 ∈ {0, 1} and n2 ≤ b2 +1 by an explicit formula
or numerical integration.

4. FOR n1 = 2, . . . , pmax do

• FOR n2 = max{n1 − b1, 1},min{n1 + b2, pmax} do

• Compute mn1,n2 via (49)

• ENDFOR

ENDFOR

Now, we are able to compute the element stiffness matrix. In a first step, the
element stiffness matrix is transformed into the form (46). Next, for each of
the integrands Î(l)(r, s, z), l = 1, . . . , 21, we compute the element stiffness
matrix by the one dimensional integrals for all required combinations of
{i, i′} and {j, j′} due to table 2.

As an example, we explain this sum factorization algorithm for the in-
tegrand Î(1)(r, s, z) for a = 1 and b = 2, i.e.

Î(1)(r, s, z) = p0
i−1(r)p

0
i′−1(r) (1− s)i+i′−1p̂2i−1

j (s)p̂2i′−1
j′ (s)

(1− z)i+i′+j+j′
p̂2i+2j−2

k (z)p̂2i′+2j′−2
k′ (z).

• FOR i = 2, . . . , p− 2 do

– Set i′ = i

– Set h1 =
∫ 1
−1 p

0
i−1(r)p

0
i′−1(r) dr

– FOR j = 1, . . . , p− i do

∗ FOR j′ = max{j − 2, 1}, . . . ,min{p− i′, j + 2} do
· Set h2 =

∫ 1
−1(1− s)i+i′−1p̂2i−1

j (s)p̂2i′−1
j′ (s) ds

· FOR k = 1, . . . , p− i do
1. FOR k′ = max{k − 4, 1}, . . . ,min{p− i′ − j′, k + 4} do

2. Set h3 =
∫ 1
−1(1− z)i+i′+j+j′

p̂2i+2j−2
k (z)p̂2i′+2j′−2

k′ (z) dz
3. Set aijk,i′j′k′,I1 = h1h2h3

4. ENDFOR

· ENDFOR
∗ ENDFOR

– ENDFOR
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• ENDFOR

The remaining integrands Î(l)(r, s, z), l = 2, . . . , 21 can be performed in the
same way with the aid of tables 2 and 1.

8 Concluding Remarks

In this paper, we have proposed several bases for high order FEM on tetra-
hedral finite element meshes. We have proved that the element stiffness
matrix with respect to these bases has O(p3) nonzero entries.

The sparsity of the element stiffness matrix has two direct applications,

(a) preconditioning the block of the interior bubbles,

(b) the evaluation of the element stiffness matrix in O(p3) operations.

For (b), one can combine the ideas for the recursive evaluation of a matrix B,
which have been presented in [26], with the sparsity and the band structure
of B. This computes B in 5(2b + 1)(p + 1) flops where b is the bandwidth
of B and the element stiffness matrix in O(p3) flops. As presented in [13],
the result can be extended to convection-reaction-diffusion problems with
piecewise constant coefficients, or piecewise polynomial coefficients. It is not
possible to generalize this construction to problems with arbitrary variable
coefficients. However, many practical linear problems, as e.g. problems with
different materials in linear elasticity, have piecewise constant coefficients
and require high-order finite elements for the discretization in the interior
of the domain. Here, one can use affine linear elements in the interior of the
domain. Now, one can take one of the proposed bases.

The sparsity has reduced the cost for the computation of the block of
interior bubbles from O(p9) to O(p6). A further reduction to O(ps) with 3 ≤
s ≤ 5 as presented in [12] for hexahedrons is still a challenging problem. The
application (a) works also for an uniformly elliptic second order boundary
value problem with arbitrary coefficients.

A Evaluation of the integrand Î(7)

Now we execute our algorithm on the integrand

Î(7)(x, y, z) =
(j − 1)

2i+ 2j − 3
p̂0

i (x)p̂
0
i′(x)

(
1− y

2

)i+i′+1

p2i−1
j−2 (y)p̂2i′−1

j′ (y)

×
(

1− z

2

)i+j+i′+j′+1

p̂2i+2j−2
k (z)p2i′+2j′−2

k′−1 (z),

that is we want to compute

K̂(7) =
∫ 1

−1

∫ 1

−1

∫ 1

−1
Î(7)(x, y, z) dx dy dz
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for a = 1 and b = 2. First we evaluate the x-integral, where we only have
one integrand at first and start by transforming integrated Jacobi to classical
Jacobi polynomials. For the x-integrals we always have α = γ = 0, i.e. we
are in case 2(a) and use (12). Observe that for α = 0, p̂0

n can be expressed
using only p0

n and p0
n−2. Hence we obtain for the first integral,∫ 1

−1
p̂0

i (x)p̂
0
i′(x) dx =

∫ 1
−1(p

0
i−2p

0
i′−2 − p0

i p
0
i′−2 − p0

i−2p
0
i′ + p0

i p
0
i′)(x) dx

(2i− 1)(2i′ − 1)

These four integrals are easily evaluated by the orthogonality relation (9)
and we obtain∫ 1

−1
p̂0

i (x)p̂
0
i′(x) dx =

4δi,i′
(2i− 3)(2i− 1)(2i+ 1)

−
2δi,i′−2

(2i− 1)(2i+ 1)(2i+ 3)

−
2δi,i′+2

(2i− 5)(2i− 3)(2i− 1)
,

see e.g. [18]. So the first integral is nonzero iff |i− i′| ∈ {0, 2}. Now we plug
in the above result into K̂(7) to obtain the following three integrals,

K̂(7) =−
2(j − 1)δi,i′+2

(2i− 5)(2i− 3)(2i− 1)(2i+ 2j − 3)

×
∫ 1

−1

(
1− y

2

)2i−1

p2i−1
j−2 (y)p̂2i−5

j′ (y) dy

×
∫ 1

−1

(
1− z

2

)2i+j+j′−1

p̂2i+2j−2
k (z)p2i+2j′−6

k′−1 (z) dz

+
4(j − 1)δi,i′

(2i− 3)(2i− 1)(2i+ 1)(2i+ 2j − 3)

×
∫ 1

−1

(
1− y

2

)2i+1

p2i−1
j−2 (y)p̂2i−1

j′ (y) dy

×
∫ 1

−1

(
1− z

2

)2i+j+j′+1

p̂2i+2j−2
k (z)p2i+2j′−2

k′−1 (z) dz

−
2(j − 1)δi,i′−2

(2i− 1)(2i+ 1)(2i+ 3)(2i+ 2j − 3)

×
∫ 1

−1

(
1− y

2

)2i+3

p2i−1
j−2 (y)p̂2i+3

j′ (y) dy

×
∫ 1

−1

(
1− z

2

)2i+j+j′+3

p̂2i+2j−2
k (z)p2i+2j′+2

k′−1 (z) dz

After singling out the y-dependent parts of K̂(7) we see that the first in-
tegrand is already a Jacobi polynomial for all three integrals. Moreover,
the combination of weight parameter γ and polynomial parameter α is

29



(2i− 1, 2i− 1). So, we can omit step 2 for the first polynomial. The second
polynomial is an integrated Jacobi polynomial. Hence, we enter step 2 of
the algorithm and transform the integrated Jacobi into a classical Jacobi
polynomials. The combinations of weight parameter γ and polynomial pa-
rameter α occuring are (γ, α) = (2i−1, 2i−5), (2i−1, 2i+1), (2i−1, 2i+3).
For each of these pairs we have γ − α ≥ 0, i.e. we are in case 2(a) again.
Using relation (12) we obtain e.g. for the first y-integrand of K̂(7),(

1− y

2

)2i−1

p2i−1
j−2 (y)p̂2i−5

j′ (y) =

− (j′ − 1)
(i+ j′ − 3)(2i+ 2j′ − 7)

(
1− y

2

)2i−1

p2i−1
j−2 (y)p2i−5

j′−2(y)

+
2(2i− 5)

(2i+ 2j′ − 7)(2i+ 2j′ − 5)

(
1− y

2

)2i−1

p2i−1
j−2 (y)p2i−5

j′−1(y)

+
(2i+ j′ − 5)

(i+ j′ − 3)(2i+ 2j′ − 5)

(
1− y

2

)2i−1

p2i−1
j−2 (y)p2i−5

j′ (y).

Next we have to adjust the Jacobi polynomials to the weight functions under
the integral to be able to exploit their orthogonality, i.e. execute step 3 of the
algorithm. After applying (7) four times to p2i−5

j′−2(y), p2i−5
j′−1(y) and p2i−5

j′ (y)
yields for the above integrand,

p2i−1
j−2 (y)p̂2i−5

j′ (y) = η1p
2i−1
j−2 (y)p2i−1

j′ (y) + η2p
2i−1
j−2 (y)p2i−1

j′−1(y) (50)

+η3p
2i−1
j−2 (y)p2i−1

j′−2(y) + η4p
2i−1
j−2 (y)p2i−1

j′−3(y)

+η5p
2i−1
j−2 (y)p2i−1

j′−4(y) + η6p
2i−1
j−2 (y)p2i−1

j′−5(y)

+η7p
2i−1
j−2 (y)p2i−1

j′−6(y)

with coefficients ηs, s = 1, . . . , 7, which are broken rational functions in i, j,
i′ and j′. The exact structure can be found in [11].

After executing steps 2 and 3 on all y-integrands of K̂(7) one has to
evaluate resulting integrals using orthogonality relation (9). We will now
only consider how to proceed with the first summand in the integrand (50),
omitting the constants, i.e. the following part of K̂(7),

K̂(7)
pa =

∫ 1

−1

(
1− y

2

)2i−1

p2i−1
j−2 (y)p2i−1

j′ (y) dy

×
∫ 1

−1

(
1− z

2

)2i+j+j′−1

p̂2i+2j−2
k (z)p2i+2j′−6

k′−1 (z) dz

=
δj,j′+2

i+ j − 2

∫ 1

−1

(
1− z

2

)2i+2j−3

p̂2i+2j−2
k (z)p2i+2j−10

k′−1 (z) dz.

In this case the weight parameter γ = 2i + 2j − 3 and the polynomial
parameter α = 2i+2j−2 differ by one. Following step 2(b) of the algorithm
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we rewrite the integrated Jacobi polynomial p̂2i+2j−2
k (z) using (14),

p̂2i+2j−2
k (z) =

2
2i+ 2j + 2k − 3

(p2i+2j−3
k (z) + p2i+2j−3

k−1 (z)).

These polynomials already correspond to the weight function
(

1−z
2

)2i+2j−3
,

what remains to be done is to apply relation (7) seven times to p2i+2j−10
k′−1 (z).

So finally we have to evaluate 8 × 2 = 16 integrals with the orthogonality
relation (9) to obtain K̂(7)

pa . The default output for the computation of K̂(7)

of our Mathematica program is displayed in [11, Figure 6].
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