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1. INTRODUCTION

We study the problem of factoring linear partial dif-
ferential operators over some field. The study originates
from the Grigoriev–Schwarz algorithm [1], which
extends factorization (with mutually simple factors) of
an operator symbol to the factorization of the operator
itself. At the first step of the algorithm, only leading
components of the factors are known. Then, at each
subsequent step, one either finds the next component in
each factor or proves that factorization of this type does
not exist. In the latter case, all accumulated information
about the operator is lost: at each step of the algorithm,
a partial factorization of the operator is implicitly
found. We suggest using this information.

In so doing, we arrive at the concepts of partial fac-
torization and ordinary obstacle. In the case of the sec-
ond-order operators, the latter coincides with the well-
known Laplace invariants [2].

The partial factorizations made it possible to prove
Theorem 1 on unique extension of operator factoriza-
tion starting from some moment. The Grigoriev–
Schwarz theorem [1] is a particular case of this theo-
rem.

Generally, neither ordinary obstacle nor its symbol
is unique or invariant (some examples were considered
in [3]). We introduce a new concept—a ring of obsta-
cles—which is defined as a quotient ring of polynomi-
als corresponding to the ring of linear differential oper-
ators modulo some uniform ideal. Symbols of all ordi-
nary obstacles belong to the same adjacent class in this
ring of obstacles. We named this class an obstacle to
factorization. One important feature of an obstacle is
that it is invariant with respect to the conjugation oper-
ation. We also prove some other interesting features.

Explicit formulas for obstacles of the second- and
third-degree operators of two variables are found.

It should be noted that this work has already found
an application: a complete system of invariants for a
third-order hyperbolic operator of two variables has
been derived [4].

This study is a sequel to work [5], where factoriza-
tion into two factors has been considered.
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. In fact, an operator symbol is a homogeneous
polynomial corresponding to the sum of leading terms
of the operator.
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]. Both the polynomial and the corresponding oper-
ator are denoted by one letter if this does not result in
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3. PARTIAL FACTORIZATIONS

We begin with several definitions presented in [5]
for the case of two factors.
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 Let 

 

L

 

 

 

∈

 

 

 

K

 

[D] and SymL = S1…Sk. The
factorization L = F1 � … � Fk is said to have type
(S1)(S2)…(Sk) if  = Si ∀i ∈ {1, …, k}.

Definition 2. Let, for some operators L, Fi ∈ K[D],
i = 1, …, k, and, for some t ∈ {0, …, ord(L)},

(2)

Then, F1 � … � Fk is called a partial factorization of
operator L of order t. If, additionally, Si = , i =
1, …, k (and, hence, SymL = S1…Sk), then the partial
factorization has type (S1)…(Sk).

Remark 1. Any factorization (in ordinary sense)
L ∈ K[D] is a partial factorization of order 0.

Remark 2. Let L ∈ K[D], ord(L) = d. Then, for any
factorization of the symbol SymL = S1…Sk, the corre-

sponding operator composition  � … �  is a partial
factorization of order d.

Suppose that L ∈ K[D] and F1 � … � Fk is its partial
factorization of order t. It is not difficult to see that con-
dition (2) holds independent of what terms of order <t –
(d – di) are selected in the factor Fi. Hence, we obtain
new partial factorizations of order equal to or less than
t. Therefore, it is natural to introduce the following def-
inition.

Definition 3. Let L ∈ K[D], SymL = S1…Sk,
ord(Si) = di, i = 1, …, k, and

F1 � … � Fk,  � … � 

be partial factorizations of orders t and t ', respectively.
Let t ' < t. Then,  � … �  extends F1 � … � Fk if

Example 1. Consider the fifth-order operator

Factorizations of the form

L aJ X
J

J d≤
∑ Li,

i 0=

d

∑= =

SymFi

ord L F1 � … � Fk–( ) t.<

SymFi

Ŝ1 Ŝk

F1' Fk'

F1' Fk'

ord Fi Fi'–( ) t d di–( ), i∀– 1 … k, ,{ }.∈<

L D1
2

D2 1+ +( ) � D1
2
D2 D1D2 D1 1+ + +( ).=

where ellipses denote arbitrarily selected terms of
lower orders, are partial factorizations of order five for
which the fourth-order extensions are partial factoriza-
tions of the form

Remark 3. Let L ∈ K[D]. Then, F1 � … � Fk is its
partial factorization of form (S1)…(Sk) if and only if
F1 � … � Fk is an extension of the partial factorization
S1 � … � S2.

The following two propositions can easily be proved
and will be used in proving the theorem below.

Proposition 1. Let S1, S2, and p be homogeneous
polynomials in an arbitrary number of independent
variables of degrees d1, d2, and s (0 < s < d1 + d2),
respectively. Let S1 and S2 be mutually simple. Then,
there does not exist more than one pair (u, v) of homo-
geneous polynomials u and v of degrees s – d1 and s –
d2, respectively, such that

The second assertion is an extension of Proposition 1
to the case of polynomials that are not mutually simple.

Proposition 2. Let S1, S2, and p be homogeneous
polynomials in an arbitrary number of variables of
degrees d1, d2, and s, respectively. Let polynomial S0 of
degree d0 be the greatest common divisor of S1 and S2,
and let 0 < s < d1 + d2 – d0. Then, there does not exist
more than one pair (u, v) of homogeneous polynomials
u and v of degrees s – d1 and s – d2, respectively, such
that

(3)

For any factorization S1 · S2 of a symbol, the corre-

sponding composition of the operators  �  is a par-
tial factorization of the operator L. If S1 and S2 are
mutually simple, there does not exist more that one
extension of this partial factorization to the factoriza-
tion of L [1]. If there exists a nontrivial common divisor
of S1 and S2, this is not always true. For example, con-
sider the Blumberg–Landau operator [6]

This is an example of the operator that has two dif-
ferent factorizations into different number of factors (of
course, the factors are irreducible, i.e., cannot be fac-
tored into lower-order factors):

D1
2 …+( ) � D1

2
D2 …+( ),

D1
2

D2 …+ +( ) � D1
2
D2 D1D2 …+ +( ).

S1 u S2 v⋅+⋅ p.=

S1 u S2 v⋅+⋅ p.=

Ŝ1 Ŝ2

L Dx
3

xDx
2
Dy 2Dx

2
2x 2+( )DxDy+ + +=

+ Dx 2 x+( )Dy.+

L Dx 1+( ) � Dx 1+( ) � Dx xDy+( )=

=  Dx
2

xDxDy Dx 2 x+( )Dy+ + +( ) � Dx 1+( ).
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For the same operator L (by the way, its symbol is
X3 + xX2Y), there exists a family of factorizations into
two factors with the symbols S1 = X and S2 = X(X + XY):

where f1(y) ∈ K is a functional parameter. Thus, the fac-
torization is not unique. Nevertheless, certain results
can be established even in this case where the factors
are not mutually simple.

Theorem 1. Let L ∈ K[D], SymL = S1 · S2, ord(L) =
d, and polynomial S0 of degree d0 be the greatest com-
mon divisor of S1 and S2. Then, for any partial factoriza-
tion of order (d – d0) of type (S1)(S2), there does not
exist more than one extension to the factorization of the
operator L of the same type.

The proof is based on the following lemma.
Lemma 1. Let L ∈ K[D], SymL = S1 · S2, ord(L) = d,

and polynomial S0 of degree d0 be the greatest common
divisor of S1 and S2. Then, for any partial factorization
of type t ≤ (d – d0) and order t, where (S1)(S2), there does
not exist more than one extension to the partial factor-
ization of order t – 1 (up to lower-order terms).

Proof. If d0 = 0, the lemma assertion follows from
results of [1]. If d0 > 0, let us write the extension of a
given factorization of order t to the operator factoriza-
tion in the general form as

(4)

where k1 = ord(S1), k2 = ord(S2), Gj ∈ Kj[D], Hi ∈ Ki[D],
j = 0, …, (k1 – 1), i = 0, …, (k2 – 1). Comparing coeffi-
cients of terms of power t – 1 on both sides of (4), we
obtain

(5)

where Pt – 1 is a homogeneous polynomial of degree t
that is uniquely computed by homogeneous polynomi-
als Gi and Hj, i > t – k1 – 1, j > t – k2 – 1 (components of
the original partial factorization of order t). For i < 0,
the polynomials Gi and Hi are assumed equal to zero.

Now, since t – 1 < d – d0, we may apply Proposition 2,
which says that there does not exist more than one solu-
tion to Eq. (5). That is, there does not exist more than
one extension to the partial factorization of order t – 1. 

Corollary 1. If S1 and S2 are mutually simple, there
does not exist more than one factorization of L of type
(S1)(S2). That is, the Grigoriev–Schwarz theorem [1] is
a particular case of the above theorem.

Corollary 2. For ordinary differential operators,

GCD(S1, S2) = 

L Dx 1 1
x f 1 y( )+
----------------------+ +⎝ ⎠

⎛ ⎞  � Dx
2

xDxDy ---+⎝
⎛=

+ 1 1
x f 1 y( )+
----------------------–⎝ ⎠

⎛ ⎞ Dx x 1 x
x f 1 y( )+
----------------------–+⎝ ⎠

⎛ ⎞ Dy+ ⎠
⎞ ,

L Ŝ1 G j

j 0=

k1 1–

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

 � Ŝ2 H j

j 0=

k2 1–

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

,=

Lt 1– Ht k1– 1– S1 Gt k2– 1– S2 Pt 1– ,+⋅+⋅=

X
d0,

where

Then, for any partial factorization of order

there does not exist more than one extension to an ordi-
nary factorization.

Corollary 3. Let L ∈ K[D], SymL = S1 · S2, and S1
and S2 be mutually simple. Then, for any t, t < ord(L),
there does not exist more than one (up to lower-order
terms) partial factorization of order t.

4. RING OF OBSTACLES, OBSTACLES

The following theorem is proved by induction on the
number of factors with the use of the theorem on unique-
ness of factorization in the case of two factors [1].

Theorem 2. Let L ∈ K[D], SymL = S1 · S2…Sk, and
S1, …, Sk be mutually simple. Then, there does not exist
more than one factorization of type (S1)(S2)…(Sk).

Consider factorable operators as a submanifold of
all operators from K[D] with a given symbol factoriza-
tion.

Theorem 3. Let K be a field. Consider the subman-
ifold of operators from K[D] with the fixed symbol
Sym = S1…Sk, ord(Si) = di, i = 1, …, k. Then, the co-
dimension of the submanifold of operators having fac-
torization of type (S1)(S2)…(Sk) is

Proof. Any operator L from the considered set can
be written in the form

(6)

where  denotes the ith power component in the jth
factor. Comparing components of power t, 0 ≤ t ≤
ord(L) – 1, on both sides of (6), we obtain

(7)

where Pt is a homogeneous polynomial of degree t
uniquely computable by the homogeneous polynomials
Gi, Hj , i > t – k1, j > t – k2. Hence, if the equation is
solved in the “decreasing” order (i.e., starting from t =
ord(L) – 1 with t decreasing by one at each step), this
polynomial can be considered known.

The polynomials Gi, Hj , i > t – k1, j > t – k2, and,
hence, Pt are determined uniquely, which immediately
follows from Lemma 2.

d0 min ord S1( ) ord S2( ),( ).=

max ord S1( ) ord S2( ),( ) 1,–

n d 1–+
n⎝ ⎠

⎛ ⎞ n di 1–+
n⎝ ⎠

⎛ ⎞ .
i 1=

k

∑–

L S1 Gi
1

i 0=

d1 1–

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

 � … � Sk Gi
k

i 0=

dk 1–

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

,=

Gi
j

Pt = Sym/S1( ) Gt d– d1+
1 …+⋅

+ Sym/Sk( ) Gt d– dk+
k

,⋅
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Lemma 2. Let S1, …, Sk be mutually simple homo-
geneous polynomials of degrees d1, …, dk, respectively.
Let us denote S = S1…Sk. Then, there does not exist
more than one set (A1, …, Ak) such that

(8)

where ord(Pt) = t, t < ord(S), and ord(Ai) + ord(S/Si) = t.

Proof. Suppose that there exist two such sets, ( ,

…, ) and ( , …, ). Subtracting the equations
corresponding to them, we obtain

(9)

where Bi =  – , i = 1, …, k. Without loss of gener-
ality, we may assume that B1 ≠ 0 and rewrite Eq. (9) as

Now, all addends on the right-hand side of the equa-
tion are divided by S1, whereas (S/S1) is not divided by
S1. Hence, S1 must divide B1, and, thus, ord(B1) ≥
ord(S1).

On the other hand, we know that ord(Ai) +
ord(S/Si) = t and t < ord(S); i.e., ord(Ai) < ord(Si), and,
hence, ord(B1) < ord(Si). This contradicts the conclu-
sion of the previous paragraph and proves the lemma. 

The existence of a factorization is determined by
compatibility of the system of all equations (7), t = d –
1, …, 0. The desired co-dimension is equal to the num-
ber of independent equations in the operator coeffi-
cients.

For each t, we have linear equation (7) in the poly-

nomials , …, , which is equivalent to

a system of linear equations in their coefficients, A ·  =

, where A is the system matrix. Since the system has
a unique solution, the rank of matrix A is equal to the
number of variables v; i.e., the columns of A are lin-
early independent.

The system A ·  =  is compatible when vector 
belongs to the v-dimensional affine space spanned by

the columns of A. The length of vector  is equal to the
number of equations in the system. That is, the co-
dimension of the space of solutions is equal to the dif-
ference of the number of the equations and the number
of variables. The total co-dimension of the operators
that have factorizations of the type (S1)(S2)…(Sk) is
equal to the difference of the number of the equations
and the number of variables in all steps altogether,
which is found by using the well-known fact from the
combinatorial analysis formulated in the following
lemma.

Lemma 3. The cardinality of the set

Pt S/S1( ) A1 … S/Sk( ) Ak,⋅+ +⋅=

A1'

Ak' A1'' Ak''

0 S/S1( ) B1 … S/Sk( ) Bk,⋅+ +⋅=

Ai' Ai''

S/S1( )– B1⋅ S/S2( ) B2 … S/Sk( ) Bk.⋅+ +⋅=

Gt d– d1+
1

Gt d– dk+
k

g

c

g c c

c

M x1

d1…xn

dn d1 … dn+ + t= ={ }

of monomials in n independent variables x1, …, xn is

given by  = .

The theorem on the co-dimension is proved. 
Example 2. Consider all second-order operators of

two independent variables with the symbol S1 · S2,
where S1 and S2 are mutually simple fixed homoge-
neous operators of the first order. By Theorem 3, the co-
dimension of the manifold of operators having factor-
izations of the type (S1)(S2) is equal to 1.

It is not difficult to find an explicit equation govern-

ing this manifold. For example, let  = D1 and  =
D2. Consider all operators of the form L = D1D2 +
a10D1 + a01D2 + a00. Such an operator has a factoriza-
tion of type (S1)(S2) if and only if the coefficients a10,
a01, and a00 satisfy the equation

Example 3. Consider all third-order operators of
two independent variables with the symbol S1 · S2,
where S1 and S2 are mutually simple fixed homoge-
neous operators of the first and second order, respec-
tively. The co-dimension of the manifold of operators
having factorizations of the type (S1)(S2) is equal to 2.

On the other hand, if we consider a factorization of
the type (S1)(S2)(S3), where S1, S2, and S3 are mutually
simple fixed operators of the first order, the co-dimen-
sion is equal to 3 by Theorem 3.

The following definition is needed for studying
operators that have no factorizations of some types.

Definition 4. Let L ∈ K[D] and SymL = S1…Sk. An
operator R ∈ K[D] is said to be ordinary obstacle to fac-
torization of L of type (S1)(S2)…(Sk) if the operator L –
R has factorization of type (S1)(S2)…(Sk) and the order
of R is minimal over all operators possessing this prop-
erty.

Ordinary obstacles are closely related to partial fac-
torizations introduced earlier.

Proposition 3. Let L ∈ K[D] and SymL = S1…Sk.
Then, an ordinary obstacle to factorization of type
(S1)…(Sk) has order t if and only if t + 1 is the minimal
order of partial factorization.

Clearly, ordinary obstacles are not uniquely deter-
mined. Moreover, their symbols are not uniquely deter-
mined as well. To get a unique (in a sense, invariant)
concept, we introduce the following definition.

Definition 5. Let L ∈ K[D] and SymL = S1 · S2 · … · Sk.
A ring of obstacles for factorization of type (S1)…(Sk)
is the quotient ring

where I =  is a uniform ideal.

n t 1–+
t⎝ ⎠

⎛ ⎞ n t 1–+
n 1–⎝ ⎠

⎛ ⎞

Ŝ1 Ŝ2

a00 a10a01– ∂x a10( )– 0.=

K S1 … Sk, ,( ) K X[ ]/I ,=

SymL

S1
-------------

SymL

S2
------------- …

SymL

Sk

-------------, , ,⎝ ⎠
⎛ ⎞
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Remark 4. In the case of two factors (k = 2), the ring
of obstacles is given by

which coincides with the definition given in [5], where
the case of two factors is considered.

Theorem 4. Let L ∈ K[D] and SymL = S1 · S2 · … ·
Sk, where Si, i ∈ {1, …, k}, are mutually simple. Then,
symbols of all ordinary obstacles of type (S1)…(Sk)
belong to the same adjacent class of the quotient ring
K(S1, …, Sk).

Proof. Let us denote di = ord(Si), i ∈ {1, …, k}, and
let t be the order of ordinary obstacles. Repeating argu-
ments from the proof of Theorem 3, we obtain Eq. (7);
i.e., the symbol of any general obstacle can be written as

where Pt is a known uniquely determined polynomial,
which is the same for all ordinary obstacles. That is, all
ordinary obstacles belong to the adjacent class [Pt] of
the quotient ring K(S1, …, Sk).

Definition 6. The adjacent class of symbols of ordi-
nary obstacles in the ring of obstacles is called obstacle
to factorization.

Remark 5. Any element from this adjacent class is
an ordinary obstacle.

Definition 7. Factorization types (S1)…(Sk) and
(b1S1)…(bkSk) are similar if b1, …, bk ∈ K and b1…bk = 1.

Theorem 5. For a fixed operator, rings of obstacles
and obstacles of similar types coincide.

Proof. Let us fix an operator L ∈ K[D] and two sim-
ilar factorization types, (S1)…(Sk) and (b1S1)…(bkSk),
where bi ∈ K, i = 1, …, k. Then, the uniform ideals (S1,
…, Sk) and (b1S1, …, bkSk), and, hence, the rings of
obstacles, coincide.

Any ordinary obstacle of type (S1)…(Sk) and order
d0 can be written as

(10)

where Ti is the sum of components of orders di – 1, …,
d – di – d0 + 1 and ord(P) = d0.

There exist , …,  such that , like Ti, is the
sum of components of orders di – 1, …, d – di – d0 + 1,
and

Therefore, P is ordinary obstacle of order d0 of type
(b1S1)…(bkSk). On the other hand, we have already
proved that the obstacle rings K(S1, …, Sk) and (b1S1,
…, bkSk) coincide. Hence, the adjacent classes coincide
as well; i.e., obstacles of similar types coincide. 

K S1 S2,( ) K X[ ]/ S1 S2,( ),=

Pt SymL/S1( ) Gt d– d1+
1 …+⋅(–

+ SymL/Sk( ) Gt d– dk+
k⋅ ),

P L Ŝ1 T1+( ) � … � Ŝk Tk+( ),–=

T1' Tk' Ti'

S1 T1+( ) � … � Sk Tk+( )

=  b1S1 T1'+( ) � … � bkSk Tk'+( ).

Remind the following definition:
Definition 8. Let g ∈ K* be an invertible element from

a ring K and L ∈ K[D]. Then, the operator g–1 � L � g
is called conjugate of L.

Theorem 6. Ordinary obstacles for conjugate oper-
ators are conjugate: if P is an ordinary obstacle for L ∈
K[D], then g–1Pg is an ordinary obstacle for g–1Lg,
where g ∈ K*.

Proof. Let us consider an ordinary obstacle for L of
order d0 given by (10). Let us find the conjugate obsta-
cle using g:

There exist , …,  such that , like Ti, is the
sum of components of orders di – 1, …, d – di – d0 + 1,
and

Corollary 4. Obstacles to conjugate operators coin-
cide.

Proof. Ordinary obstacles to conjugate operators are
conjugate; hence, the symbol of ordinary obstacles is
not changed.

Theorem 7. Let n = 2, L ∈ K[D], ord(L) = d, and
SymL = S1…Sk, where Si, i ∈ {1, …, k}, are mutually
simple. Then, the obstacle ring K(S1, …, Sk) raised to
power d – 1 is equal to zero (i.e., actual obstacles can be
of order d – 2 or less).

Proof. Let us denote di = ord(Si), i ∈ {1, …, k}.
Repeating arguments from the proof of Theorem 3, we
obtain Eq. (7) for t = d – 1:

which has at most one solution with respect to

, …, . Let us consider the corresponding
system of linear equations in their coefficients. By
Lemma 3, the number of equations in such a system is
equal to d, and the number of variables is also equal to
d, which means that the system has a unique solution.
Hence, we have found a partial factorization of order
d – 1. 

We remind that an operator L ∈ K[D], ord(L) = d, is
called strictly hyperbolic if its symbol is factored into d
different factors.

Theorem 8. Let n = 2 and L ∈ K[D] be a strictly
hyperbolic operator of order d. Then, an ordinary obsta-

g
1–
Pg g

1–
Lg g

1–
 � S1 T1+( )–=

� Si Ti+( ) � Sk Tk+( ) � g.
j 2=

k 1–

∏

T1' Tk' Ti'

g
1–
Pg g

1–
Lg g

1–
S1 T1'+( )–=

� Si Ti'+( ) � gSk Tk'+( ).
j 2=

k 1–

∏

Pd 1– SymL/S1( ) Gd1 1–
1 … SymL/Sk( ) Gdk 1–

k
,⋅+ +⋅=

Gd1 1–
1

Gdk 1–
k
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cle of a fixed type to factorization into first-order fac-
tors is determined uniquely.

Proof. Let (S1)…(Sd) be some factorization type and
P be an ordinary obstacle for this factorization type. Let
the order of obstacles be p. Suppose that there is
another ordinary obstacle of this type. Then, it can be
written in the form

where Ai are homogeneous polynomials of degrees pi =
p – ord(SymL/Si) = p – (d – 1); i.e., p ≥ d – 1. On the
other hand, by Theorem 7, the ring of obstacles raised
to power d – 1 is equal to zero; therefore, p ≤ d – 2. 

5. SECOND-ORDER OPERATORS OF TWO 
VARIABLES

Consider a second-order hyperbolic operator L ∈
K[Dx, Dy] in the coordinate system where its symbol
has the form XY. Then, by Theorems 7 and 8, both ordi-
nary obstacles to this operator have order 0 and are
uniquely determined. Let us find explicit formulas for
them.

Theorem 9. Let

where a10, a01, a00 ∈ K. Then, obstacles of types (X)(Y)
and (Y)(X) are given by

respectively.
Proof. The factorization of L of type (X)(Y) has the

form

where g00 and h00 are some elements of K. Comparing
the first-order components on the left-hand and right-
hand sides of the equation, we obtain

(11)

i.e., a = h00 and b = g00. Now, we calculate the obstacle as

The obstacle of type (Y)(X) is found similarly. 
Remark 6. The obstacles found coincide with the

Laplace invariants [2].

6. THIRD-ORDER OPERATORS 
OF TWO VARIABLES

Consider a third-order operator L ∈ K[D1, D2]. Let
its symbol be S1 · S2 · S3. Then, we have six factorization
types when factoring into three factors,

P SymL/S1( ) A1 … SymL/Sd( ) Ad,⋅+ +⋅+

L Dx Dy aDx bDy c,+ + +⋅=

c ab– ∂x a( ),–

c ab– ∂y b( ),–

L Dx g00+( ) � Dy h00+( ),=

a h00–( )Dx b g00–( )Dy+ 0;=

L Dx b+( ) � Dy a+( )– c ab– ∂x a( ).–=

and six types of factorization into two factors,

6.1. Two Factors

Our theory works in the case of mutually simple fac-
tor symbols. That is, if the considered type is (S1)(S2S3),
then S1 and S2S3 must be mutually simple. Taking this
into account and noting that symmetric types are con-
sidered similarly, we may confine ourselves to the fol-
lowing two important cases: factorization type (X)(X2 +
XY) for the operator with the symbol X2Y + XY2 and
type (X)(Y2) for the operator with the symbol XY2.

Note that, by Theorem 7, such ordinary obstacles
may be only of orders one or zero. In the former case,
an ordinary obstacle is not uniquely determined.

Theorem 10. Let

where aij ∈ K. Let SymL = XY(X + Y). Then,

is an ordinary obstacle to factorization of L of type
(X)(YX + YY). Let SymL = X2Y. Then,

is an ordinary obstacle to factorization of L of type
(Y)(XX).

Proof. All factorizations of type (X)(YX + YY) are of
the form

(12)

where G0 = g00 ∈ K, H1 = h10Dx + h01Dy ∈ K[Dx, Dy],
and H0 = h00 ∈ K. Comparing the second-order compo-
nents on both sides of Eq. (12), we obtain the following
system of linear equations in the coefficients h10, h01,
and g00:

S1( ) S2( ) S3( ), S1( ) S3( ) S3( ), S2( ) S1( ) S3( ),

S2( ) S3( ) S1( ), S3( ) S1( ) S2( ), S3( ) S2( ) S1( ),

S1( ) S2S3( ), S2( ) S1S3( ), S3( ) S1S2( ),

S1S2( ) S3( ), S1S3( ) S2( ), S2S3( ) S1( ).

L SymL a20Dxx a11Dxy+ +=

+ a02Dyy a10Dx a01Dy a00,+ + +

Obst X( ) YX YY+( )

=  a02
2

a11a02– a01 ∂x a02 a11–( )+ +( )Dy

+ a00 a02a10– a02
2

a20 2a02∂x a20( )+ +

– ∂x a10( ) a20∂x a02( ) ∂xx a20( )+ +

Obst Y( ) XX( ) a10 a20a11– ∂y a11( )–( )Dx=

+ a00 a20a01– a20
2

a02 2a20∂y a02( )+ +

– ∂y a01( ) a02∂y a20( ) ∂yy a02( )+ +

L Dx G0+( ) � Dxy Dyy H1 H0+ + +( ),=
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Finding the only solution to the system and compar-
ing coefficients of Dx on both sides of (12), we obtain

Now, we can calculate the ordinary obstacle as P =
L – (Dx + G0) � (Dxy + Dyy + H1 + H0).

The ordinary obstacle for the factorization type
(Y)(XX) is found similarly. 

6.2. Three Factors

Here, it will suffice to consider the case of a hyper-
bolic operator with the symbol XY(X + Y) and the fac-
torization type (X)(Y)(X + Y). In this case, an ordinary
obstacle may be only of order one or zero (by Theorem 7)
and is unique (by Theorem 8).

Theorem 11. Let

where aij ∈ K. The ordinary obstacle of type (X)(Y)(X + Y)
is given by

where s2 = a20 – a11 + a02.
Proof. Let us write factorization of type (X)(Y)(X + Y)

in the general form as

(13)

Comparing the second-order components on both
sides of the equation, we obtain the unique solution

Now, the ordinary obstacle can be calculated as the
difference of the left-hand and right-hand sides of (13).
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a20 h10=

a11 h01 g00+=

a02 g00.=⎩
⎪
⎨
⎪
⎧

h00 a10 a20a02– ∂x a20( ).–=

L DxDy Dx Dy+( ) a20Dxx a11Dxy+ +=

+ a02Dyy a10Dx a01Dy a00,+ + +

Obst X( ) Y( ) X Y+( )

=  a10 a20a11– a20
2

– ∂x a20( )– ∂y s2( )+( )Dx

+ a01 a02a11– a02
2 ∂x –a11 a02+( )+ +( )Dy

+ a00 a20a02s2 s2∂x a20( )+ +

+ a20∂x ∂xy a02∂y+ +( ) s2( ),

L Dx g0+( ) � Dy h0+( ) � Dx Dy f 0+ +( ).=

h0 a20, g0 a02, f 0 a11 a02– a20.–= = =


