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Abstract. Bousquet-Mélou and Petkovšek investigated the generating func-
tions of multivariate linear recurrences with constant coefficients. We will give
a reinterpretation of their theory by means of division theorems for formal
power series, which clarifies the structural background and provides short,

conceptual proofs. In addition, extending the division to the context of dif-
ferential operators, the case of recurrences with polynomial coefficients can be
treated in an analogous way.

Throughout this paper we will use the following notation: Let K be a field
and d be the number of variables. Bold letters indicate tuples x = (x1, . . . , xd),
monomials are written as xn = xn1

1 . . . xnd

d , and the scalar product is denoted
by u ·w = u1v1 + · · · + udvd. The support supp(F (x)) of a formal power series
F (x) =

∑

n∈Nd fnx
n ∈ KJxK is the set of all monomials xn whose coefficients fn are

nonzero. Let KJxK 6≥p denote the set of all power series with support in Nd\(p+Nd).
When we speak of a weight vector, we mean a vector in Rd with positive, Q-linearly
independent components. A weight vector w induces a total order ≺w on Zd as
well as on the monomials xn in KJxK: a ≺w b and xa ≺w xb if w · a < w · b. The
initial monomial inw (F ) of a power series F w.r.t. to a weight vector w is defined
to be the ≺w -minimal element of supp(F ).

1. Recurrences with constant coefficients

Let (fn )n∈Nd be a sequence in K given by the recurrence

(1) fn =







ϕ(n), n ∈ Nd \ (s + Nd)
∑

t∈H

ctfn+t , n ∈ s + Nd

where s ∈ Nd is the starting point of the recurrence and H ⊆ Zd is the finite set
of shifts such that s + H ⊆ Nd. The function ϕ : Nd \ (s + Nd) → K specifies the
initial conditions. The coefficients ct are constants in K. Let H0 denote the set
H ∪ {0}. We define the apex p of the recurrence (1) as the vector p = (p1, . . . , pd)
with pi = max{ti : t ∈ H ∪ {0}}. The objective then is to determine properties of
the generating function F (x) =

∑

n∈Nd fnx
n in terms of the given initial data and

recurrence.

The picture on the right il-
lustrates the situation for H =
{(−3, 0), (−2,−1), (0,−2), (1,−1)}
with starting point s = (3, 2) and
apex p = (1, 0). The area s +Nd is
shaded; outside of it the recurrence
is given by the initial values.
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Theorem 1. If there exists a weight vector w ∈ Rd with positive components such
that w · t < 0 for all t ∈ H, then the recurrence (1) has a unique solution.

The proof can be found in [2].
In order to compute the generating function of (fn )n∈Nd , a functional equation

for Fs (x) =
∑

n∈s+Nd fnx
n−s can be deduced in a rather straight-forward manner

(for details see [2]):

(2) Q(x) · Fs (x) = K(x) − U(x),

where

Q(x) = xp −
∑

t∈H

ctx
p−t ,

K(x) =
∑

t∈H

∑

n∈(s+t+Nd)\(s+Nd)

ctϕ(n)xn−s+p−t ,

U(x) =
∑

t∈H

∑

n∈(s+Nd)\(s+t+Nd)

ctfnx
n−s+p−t .

Here:

• Q(x) is a polynomial that is given by the recurrence relation (the charac-
teristic polynomial of the recurrence).

• K(x) is known since it contains only coefficients which are given by the
initial value function ϕ(n). Note that K(x) is a formal power series, i.e., no
negative exponents occur: The exponents of K(x) have the form n−s+p−t

with n ∈ (s + t + Nd) \ (s + Nd), hence n − t − s ∈ Nd.
• U(x) is a formal power series and is unknown. The exponents of U(x) have

the form (n−s−t)+p with n ∈ (s+Nd)\(s+t+Nd), hence n−t−s 6∈ Nd.
Thus supp(U(x)) ⊆ Nd \ (p + Nd).

The equation (2) involves two unknown series, namely Fs (x) and U(x), and two
given series, Q(x) and K(x). It is now immediate to write (2) in a slightly different
way:

(3) K(x) = Q(x) · Fs (x) + U(x).

This is nothing else but a Euclidean division of power series with remainder: The
formal power series K(x) is divided by the polynomial Q(x) yielding the quotient
Fs (x) and the remainder U(x).

To justify this, we have to show that U(x) satisfies the appropriate support con-
dition. We choose the monomial order that is induced by the weight vector w from
Theorem 1 in order to make xp the initial monomial of Q(x). Since w · t < 0 we
have that xp ≺w xp−t for all t ∈ H, and therefore xp is ≺w -minimal in supp(Q).
To make the order total, w additionally has to have Q-linearly independent compo-
nents. We have seen that U(x) is in KJxK 6≥p , and therefore contains only monomials
that are smaller (w.r.t. ≺w ) than the initial monomial xp of Q(x).

2. Division of formal power series

The division (3) can be carried out explicitly by generalizing the usual Euclidean
division in K[x] to the multivariate power series ring KJxK (Weierstraß division).
We interpret the division by a power series as a perturbation of the division by its
initial monomial. Let’s have a short look on a special case:

Example 1. The division of a formal power series P (x) by a monomial xn ,n ∈ Nd,
is equivalent to the direct sum decomposition KJxK = xnKJxK ⊕ KJxK 6≥n (when
viewed as vector spaces). For the division we get P (x) = xn · F (x) + R(x) where
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the remainder R(x) has to fulfill the support condition supp(R(x)) ⊆ KJxK 6≥n . Note
that KJxK 6≥n is isomorphic to KJxK/〈xn 〉, again when viewed as vector spaces.

In a straightforward manner this example can be extended to the division by a
power series A(x) ∈ KJxK with initial monomial xn (w.r.t. some monomial order),
and one gets KJxK = A(x)KJxK ⊕ KJxK 6≥n .

In our setting where the division (3) arises from a recurrence, we are in fact not
interested in performing the division explicitly, because we can obtain the result
of the division (a power series representation of the generating function) by just
applying the recurrence relation. We are more interested in deducing properties of
the generating function.

Assume that the apex p is 0; from the support condition on U(x) follows that
U(x) = 0. Equation (3) simplifies to Fs (x) = K(x)/Q(x). Hence, if the apex is 0

and K(x) is a rational function, then the generating function Fs (x) is a rational
function.

In the case of convergent power series, we invoke the Grauert-Hironaka-Galligo
division theorem (cf. [12, 9, 10, 3, 4]:

Theorem 2. Let K be R, C, Q, Qp or any complete valued field, and let A(x) ∈
K{x} be a convergent power series. Let again xn be the initial monomial of A(x)
with respect to some monomial order on Nd. Then

K{x} = A(x)K{x} ⊕ K{x}6≥n .

We conclude that the solution Fs (x) of (3) is a convergent power series provided
that the initial conditions constitute a convergent series K(x) ∈ K{x}. This has
been proven in Theorem 7 of [2].

A power series A(x) ∈ KJxK is called algebraic, if there exists a polynomial
P (x, t) ∈ K[x][t] such that P (x, A(x)) = 0, or, more explicitely, if there are polyno-
mials p0, . . . , pm ∈ K[x], pm 6= 0 such that

pm(x)A(x)m + · · · + p1(x)A(x) + p0(x) = 0.

Let KJxKalg ⊆ KJxK denote the subalgebra of algebraic power series. In this case
we invoke the Lafon-Hironaka division theorem (cf. [14, 11]):

Theorem 3. Let A(x) ∈ KJxKalg and let xn be the initial monomial of A(x) (w.r.t.
some monomial order) with n = (0, . . . , 0, nk, 0, . . . , 0). Then

KJxKalg = A(x)KJxKalg ⊕
(

KJxKalg
) 6≥n

.

A constructive version of this theorem using polynomial codes of algebraic power
series has been developed in [1].

In particular, the theorem implies that in the division (3) the quotient Fs (x) and
the remainder U(x) are algebraic, provided that K(x) is algebraic and the initial
monomial of Q(x) involves only one variable. Hence, if the apex p of (1) has exactly
one nonzero component and if the initial conditions constitute an algebraic power
series K(x), then the generating function Fs (x) is algebraic. This has been proven
in Theorem 13 of [2].

3. Recurrences with polynomial coefficients

We are now considering P-finite recurrences, i.e., recurrences with polynomial
coefficients ct (n) ∈ K[n], written in the following form:

(4)







fn = ϕ(n), n ∈ Nd \ (s + Nd)

c0(n)fn = −
∑

t∈H

ct (n)fn+t , n ∈ s + Nd
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The existence of a unique solution for P-finite recurrences can be stated in a similar
way as in Theorem 1 for C-finite recurrences:

Corollary 4. If there exists a weight vector w ∈ Rd with positive components such
that w · t < 0 for all t ∈ H, and if additionally the polynomial c0(n) has no integer
root in s + Nd, then the recurrence (4) has a unique solution.

In contrast to Theorem 1, we additionally require that the polynomial c0(n) does
not have integer roots in the region s +Nd where the recurrence relation is applied;
this condition is trivially fulfilled for constant coefficients. If it happens that c0 does
have an integer root there, the whole recursion would break down. This situation
can often be avoided by an adequate choice of the starting point s. In the case
d = 1 this is always possible, whereas for d > 1 there are instances for which there
is no such s. Corollary 4 also follows immediately from Theorem 5 in [2]. In the
following we will always assume that the recurrence fulfills the conditions of the
theorem.

The proof of Theorem 4 via division theorems is slightly more delicate than
for Theorem 1. The functional equation (2) has to be replaced by a differential
equation. This is done as follows:

Let xk denote the falling factorial x(x−1) · · · (x−k+1) where x0 is set equal to 1.
The falling factorials constitute a basis for the polynomial ring K[x] via the formula
xn =

∑

S(n, k)xk where S(n, k) denote the Stirling numbers of the second kind.

For several variables the falling factorial is defined as xk =
∏d

i=1 x
k

i

i , and obviously
also any multivariate polynomial can be written in terms of falling factorials xk .
We now transform the polynomials ct (n) in this manner, but take for convenience
shifted falling factorials:

ct (n) = c̃t (n − s +p) =
∑

k∈St

ct k (n − s +p)k

with certain coefficients ct k ∈ K and a finite index set St ⊂ Nd.
Let Fs (x) again denote the generating function

∑

n∈s+Nd fnx
n−s . Then our

recurrence (4) rewrites as follows:

0 =
∑

t∈H0

ct (n)fn+t

=
∑

n∈s+Nd

∑

t∈H0

ct (n)fn+tx
n−s+p

=
∑

t∈H0

∑

n∈s+t+Nd

ct (n − t)fnx
n−s+p−t

=
∑

t∈H0

∑

n∈s+Nd

∑

k∈St

ct k (n − s +p − t)kfnx
n−s+p−t − K(x) + U(x)

=
∑

t∈H0

∑

k∈St

∑

n∈s+Nd

(ct kx
k∂kxp−t )[fnx

n−s ] − K(x) + U(x)

=
∑

t∈H0

∑

k∈St

(ct kx
k∂kxp−t ) (Fs (x)) − K(x) + U(x).

Here, D =
∑

t∈H0

∑

k∈St
ct kx

k∂kxp−t is now a differential operator with polyno-
mial coefficients. The power series

K(x) = −
∑

t∈H

∑

n∈(s+t+Nd)\(s+Nd)

ϕ(n)ct (n − t)xn−s+p−t
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is known since it is determined by the initial conditions. The series

U(x) = −
∑

t∈H

∑

n∈(s+Nd)\(s+t+Nd)

fnct (n − t)xn−s+p−t

is unknown, and satisfies the support condition supp(U) ⊆ Nd \ (p + Nd). Ana-
logously to equation (2) we get

(5) K(x) = D (Fs (x)) + U(x).

To make this precise, we briefly review the theory of perfect differential operators
and their division (cf. [6]).

4. Perfect differential operators

We consider linear partial differential operators with polynomial coefficients of
the form D =

∑

a ,b∈Nd cabx
a∂b . They define K-linear maps D : KJxK → KJxK,

A 7→ D(A). The differences r = a − b ∈ Zd with cab 6= 0 are called the shifts of
D. A differential operator is called a monomial operator if all its summands have
the same shift r; this is equivalent to saying that the operator sends monomials to
monomials. A monomial operator can be represented as κrx

r where κr : Nd → K

is called the coefficient function: The monomial operator xa∂b with a − b = r has
the coefficient function κr (n) = nb and the shift r:

(xa∂b )xn = nbxn+r = κr (n)xn+r .

A monomial subspace M is a vector subspace of KJxK for which there is a set
Σ ⊆ Nd such that M is formed by all power series with support in Σ. The canonical
monomial direct complement of M is the vector subspace N of power series with
support in the complement Nd \ Σ.

The initial form of D with respect to a weight vector w, denoted by D◦, is defined
by D◦ =

∑

a−b=r cabx
a∂b , where r is the minimal shift of D (i.e., w ·r is minimal).

Clearly D◦ is a monomial operator; we denote its coefficient function with κ◦(n).
Let D denote the tail of the operator, i.e., D = D◦ + D. We say that the initial
form D◦ dominates D if there is a constant C > 0 such that for all b ∈ Nd with
cab 6= 0 for some a, and all n ∈ Nd with κ◦(n) 6= 0, we have nb ≤ C · |κ◦(n)|.

A differential operator D is called perfect if for any A ∈ KJxK there exists an
n ∈ Nd such that inw (D(A)) = (D◦xn )/κ◦(n). In other words, if for all power
series A the initial monomial of D(A) lies in the image Im(D◦) of D◦. The image
Im(D◦) is spanned by the monomials {xn+r | n ∈ Nd and κ◦(n) 6= 0} where r is
the shift of D◦.

Example 2. Let D = 4y − xy2∂x∂y + x2. The involved shifts are (0, 1) and
(2, 0). We choose a weight vector such that (0, 1) ≺w (2, 0) and get the initial form
D◦ = 4y − xy2∂x∂y with coefficient function κ◦(n1, n2) = 4 − n1n2. We see that
κ◦(n) = 0 for n ∈ Z = {(1, 4), (2, 2), (4, 1)}, hence the image Im(D◦) is spanned
(as a vector space) by the monomials {xn1yn2+1 : (n1, n2) 6∈ Z}. This operator is
not perfect since, e.g., D applied to x2y2 gives x4y2 6∈ Im(D◦).

This example also illustrates that in general it might be impossible to decide
whether an operator is perfect or not: The computation of Im(D◦) needs a dio-
phantine equation of arbitrary form to be solved.

Example 3. Consider now the operator D = 4y − xy2∂x∂y + x2y4 with D◦ being

the same as in the example above, but now D = x2y4. Clearly we have Im(D) =
x2y4KJx, yK ⊂ Im(D◦) which implies that in this case D is perfect.
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Note that the concept of perfect operators is more subtle than these two examples
suggest. For more details we refer to [5, 6] from where we cite a division theorem for
differential operators (in fact a specialized version that is sufficient for our setting):

Theorem 5. Let K be either KJxK or K{x}. Let D ∈ K[x][∂] be a perfect differential
operator and let D◦ be its initial form with respect to some weight vector w. Choose
the canonical direct monomial complements L◦ of Ker(D◦) and J◦ of Im(D◦) in
K. In the case of convergent power series, assume in addition that D is dominated
by D◦. Then we have the direct sum decompositions

Im D ⊕ J◦ = K and KerD ⊕ L◦ = K.

In other words, if D is perfect, then the division K = D(Fs ) + U exists and is
unique. The support condition on U is given by D◦.

5. Back to P-finite recurrences

Proposition 6. A differential operator

D =
∑

t∈H0

∑

k∈St

ct kx
k∂kxp−t =

∑

t∈H0

Dt

that evolves from a recurrence which is of type (4) and satisfies the conditions of
Theorem 4, is perfect.

Proof. The shift of all summands in any of the operators Dt is p − t. It does
not change when Dt is converted to the standard form

∑

cabx
a∂b by means of

the commutation rule ∂x = x∂ + 1. Thus all the Dt ’s are monomial operators.
Let w be the weight vector from Theorem 4 with w · t < 0 for all t ∈ H. Then
D0 is the monomial operator with the minimal shift, hence we have D◦ = D0

and D =
∑

t∈H Dt . The coefficient function of the initial form turns out to be

κ◦(n) =
∑

k∈S0
c0k (n + p)k = c0(n + s). Since the polynomial c0(n) does not

have any zeros in s + Nd, we see that κ◦(n) 6= 0 for all n ∈ Nd. Consequently
Im(D◦) = xpKJxK which matches the support condition on U(x). The kernel of D◦

is 0, hence

inw (D(A)) = D◦(inw (A)) for all A ∈ KJxK,

and this proves that D is perfect. �

We conclude that the division (5) has always a unique solution. This corresponds
exactly to the statement of Theorem 4 which asserts that the recurrence has a
unique solution.

Let’s turn to the case of convergent power series; here we get a sufficient but
not necessary condition for the convergence of the generating function. Theorem
5 states that the generating function Fs (x) is a convergent power series if the
operator D corresponding to its recurrence relation is dominated by its initial form.
This is exactly the case when the polynomial c0(n) dominates all the polynomials
ct (n), t ∈ H, i.e., there is a constant C > 0 such that for all n ∈ Nd we have

|ct (n)| ≤ C · |c0(n + s)|.

6. Examples and outlook

In order to illustrate the applicability of our theory we choose the Eulerian
numbers (see e.g. [8, chap. 6.2]).

Example 4. The recurrence

(6) an,k = (k + 1)an−1,k + (n − k)an−1,k−1
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defines the Eulerian numbers, together with the initial conditions an,0 = 1 and
an,n−1 = 1. Furthermore an,k = 0 for n < 0 or k < 0 or k ≥ n. The initial
conditions border an area of triangular shape which prevents us from applying our
method. For this reason we do a transform, namely we define bn,k := an+k+1,k;
the initial conditions for bn,k are now bn,0 = 1 and b0,k = 1 for all n, k ∈ N (and
bn,k = 0 for n < 0 or k < 0). By substituting n → n + k + 1 in (6) we get the
recurrence

(7) bn,k = (n + 1)bn,k−1 + (k + 1)bn−1,k.

Since we have H = {(0,−1), (−1, 0)} it is natural to choose the starting point
s = (1, 1); the apex p is obviously (0, 0). Hence the generating function in question
is Fs (x, y) =

∑∞
n=0

∑∞
k=0 bn+1,k+1x

nyk. The known part in this case is

K(x, y) = −
x2 − 2x

(x − 1)2x
−

y2 − 2y

(y − 1)2y
.

From p = (0, 0) it follows that U(x, y) = 0. The differential operator corresponding
to recurrence (7) is

D = 1 − 2x − 2y − xy(∂x + ∂y).

If we plug in a truncated power series expansion of Fs (x, y), we see that indeed
K(x, y) = D(Fs (x, y)) holds.

Gnedin and Olshanski [7] studied nonnegative solutions of the dual recurrence.
The dual (or backwards) recurrence is obtained by changing the signs of all shifts.
The problem is now to describe initial conditions for the dual recurrence such that
its solution does not involve negative values.

Example 4 (continued). The backwards recurrence of (7) is dn,k = (n+1)dn,k+1+
(k + 1)dn+1,k which we write as

(8) (n + 1)dn,k = dn,k−1 − kdn+1,k−1.

It is claimed that d0,0 = 1, the other initial conditions dn,0, n ≥ 1 and d0,k, k ≥ 1
have to be determined such that dn,k ≥ 0 for all n, k ∈ N. We choose s = (0, 1),
and we see that in this case the apex p is (1, 0). We can compute a differential
operator for (8):

D = x + 2y − xy + x2∂x + y2∂y.

Hence we have to determine all power series K(x, y) for which the division (5) yields
a power series solution Fs (x, y) with nonnegative coefficients. This seems to be an
interesting research problem.

It would be nice if we could also state some results about the algebraicity of the
generating function. But here even the univariate case is still open: The famous
p-curvature conjecture of Grothendieck [13, 15] asserts that a linear differential
equation with coefficients in Q(x) admits a complete system of solutions if and
only if the differential equation reduced modulo p has a complete system of rational
solutions for almost all p.
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