
A Speed-Up of the Algorithm for Computing Comprehensive

Gröbner Systems

Katsusuke Nabeshima

Research Institute for Symbolic Computation (RISC-Linz),
Johannes Kepler University Linz, A-4040, Linz, Austria

Katsusuke.Nabeshima@risc.uni-linz.ac.at

Abstract

We introduce a new algorithm for computing comprehensive Gröbner systems. There exists the
Suzuki-Sato algorithm for computing comprehensive Gröbner systems. The Suzuki-Sato algorithm
often creates overmuch cells of the parameter space for comprehensive Gröbner systems. Therefore
the computation becomes heavy. However, by using inequations (“not equal zero”), we can obtain
different cells. In many cases, this number of cells of parameter space is smaller than that of Suzuki-
Sato’s. Therefore, our new algorithm is more efficient than Suzuki-Sato’s one, and outputs a nice
comprehensive Gröbner system. Our new algorithm has been implemented in the computer algebra
system Risa/Asir. We compare the runtime of our implementation with the Suzuki-Sato algorithm
and find our algorithm superior in many cases.

1 Introduction

Comprehensive Gröbner bases and comprehensive Gröbner systems for parametric ideals were introduced,
constructed and studied by Weispfenning in 1992 [12]. Since then comprehensive Gröbner bases and
systems have been studied by several researchers and implemented in several computer algebra systems
[2, 6, 5, 10, 11, 13]. Roughly speaking, a comprehensive Gröbner system is a parametric Gröbner basis with
cells of the parameter space for a parametric polynomial ideal. If we take a cell P and its set of parametric
polynomials G from a comprehensive Gröbner systems for a parametric polynomial ideal I, then σ(G)
constitutes a Gröbner basis of the ideal generated by σ(I) under the specialization σ with respect to the
cell P of the parameters. This article describes a new algorithm for computing comprehensive Gröbner
systems. There exists the Suzuki-Sato algorithm [11] for computing comprehensive Gröbner systems.
In many cases, this algorithm is faster than other existing algorithms. In this paper, we improve the
Suzuki-Sato algorithm by using inequations (“6= 0”) and Gröbner bases computation in a polynomial
ring over a polynomial ring. If we compute a Gröbner basis for an ideal in a polynomial ring over a
polynomial ring, then the Gröbner basis computed often has the special property ♦1 (see section 4.1)
which doesn’t hold in a polynomial ring over a field. This property makes overmuch cells of the parameter
space. Thus, the computation of comprehensive Gröbner systems becomes expensive. However, by using
inequations (“6= 0”), we can avoid this behavior. Therefore, we can compute a comprehensive Gröbner
system much faster, and have a nice comprehensive Gröbner system. We implemented our new algorithm
in the computer algebra system Risa/Asir [9]. Through our computation experiment, we checked that in
many cases, our program runs more efficient than the Suzuki-Sato algorithm. Especially, if the number
of parameters is greater than the number of variables, our algorithm is much more efficient than Suzuki-
Sato’s one. Moreover, the outputs of our program are much nicer than the Suzuki-Sato algorithm. That
is, the number of cells of the outputs is smaller than Suzuki-Sato’s outputs.

2 Notations

Let Ā := {A1, . . . , Am} and X̄ := {X1, . . . ,Xn} be finite sets of variables such that Ā ∩ X̄ = ∅. K and
L denote fields such that L is an extension of K. pp(X̄), pp(Ā) and pp(Ā, X̄) denote the sets of power
products of X̄, Ā and Ā ∪ X̄, respectively. N, Q and C denote as the set of natural numbers with 0, the
field of rational numbers and the field of complex numbers, respectively. In this paper, we define K[Ā, X̄]
as a polynomial ring over a field K and K[Ā][X̄] := (K[Ā])[X̄] as a polynomial ring over a polynomial ring

1

K[Ā] (coefficients in a polynomial ring). Let f and g be non-zero polynomials in K[Ā, X̄] (or K[Ā][X̄])
and ≻ be an arbitrary term order on the set of power products pp(Ā, X̄) (or pp(X̄)). If polynomials f
and g are in K[Ā][X̄], then we use the subscript Ā as follows:
• The support of f (written : supp(f) (or suppĀ(f))) is the set of power products of f that appear
with a non-zero coefficient.
• The biggest power product of supp(f) (or suppĀ(f)) w.r.t. ≻ is denoted by lpp(f) (or lppĀ(f)) and is
called the leading power product of g w.r.t. ≻.
• The coefficient corresponding to lpp(f) (or lppĀ(f)) is called the leading coefficient of f w.r.t. ≻
which is defined by lc(f) (or lcĀ(f)).
• The product lc(f) lpp(f) is called the leading monomial of f w.r.t. ≻ which is defined by lm(f)
(or lmĀ(f)).
• The set of monomials of f is denoted by Mono(f) (or MonoĀ(f)).

Let F be a subset of K[Ā][X̄]. We define lc(F) := {lc(f) : f ∈ F}, lcĀ(F) := {lcĀ(f) : f ∈ F},
lpp(f) := {lpp(f) : f ∈ F} and lppĀ(F) := {lppĀ(f) : f ∈ F}.

Example 2.1. Let a, b, x, y be variables and f = 2ax2y + bx2y + 3x + by + 1, g = abx2 + 2xy + by + 2 be
polynomials. If we consider polynomials f and g as members of Q[a, b, x, y] with a block order ≻ such
that x ≻lex y ≫ a ≻lex b where ≻lex is the lexicographic order, then : supp(f) = {ax2y, bx2y, x, y, 1},
lpp(f) = ax2y, lc(f) = 2, lm(f) = 2ax2y, Mono(f) = {2ax2y, bx2y, 3x, by, 1}. If we consider polynomials
f, g as members of Q[a, b][x, y] with the lexicographic order x ≻lex y, then : supp{a,b}(f) =

{

x2y, x, y, 1
}

,

lpp{a,b}(f) = x2y, lc{a,b}(f) = 2a + b, lm{a,b}(f) = (2a + b)x2y, Mono{a,b}(f) =
{

(2a + b)x2y, 3x, by, 1
}

.

In this paper, angle brackets 〈 · 〉 are defined as follows: let f1, . . . , fl ∈ R where R is a commutative
ring with identity. Then, 〈f1, . . . , fl〉 := {

∑s

i=1 hifi : h1, . . . , hs ∈ R}.

3 Suzuki-Sato’s Algorithm

In this section we review the theory of stability of Gröbner bases and Suzuki-Sato’s algorithm for comput-
ing comprehensive Gröbner systems. First, we describe the stability of Gröbner bases under specialization.
This is the key theory to construct the algorithm for computing comprehensive Gröbner systems.

3.1 Stability of ideals

Here we describe the stability of Gröbner bases under specialization in K[Ā][X̄] (see [4]). The following
is a definition of Gröbner bases in K[Ā][X̄].

Definition 3.1. Let I be an ideal in K[Ā][X̄] and ≻ a term order on pp(X̄) . A subset G ⊂ K[Ā][X̄] is
called a Gröbner basis of I w.r.t. ≻ if lmĀ(I) is generated by lmĀ(G).

By using a block order with X̄ ≫ Ā, we can easily compute a Gröbner basis for an ideal in K[Ā][X̄]
(see [1, 7, 11]). (In [7], Gröbner bases in K[Ā][X̄] have been studied.)

Algorithm 3.2. GröbnerBasis(F,≻)

Input F : a finite subset of K[Ā][X̄], ≻: a term order on pp(X̄),
Output G: a Gröbner basis of 〈F 〉 w.r.t. ≻ in K[Ā][X̄].
(1) Consider F as a subset of K[Ā, X̄]. (Clearly, K[Ā][X̄] is isomorphic to K[Ā, X̄].)
(2) Compute the reduced Gröbner basis G for 〈F 〉 w.r.t. a block order with X̄ ≫ Ā in K[Ā, X̄].
(3) Consider G as a subset of K[Ā][X̄]. Then, G is a Gröbner basis for 〈F 〉 w.r.t. ≻ in K[Ā][X̄].

Remark: We don’t need to compute reduced Gröbner bases in K[Ā, X̄]. It suffices to compute a
(normal) Gröbner basis. However, in algorithms Suzuki-Sato, NEW and the proof of Theorem 4.7, we
need the properties of reduced Gröbner bases in K[Ā, X̄]. Therefore, reduced Gröbner bases computation
was built in the algorithm GröbnerBasis. (See [11].)

Every ring homomorphism σ : K[Ā]→ L extends naturally to a homomorphism σ : K[Ā][X̄]→ L[X̄].
The image under σ of an ideal I ⊆ K[Ā][X̄] generates the extension σ(I) := {σ(f) : f ∈ I} ⊆ L[X̄].

Definition 3.3. We call an ideal I ⊆ K[Ā][X̄] stable under the ring homomorphism σ and a term order
≻ if it satisfies σ(lmĀ(I)) = lm(σ(I)) where σ(lmĀ(I)) := {σ(lmĀ(f)) : f ∈ I} and lm(σ(I)) := {lm(f) :
f ∈ σ(I)}.

2

In several papers [1, 3, 4], the stability of ideals under specialization was studied. The following
theorem is the key theorem for constructing the Suzuki-Sato algorithm (also our new algorithm) for
computing comprehensive Gröbner systems.

Theorem 3.4 (Kalkbrener (1997) [4]). Let σ be a ring homomorphism from K[Ā] to L, I an ideal
in K[Ā][X̄] and G = {g1, . . . , gs} a Gröbner basis of I w.r.t. a term order ≻. We assume that the gi’s
are ordered in such a way that there exists an r ∈ {1, . . . , s} with σ(lcĀ(gi)) 6= 0 for i ∈ {1, . . . , r} and
σ(lcĀ(gi)) = 0 for i ∈ {r + 1, . . . , s}. Then the following three conditions are equivalent.
(1) I is stable under σ and ≻.
(2) {σ(g1), . . . , σ(gr)} is a Gröbner basis of σ(I) w.r.t. the term order ≻.
(3) For every i ∈ {r + 1, . . . , s}, σ(gi) is reducible to 0 modulo {σ(g1), . . . , σ(gr)} in L[X̄].

3.2 Suzuki-Sato’s algorithm

Here, we introduce Suzuki-Sato’s algorithm [11] and definitions of comprehensive Gröbner systems. For
arbitrary ā ∈ Lm, we can define the canonical specialization homomorphism σā : K[Ā] → L induce by
ā, and we can naturally extend it to σā : K[Ā][X̄] → L[X̄]. For f1, . . . , fk ∈ K[Ā], V(f1, . . . , fk) ⊆ Lm

denotes the affine variety of f1, . . . , fk, i.e.,V(f1, . . . , fk) = {ā ∈ Lm : f1(ā) = · · · = fk(ā) = 0}.

Definition 3.5. Let F be a subset of K[Ā][X̄], A1, ..,Al algebraically constructible subsets of Lm and
G1, . . . , Gl subsets of K[Ā][X̄]. Let S be a subset of Lm such that S ⊆ A1 ∪ · · · ∪ Al. A finite set
G = {(A1, G1), . . . , (Al, Gl)} of pairs is called a comprehensive Gröbner system on S for F if σā(Gi)
is a Gröbner basis of the ideal 〈σā(F)〉 in L[X̄] for each i = 1, . . . , l and ā ∈ Ai. Each (Ai, Gi) is called
a segment of G. We simply say G is a comprehensive Gröbner system for F if S = Lm.

In this paper, we use an algebraically constructible set that has a form V(f1, .., fk)\V(g1, .., gl) ⊆ Lm

where f1, .., fk, g1, .., gl ∈ K[Ā]. In this paper, we assume the algorithm LCM which outputs the least
common multiple. The next two lemmas are the direct consequences of Theorem 3.4.

Lemma 3.6. Let F be a subset of K[Ā][X̄]. Let G be a Gröbner basis for 〈F 〉 in K[Ā][X̄] w.r.t. a
term order ≻. Suppose that {h1, . . . , hs} := {lcĀ(g) : g ∈ G} and h := LCM(h1, . . . , hs). Then, for any
ā ∈ Lm\V(h), σā(G) is a Gröbner basis for 〈σā(F)〉 w.r.t. ≻ in L[X̄].

Lemma 3.7. Let F be a subset of K[Ā][X̄] and S a subset of K[Ā]. Let G be a Gröbner basis for 〈F ∪S〉
in K[Ā][X̄] w.r.t. a term order ≻. Suppose that B := {b : b ∈ 〈S〉, b ∈ G}, {h1, . . . , hs} := {lcĀ(g) : g ∈
G\B} and h := LCM(h1, . . . , hs). Then, for any ā ∈ V(S)\V(h), σā(G) is a Gröbner basis for 〈σā(F)〉
w.r.t. ≻ in L[X̄]. Actually, we have σā(G) = σā(G\B).

Proof. If we take g ∈ G\B, then for all ā ∈ V(S)\V(h) we have σā(lcĀ(g)) 6= 0. If we take g ∈ G ∩ B,
then we have σā(g) = 0 and σā(lcĀ(g)) = 0. Of course, 〈0〉 is stable. Therefore, G is stable under the
specialization σā. By Theorem 3.4, σā(G) = σā(G\B) is a Gröbner basis for 〈σā(F)〉.

By Lemma 3.6 and Lemma 3.7, we can construct an algorithm for computing comprehensive Gröbner
systems [11].

Algorithm 3.8. Suzuki-Sato(F,≻) [11]

Input F : a finite subset of K[Ā][X̄], ≻: a term order on pp(X̄),
Output G: a comprehensive Gröbner system for 〈F 〉 w.r.t. ≻ on Lm.
begin G← CGSMain(F, ∅,≻);
return(G)
end

Algorithm 3.9. CGSMain(F,Z,≻)

Input F : a finite subset of K[Ā][X̄], Z : a finite set of polynomials in K[Ā], ≻: a term order on pp(X̄),
Output H: a comprehensive Gröbner system for 〈F 〉 on V(Z).
begin

G← GröbnerBasis(F,≻)
if 1 ∈ G then H ← {(Z, {1}, {1})}
else

3

G′ ← G\{g : g ∈ G ∩K[Ā], g ∈ 〈Z〉}; S ← {h1, .., hl} := {lcĀ(f) : f ∈ G′} (∗∗)
if S 6= ∅ then

h← LCM(h1, . . . , hl);
H ← {(Z, {h}, G′)}∪ CGSMain(G ∪ {h1} , Z ∪ {h1},≻)∪ CGSMain(G ∪ {hl} , Z ∪ {hl},≻)

else
H ← {(Z, {1}, G′)}

end-if
end-if
return(H)
end

Remark : We can apply a lot of optimization techniques to obtain small and nice outputs comprehensive
Gröbner systems. For instance; we can check all cells of the output (condition of parameters) after the
algorithm terminates, and in (∗∗), we can factorize all elements into irreducible factors.

4 A New Algorithm

This section is the main part of this paper. In this section, we introduce a new algorithm for com-
puting comprehensive Gröbner systems. First, we motivate the new algorithm in order to facilitate the
understanding of the algorithm.

4.1 Motivation

Let F be a subset of K[Ā][X̄]. Then, by the algorithm GröbnerBasis we can compute a Gröbner basis
G = {g1, .., gl} for 〈F 〉 w.r.t. ≻ in K[Ā][X̄]. The Gröbner basis G in K[Ā][X̄] often (not always) has the
following property (because the coefficient domain is the polynomial ring K[Ā])

(♦1)� �
gi, gj ∈ G such that lppĀ(gi)| lppĀ(gj) and gi 6= gj .

� �
If we consider a reduced Gröbner basis for a given ideal in K[X̄] (a polynomial ring over a field),

then the reduced Gröbner basis doesn’t hold this property. Actually, when we compute a comprehensive
Gröbner system for a given ideal, this property often makes a lot of small and unnecessary cells of the
parameter space. Hence, our strategy for computing comprehensive Gröbner systems is “avoiding this
property by using inequations (6= 0)”. Before describing our algorithm, we consider the Suzuki-Sato
algorithm and our idea.

The first step of Suzuki-Sato(F,≻) works as Figure 1. That is, we have to consider l cases lcĀ(g1) =
0, . . . , lcĀ(gl) = 0 for computing a comprehensive Gröbner system for 〈F 〉.

Input: F

G = {g1, . . . , gl}

· · · · · · · · ·

Figure 1

?

HHHHHHHHHj

lcĀ(gl) = 0
�

�
�

��

lcĀ(g2) = 0

����������

lcĀ(g1) = 0

The Suzuki-Sato algorithm doesn’t apply inequations (“ 6= 0”) for computing comprehensive Gröbner
systems. In this point, this algorithm is extremely simple. However, as we said the above, Gröbner bases
in K[Ā][X̄] have the special property (♦1). Hence, the Suzuki-Sato algorithm provides overmuch cells
of the parameter space. This condition (overmuch cells) is not nice when we compute a comprehensive
Gröbner systems. Probably, by using inequations (“ 6= 0”), we can obtain the number of cells which are
smaller than Suzuki-Sato’s outputs. This means that we may compute a comprehensive Gröbner systems
more efficient than the Suzuki-Sato algorithm. (In the next subsection, we will discuss about this theory.)

4

When and how do we use inequations?

If there exists gi ∈ G such that lppĀ(gi) = 1, then we don’t need to consider l cases. We need to consider
only one case (branch) lcĀ(gi) = 0, because for ā ∈ Lm\V(lcĀ(gi)), the Gröbner basis of σā(F) is {1}.
That is, if lcĀ(gi) 6= 0, then we can decide one segment without computing the cases lcĀ(gj) = 0 for
1 ≤ j 6= i ≤ l. Therefore, we can remove the cases left by the inequations lcĀ(gi) 6= 0. Suppose that
for p ∈ G, Gp := {g ∈ G\{p} : lppĀ(p)| lppĀ(g)}. If Gp isn’t an empty-set, for ā ∈ Lm\V(lcĀ(p)), all
elements of lppĀ(Gp) can be reduced by σā(lppĀ(p)). Therefore, we don’t need to consider the cases
lcĀ(gpi) = 0 where gpi ∈ Gp. That is, the set lcĀ(Gp) can be removed by lcĀ(p) 6= 0. If so, we can
construct a new algorithm for computing comprehensive Gröbner systems which is more efficient than
the Suzuki-Sato one. If Gp is an empty-set, then we can follow the Suzuki-Sato algorithm. This is our
main strategy for computing comprehensive Gröbner systems.
Now we have a specific example for computing a comprehensive Gröbner system. Let F = {ax3, bx2, cx} ∈
Q[a, b, c][x] where a, b, c are parameters and x is a variable. First, we consider the Suzuki-Sato algorithm.
The Suzuki-Sato algorithm works as Figure 2.

Input: {ax3, bx2, cx}

1

2

53

4 6

7

8 10

119

12

13 15

14 16

Figure 2

?

?
b = 0

?
a = 0

�
��a = 0

A
AU

c = 0

?
c = 0

?a = 0

�
��a = 0

A
AU
b = 0

?
c = 0

?
b = 0

Q
Q

QQs
c = 0

?b = 0

A
AU

c = 0

�
�

�
�+

a = 0

3

�
��

b = 0

A comprehensive Gröbner basis for 〈F 〉 is
{

1 , 2 , . . . , 16
}

. Of course, we can use several optimization

techniques for getting small and nice comprehensive Gröbner systems. However, basically, the Suzuki-
Sato algorithm works as Figure 2. The algorithm (with several techniques) has been implemented in
the computer algebra system Risa/Asir. The program outputs the following as a comprehensive Gröbner
systems for 〈F 〉.















































{x}, if a = 0, cb 6= 0,
{x}, if a = b = 0, c 6= 0
{x} if b = 0, ac 6= 0
{x2} if a = c = 0, b 6= 0
{∅} if a = b = c = 0,
{x3} if c = b = 0, a 6= 0,
{x2}, if c = 0, ab 6= 0
{x} if abc 6= 0.

The program outputs 8 segments.
Next we try to apply our idea which uses inequations “ 6= 0”. First, we compute a Gröbner basis S1 for
〈F 〉 in Q[a, b, c][x]. Then, S1 = {ax3, bx2, cx}, and we know that lpp{a,b,c}(cx) = x, lpp{a,b,c}(bx

2) = x2,

lpp{a,b,c}(ax3) = x3. Clearly, x|x2 and x|x3. Hence, if lc{a,b,c}(cx) = c 6= 0, then a Gröbner basis for

〈F 〉 is {x}. Since L3\V(c) (c 6= 0) cannot cover the whole space L3, next we have to consider the case
c = 0. If c = 0, then we have S2 = {ax3, bx2} which is a Gröbner basis for 〈S2〉 (itself). Clearly,
lpp{a,b,c}(bx

2)| lpp{a,b,c}(ax3). Hence, if c = 0 and b 6= 0, then a Gröbner basis for 〈F 〉 is {x2}. Finally,
we have to consider the cases a 6= 0 and a = 0. Therefore, our idea works as Figure 3. Our idea returns

5

the following comprehensive Gröbner system for 〈F 〉.


















1 = [{x}, if c 6= 0],

2 = [{x2}, if c = 0, b 6= 0],

3 = [{x3} if b = c = 0, a 6= 0],

4 = [{∅} if a = b = c = 0].

This comprehensive Gröbner system has 4 segments.
As we saw, our computation process Figure 3 is simpler than Suzuki-Sato’s one Figure 2. Furthermore,
the output of our approach has only 4 segments which is smaller than Suzuki-Sato’s one. Therefore, our
approach is much more efficient than the Suzuki-Sato algorithm.

Input: {ax3, bx2, cx}

�
�

�
�S1

1 �
�

�
�S2

2 �
�

�
�S3

3 4Figure 3

?

?
c = 0

����)
c 6= 0

?
b = 0

����)
a 6= 0

����)
b 6= 0

PPPPq
a = 0

In the next subsection, we will describe our approach strictly, and give a new algorithm for computing
comprehensive Gröbner systems.

4.2 A New Algorithm

In this subsection, we give a new algorithm for computing comprehensive Gröbner systems. The following
theorem is the main idea for constructing the new algorithm.

Theorem 4.1. Let F be a subset of K[Ā][X̄], H = {g, g1, . . . , gl} a Gröbner basis for 〈F 〉 w.r.t. ≻.
Select g from H, and set r := 1

lcĀ(g) (r is a new variable) and g′ := lppĀ(g) + r · (g − lmĀ(g)). Suppose

that H ′ := (H\{g}) ∪ {g′} = {g′, g1, . . . , gl} ⊆ K[r, Ā][X̄], and G′ is a Gröbner basis of H ′ w.r.t. ≻ in
K[r, Ā][X̄]. Furthermore, G := {f ∈ K[Ā][X̄] : f 6= 0, f = lcĀ(g)k · σr= 1

lc
Ā

(g)
(q),degr(q) = k ∈ N, q ∈ G′}

and {h1, . . . , he} := {lcĀ(f) ∈ K[Ā] : f ∈ G}. Then, for any ā ∈ Lm\(V(lcĀ(g)) ∪ V(h)), σā(G) is a
Gröbner basis for 〈σā(F)〉 w.r.t. ≻ in L[X̄] where h = LCM(h1, · · · , he). (σr= 1

lc
Ā

(g)
(q) means substituting

1
lcĀ(g) for the variable r of q.)

Proof. For all ā = (a1, . . . , am) ∈ Lm\(V(lcĀ(g)) ∪ V(h)), we have σā(lcĀ(g)) 6= 0, and σā(r) 6= 0. Set
b̄ := (a1, . . . , an, 1

σā(lc(g))) ∈ Lm+1. By the definition of G′, for all p ∈ G′, we have σb̄(lmĀ(p)) 6= 0.

Hence, by Theorem 3.6, σb̄(G
′) is a Gröbner basis for 〈σb̄(H

′)〉 w.r.t. ≻. Actually, 〈σb̄(G
′)〉 = 〈σā(G)〉.

Therefore, σā(G) is a Gröbner basis for 〈σb̄(H
′)〉 w.r.t. ≻, too. Since σā(gi) = σb̄(gi) and 〈σā(g)〉 =

〈σb̄(g
′)〉 for 1 ≤ i ≤ l, we have 〈σb̄(H

′)〉 = 〈σā(H)〉. As σā is a ring homomorphism, obviously we have
〈σā(H)〉 = 〈σā(F)〉. Therefore, σā(G) is a Gröbner basis for 〈σā(F)〉 w.r.t. ≻.

The following corollary are the direct consequence of Theorem 4.1. Actually, after applying Theorem 4.1,
we need the following corollary for computing comprehensive Gröbner systems.

Corollary 4.2. Let F be a subset of K[Ā][X̄], Z1, Z2 subsets of K[Ā] such that 〈Z1〉 ⊂/〈Z2〉, and H =
{g, g1, . . . , gl} a Gröbner basis for 〈F ∪Z1〉 w.r.t. a term order ≻. Select g ∈ H such that g /∈ Z1, and set
r := 1

lcĀ(g) and g′ := lppĀ(g) + r · (g − lmĀ(g)). Suppose that H ′ := (H\{g}) ∪ {g′} = {g′, g1, . . . , gl} ⊂

K[r, Ā][X̄], and G′ is a Gröbner basis of H ′ w.r.t. ≻ in K[r, Ā][X̄]. Furthermore, G := {f ∈ K[Ā][X̄] :
f 6= 0, f = lcĀ(g)k · σr= 1

lc
Ā

(g)
(q),degr(q) = k ∈ N, q ∈ G′} and {h1, . . . , he} := {lcĀ(f) ∈ K[Ā] : f ∈ G}.

Then, for any ā ∈ V(Z1)\(V(Z2) ∪ V(lcĀ(g)) ∪ V(h)), σā(G) is a Gröbner basis for 〈σā(F)〉 w.r.t. ≻ in
L[X̄] where h = LCM(h1, · · · , he).

6

Now, we can construct a new algorithm by using Lemma 3.6, Lemma 3.7, Theorem 4.1 and Corollary 4.2.
Before describing the algorithm, we give one example for computing a comprehensive Gröbner system by
using our strategy.

Example 4.3. Let F = {xy +x, ax2 +y +2, bxy +y} be a subset of Q[a, b][x, y], a, b parameters and x, y
variables. We have the lexicographic order ≻ such that x ≻ y. Let’s compute a comprehensive Gröbner
system for 〈F 〉 w.r.t. ≻.

(1) First, we compute a Gröbner basis of 〈F 〉 in Q[a, b][x, y] by the algorithm GröbnerBasisB. Then,
GröbnerBasisB(F,≻) outputs {a + b2, y + 1, bx + 1, ax − b}. Clearly, for α ∈ C

2 \V(a + b2), {1} is the
Gröbner basis for 〈σα(F)〉 w.r.t. ≻. That is, one of segments of a comprehensive Gröbner system for 〈F 〉
is (C2 \V(a + b2), {1}).

(2) Next, we have to consider the case {a + b2 = 0}. By Lemma 3.7, we can obtain one segment
(V(a + b2)\V(ab), {y + 1, bx + 1, ax− b}). However, this procedure is the same as Suzuki-Sato’s one. As
we are considering a new algorithm by using Theorem 4.1, we do not apply this procedure. Since we use
Theorem 4.1, we have to select one polynomial from {y + 1, bx + 1, ax− b}. Now we have a question
“Which polynomial had we better select to compute a comprehensive Gröbner system
efficiently?”
This answer is very important for our new algorithm. In this example, we know that lpp{a,b}(bx + 1)
divides lpp{a,b}(ax−b), and lpp{a,b}(ax−b) divides lpp{a,b}(bx+1). Hence, if we select bx+1 (or ax−b),
then ax− b (or bx + 1) can be reduced by lpp{a,b}(bx + 1) (or lpp{a,b}(ax− b)). Therefore, we had better
select one of bx+1, ax− b. Let’s select ax− b. In order to follow Theorem 4.1, we replace ax− b as x− br
where r is a new variable and r := 1

a
.

(3) Now we are considering the case {a + b2 = 0, a 6= 0}. We compute a Gröbner basis for 〈a +
b2, y + 1, bx + 1, x − br〉 in Q[a, b, r][x, y] w.r.t. ≻. Then the algorithm GröbnerBasisB outputs {−ar +
1, a + b2, y + 1, x − br}. Since we are considering the case {a + b2 = 0, a 6= 0} (and r = 1

a
), we do

not need −ar + 1,−a − b2 from the set and we can replace x − br as ax − b. By Theorem 4.1, for
α ∈ V(a+b2)\V(a), {ax−b, y+1} is a Gröbner basis for 〈σα(F)〉 in C[x, y]. That is, one of the segments
is (V(a + b2)\V(a), {ax− b, y + 1}).

(4) Finally, we have to consider the case {a + b2 = 0, a = 0}. We can simplify the case into {a =
0, b = 0}. In this case, clearly, the Gröbner basis is {1}. Therefore, a comprehensive Gröbner system for
〈F 〉 w.r.t. ≻ is {(C2 \V(a + b2), {1}), (V(a + b2)\V(a), {ax− b, y + 1}), (V(a, b), {1})}. That is,







{1}, if a + b2 6= 0,
{ax− b, y + 1}, if a + b2 = 0, a 6= 0,
{1} if a = b = 0.

Let G be a Gröbner basis for an ideal I in K[Ā][X̄]. Suppose that

E := {f ∈ G : ∃g ∈ G\{f}s.t. lppĀ(f)| lppĀ(g)}.

When we apply Theorem 4.1 for computing comprehensive Gröbner systems, we have to select one
polynomial from G. Then, we have the following question.
Which polynomial should we select in order to compute comprehensive Gröbner systems
efficiently?
In Example 4.3 (2), we selected ax−b, because lpp{a,b}(ax−b) divides lpp{a,b}(bx+1). In this case, we have
E = {ax−b, bx+1}. If E is an empty set, then in Theorem 4.3, we have always lpp(σā(H)) = lpp(σā(H ′))
for any ā ∈ Lm\(V(lcĀ(g))∪V(h)) = Lm\V(h). (By the theorem, clearly σā(H) and σā(H ′) is a Gröbner
basis for 〈F 〉 w.r.t. ≻ in L[X̄].) Namely, in this case, we should not apply Theorem 4.3, because we have
lcĀ(H)\K = (lcĀ(H ′) ∪ {lcĀ(g)})\K. That is, the cells of the parameter space can not be changed by
the selected polynomial. In this case, we apply Suzuki-Sato’s approach. If E is not an empty set,
then our approach (Theorem 4.1) works powerfully for computing comprehensive Gröbner
systems. In fact, it is often happened that E is not an empty set. Our answer of the question is
that “selecting one element from E”. In the new algorithm which is the following, like normal strategy
of Gröbner bases computation we select one polynomial from E which have the lowest leading power
product in lppĀ(E) w.r.t. a term order.
In the new algorithm NEW, we assume the algorithm factorize. The algorithm factorize(h) outputs a set

7

of all irreducible factors of h in K[Ā] where h ∈ K[Ā].
In the remark of the algorithm NEW, we describe why we input a natural number U in the algorithm
NEW.

Algorithm 4.4. NEW(F,U,≻)

Input F : a finite subset of K[Ā][X̄], ≻: a term order on pp(X̄), U : a natural number (<∞),
Output G: a comprehensive Gröbner system for 〈F 〉 w.r.t. ≻ on Lm.
begin

G← NewCGSMain(F, ∅, ∅, 1, 0,≻, U)
return(G)

end

Algorithm 4.5. NewCGSMain(F,L1, L2,D,N,≻, U)

Input F : a finite subset of K[r, Ā][X̄],
L1 : a finite set of polynomials in K[Ā] “(= 0)”
L2 : a finite set of polynomials in K[Ā] “(6= 0)”,
D: a polynomial in K[Ā], U : a natural number (<∞),
≻: a term order on pp(X̄), N : a natural number (< U),
Output H: a comprehensive Gröbner system for 〈F 〉 w.r.t. ≻ on V(L1)\V(L2).
begin
1: G← GröbnerBasisB(F ∪ L1,≻) in K[r, Ā][X̄]
2: G∗ ← Transform(G,D)
3: G1 ← G∗\{g : g ∈ G∗ ∩K[Ā], g ∈ 〈L1〉}
4: E ← {f ∈ G1 : ∃g ∈ G1\{f} s.t. lppĀ(f)| lppĀ(g)}
5: if E 6= ∅ and N ≤ U then
6: Select q from E s.t. lppĀ(q) is the lowest element in lppĀ(E) w.r.t. ≻ (r := lcĀ(q)−1, i.e., r is the

new variable.)
7: q∗ ← lppĀ(q) + r · (q − lmĀ(q)) (i.e., lcĀ(q∗) = 1)
8: F ∗ ← (G1\{q}) ∪ {q

∗}
9: {t1, . . . , tk} ← factorize(lcĀ(q))

10: t← t1 · t2 · · · tk
11: if V(L1)\(V(t) ∪

⋃

s∈L2
V(s)) 6= ∅ then (♣1)

12: N ← N + 1
13: H1 ← NewCGSMain(F ∗, L1, L2 ∪ {t}, lcĀ(q), N,≻, U)
14: end-if
15:H2 ← NewCGSMain(G1, L1 ∪ {t1} , L2, ∅, 0,≻, U) ∪ · · · ∪ NewCGSMain(G1, L1 ∪ {tk} , L2, ∅, 0,≻, U)
16: H ← H1 ∪H2

17: else
18: S ← {h1, .., hl} := {f : V(f) ⊂/

⋃

s∈L2
V(s), f ∈ factorize(lcĀ(g)), lcĀ(g) /∈ K, g ∈ G1} (♣2)

19: h← LCM(h1, . . . , hl)
20: H ← {(L1, {h}, G1)}
21: if S 6= ∅ then
22: while S 6= ∅ do
23: Select p from S; S ← S\{p}
24: H ← H∪ NewCGSMain(G1, L1 ∪ {p}, L2, ∅, 0,≻, U)
25: end-while
26: else
27: H ← {(L1, L2, G1)}
28: end-if
29: end-if
30: return(H)
end

Algorithm 4.6. Transform(F,D)

Input F : a finite subset of K[r, Ā][X̄],
D: a polynomial in K[Ā]

8

Output G: a finite subset of K[Ā][X̄]
begin
if D = ∅ then return(F) end-if
G← ∅
while F 6= ∅ do

Select f from F ; F ← F\{f}
N ← degr(f)
L← Mono(f); H ← 0

while L 6= ∅ do
Select p from L ; L← L\{p}; N1 ← N − degr(p)
p1 ← Substitute 1

lcĀ(p) for the variable r of p

q1 ← p1 ·D
N1 ; H ← H + q1

end-while
if H 6= 0 then G← G ∪ {H} end-if

end-while
return(G)
end

Remark : In (♣1) and (♣2), we applied the notation
⋃

(union) for the algorithm. Since obviously
V(h1) ∪ V(h2) = V(LCM(h1, h2)) where h1, h2 ∈ K[Ā], we can apply the notation V(LCM(s1, . . . , sl))
instead of

⋃

s∈L2
V(s) where L2 = {s1, . . . , sl}. As we used the notation “∪ (union)” in Theorem 4.1, we

followed Theorem 4.1 in the algorithm.
In Theorem 4.1 and Corollary 4.2, we need to transform a set F as follows;
(1) computing a Gröbner basis H for 〈F 〉, (line 1)
(2) transforming H into H ′ by the new variable r, (line 7)
(3) computing a Gröbner basis G′ for 〈H ′〉, (line 1)
(4) transforming G′ into G by Transform. (line 2)
If we do not use the natural number U in the algorithm, then by these transformations, we rarely
obtain the infinite loop from 1 to 14 (recurrently) on a path of a tree structure. When we compute
a Gröbner basis in K[Ā][X̄], we apply the algorithm GröbnerBasisB. Since the algorithm GröbnerBasisB
which uses a block order, regards parameters as variables, if we iterate the procedure from 1 to 14, then
we rarely see that line 1 always outputs the same Gröbner basis. In order to avoiding this infinite loop,
we introduced the natural number U . This is very technical step for always terminating the algorithm.
We can apply many optimization techniques to obtain small and nice outputs comprehensive Gröbner
systems (like the Suzuki-Sato algorithm [11]). Theoretically, like Algorithm 3.9, we do not need factorize
in order to compute comprehensive Gröbner systems. However, since factorize is very effective as one
of the optimization techniques to obtain small and nice outputs, we add the algorithm factorize to the
algorithm. (We can also compute a radical ideal of 〈L1〉 to get nice outputs, however the computation is
often expensive.)

Theorem 4.7. The algorithm NEW(F,U,≻) terminates. The output forms a comprehensive Gröbner
system for 〈F 〉 on Lm.

Proof. First we show the termination. It suffices to show the termination of NewCGSMain(F,L1, L2,D,N,≻
, U). The key part is line 5 of Algorithm 4.5.

(∗1) If E = ∅ and N ≤ U , then we have to consider lines 18–29 where is Suzuki-Sato’s approach. In this
case, the algorithm provides one segment (see line 19).
(∗2) If E 6= ∅ and N ≤ U , then we have to consider lines 6–16. In this case, the algorithm does not
provide any segment.

NewCGSMain is a recurrence algorithm and makes the tree structure. Take an arbitrary path of the tree
structure. We prove that the algorithm executes lines 17–28 (∗1) and lines 6–15 (∗2) a finite number of
times in the path. By the same reason of the proof of Suzuki-Sato [11], the algorithm executes (∗1) a finite
number of times (see [11]). We need to prove that the algorithm executes (∗2) a finite number of times.
As we said in the remark, if we don’t have the number U and N , then the algorithm does not always
terminate. However, the algorithm has U which is a finite number, and thus the algorithm executes (∗2)
at most U times. Hence, this algorithm terminates. Next we have to show the correctness. This proof
is almost same as the proof of the Suzuki-Sato algorithm. We remark that in this proof we need Theo-
rem 4.1 and Corollary 4.2. In line 13 and 15, the algorithm compute the cases t = LCM(t1, . . . , tk) 6= 0

9

and t1 = 0, . . . , tk = 0, i.e,
⋃k

i=1 V(ti)∪ (Lm\V(t)) = Lm. By this fact and the proof of Suzuki-Sato [11],
the output of the algorithm covers the whole parameter space.

The algorithm NEW has been implemented in the computer algebra system Risa/Asir. In the following
examples, we give outputs of the program. Note that in the program the natural number U of the
algorithm NEW is fixed U = 5.

Example 4.8. Let F = {ax2 + by2, cx2 + y2, 2ax− 2cy} be a subset of Q[a, b, c][x, y], a, b, c parameters
and x, y variables. We have the lexicographic order ≻ such that x ≻ y. Then, the program outputs a
comprehensive Gröbner system for 〈F 〉 w.r.t. ≻ as follows.

[a,b,c]==0, [[1]]!=0,

[y^2].

[b^2+c,a-c*b,b*a+c^2]==0, [[a]]!=0,

[a*x-c*y].

[a,c]==0, [[b^2+c]]!=0,

[y^2].

[a,c*b]==0, [[c],[b^2+c]]!=0,

[c*x^2,y].

[a-c*b]==0, [[a],[b^2+c]]!=0,

[a*x-c*y,y^2].

[a]==0, [[c],[a-c*b]]!=0,

[c*x^2,y].

[0]==0, [[a],[a-c*b]]!=0,

[a*x-c*y,y^2].

This meaning is the following;






































{y2}, if V(a, b, c),
{ax− cy}, if V(b2 + c, a− cb, ba + c2)\V(a),
{y2}, if V(a, c)\V(b2 + c),
{cx2, y} if V(a, cb)\(V(c) ∪ V(b2 + c)),
{ax− cy, y2} if V(a− cb)\(V(a) ∪ V(b2 + c)),
{cx2, y} if V(a)\(V(c) ∪ V(a− cb)),

{ax− cy, y2} if C
3 \(V(a) ∪ V(a− cb)).

This output has 7 segments. (Note that V(h1) ∪ V(h2) = V(LCM(h1, h2)) where h1, h2 ∈ K[Ā].) By the
way, the program of the Suzuki-Sato algorithm outputs 17 segments.

5 Benchmark tests and improvements

The algorithms Suzuki-Sato and NEW which contain several optimization techniques, have been imple-
mented in Risa/Asir by the author. These programs are including in the package PGB [8]. In this section,
we compare both programs Suzuki-Sato and NEW, and notice both problems. Moreover, in the second
part of this section, we improve our algorithm NEW. Note that the natural number U of the algorithm
NEW is fixed U = 5. (We used a PC [CPU: Pentium M 1.73 GHZ, Memory 512 MB RAM, OS: Windows
XP].)
Let a, b, c, d be parameters, x, y, z, w variables and ≻ the lexicographic order such that x ≻ y ≻ z ≻ w.
We have the following subsets of C[a, b, c, d][x, y, z, w];
F1 = {ax4y + xy2 + bx, x3 + 2xy, bx2 + x2y},
F2 = {ax2y3 + by + y, x2y2 + xy + 2, ax2 + by + 2},
F3 = {ax4 + cx2 + b, bx3 + x2 + 2, cx2 + dx},
F4 = {ax3y + cxy2, x4y + 3dy, cx2 + bxy, x2y2 + ax2, x5 + y5}.
The following table includes timing date of the programs in each problems.

10

Problem Algorithm Segments time (sec.)
F1 Suzuki-Sato 7 0.079

NEW 4 0.031
F2 Suzuki-Sato 4 0.047

NEW 6 0.093
F3 Suzuki-Sato 31 2.421

NEW 22 2.203
F4 Suzuki-Sato 39 1.391

NEW 15 0.234

In the table above, we can see that our algorithm NEW runs faster than the algorithm Suzuki-Sato in
the problems F1, F3, F4. Furthermore, the numbers of segments are smaller than Suzuki-Sato’s outputs.
We remark that NEW does not always run faster than Suzuki-Sato. See the problem F2. However, in
many cases, NEW runs faster than Suzuki-Sato. Especially, if the number of parameters is greater than
the number of variable, i.e., |Ā| > |X̄|, then NEW is much more efficient than Suzuki-Sato for computing
comprehensive Gröbner systems. Next, we consider more difficult problems.
F5 = {ax2y + bx + y3, ax2y + bxy, y2 + bx2y + cxy},
F6 = {x4 + ax3 + bx2 + cx + d, 4x3 + 3ax2 + 2bx + c},
F7 = {x3 − a, y4 − b, x + y − az},
F8 = {ax2 + by, cw2 + z, (x− z)2 + (y − w)2, 2dxw − 2by}.

Problem Algorithm Segments time (sec.)
F5 Suzuki-Sato 14 0.219

NEW 6 0.109
F6 Suzuki-Sato 875 92.88

NEW 17 0.312
F7 Suzuki-Sato 7 0.282

NEW −− > 30 m
F8 Suzuki-Sato −− > 30 m

NEW −− > 30 m

In the problems F5 and F6, NEW runs faster than Suzuki-Sato. Why does the program NEW run faster?
Because NEW compute segments whose number is smaller than that of Suzuki-Sato’s. Look at “Seg-
ments” of the table. In the problem F7, NEW cannot return between 30 minutes. Why? Because we
need much time for computing a Gröbner basis in C[r, a, b][x, y, z] (the algorithm GröbnerBasisB) where
r is the new variable. In Algorithm 4.5 line 6, we have to make the new variable r. This is a dangerous
step when we compute a Gröbner basis in polynomial rings. The problems of the algorithms Suzuki-Sato
and NEW, are the following.

• Suzuki-Sato creates overmuch segments.
• NEW (sometimes) needs expensive Gröbner bases computations (however, the number of segments is
not big).

Now we improve the algorithm NEW. Look at line 6 of Algorithm 4.5. In the line, we must select one
polynomial. Actually, in the problem F8, the program NEW selected a bad polynomial. Therefore, the
program could not return. We should select a good polynomial from E for computing a comprehensive
Gröbner system. In Algorithm 4.5, we define the following set as E

E := {f ∈ G : ∃g ∈ G\{f} s.t. lppĀ(f)| lppĀ(g)}.

In fact, in the problem F8, the program NEW selects a polynomial f from E which has 12 monomials,
i.e., the cardinality of Mono{a,b}(f) is 12. Since this polynomial f is very big (and we multiply f by the
new variable r), the Gröbner bases computation become very expensive. The author has computed a
lot of comprehensive Gröbner systems by the program. By these computational experiments, the author
was noticed that “we should not select a big polynomial from E.” That is, in concerning speed,
we need to consider how many monomials the selected polynomial has. Now, in Algorithm 4.5,
we can replace E to the following set

Es := {f ∈ G : ♯(MonoĀ(f)) ≤ s,∃g ∈ G\{f}
s.t. lppĀ(f)| lppĀ(g)}

11

where s ∈ N and ♯(MonoĀ(f)) is the cardinality of the set MonoĀ(f). Clearly, we have Es ⊆ E. In this
case, we rename the algorithm NEW as NEW[s].

Problem Algorithm Segments time (sec.)
NEW[1] 621 91.39

F6 NEW[2] 53 1.141
NEW[3] 17 0.359

Suzuki-Sato 7 0.328
F7 NEW[1] 7 0.375

NEW[2] 7 0.375
F8 Suzuki-Sato −− > 30 m

NEW[1] 458 133.2

Remark: If we apply s = 1 for NEW[s], then we don’t need the new variable r. However, like the problem
F6, sometimes the algorithm creates a lot of segments. In our algorithm, selecting a good polynomial
from E (or Es) is very important to compute a comprehensive Gröbner system, efficiently. The method
of selecting a (good) polynomial from E (or choosing s) for computing comprehensive Gröbner systems
efficiently, is a problem.

6 Comparisons

The anonymous referees suggested to compare our implementations1 [8] with other implementations,
namely the Maple-implementation2 by Manubens and Montes [5] (Maple 9.5), and the Reduce-implementation3

by Dolzmann and Sturm [2] (Reduce 3.8). All conditions and problems are the same as the previous sec-
tion.

In this paper, we introduced a new algorithm for computing comprehensive Gröbner systems. In many
cases, our algorithm is more efficient than the Suzuki-Sato algorithm. That is, our algorithm creates
smaller outputs, and runs faster than the Suzuki-Sato algorithm. In general, if the number of parameters
is greater than the number of variables, then the Suzuki-Sato algorithm runs slower than other existing
algorithm. This is because the Suzuki-Sato algorithm creates overmuch segments, and regards parameters
as variables in the computation. (Look at problems F3 and F6 which have only one variable.) However,
in this case, our algorithm still works well. This is the main advantage of our algorithm compared to the
Suzuki-Sato algorithm. If the number of parameters is smaller than the number of variables, then the
Suzuki-Sato algorithm is very fast. In this case, as our algorithm is based on the Suzuki-Sato algorithm,
it is clear that our algorithm is also very fast. See the list of benchmark tests [11].

1http://www.risc.uni-linz.ac.at/people/knabeshi/pgb/ or http://www.risc.uni-linz.ac.at/research/compalg/

software/
2http://www-ma2.upc.edu/~montes/
3http://students.fim.uni-passau.de/~reduce/cgb/

12

Pro. Algorithm System Seg. time (sec.)
NEW Risa/Asir 4 0.031

F1 Suzuki-Sato Risa/Asir 7 0.079
Montes Maple 4 2.703

Weispfenning Reduce 10 0.032
NEW Risa/Asir 6 0.093

F2 Suzuki-Sato Risa/Asir 4 0.047
Montes Maple 5 6.890

Weispfenning Reduce 15 0.344
NEW Risa/Asir 22 2.203

F3 Suzuki-Sato Risa/Asir 31 2.421
Montes Maple 14 13.422

Weispfenning Reduce 28 0.140
NEW Risa/Asir 15 0.234

F4 Suzuki-Sato Risa/Asir 39 1.391
Montes Maple 18 22.359

Weispfenning Reduce 21 0.940
NEW Risa/Asir 6 0.109

F5 Suzuki-Sato Risa/Asir 14 0.219
Montes Maple 9 78.610

Weispfenning Reduce 8 0.079
NEW Risa/Asir 17 0.312

F6 Suzuki-Sato Risa/Asir 875 92.88
Montes Maple 8 36.797

Weispfenning Reduce 6 0.110
NEW[3] Risa/Asir 7 0.375

F7 Suzuki-Sato Risa/Asir 7 0.328
Montes Maple – > 30m

Weispfenning Reduce – > 30m
NEW[1] Risa/Asir 458 133.2

F8 Suzuki-Sato Risa/Asir – > 30m
Montes Maple – > 30m

Weispfenning Reduce – > 30m

Acknowledgments

This work has been supported by the Austrian Science Foundation (FWF), project P16357-N04. The
author thanks Prof. Franz Winkler for stimulating discussions and suggestions.

References

[1] Becker, T. On Gröbner bases under specialization. Applicable Algebra in Engineering, Communica-

tion and Computing, 5:1–8, 1994.

[2] Dolzmann, A. and Sturm, T. Redlog: Computer algebra meets computer logic. ACM SIGSAM

Bulletin, 31(2):2–9, 1997.

[3] Gianni, P. Properties of Gröbner bases under specializations. In Davenport, J., editor, EURO-

CAL’87, pages 293–297. ACM Press, 1987.

[4] Kalkbrener, M. On the Stability of Gröbner Bases Under Specializations. Journal of Symbolic

Computation, 24:51–58, 1997.

[5] Manubens, M. and Montes, A. Improving DISPGB algorithm using the discriminant ideal. Journal

of Symbolic Computation, 41:1245–1263, 2006.

[6] Montes, A. A new algorithm for discussing Gröbner basis with parameters. Journal of Symbolic

Computation, 33/1-2:183–208, 2002.

13

[7] Nabeshima, K. Reduced Gröbner bases in polynomial rings over a polynomial ring. In Wang, D. and
Zheng, Z., editors, International Conference on Mathematical Aspects of Computer and Information

Sciences, pages 15–32, 2006.

[8] Nabeshima, K. PGB: A Package for Computing Parametric Gröbner Bases and Related Objects.
2007. preprint.

[9] Noro, M. and Takeshima, T. Risa/Asir- A Computer Algebra System. In Wang, P., editor, In-

ternational Symposium on Symbolic and Algebraic Computation, pages 387–396. ACM-Press, 1992.
http://www.math.kobe-u.ac.jp/Asir/asir.html.

[10] Suzuki, A. and Sato, Y. An alternative approach to Comprehensive Gröbner bases. Journal of

Symbolic Computation, 36/3-4:649–667, 2003.

[11] Suzuki, A. and Sato, Y. A Simple Algorithm to compute Comprehensive Gröbner Bases using
Gröbner bases. In Dumas, J-G., editor, International Symposium on Symbolic and Algebraic Com-

putation, pages 326–331. ACM Press, 2006.

[12] Weispfenning, V. Comprehensive Gröbner bases. Journal of Symbolic Computation, 14/1:1–29, 1992.

[13] Weispfenning, V. Canonical Comprehensive Gröbner bases. In Mora, T., editor, International

Symposium on Symbolic and Algebraic Computation, pages 270–278. ACM Press, 2002.

14

