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Figure 1: (a) ardioid urve and o�set (b) Viviani pipe surfaefor dealing with these geometri problems. So, for instane, we need to beable to fator over algebraially losed �elds for determining whether a urveor surfae is irreduible, we need to solve systems of algebrai equations foranalyzing the singular lous of suh objets, and we need to ontrol algebraiextensions in omputing rational parametrizations.We desribe some of the algorithms for omputations with algebraiurves and surfaes whih have been developed in the last few years. Oneinteresting subproblem is the rational parametrization of urves and surfaes.Determining whether a urve or surfae has a rational parametrization, andif so, omputing suh a parametrizaton, is a non-trivial task. But in the lastfew years there has been quite some progress in this area.Impliit representations (by de�ning polynomial) and parametri repre-sentations (by rational parametrization) both have their partiular advan-tages and disadvantages. Given an impliit representation of a urve and apoint in the plane, it is easy to hek whether the point is on the urve. Butit is hard to generate \good" points on the urve, i.e. for instane pointswith rational oordinates if the de�ning �eld is Q . This is easy for a urvegiven parametrially. So it is highly desirable to have eÆient algorithms forhanging from impliit to parametri representation, and vie versa. We havedesribed suh parametrization algorithms for urves in [SeWi97℄, [SeWi99℄.So, for instane, the ardioid urve and also its o�set urve are both ratio-nal urves; ompare Figure 1(a). Reently, in [LSWH00℄, we have developeda ompletely algebrai algorithm for parametrizing pipe and anal surfaes,suh as the pipe around Viviani's temple, see Figure 1(b).Sometimes algebrai urves and surfaes need to be visualized. Numeri-2



al approximation algorithms tend to have problems �nding all the isolatedomponents of these objets and also traing them through singularities. Onthe other hand, symboli algebrai algorithms might spend a lot of om-putation time on non-ritial parts of these objets. We desribe a hybridsymboli-numerial algorithm for visualizing algebrai urves.In the last setion we mention some open problems in omputational alge-brai geometry. These open problems onern the \best" integer oeÆientsof a parametrization, optimal parametrization of surfaes, determining ra-tional points on ellipti urves, deomposition of rational funtions over thereals, and symboli-numerial plotting of surfaes.For a general bakground on omputer algebra and on symboli alge-brai algorithms for algebrai urves and surfaes we refer to [Wink96℄ and[HSWi97℄.2 Parametrization of algebrai urvesOne interesting problem in omputational algebrai geometry is the rationalparametrization of urves and surfaes. Consider an aÆne plane algebraiurve C in A 2(K) de�ned by the bivariate polynomial f(x; y) 2 K[x; y℄ (herewe denote by K the algebrai losure of the ground �eld K). I.e.C = f(a; b) j (a; b) 2 A 2(K) and f(a; b) = 0g:Of ourse, we ould also view this urve in the projetive plane P2(K), de�nedby F (x; y; z), the homogenization of f(x; y).A pair of rational funtions (x(t); y(t)) 2 K(t)2 is a rational parametriza-tion of the urve C, if and only if f(x(t); y(t)) = 0 and x(t); y(t) are notboth onstant. Only irreduible urves, i.e. urves whose de�ning polyno-mial is absolutely irreduible, an have a rational parametrization. Almostany rational transformation of a rational parametrization is again a ratio-nal parametrization, so suh parametrizations are not unique. An algebraiurve having a rational parametrization is alled a rational urve. A ratio-nal parametrization is alled proper i� the orresponding rational map fromK to C is invertible, i.e. i� the the aÆne line and the urve C are bira-tionally equivalent. By L�uroth's theorem, every rational urve has a properparametrization.Impliit representations (by de�ning polynomial) and parametri repre-sentations (by rational parametrization) both have their partiular advan-tages and disadvantages. Given an impliit representation of a urve and apoint in the plane, it is easy to hek whether the point is on the urve. Butit is hard to generate \good" points on the urve, i.e. for instane points with3



rational oordinates if the de�ning �eld is Q . On the other hand, generatinggood points is easy for a urve given parametrially, but deiding whether apoint is on the urve requires the solution of a system of algebrai equations.So it is highly desirable to have eÆient algorithms for hanging from impliitto parametri representation, and vie versa.Example 2.1: The urve de�ned in the aÆne or projetive plane over C bythe de�ning equation f(x; y) = y2�x3�x2 = 0 is rationally parametrizable,and atually a parametrization is x(t) = t2 � 1, y(t) = t(t2 � 1).On the other hand, the ellipti urve de�ned by f(x; y) = y2�x3+x = 0does not have a rational parametrization.The tanode urve de�ned by f(x; y) = 2x4 � 3x2y + y4 � 2y3 + y2 = 0has the parametrizationx(t) = t3 � 6t2 + 9t� 22t4 � 16t3 + 40t2 � 32t+ 9 ; y(t) = t2 � 4t+ 42t4 � 16t3 + 40t2 � 32t+ 9 :The riterion for parametrizability of a urve is its genus. Only urves ofgenus 0, i.e. urves having as many singularities as their degree permits,have a rational parametrization. �A symboli algebrai algorithm for rational parametrization of urvesof genus 0 has been developed in [SeWi91℄, [SeWi97℄, [SeWi99℄. Let usdemonstrate the algorithm on a simple example.Example 2.2: Let C be the urve in the omplex plane de�ned byf(x; y) = (x2 + 4y + y2)2 � 16(x2 + y2) = 0:The urve C has the following rational parametrization:x(t) = �32 � �1024i+ 128t� 144it2 � 22t3 + it42304� 3072it� 736t2 � 192it3 + 9t4 ;y(t) = �40 � 1024� 256it� 80t2 + 16it3 + t42304� 3072it� 736t2 � 192it3 + 9t4 :C has in�nitely many real points. But generating any one of these real pointsfrom the above parametrization is not obvious. Does this real urve C alsohave a parametrization over R? Indeed it does, let's see how we an get one.In the projetive plane over C , C has 3 double points, namely (0 : 0 : 1)and (1 : �i : 0). Let ~H be the linear system of onis passing through allthese double points. ~H is alled the system of adjoint urves of degree 2.The system ~H has dimension 2 and is de�ned byh(x; y; z; s; t) = x2 + sxz + y2 + tyz = 0:4



I.e., for any partiular values of s and t we get a oni in ~H. 3 elements ofthis linear system de�ne a birational transformationT = (h(x; y; z; 0; 1) : h(x; y; z; 1; 0) : h(x; y; z; 1; 1))= (x2 + y2 + yz : x2 + xz + y2 : x2 + xz + y2 + yz)whih transforms C to the oni D de�ned by15x2 + 7y2 + 6xy � 38x� 14y + 23 = 0:For a oni de�ned over Q we an deide whether it has a point over Qor R. In partiular, we determine the point (1; 8=7) on D, whih, by T �1,orresponds to the regular point P = (0;�8) on C. Now, by restriting ~Hto onis through P and interseting ~H with C (for details see [SeWi97℄), weget the parametrizationx(t) = �1024t3256t4 + 32t2 + 1 ; y(t) = �2048t4 + 128t2256t4 + 32t2 + 1 :over the reals. �An alternative parametrization approah an be found in [Hoeij94℄.In any ase, omputing suh a parametrization essentially requires thesolution of two major problems:(1) a full analysis of singularities and determination of genus and adjointurves (either by suessive blow-ups, or by Puiseux expansion) and(2) the determination of a regular point on the urve.The fastest known method for (1) has been presented in [Stad00℄. If f(x; y) 2Q [x; y℄ is the de�ning polynomial for the urve under onsideration, then theproblem an be solved in time O(d5), where d is the degree of f .Let us disuss the treatment of problem (2). We an ontrol the qualityof the resulting parametrization by ontrolling the �eld over whih we hoosethis regular point. Thus, �nding a regular urve point over a minimal �eldextension on a urve of genus 0 is one of the entral problems in rationalparametrization. The treatment of this problem goes bak to [HiHu90℄. Itsimportane for the parametrization problem has been desribed in [HiWi98℄.A rationally parametrizable urve always has in�nitely many regularpoints over the algebrai losure K of the ground �eld K. Every one ofthese regular points is ontained in an algebrai extension �eld of K of er-tain �nite degree. The oordinates of the regular point determine diretlythe algebrai extension degree over K whih is required for determining aparametrization based on this regular point. So the entral issue is to �nd5
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Figure 2: determining points on the tanode urvea regular point on the urve C of as low an algebrai extension degree aspossible.Example 2.3: Let us one more onsider the tanode urve C of Example2.1, de�ned by f(x; y) = 2x4 � 3x2y + y4 � 2y3 + y2 = 0:Aording to the approah desribed in Example 2.2 we need a regular pointon the urve. We might determine suh a point by interseting C with a line.Suh interseting lines are shown in Figure 2.Suppose we selet the line L1 de�ned by l1(x; y) = y+1. The 4 intersetionpoints have the form P = (�;�1), where � is a root of the irreduiblepolynomial 2�4+3�2+4 = 0. Using suh a point leads to the parametrization(x(t); y(t)) = (n1(t)=d(t); n2(t)=d(t)), wheren1(t) = ��4 (36t4 + (60�+ 72�3)t3 � (18 + 108�2)t2 + (103�+ 42�3)t�20� 24�2);n2(t) = �9t4 � (3�+ 18�3)t3 + (2�2 � 33)t2 � (2� + 12�3)t� 4;d(t) = 9t4 + 24�t3 � (16�2 + 60)t2 � (20�+ 24�3)t+ 6 + 12�2:This parametrization of C has omplex oeÆients of algebrai degree 4 overQ . Now suppose we selet the line L2 de�ned by l2(x; y) = y � 1. L2 in-tersets C in the double point (0; 1) and in the 2 intersetion points hav-ing the form P = (� : 1), where � is a root of the irreduible polynomial6



2�2 � 3 = 0. Using suh a point leads to the parametrization (x(t); y(t)) =(n1(t)=d(t); n2(t)=d(t)), wheren1(t) = 2�t4 + 9t3 � 27t� 18�;n2(t) = 2t4 + 12�t3 + 39t2 + 36�t+ 18;d(t) = 11t4 + 24�t3 + 12t2 + 18:This parametrization of C has real oeÆients of algebrai degree 2 over Q .Next we selet the line L3 de�ned by l3(x; y) = y � 1792025687968 x = 0: L3intersets C in the double point (0; 0) and in 2 other rational points, one ofwhih has the oordinatesP = �12328881116501772841609267; 32113536006251772841609267� :Using this point P leads to the parametrization (x(t); y(t)) = (n1(t)=d(t); n2(t)=d(t)),wheren1(t) = �11095993004850t4 � 12890994573912t3 + 4296998191304t+1232888111650;n2(t) = 28902182405625t4 + 67155391392600t3 + 58277689547446t2+22385130464200t+ 3211353600625;d(t) = 15955574483403t4 + 44963405382900t3 + 54017766921682t2+29782459134100t+ 6069839800571:This parametrization of C has rational oeÆients, but they are huge.Finally we selet the line L4 de�ned by l4(x; y) = x � 1. L4 intersetsC in 2 omplex points and 2 real points, one of whih has the oordinatesP = (1; 2). Using this point P leads to the parametrization (x(t); y(t)) =(n1(t)=d(t); n2(t)=d(t)), wheren1(t) = 2t4 + 7t3 � 21t� 18;n2(t) = 4t4 + 28t3 + 73t2 + 84t+ 36;d(t) = 9t4 + 40t3 + 64t2 + 48t+ 18:This parametrization of C has small rational oeÆients. �In [SeWi97℄ we present an algorithm for determining the lowest alge-brai extension degree [Q(�) : Q ℄ of a �eld Q(�) whih admits a rationalparametrization of a urve de�ned over Q . In fat, this algorithm also de-termines a parametrization over this optimal extension �eld. In [SeWi99℄we desribe a deision proedure for determining whether an algebrai urvewith de�ning polynomial in Q [x; y℄ has a parametrization over the real num-bers R. 7



One we are able to parametrize algebrai urves over the optimal exten-sion �eld, we an also determine Diophantine solutions of the orrespondingpolynomial equations. We do not go into details here, but refer the readerto [PoVo00℄.3 Parametrization of algebrai surfaesThe problem of rational parametrization an also be solved for algebraisurfaes. Also in this ase, the analysis of singularities plays an essential rôle.Many di�erent authors have been involved in the solution of this problem,we just mention [Hiro64℄ and [Vill91℄. Based on the algorithmi solutionof the singularity problem, Shiho has developed a general algorithm fordetermining the rational parametrizability of an algebrai surfae, and, in thepositive ase, for atually omputing suh a parametrization. See [Shi98℄.But whereas for the ase of urves we know exatly the degrees of the rationalfuntions and also the degree of the algebrai extension whih might appearin the parametrization, these bounds are not known for surfaes, in general.General parametrization algorithms for surfaes require onsiderable om-putation time. So it is natural to try to develop algorithms spei�ally tay-lored for lasses of surfaes of pratial importane. Suh a lass is, forinstane, the one of pipe and anal surfaes. A anal surfae S, generated bya parametrized spae urve C = (m1(t); m2(t); m3(t)) in R3 , is the envelope ofthe set of spheres with rational radius funtion r(t) entered at C. The urveC is alled the spine urve of S. In a pipe surfae r(t) is onstant. This on-ept generalizes the lassial o�sets (for onstant r(t)) of plane urves. Pipesurfaes have numerous appliations, suh as shape reonstrution or robotipath planning. Canal surfaes with variable radius arise in the ontext ofomputer aided geometri design mainly as transition surfaes between pipes.Whereas for urves it is ruial to determine a regular point with realoordinates, in the situation of pipe and anal surfaes we determine a ra-tional urve with real oeÆients on the surfae, in the same parameter asthe spine urve. One we have determined suh a rational urve on the analsurfae S, we an rotate this urve around the spine urve and in suh a wayompute a parametrization of S.So, for instane, Viviani's temple is de�ned as the intersetion of a sphereof radius 2a and a irular ylinder of radius a:x2 + y2 + z2 = 4a2;(x� a)2 + y2 = a2;8



see Figure 1(b). The pipe around Viviani's temple an be rationally para-metrized.In [PePo97℄ it is shown that anal surfaes with rational spine urveand rational radius funtion are in general rational. To be preise, theyadmit rational parametrizations of their real omponents. Reently we havedeveloped a ompletely symboli algebrai algorithm for omputing rationalparametrizations of pipe and anal surfaes over Q , see [LSWH00℄.4 Impliitization of urves and surfaesThe inverse problem to the problem of parametrization onsists in start-ing from a (rational) parametrization and determining the impliit algebraiequation of the urve or surfae. This is basially an elimination problem.Let us demonstrate the proedure for urves. We write the parametri rep-resentation of the urve C,x(t) = p(t)=r(t); y(t) = q(t)=r(t);as h1(t; x) = x � r(t)� p(t) = 0; h2(t; y) = y � r(t)� q(t) = 0:The impliit equation of the urve must be the generator of the idealI = hh1(t; x); h2(t; y)i \ K[x; y℄:We an use any method in elimination theory, suh as resultants of Gr�obnerbases, for determining this generator. For instane,resultantt(h1(t; x); h2(t; y))will yield the polynomial de�ning the urve C. Compare [Wink96℄ and[SeWi01℄ for details. In [SeWi01℄ we introdue the notion of the traingindex of a rational parametrization, i.e. the number of times a (possiblynon-proper) parametrization \winds around, or traes, an algebrai urve".When we ompute the resultant of h1 and h2 as above for an non-properparametrization, then this traing index will show up in the exponent of thegenerating polynomial.Example 3.1: Let us do this for the ardioid urve of Figure 1(a). We startfrom the parametrizationx(t) = 256t4 � 16t2256t4 + 32t2 + 1 ; y(t) = �128t3256t4 + 32t2 + 1 :9



So we have to eliminate the variable t from the equationsh1(t; x) = x � (256t4 + 32t2 + 1)� 256t4 + 16t2;h2(t; y) = y � (256t4 + 32t2 + 1) + 128t3:As the polynomial de�ning the ardioid urve we getresultantt(h1(t; x); h2(t; y)) = 17179869184�(4y4�y2+8x2y2�4xy2+4x4�4x3):Similarly we ould determine this de�ning polynomial by a Gr�obner basisomputation. �5 Further topis in omputational algebraigeometryWe have only desribed a few subproblems in omputational algebrai geom-etry. For the algorithmi treatment of problems in omputer aided geometridesign, suh as blending and o�setting, we refer the reader to [Ho�89℄. Athorough analysis of the o�set urves, in partiular their genus, is given in[ASSe99℄. If we need to deide problems on algebrai geometri objets in-volving not only equations but also inequalities, then the appropriate methodis Collins' algorithm for ylindrial algebrai deomposition, see [CaJo98℄.Further areas of investigation are desingularization of surfaes, determin-ing rational points on ellipti urves, and fast algorithms for visualizationof urves and surfaes. In general, it will be more and more important tobridge the gap between symboli and numerial algorithms, ombining thebest features of both worlds.6 Open problemsInteger oeÆients in urve parametrizationAs we have seen in Chapter 2, the quality of a rational parametrization ofan algebrai urve ruially depends on the quality of a regular point whihwe an determine on this urve. For instane, starting from a de�ning poly-nomial f(x; y) of C over the rational numbers Q , we know that we will needan algebrai extension of degree 2, at most, for expressing suh a point. Butif we an atually �nd a regular point with oordinates in Q , and thereforea parametrization with rational oeÆients, the question is still how to �nda parametrization with \smallest" rational oeÆients. To our knowledge,this problem is unsolved. 10



Optimality of surfae parametrizationFor rational algebrai surfaes no algorithm is known, in general, for�nding a parametrization with lowest possible degree of rational funtions.The best we an urrently do is to ompute a parametrization having at mosttwie the optimal degree, see [Shi99℄.Also the problem of determining the smallest algebrai �eld extension forexpressing a rational parametrization of a rational algebrai surfae is wideopen. In general, we annot deide whether there is a parametrization overthe given �eld of de�nition. We also do not know whether a bound for thedegree of the neessary extension exists.Deomposition of rational funtions over RIn the algorithm for rationally parametrizing pipe and anal surfaes,[LSWH00℄, the problem is �nally redued to �nding a representation of arational funtion as a sum of two squares. This is a speial ase of Hilbert's17th problem. Over the real algebrai numbers there exists a simple algorithmfor solving this problem. Over R the problem is still open.Determining rational points on ellipti urvesFor urves of genus 0 we an deide the existene of rational points. Ifa urve of genus 0 over a �eld of harateristi 0 has one rational pointthen it must have in�nitely many. In fat, we an determine these rationalpoints. If the genus is greater or equal 2, then there are only �nitely manyrational points on the urve C. This was onjetured by Mordell and provedby Faltings [Falt83℄. For urves of genus 1, i.e. so-alled ellipti urves, allpossiblities an arise: no, �nitely many, and in�nitely many rational points.Ellipti urves play an important rôle in many areas of mathematis, andreently also in ryptography. Determining all, or at least one, rational pointon an ellipti urve is an open problem. For a short introdution see [Drm00℄.Symboli-numerial plotting of surfaesWhen we work with urves and surfaes, we do not only onstrut, trans-form, and analyze them, but sometimes we also want to visualize them on thesreen. These geometrial objets might be quite ompliated, having sev-eral real omponents, perhaps isolated singularities, and ompliated branhpoints.There are basially two approahes to the problem of plotting suh urvesor surfaes: numerial plotting and algebrai plotting. Whereas numerialplotting routines work well for simple objets and require relatively little om-putation time, they quikly beome unreliable for more ompliated objets:missing small omponents, getting the piture wrong around singularities.On the other hand, algebrai plotting routines an overome these problems,11



but are notoriously slow.Reently we have developed a hybrid symboli-numerial routine in theprogram system CASA, [HHWi03℄, for reliable but relatively fast visualiza-tion of plane algebrai urves [MSWi00℄. These methods need to be under-stood better and extended to surfaes.Referenes[AbBa88℄ S.S. Abhyankar, C.L. Bajaj, \Automati Parametrization of Ra-tional Curves and Surfaes III: Algebrai Plane Curves", Com-puter Aided Geometri Design 5, 309{321 (1988).[ASSe99℄ E. Arrondo, J. Sendra, J.R. Sendra, \Genus Formula for General-ized O�set Curves", J. Pure and Applied Algebra 136/3, 199{209(1999).[CaJo98℄ B.F. Caviness, J.R. Johnson, Quanti�er Elimination and Cylin-drial Algebrai Deomposition, Springer (1998).[Drm00℄ M. Drmota, \Sieben Millenniums-Probleme. I.", Internat. Math.Nahrihten 184, 29{36 (2000).[Falt83℄ G. Faltings, \Endlihkeitss�atze f�ur abelshe Variet�aten �uberZahlenk�orpern", Invent. Math. 73, 549{576 (1983).[HHWi03℄ R. Hemmeke, E. Hillgarter, F. Winkler, \CASA", in: Hand-book of Computer Algebra: Foundations, Appliations, Systems,J. Grabmeier, E. Kaltofen, V. Weispfenning (eds.), 356{359,Springer-Verlag (2003).[HiHu90℄ D. Hilbert, A. Hurwitz, \�Uber die Diophantishen Gleihungenvom Geshleht Null", Ata math. 14, 217{224 (1890).[HiWi98℄ E. Hillgarter, F. Winkler, \Points on Algebrai Curves and theParametrization Problem", in Automated Dedution in Geome-try, D. Wang (ed.), Springer-Verlag Berlin, LNAI 1360, 189{207(1998).[Hiro64℄ H. Hironaka, \Resolution of Singularities of an Algebrai Varietyover a Field of Charateristi 0", Ann. Math. 79, 109{326 (1964).[Hoeij94℄ M. van Hoeij, \Computing Parametrizations of Rational Alge-brai Curves", in Pro. ISSAC'94, J. von zur Gathen and M.Giesbreht (eds.), ACM Press, 187{190 (1994).12
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