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Abstract. We define reduced Gröbner bases in polynomial rings over a poly-
nomial ring and introduce an algorithm for computing them. There exist some
algorithms for computing Gröbner bases in polynomial rings over a polyno-
mial ring. However, we cannot obtain the reduced Gröbner bases by these
algorithms. In this paper we propose a new notion of reduced Gröbner bases
in polynomial rings over a polynomial ring and we show that every ideal has
a unique reduced gröbner basis.

Keywords. Gröbner bases.

1. Introduction

Many researchers have studied Gröbner bases in several domains (polynomial rings
over a Euclidean domain [KRK88], over the integers [NG94], over commutative
regular rings [Wei87], over Noetherian rings [AL94] etc . . . ). In this paper we in-
troduce reduced Gröbner bases in polynomial rings over a polynomial and give an
algorithm for computing them. In [IP98] and [AL94], they described the special
computation method of Gröbner bases in polynomial rings over a polynomial ring.
( Insa and Pauer described how to compute Gröbner bases in rings of differential
operators with coefficients in a polynomial ring. They worked in non-commutative
rings, however we can easily apply this method to the commutative case for com-
puting Gröbner bases in polynomial rings over a polynomial ring. This method is
the same as [AL94].) This is one of the methods for computing Gröbner bases in
polynomial rings over a polynomial ring.

Let K be a field and Ā, X̄ variables with Ā ∩ X̄ = ∅. It is known that by
computing Gröbner bases in polynomial rings over a field with respect to a block
order with X̄ � Ā, we can obtain Gröbner bases in K[Ā][X̄] (polynomial rings
over a polynomial ring). However, we are not able to obtain reduced (or minimal)
Gröbner bases by these methods.



2 Katsusuke Nabeshima

For example, let a, b, x, y be variables and f1 = (a− 1)x + by2, f2 = ay + b in
Q[a, b][x, y]. If we use the method of computing Gröbner bases with respect to a
block order x �lex y � a �lex b where �lex is the lexicographic order, to compute
a Gröbner basis in Q[a, b][x, y], then we obtain the following reduced Gröbner basis
for 〈f1, f2〉 with respect to the block order

g1 = ay + b, g2 = (a− 1)x + by2, g3 = −xy − bx + by3.

We know that {g1, g2, g3} is a Gröbner basis for 〈f1, f2〉 with respect to x �lex y
in Q[a, b][x, y] (see Lemma 4.3). However there exists a smaller Gröbner basis,
because we have lm(g3) = −xy ∈ 〈lm(g1), lm(g2)〉 = 〈ay, (a − 1)x〉. (When the
coefficient domain is a polynomial ring, we often see this phenomenon.) That is,
g3 can be written as g3 = −xg1 + yg2. Thus, we do not need g3 for a Gröbner
basis {g1, g2, g3}. However by this method we cannot delete g3. This is a problem
of the method of computing Gröbner bases with respect to a block order X̄ � Ā
in K[Ā, X̄]. The first method for computing Gröbner bases has problems too, we
will see the problems in section 5.
In this paper, we describe the problems and give the answers. Moreover, we propose
a new notion of reduced Gröbner bases and we show that every ideal has a unique
reduced Gröbner basis.

Our plan is the following: first we introduce two methods of computing
Gröbner bases in K[Ā][X̄] in section 3 and 4. In section 5, we explain the problems,
and in section 6 we define reduced Gröbner bases and construct algorithms for
computing reduced Gröbner bases in K[Ā][X̄ ]. In section 7, we see some examples.
Finally, in section 8 we conclude this paper.

2. Notations for K[Ā, X̄] and K[Ā][X̄]

Let K be a field and Ā := {A1, . . . , Am} and X̄ := {X1, . . . , Xn} finite sets of
variables such that Ā∩X̄ = ∅. pp(X̄), pp(Ā) and pp(Ā, X̄) denote the sets of power
products of X̄ , Ā and Ā ∪ X̄, respectively. Q and N define as the field of rational
numbers and the set of natural numbers, respectively. Note that in this paper, the
set of natural number N includes zero 0. In this paper, we define K[Ā, X̄] as a
polynomial ring over a field K and K[Ā][X̄ ] := (K[Ā])[X̄ ] as a polynomial ring
over a polynomial ring K[Ā]. Let f and g be non-zero polynomials in K[Ā, X̄ ] (or
K[Ā][X̄] ) and � be an arbitrary monomial order on the set of power products
in pp(Ā, X̄) (or pp(X̄)). If polynomials f and g are in K[Ā][X̄], then we use the
subscript Ā as follows:

• The support of f (written : supp(f) (or suppĀ(f))) is the set of power prod-
ucts of f that appear with a non-zero coefficient.

• The biggest power product of supp(f) (or suppĀ(f)) with respect to � is
denoted by lpp(f) (or lppĀ(f)) and is called the leading power product of g
with respect to �.

• The coefficient corresponding to lpp(f) (or lppĀ(f)) is called the leading
coefficient of f with respect to � which is defined by lc(f) (or lcĀ(f)).
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• The product lc(f) lpp(f) is called the leading monomial of f with respect to
� which is defined by lm(f) (or lmĀ(f)).

• The least common multiple of lpp(f) and lpp(g) (or lppĀ(f) and lppĀ(g)) is
defined by lcm(lpp(f), lpp(g)) (or lcm(lppĀ(f), lppĀ(g)).

• The set of monomials of f is denoted by Mono(f) (or MonoĀ(f)).

• If lpp(f) = Aα1

1 · · ·A
αm
m Xβ1

1 · · ·X
βn
n ∈ pp(Ā, X̄), then

deg{Ā,X̄}(f) := (α1, . . . , αm, β1, . . . , βn) ∈ Nm+n.

If lppĀ(f) = Xβ1

1 · · ·X
βn
n ∈ pp(X̄), then degX̄(f) := (β1, . . . , βn) ∈ N

n.
Note that the subscripts are {Ā, X̄} and X̄.

Definition 2.1 (block orders). Let �1 and �2 be admissible orders on pp(Ā) and

pp(X̄), respectively, and t1, s1 ∈ pp(Ā), t2, s2 ∈ pp(X̄), t1t2 �X̄,Ā s1s2 ⇐⇒
t2 �2 s2 or (t2 = s2, and t1 �1 s1). This type of order �X̄,Ā is called a block

order on pp(Ā, X̄). This order is written as �X̄,Ā:= (�2,�1).

Example 2.2. Let a, b, x, y be variables and f = 2ax2y + bx2y + 3x + by + 1, g =
abx2 + 2xy + by + 2 be polynomials.
If we consider polynomials f and g as members of Q[a, b, x, y] with a block order
�{x,y},{a,b}:= (x �lex y, a �lex b) where �lex is the lexicographic order, then

supp(f) =
{

ax2y, bx2y, x, y, 1
}

, lpp(f) = ax2y, lc(f) = 2, lm(f) = 2ax2y,

lcm(lpp(f), lpp(g)) = abx2y, Mono(f) =
{

2ax2y, bx2y, 3x, by, 1
}

, deg{a,b,x,y}(f) =

(1, 0, 2, 1) ∈ N4.
If we consider polynomials f, g as members of Q[a, b][x, y] with the lexicographic
order x �lex y, then supp{a,b}(f) =

{

x2y, x, y, 1
}

, lpp{a,b}(f) = x2y, lc{a,b}(f) =

2a+b, lm{a,b}(f) = (2a+b)x2y, lcm(lpp{a,b}(f), lpp{a,b}(g)) = x2y, Mono{a,b}(f) =
{

(2a + b)x2y, 3x, by, 1
}

, deg{x,y}(f) = (2, 1) ∈ N
2.

3. The first computation method

In this section we introduce the special S-polynomial and the special reduction
which are from [IP98, AL94], and we give a computation method of Gröbner bases
in K[Ā][X̄].

Proposition 3.1 ([IP98]). Let F be a finite set of polynomials in K[Ā][X̄ ], g ∈
K[Ā][X̄] and � a monomial order on pp(X̄). Then there is a polynomial r ∈
K[Ā][X̄] and there is a family (hf )f∈F such that

• g =
∑

f∈F

hff + r ( r is a remainder of g after division by F ),

• for all f ∈ F, hf = 0 or g � hf ,

• r = 0 or lcĀ(r) /∈ 〈lcĀ(f)| lppĀ(f) divides lppĀ(r)〉.

The polynomials r, hf (f ∈ F ) can be computed as follows:

First set: r := g and hf = 0 (f ∈ F ).
While r 6= 0 and lcĀ(r) ∈ 〈lcĀ(f)| lppĀ(f) divides lppĀ(r)〉 do the following:
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let F ′ := {f ∈ F | lppĀ(f) divides lppĀ(r)}, compute a family (cf )f∈F ′ in K[Ā][X̄ ]
such that

∑

f∈F ′

cf lcĀ(f) = lcĀ(r).

Replace

r by r −
∑

f∈F ′

cfXdegX̄ (r)−degX̄ (f)f

and

hf by hf + cfXdegX̄ (r)−degX̄ (f), f ∈ F ′,

where X i := X i1
1 · · ·X

in
n , i ∈ N

n.

We can consider this division algorithm as “extended Gröbner bases algo-
rithm [BW93]” (or transformation of Gröbner bases). We can simplify this Propo-
sition to the following definition.

Definition 3.2 (Reduction). Let F be a set of polynomials in K[Ā][X̄] and g =
aβ + g′ ∈ K[Ā][X̄] where a ∈ K[Ā], β ∈ pp(X̄) and g′ ∈ K[Ā][X̄ ]. Moreover, let

F ′ := {f ∈ F | lppĀ(f) divides β }. If a ∈ 〈lcĀ(F ′)〉 ⊆ K[Ā], the element a can be

written as a =
∑

fi∈F ′

hi lcĀ(fi) where hi ∈ K[Ā]. Then a reduction
r1
−→F is defined

as follows: g
r1
−→F g −

∑

fi∈F ′ hi
β

lppĀ(fi)
fi. In this paper, we define this reduction

as Reduce1 (written:
r1
−→). Actually, reducing g by F and reducing g by F ′ is the

same. In this case, we can write the reduction g
r1
−→F ′ instead of g

r1
−→F . In the

Algorithm 1 Insa-Pauer, we will write g
r1
−→F as Reduce1(g, F ).

Example 3.3. Let F = {f1 = (a + b + 1)y, f2 = ax + 1} in Q[a, b][x, y], � the
lexicographic order such that x � y and g = (b + 1)xy − y ∈ Q[a, b][x, y]. Then,
lcĀ(g) = b + 1 ∈ 〈lcĀ(f1), lcĀ(f2)〉 = 〈a + b + 1, a〉, hence, lcĀ(g) can be written as
lcĀ(g) = lcĀ(f1)−lcĀ(f2). Clearly, lppĀ(f1)| lppĀ(g), lppĀ(f2)| lppĀ(g). Therefore,

g can be reduced by F as follows: g
r1
−→F g − (xf1 − yf2) = 0.

Insa and Pauer also introduced the following special S-polynomial.

Definition 3.4 (S-polynomial [IP98]). Let G be a finite set of polynomials in K[Ā][X̄ ]
and let I be an ideal in K[Ā][X̄ ] generated by G. For E ⊆ G, let

SE :=

{

(ce)e∈E

∣

∣

∣

∣

∣

∑

e∈E

ce lcĀ(e) = 0

}

.

(We can consider SE as a set of syzygies for lcĀ(E).) Then for s = (ce)e∈E ∈ SE,

Spoly1(E, s) =
∑

e∈E

ceX
max(E)−degĀ(e)e

is called S-polynomial with respect to s ,where

max(E) := (maxe∈E degX̄(e)1, . . . , maxe∈E degX̄(e)n) ∈ N
n .
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In this paper, we call this special S-polynomial “ Spoly1”.

Example 3.5. Let E = {e1 = (ab + b)x2 + y, e2 = (a + b)x + 1, e3 = axy + by + 2}
in Q[a, b][x, y] and � the lexicographic order such that x � y. Then, a basis
of a module of syzygies for lcĀ(E) is {[0,−a, a + b], [−1, 1, b − 1]}. If we take
[0,−a, a + b], then Spoly1(E, [0,−a, a + b]) = 0e1 + (−a)ye2 + (a + b)xe3 = (a +
b)bxy + 2(a + b)x − ay. If we take [−1, 1, b − 1], then Spoly1(E, [−1, 1, b − 1]) =
(−1)ye1 + (1)xye2 + (b− 1)xe3 = (b2 − b− 1)xy − y2 + 2(b− 1)x.

The definition of Gröbner bases in K[Ā][X̄] is the following.

Definition 3.6 (Gröbner bases). Fix a monomial order. A finite subset G = {g1, . . . ,
gs} of an ideal I in K[Ā][X̄ ] is said to be a Gröbner basis if

〈lmĀ(g1), . . . , lmĀ(gs)〉 = 〈lmĀ(I)〉.

Remark: This definition is equivalent to the following. We are able to understand
the definition as follows:
Let I be an ideal in K[Ā][X̄] and let G be a finite subset of I . For i ∈ N

n let
lc(i, I) := 〈lcĀ(f)|f ∈ I, deg(f) = i〉. Then G is a Gröbner basis of I (with
respect to � ) if and only if ∀i ∈ N

n the ideal lc(i, I) ⊆ K[Ā] is generated by
{lcĀ(g) | g ∈ G, i ∈ deg(g) + Nn } .

Example 3.7. Consider the ring Q[a, b][x, y] with the lexicographic order x �lex y,
and let I = 〈f1, f2〉 = 〈ax+bx+y, bxy〉. Since lm{a,b}(Spoly1({f1, f2}, [b, a+b])) =

by2 /∈ 〈lm{a,b}(f1), lm{a,b}(f2)〉 = 〈(a + b)x, bxy〉, {f1, f2} is not a Gröbner basis

for I . Actually, a Gröbner basis for I is {f1, f2, by
2}.

There are a lot of applications of Gröbner bases in K[Ā][X̄] which are well-
known in polynomial rings over a field. For instance, if G is a Gröbner basis for

an ideal I in K[Ā][X̄], then ∀g ∈ I , g
r1
−→G 0. In this paper, we do not describe

the detail of properties of Gröbner bases in K[Ā][X̄ ] (see [IP98] Proposition 3 and
[AL94]). The following algorithm is for computing Gröbner bases in K[Ā][X̄].

Algorithm 1 FirstGB
Input: F : a finite set of polynomials in K[Ā][X̄],
Output: G: a Gröbner basis of F in K[Ā][X̄].
begin

G← F ; B ← {(fi1 , fi2 . . . fip) | 1 ≤ i1 < i2 · · · < ip ≤ s, 2 ≤ p ≤ s}
while B 6= ∅ do
Take any element E from B; B ← B\{E}
SE ← Compute a basis of a module of syzygies for lcĀ(E)
while SE 6= ∅ do

Take any element α from SE ; SE ← SE\{α}
h←Spoly1(E, α); r ←Reduce1(h, G)
if r 6= 0 then

B ← B∪
{

(r, gj1 , .., gjq
)
∣

∣ distinct elements gj1 , . . . , gjp
∈ G, 1 ≤ p ≤ |G|

}

G← G ∪ {r}
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end-if
end-while

end-while
return(G)

end
Remark: As we said earlier, we need the special S-polynomial Spoly1 and the
special reduction Reduce1 in order to compute Gröbner bases in K[Ā][X̄]. In
this point, this algorithm is more complicated than the Buchberger algorithm.
There exist some criteria for computing Gröbner bases in K[Ā][X̄]. We can apply
Buchberger’s criteria [Buc79] and Zhou and Winkler’s work [ZW06] for computing
Gröbner bases.

4. The second computation method (Approach via block orders)

In this section, we introduce another computation method of Gröbner bases in
K[Ā][X̄]. Actually, we are able to compute a Gröbner bases in K[Ā][X̄ ] by com-
puting Gröbner bases in K[Ā, X̄ ] with respect to a block order �X̄,Ā. First, we

define a normal S-polynomial and reduction in K[Ā, X̄] as Spoly2 and Reduce2

to distinguish them from Spoly1 and Reduce1.

Definition 4.1. Fix a monomial order. Let f, g ∈ K[Ā, X̄] be nonzero polynomials.

The S-polynomial of f and g is the following

Spoly2(f, g) =
lcm(lpp(f), lpp(g))

lm(f)
f −

lcm(lpp(f), lpp(g))

lm(g)
g.

In this paper, we define this S-polynomial as “ Spoly2 ”.

Definition 4.2. Fix a monomial order. Let f = aα+f1, g = bαβ + g1 with lm(f) =
aα in K[Ā, X̄] where a, b ∈ K, α, β ∈ pp(Ā, X̄) and f1, g1 ∈ K[Ā, X̄]. Then a

reduction
r2
−→f is defined as follows: g

r2
−→f bαβ + g1 − ba−1β(aα + f1), where

bαβ need not be the leading monomial of g. In this paper we call this reduction

“ Reduce2 ”. A reduction
r2
−→F by a set F of polynomials is also natural defined

[BW93, Win96].

Before we describe an algorithm for computing Gröbner bases in K[Ā][X̄ ],
we need the following theorem.

Theorem 4.3. Let F be a finite set of polynomials in K[Ā][X̄]. F can be seen as

a finite subset of polynomials in K[Ā, X̄] and we write the set as F again. Let

G = {g1, . . . , gs} be a Gröbner basis for 〈F 〉 in K[Ā, X̄] with respect to a block

order �X̄,Ā:= (�1,�2)(i.e., X̄ � Ā). G can be seen as a set of K[Ā][X̄] and we

write the set as G again. Then, G is also a Gröbner basis for 〈F 〉 with respect to

�1 in K[Ā][X̄ ].

Proof. For all h ∈ 〈F 〉 ⊆ K[Ā][X̄], we prove that lmĀ(h) is generated by {lmĀ(g)|g
∈ G}. Since h can be seen as an element of K[Ā, X̄] and G is a Gröbner basis for
〈F 〉 in K[Ā, X̄], h can be written as h = h1g1 + · · ·+ hsgs such that lm(h) �X̄,Ā
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lm(h1g1) �X̄,Ā · · · �X̄,Ā lm(hsgs) where h1, . . . , hs ∈ K[Ā, X̄ ]. As �{X̄,Ā} is a

block order on K[Ā, X̄], we have lmĀ(h) �1 lmĀ(h1g1) �1 · · · �1 lmĀ(hsgs) in
K[Ā][X̄]. W.l.o.g., h1g1, . . . , hkgk have the same leading power product “lppĀ(h)”
where k ≤ s. That is, lmĀ(h) = lmĀ(h1g1)+· · ·+lmĀ(hkgk). We have lmĀ(higi) =
lmĀ(hi) lmĀ(gi), hence lmĀ(h) = lmĀ(h1) lmĀ(g1)+· · ·+lmĀ(hk) lmĀ(gk). There-
fore, lmĀ(h) ∈ 〈lmĀ(g1), . . . , lmĀ(gs)〉. G is a Gröbner basis for 〈F 〉 with respect
to �1 in K[Ā][X̄]. �

By Theorem 4.3, we are able to compute Gröbner bases in K[Ā][X̄] by computing
Gröbner bases with respect to a block order �X̄,Ā in K[Ā, X̄].

Algorithm 2 GröbnerBasis-Block
Input F : a finite set of polynomials in K[Ā][X̄],
Output G: a Gröbner basis of 〈F 〉 in K[Ā][X̄].

1. Consider F as a set of polynomials in K[Ā, X̄].
2. Compute a Gröbner basis G for 〈F 〉 with respect to a block order �X̄,Ā in

K[Ā, X̄].
3. Consider G as a set of polynomials in K[Ā][X̄ ]. Then, by Theorem 4.3, G is

a Gröbner basis for 〈F 〉 with respect to �X̄ in K[Ā][X̄].

Since we do not need the special S-polynomial Spoly1 and the special reduction
Reduce1 in this algorithm, this algorithm is much more efficient than the algorithm
Insa-Pauer.

5. Problems

5.1. The first method

In this subsection, we consider a problem of the approach of the first method by
the following example.

Example 5.1. Let f1 = a2x − a and f2 = (a3 − a)x − a2 + 1 be polynomials in
Q[a][x]. Then, a Gröbner basis of 〈f1, f2〉 is {f1, f2}, because Spoly1(f1, f2) = 0,

f1
r1
−→f2

f1 and f2
r1
−→f1

f2 in Q[a][x]. However, we have f3 = a · f1− f2 = ax− 1.
The polynomial f3 is an element of 〈f1, f2〉, and f3 divides f1 and f2. This means
〈f3〉 = 〈f1, f2〉. That is, {f3} is a Gröbner basis for 〈f1, f2〉, too. {f3} is simpler
than {f1, f2}. However, {ax−1} cannot be computed by the method of Insa-Pauer.

5.2. The second method (Approach via block orders)

In this subsection, we give a problem of the approach of the second method by the
following example.

Example 5.2. Let F = {f1 = ax + 1, f2 = (b + 1)y, f3 = az + bz + z} be a set of
polynomials in Q[a, b][x, y, z]. F can be seen as a set of Q[a, b, x, y, z]. We have
a block order �{x,y,z},{a,b}= (�lex,�grlex) with x �lex y �lex z and a �grlex b
where �lex is the lexicographic order and �grlex is the graded reverse lexicographic
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order. Then the reduced Gröbner bases G for 〈F 〉 with respect to a block order
�{x,y,z},{a,b} is the following.

G = {g1 = (a + b + 1)z, g2 = (b + 1)y, g3 = yz, g4 = ax + 1, g5 = (b + 1)xz − z} .

Since G is the reduced Gröbner basis of 〈F 〉, g ∈ G cannot be reduced by G\{g}
with respect to the block order in Q[a, b, x, y, z]. However, look at g5. Then, we
have lmĀ(g5) ∈ 〈lmĀ(G\{g5})〉 in Q[a, b][x, y, z]. That is, g5 can be written g5 =
x · g1 − z · g4. This means that g5 can be still reduced to 0 by g1 and g4 in
Q[a, b][x, y, z]. The polynomial g5 is a redundant polynomial in Q[a, b][x, y, z]. By
the method, G\{g5} cannot be computed.�

�

�

�

Problem: Sometimes there exits a Gröbner basis which has less
elements than Gröbner bases computed by either of the
two methods above.
This Gröbner basis cannot be computed by the two methods.

6. Algorithms for Computing Reduced Gröbner Bases

In this section, we define a reduced Gröbner basis for an ideal in K[Ā][X̄ ] and
give an algorithm for computing a reduced Gröbner basis. First we define weak
reduced Gröbner bases in K[Ā][X̄ ].

Definition 6.1 (Weak reduced Gröbner bases). Let �X̄,Ā:= (�1,�2) be a block or-

der and I an ideal in K[Ā][X̄ ]. Then, a weak reduced Gröbner basis G for I with

respect to �1, and �X̄,Ā is a Gröbner basis for I in K[Ā][X̄] such that

1. for all p ∈ G, lc(p) = 1 with respect to �X̄,Ā,

2. for all p ∈ G, no monomial in Mono(p) lies in 〈lm(G\ {p})〉 in K[Ā, X̄] with

respect to �X̄,Ā,

3. for all p ∈ G, no monomial in MonoĀ(p) lies in 〈lmĀ(G\ {p})〉 in K[Ā][X̄ ]
with respect to �1.

As we said earlier, the approaches of the first and second method cannot
always compute reduced Gröbner bases in K[Ā][X̄ ].

How do we compute (weak) reduced Gröbner bases in K[Ā][X̄ ]?

A polynomial ring K[Ā][X̄ ] can be seen as a polynomials ring K[Ā, X̄]. This means
that the polynomial ring K[Ā][X̄ ] has properties of K[Ā, X̄]. In this sense, we have
two reduction systems Reduce1, Reduce2 and two S-polynomial systems Spoly1,
Spoly2 for computing weak reduced Gröbner bases in K[Ā][X̄ ].

For instance, in Example 5.1. we have a Gröbner basis {f1 = ax2 − a, f2 = (a3 −
a)x − a2 + 1}. If we use Reduce2 or Spoly2 to the Gröbner basis {f1, f2}, then

we can obtain ax− 1 by the computation f2
r2
−→{f1} ax− 1, or Spoly2(f1, f2) =

ax − 1. Since f1
r2
−→{ax−1} 0 and f2

r2
−→{ax−1} 0, {ax − 1} is a weak reduced

Gröbner basis for 〈f1, f2〉. In Example 5.2, we obtained a Gröbner basis G =
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{g1, g2, g3, g4, g5} by the algorithm GröbnerBasis-Block . Let’s apply Reduce1 to G.
Then, since lpp{a,b}(g1)| lpp{a,b}(g5), lpp{a,b}(g4)| lpp{a,b}(g5) and lc{a,b}(g5) =

− lc{a,b}(g1)+lc{a,b}(g4) = −(a+b+1)+a = −b−1, we have g5
r1
−→{g1,g2} 0. Thus,

g5 is a redundant polynomial which is found by Reduce2. By Definition 6.1, a weak
reduced Gröbner basis for G is {g1, g2, g3, g4} with respect to the lexicographic
order with x � y � z.

By the observation above, we need Reduce1, Reduce2, Spoly1 and Spoly2 for
computing weak reduced Gröbner bases in K[Ā][X̄]. We can easily construct an
algorithm for computing weak reduced Gröbner bases. Now we know that by the
algorithms FirstGB or GröbnerBasis-Block, we can compute a Gröbner basis G1 in
K[Ā][X̄]. The Gröbner basis G1 is not always a weak reduced Gröbner basis, hence
we need Reduce1 and Reduce2 to reduce G1 to a weak Gröbner basis. Actually,
we need two reduction systems Reduce1, Reduce2 and one of two S-polynomial
systems Spoly1 and Spoly2. We introduce an algorithm which returns a weak
reduced Gröbner basis. In the first step of this algorithm, we apply FitstGB or
GröbnerBasis-Block.

Algorithm 3 WRGB (Weak reduced Gröbner bases)
Input F : a finite set of polynomials in K[Ā][X̄ ], �1 : a monomial order on pp(X̄),

�2 : a monomial order on pp(Ā), �X̄,Ā:= (�1,�2) : a block order,

Output G: a weak reduced Gröbner basis of 〈F 〉 w.r.t. �1 and �X̄,Ā in K[Ā][X̄ ].
begin

G← Compute a Gröbner basis G for 〈F 〉 by FirstGB or GröbnerBasis-Block
E1← 0

while E1 6= 1 do
if there exists p ∈ G such that
(

p
r1
−→{G\{p}} p1

)

or
(

p
r2
−→{G\{p}} p1 and w.r.t �X̄,Ā

)

then
if p1 6= 0 then G← {G\{p}} ∪ {p1}
else if G← G\{p}
end-if

else-if E1← 1
end-if

end-while
return(G)
end

Theorem 6.2. The algorithm WRGB terminates. The output forms a weak reduced

Gröbner basis for 〈F 〉.

Proof. In the first line of Algorithm 3 WRGB, if we apply FirstGB for computing a
Gröbner basis for 〈F 〉 in K[Ā][X̄], then FirstGB terminates. (Since K[Ā] is a Noe-
therian ring, K[Ā][X̄ ] is a Noetherian ring too. Thus, the termination of FirstGB
is guaranteed because we have a finite ascending chain condition of properly con-
tained ideals over a Noetherian ring.) In the first step of Algorithm 3 WRGB, if
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we apply GröbnerBasis-Block for computing a Gröbner basis for 〈F 〉, obviously
GröbnerBasis-Block terminates. (see [Buc65]).
Let G be a finite set of polynomials in K[Ā][X̄ ]. In the while-loop step, if there
exists an element p of Mono(g) or MonoĀ(g) which can be reduced to p1 by some
polynomials of G\{g} in Reduce1 or Reduce2, then we always have lm(p) �X̄,Ā

lm(p1) (lm(p1) is smaller or equal than lm(p) with respect to the monomial or-
der �X̄,Ā). That is, the result of applying Reduce1 or Reduce2 to any monomial
m ∈ Mono(g) ∪MonoĀ(g) has a leading monomial which cannot be greater than
m with respect to �X̄,Ā. Therefore, iterated application of Reduce1 and Reduce2

to G will eventually terminate. This algorithm terminates and the outputs satisfy
the properties of Definition 6.1. �

Corollary 6.3. Let I be an ideal in K[Ā][X̄ ] and �X̄,Ā:= (�1,�2) a block order.

Since the algorithms terminates, there exists a weak reduced Gröbner basis for I
in K[Ā][X̄ ]. By Example 5.2, the reduced Gröbner basis for I with respect to �X̄,Ā

in K[Ā, X̄] is always not a weak reduced Gröbner basis for I with respect to �1,

�1 and �X̄,Ā in K[Ā][X̄ ].

In the Algorithm 3 WRGB, if we apply the algorithm FirstGB for computing a
Gröbner basis, then we need syzygy computations Spoly1 and “extended Gröbner
bases algorithm [BW93] Reduce1 (transformation of Gröbner bases)”. In general,
syzygy computations and “extended Gröbner bases algorithm [BW93]” are expen-
sive. However, in Algorithm 3 WRGB, if we apply the algorithm GröbnerBasis-
Block, then we do not need any syzygy computation. Actually, the algorithm
GröbnerBasis-Block is a normal Gröbner bases computation in polynomial rings
over a field with respect to a block order. At present, we have very powerful
programs for computing Gröbner basis in K[Ā, X̄] in computer algebra systems
Singular1, Risa/Asir2[NT92] and Magma3. We can apply these powerful programs
for computing weak reduced Gröbner bases in K[Ā][X̄ ]. Thus, in implementation
and computation speed points of view, WRGB with GröbnerBasis-Block is better
than WRGB with FirstGB.

Before concluding this section, we consider a property of reduced Gröbner bases.
Now we have a question. “Is a weak reduced Gröbner basis uniquely determined
by an ideal I ⊆ K[Ā][X̄ ] and monomial orders?” In fact, this answer is “NO”. A
weak Reduced Gröbner basis is not unique. We have the following easy example
for this question.

Example 6.4. Let F = {ab+1, ac+1} be a subset of Q[a, b, c][x, y] and �{x,y},{a,b,c}

= (�lex,�lex) a block order with x �lex y and a �lex b �lex c where �lex is the
lexicographic order. Then, F is a weak Gröbner basis for 〈F 〉 in Q[a, b, c][x, y].
Actually, F satisfies the property 1,2 of Definition 6.1. However, we can say 〈F 〉 =

1http://www.singular.uni-kl.de/
2http://www.math.kobe-u.ac.jp/Asir/
3http://magma.maths.usyd.edu.au/magma/
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〈ac + 1,−b + c〉. The set {ac + 1,−b + c} is a weak reduced Gröbner basis for 〈F 〉,
too. Therefore, a weak reduced Gröbner basis is not uniquely determined.

We give one more example facilitate the understanding of the next definition.
Let F = {(ac+ b)x2, (ac− c+ bd2)x2, (−cd− bc+ bd3)x} ⊂ Q[a, b, c, d][x]. We have
the lexicographic order � such that a � b � c � d. In fact, F is a weak Gröbner
basis for 〈F 〉. For e ∈ lpp{a,b,c,d}(F ), let Fe = {f | lpp{a,b,c,d}(f) = e}. We have

lpp{a,b,c,d}(F ) = {x, x2}, so Fx = {(−cd− bc+ bd3)x} and Fx2 = {(ac+ b)x2, (ac−

c + bd2)x2}. Let’s consider all coefficients of Fx and Fx2 . Since lc{a,b,c,d}(Fx) =

{−cd−bc+bd3} has only one element, {−cd−bc+bd3} is the reduced Gröbner basis
for an ideal generated by itself. Next we consider lc{a,b,c,d}(Fx2) = {ac+ b, ac− c+

bd2}. Actually, {ac+b, ac−c+bd2} is NOT the reduced Gröbner basis for the ideal
generated by itself {ac+ b, ac− c+ bd2} with respect to � in Q[a, b, c, d]. However,
since (the main variable) x divides x2, by definition of Reduce1, lc{a,b,c,d}(Fx2) is
constrained by 〈lc{a,b,c,d}(Fx)〉. Therefore, we have to consider lc{a,b,c,d}(Fx2) in
Q[a, b, c, d]/〈lc{a,b,c,d}(Fx)〉.

We did not take care of conditions of all coefficients in K[Ā] and thus a weak
reduced Gröbner basis was not uniquely determined. Since the coefficient domain
is a polynomial ring, we need some conditions to obtain a unique reduced Gröbner
basis.

Definition 6.5. The normal form of a subset F in K[Ā] with respect to an ideal I
in K[Ā] and a monomial order � is the set of all non-zero remainders of elements

of F after division by a Gröbner basis of I with respect to �.

Definition 6.6. Let F be a subset of K[Ā], I ⊂ K[Ā] an ideal and � a monomial

order on pp(Ā). G ⊂ K[Ā] is called a reduced Gröbner basis for F with respect to

� in a quotient ring K[Ā]/I if G is the normal form of the reduced Gröbner basis

for 〈F 〉 with respect to an ideal I and �.

Remark 6.7. We know algorithm for computing Gröbner bases and division. It is
possible to compute a reduced Gröbner basis G in K[Ā]/I . A reduced Gröbner
basis G in K[Ā]/I is uniquely determined. It is an easy exercise.

Now we define more strict reduced Gröbner bases than weak reduced Gröbner
bases. We call this reduced Gröbner basis “strong reduced Gröbner basis”.

Definition 6.8 (Strong reduced Gröbner bases). Let �X̄,Ā:= (�1,�2) be a block

order and I an ideal in K[Ā][X̄]. For e ∈ lppĀ(G), let Ge = {f | lppĀ(f) = e}.
Then, a strong reduced Gröbner basis G for I with respect to �1, �2 and �X̄,Ā is

a Gröbner basis for I in K[Ā][X̄] such that

1. for all p ∈ G, no monomial in Mono(p) lies in 〈lm(G\ {p})〉 in K[Ā, X̄] with

respect to �X̄,Ā,

2. for all p ∈ G, no monomial in MonoĀ(p) lies in 〈lmĀ(G\ {p})〉 in K[Ā][X̄ ]
with respect to �1,
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3. for e ∈ lppĀ(G), lcĀ(Ge) is the reduced Gröbner basis for an ideal generated

by itself with respect to �2 in the quotient ring K[Ā]/Je where Je is an ideal

generated by F = {lcĀ(g) ∈ K[Ā]|g ∈ G\Ge such that lppĀ(g)|e}.
(If F = ∅, K[Ā]/Je = K[Ā].)

In order to consider the strong reduced Gröbner basis, let’s see Example 5.1.
In the example, we obtained a Gröbner basis G = {f1 = a2x − a, f2 = (a3 −
a)x − a2 + 1} by FirstGB. G does not satisfy the property 3 of Definition 6.8.
Since the set of all power products is lppĀ(G) = {x}, we have Gx := {f1, f2}
and lcĀ(Gx) := {a2, a3 − a}. Since the reduced Gröbner basis for 〈lcĀ(Gx)〉 is
{a} in K[Ā], G is not a strong reduced Gröbner basis. However, we can construct
the strong reduced Gröbner basis. Since 〈a〉 = 〈lcĀ(Gx)〉, a can be written as
a = c1 lcĀ(f1) + c2 lcĀ(f2), where c1, c2 ∈ Q[a]. In this case, c1 = a, c2 = −1. Now
we can compute a new polynomial g such that 〈g〉 = 〈G〉, 〈lmĀ(g)〉 = 〈lmĀ(G)〉
and {lcĀ(g)} is the reduced Gröbner basis for lcĀ(Gx). g = c1f1+c2f2 = af1−f2 =
ax− 1. Therefore, {g} is a strong reduced Gröbner basis.

We introduce an algorithm which returns a strong reduced Gröbner basis.

Algorithm 4 SRGB (Strong reduced Gröbner bases)
Input F : a finite set of polynomials in K[Ā][X̄ ], �1 : a monomial order on pp(X̄),

�2 : a monomial order on pp(Ā), �X̄,Ā:= (�1,�2) : a block order,
Output L: a strong reduced Gröbner basis of 〈F 〉 with respect to �1, �2 and �X̄,Ā

in K[Ā][X̄].
begin
G← Compute a Gröbner basis for 〈F 〉; B ← lppĀ(G); L← ∅

while B 6= ∅ do
Select the lowest power product p w.r.t. �1 from B; B ← B\{p}

Gp ← {f ∈ F | lppĀ(f) = p}; G← G\Gp; Jp ← {lcĀ(f)|f ∈ G s.t lppĀ(f)|p}
if lcĀ(Gp) is NOT the reduced Gröbner basis with respect to �2 in K[Ā]/〈Jp〉

then
Q← Compute Q such that 〈Q〉 = 〈Gp〉, 〈lmĀ(Q)〉 = 〈lmĀ(Gp)〉 and

lcĀ(Q) is the reduced Gröbner basis for 〈lcĀ(Gp)〉 w.r.t. �2 in K[Ā]/〈Jp〉
(lmĀ(Q) is irreducible by Jp)
L← L ∪ {Q ↓L}
else-if L← L ∪ {Gp ↓L}
end-if

end-while
return(L)

end
In the algorithm, we used the notations Q ↓L and Gp ↓L where Q, Gp, L ⊂
K[Ā][X̄]. This meaning is the following.

Q ↓L:= begin
S ← ∅
while Q 6= ∅ do



Reduced Gröbner Bases in Polynomial Rings over a Polynomial Ring 13

Select q from Q; Q← Q\{q}; q1 ← q ↓L (by Reduce1 and Reduce2)
if q1 6= 0 then
S ← S ∪ {q1}

end-if
end-while
return(S)
end

Theorem 6.9. The algorithm SRGB terminates. The output forms a strong reduced

Gröbner basis for 〈F 〉.

Proof. We know that how to compute a weak reduced Gröbner basis G, and this
step terminates. Since we have a Gröbner basis G, we have to check lcĀ(Gp)
where p ∈ lppĀ(G). If lcĀ(Gp) is not a reduced Gröbner basis with respect to �2

in K[Ā]/〈Jp〉, then, we have to compute the following;

Q← Compute Q such that 〈Q〉 = 〈Gp〉, 〈lmĀ(Q)〉 = 〈lmĀ(Gp)〉 and lcĀ(Q) is the
reduced Gröbner basis for 〈lcĀ(Gp)〉 with respect to �2 in K[Ā]/〈Jp〉.

As we said in Remark 6.7, it is possible to compute Q. This step clearly terminates.
Since B is a finite set, the first while-loop terminates. Therefore, this algorithm
terminates. In the if-part of the algorithm, if lcĀ(Gp) is not the reduced Gröbner
basis with respect to �2 in K[Ā]/〈Jp〉, then the algorithm computes Q. Next
the algorithm computes Q ↓L. In fact, by reduce1, reduce2 and the weak reduced
Gröbner basis, we have lmĀ(Q) = lmĀ(Q ↓L). That is, in this step, the algorithm
does not reduce any leading monomials of Q for the properties 1,2 of Definition 6.8.
By the same reasons, if lcĀ(Gp) is the reduced Gröbner basis with respect to
�2 in K[Ā]/〈Jp〉, then we have lmĀ(Gp) = lmĀ(Gp ↓L), and Gp ↓L satisfies the
properties 1,2 of Definition 6.8. Therefore, this algorithm outputs a strong reduced
Gröbner basis with respect to �1, �2 and �X̄,Ā. �

A strong reduced Gröbner bases have the following nice property.

Theorem 6.10. Let �X̄,Ā:= (�1,�2) be a block order on pp(X̄, Ā). Let I be an

ideal in K[Ā][X̄]. Then, I has a unique strong reduced Gröbner basis.

Proof. Since the existence of strong reduced Gröbner bases was proved by Theo-
rem 6.9, we prove the uniqueness. First we prove the following claim.

Claim 1 Let �X̄,Ā:= (�1,�2) be a block order on pp(X̄, Ā) and I an ideal in

K[Ā][X̄]. Let G1 and G2 be strong reduced Gröbner bases for I with respect to
�1 and �X̄,Ā. Then, lm(G1) = lm(G2). Namely, the set of all leading monomials
of strong reduced Gröbner bases for I is unique.

(Proof of Claim 1) Assume that G1 and G2 are strong reduced Gröbner bases for
I in K[Ā][X̄ ]. We set G1 = {g1, . . . , gs}, G2 = {h1, . . . , hp}. W.l.o.g., lppĀ(g1) =
. . . = lppĀ(gk) is the lowest leading power product of G1 with respect to �1 for
1 ≤ k ≤ s, and lppĀ(h1) = . . . = lppĀ(hl) is the lowest leading power product of
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G2 with respect to �1 for 1 ≤ l ≤ p. If lppĀ(g1) �1 lppĀ(h1) (lppĀ(g1) is big-
ger than lppĀ(h1)), h1 can not be in 〈G1〉, because there is no element such that
lppĀ(gi)| lppĀ(h1) where gi ∈ G1. However, by 〈G1〉 = 〈G2〉, we have h1 ∈ 〈G1〉.
Hence, lppĀ(h1) � lppĀ(g1) (by the order �1). By the same reason, we have also
lppĀ(g1) � lppĀ(h1) (by the order �1). Therefore, lppĀ(h1) = lppĀ(g1). We have
two sets

{lmĀ(g1), . . . , lmĀ(gk)} = {lcĀ(g1) lppĀ(g1), . . . , lcĀ(gk) lppĀ(g1)},
{lmĀ(h1), . . . , lmĀ(hl)} = {lcĀ(h1) lppĀ(g1), . . . , lcĀ(hl) lppĀ(g1)}.

Since G1, G2 are strong reduced Gröbner bases for I with respect to �1, �2 and
�X̄,Ā in K[Ā][X̄], {lcĀ(g1), . . . , lcĀ(gk)} is the reduced Gröbner basis for an ideal

generated by itself in K[Ā], and {lcĀ(h1), . . . , lcĀ(hl)} is also the reduced Gröbner
basis for an ideal generated by itself in K[Ā]. By the property of Gröbner bases
G1, G2 and lppĀ(h1) = lppĀ(g1), we have the following relations

lmĀ(hj1) = α1 lmĀ(g1) + · · ·+ αk lmĀ(gk)

= α1 lcĀ(g1) lppĀ(g1) + · · ·+ αk lcĀ(gk) lppĀ(g1),

lmĀ(gj2) = β1 lmĀ(h1) + · · ·+ βl lmĀ(hl)

= β1 lcĀ(h1) lppĀ(g1) + · · ·+ βl lcĀ(hl) lppĀ(g1),

where α1, . . . , αk, β1, . . . , βl ∈ K[Ā], 1 ≤ j1 ≤ k and 1 ≤ j2 ≤ l. Hence we can say
〈lcĀ(g1), . . . , lcĀ(gk)〉 = 〈lcĀ(h1), . . . , lcĀ(hl)〉. Since the two sets {lcĀ(g1), . . . ,
lcĀ(gk)} and {lcĀ(h1), . . . , lcĀ(hp)} are the reduced Gröbner bases with respect
to �2 in K[Ā], we have {lcĀ(g1), . . . , lcĀ(gk)} = {lcĀ(h1), . . . , lcĀ(hl)}. Therefore
we have

{lmĀ(g1), . . . , lmĀ(gk)} = {lmĀ(h1), . . . , lmĀ(hl)}.

Next we consider two sets G11 := G1\{g1, . . . , gk} and G21 := G2\{h1, . . . , hl}.
W.l.o.g., lppĀ(gk+1) = . . . = lppĀ(gk1

) is the lowest leading power product of
G11 with respect to �1 for 2 ≤ k1 ≤ s. That is, gk+1, . . . , gk1

∈ G11 ⊆ G1.
Since G1 is a strong reduced Gröbner basis, lmĀ(gk+1), . . . , lmĀ(gk1

) can not be
reduced by lmĀ(g1), . . . , lmĀ(gk). W.l.o.g., lppĀ(hl+1) = . . . = lppĀ(hl1) is the
lowest leading power product of G21 with respect to �1 for 2 ≤ l1 ≤ p. That
is, hl+1, . . . , hl1 ∈ G21 ⊆ G2. By the same reason above, we have lppĀ(gk+1) =
lppĀ(hl+1) and 〈lcĀ(gk+1), . . . , lcĀ(gk1

)〉 = 〈lcĀ(hl+1), . . . , lcĀ(hl1)〉. We know
that lppĀ(g1) is the lowest leading power product of G1 and G2. If lppĀ(g1) does
not divide lppĀ(gk+1), then by the same reason above,

{lmĀ(gk+1), . . . , lmĀ(gk1
)} = {lmĀ(hl+1), . . . , lmĀ(hl1)}.

If lppĀ(g1) divide lppĀ(gk+1), then the reduced Gröbner basis for 〈lcĀ(gk+1), . . . ,
lcĀ(gk1

)〉 is unique in K[Ā]/J . Since G1 and G2 are strong reduced Gröbner bases,
we have

{lmĀ(gk+1), . . . , lmĀ(gk1
)} = {lmĀ(hl+1), . . . , lmĀ(hl1)}.
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By the Hilbert basis theorem, G1 and G2 have finite many elements. Therefore,
repeat the same procedure, then we have lmĀ(G1) = lmĀ(G2). �

Suppose that G1 and G2 are strong reduced Gröbner bases for I . Then, by the
claim 1, we have lmĀ(G1) = lmĀ(G2). Thus, given g1 ∈ G1, there is g2 ∈ G2 such
that lmĀ(g1) = lmĀ(g2). If we can show that g1 = g2, it will follow that G1 = G2,
and uniqueness will be proved.
To show g1 = g2, consider g1 − g2. This is in I , and since G1 is a Gröbner basis,

it follows that g1 − g2
r1
−→G1

◦
r2
−→G1

◦ · · · ◦
r1
−→G1

0 (by Reduce1 and Reduce2).
However, we also know lmĀ(g1) = lmĀ(g2). Hence, these monomials cancel in
g1−g2, and the remaining monomials are divisible by none of lmĀ(G1) = lmĀ(G2)

since G1 and G2 are reduced. This shows that g1− g2
r1
−→G1

◦
r2
−→G1

◦ · · · ◦
r1
−→G1

g1 − g2, and then g1 − g2 = 0 follows. This completes the proof. �

7. Computation Examples

The algorithms WRGB (with GröbnerBasis-Block) have been implemented for the
case K = Q in the computer algebra system Risa/Asir by the author. In this
section, we give three easy examples of reduced Gröbner bases .

Example 7.1. Let a, x, y be variables and f1 = (a−1)x+y2, f2 = ay+a polynomials
in Q[a][x, y]. We compute a reduced Gröbner basis for 〈f1, f2〉 with respect to the
lexicographic order with x � y in Q[a][x, y].
By the procedure of WRGB, first we compute the reduced Gröbner basis G for
〈f1, f2〉 with respect to a block order �{x,y},{a} in Q[a, x, y]. The reduced Gröbner
basis G in Q[a, x, y] is the following

G =
{

g1 = ay + a, g2 = ax− x + y2, g3 = −xy − x + y3 + y2
}

.

Second, we need to check whether there exists a polynomial p ∈ G which can be
reduced by G\{p} or not.
We have lpp{a}(g1)| lpp{a}(g3), lpp{a}(g2)| lpp{a}(g3) and lc{a}(g3) = lc{a}(g1) −
lc{a}(g2) = −a + (a− 1) = −1, therefore g3 can be reduced as follows

g3
r1
−→{g1,g2} g3 − (−xg1 + yg2) = ax− x + y2 = g2.

The set {g1, g2} is a weak reduced Gröbner basis for 〈f1, f2〉 in Q[a][x, y]. Actually,
{g1, g2} is the strong reduced Gröbner basis, too.

In the following example, we compare three algorithms GröbnerBasis-Block,
FirstGB and WRGB. We used a PC with [CPU: Pentium M 1.73 GHZ, OS: Windows
XP].

Example 7.2. Let a, b, x, y, z be variables and F = {ax2z + ay + a, axz + b, (a +
1)xz + ab} in Q[a, b][x, y, z]. We have the lexicographic order with x � y � z. We
compute a Gröbner basis for 〈F 〉 in Q[a, b][x, y, z] by three algorithms FirstGB,
GröbnerBasisB, and WRGB (with GröbnerBasis-Block).

1. By FirstGB, we have the following Gröbner basis
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[b*a^2-b*a-b,-b*x+a*y+a,(a+1)*z*x+b*a,a*z*x+b,

a*z*y+a*z+b^2*a-b^2,(-a^3+a^2+a)*y-a^3+a^2+a].

(cputime: 0.04688sec)

This list has six polynomials.
2. By GröbnerBasis-Block, we have the following Gröbner basis

[-b*a^2+b*a+b,(a^3-a^2-a)*y+a^3-a^2-a,b*z*y+b*z-b^3*a+2*b^3,

a*z*y+a*z+b^2*a-b^2,-b*x+a*y+a,-z*x-b*a+b].

(cputime: 0sec)

This list has six polynomials.
3. By WRGB, we have the following reduced Gröbner basis

[-b*a^2+b*a+b,(a^3-a^2-a)*y+a^3-a^2-a,a*z*y+a*z+b^2*a-b^2,

-b*x+a*y+a,-z*x-b*a+b].

(cputime: 0.01563sec)

This list has five polynomials.

8. Conclusions

The existing algorithms cannot compute reduced Gröbner bases. In this paper, we
defined reduced Gröbner bases in polynomial rings over a polynomial ring and gave
algorithms for computing them. By the algorithm SRGB, we can uniquely obtain
the strong reduced Gröbner basis in polynomial rings over a polynomial ring.
We can apply the technique of reduced Gröbner bases in K[Ā][X̄] for computing
comprehensive Gröbner bases [Wei92, Mon02, SS06] as one of applications. If we
apply the technique for computing comprehensive Gröbner bases, then we can
obtain comprehensive Gröbner bases which are more optimal.
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Gröbner Bases using Gröbner bases. In International Symposium on Symbolic

and Algebraic Computation, pages 326–331, 2006.
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