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urves and surfa
es have been studied intensively in al-gebrai
 geometry for 
enturies. Thus, there exists a huge amount oftheoreti
al knowledge about these geometri
 obje
ts. Re
ently, al-gebrai
 
urves and surfa
es play an important and ever in
reasingrôle in 
omputer aided geometri
 design, 
omputer vision, 
omputeraided manufa
turing, 
oding theory, and 
ryptography, just to namea few appli
ation areas. Consequently, theoreti
al results need to beadapted to pra
ti
al needs. We need eÆ
ient algorithms for generat-ing, representing, manipulating, analyzing, rendering algebrai
 
urvesand surfa
es. Exa
t 
omputer algebrai
 methods 
an be employede�e
tively for dealing with these geometri
 problems.1 Introdu
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Figure 1: (a) 
ardioid 
urve and o�set (b) Viviani pipe surfa
efor dealing with these geometri
 problems. So, for instan
e, we need to beable to fa
tor over algebrai
ally 
losed �elds for determining whether a 
urveor surfa
e is irredu
ible, we need to solve systems of algebrai
 equations foranalyzing the singular lo
us of su
h obje
ts, and we need to 
ontrol algebrai
extensions in 
omputing rational parametrizations.We des
ribe some of the algorithms for 
omputations with algebrai

urves and surfa
es whi
h have been developed in the last few years. Oneinteresting subproblem is the rational parametrization of 
urves and surfa
es.Determining whether a 
urve or surfa
e has a rational parametrization, andif so, 
omputing su
h a parametrizaton, is a non-trivial task. But in the lastfew years there has been quite some progress in this area.Impli
it representations (by de�ning polynomial) and parametri
 repre-sentations (by rational parametrization) both have their parti
ular advan-tages and disadvantages. Given an impli
it representation of a 
urve and apoint in the plane, it is easy to 
he
k whether the point is on the 
urve. Butit is hard to generate \good" points on the 
urve, i.e. for instan
e pointswith rational 
oordinates if the de�ning �eld is Q . This is easy for a 
urvegiven parametri
ally. So it is highly desirable to have eÆ
ient algorithms for
hanging from impli
it to parametri
 representation, and vi
e versa. We havedes
ribed su
h parametrization algorithms for 
urves in [SeWi97℄, [SeWi99℄.So, for instan
e, the 
ardioid 
urve and also its o�set 
urve are both ratio-nal 
urves; 
ompare Figure 1(a). Re
ently, in [LSWH00℄, we have developeda 
ompletely algebrai
 algorithm for parametrizing pipe and 
anal surfa
es,su
h as the pipe around Viviani's temple, see Figure 1(b).Sometimes algebrai
 
urves and surfa
es need to be visualized. Numeri-2




al approximation algorithms tend to have problems �nding all the isolated
omponents of these obje
ts and also tra
ing them through singularities. Onthe other hand, symboli
 algebrai
 algorithms might spend a lot of 
om-putation time on non-
riti
al parts of these obje
ts. We des
ribe a hybridsymboli
-numeri
al algorithm for visualizing algebrai
 
urves.In the last se
tion we mention some open problems in 
omputational alge-brai
 geometry. These open problems 
on
ern the \best" integer 
oeÆ
ientsof a parametrization, optimal parametrization of surfa
es, determining ra-tional points on ellipti
 
urves, de
omposition of rational fun
tions over thereals, and symboli
-numeri
al plotting of surfa
es.For a general ba
kground on 
omputer algebra and on symboli
 alge-brai
 algorithms for algebrai
 
urves and surfa
es we refer to [Wink96℄ and[HSWi97℄.2 Parametrization of algebrai
 
urvesOne interesting problem in 
omputational algebrai
 geometry is the rationalparametrization of 
urves and surfa
es. Consider an aÆne plane algebrai

urve C in A 2(K) de�ned by the bivariate polynomial f(x; y) 2 K[x; y℄ (herewe denote by K the algebrai
 
losure of the ground �eld K). I.e.C = f(a; b) j (a; b) 2 A 2(K) and f(a; b) = 0g:Of 
ourse, we 
ould also view this 
urve in the proje
tive plane P2(K), de�nedby F (x; y; z), the homogenization of f(x; y).A pair of rational fun
tions (x(t); y(t)) 2 K(t)2 is a rational parametriza-tion of the 
urve C, if and only if f(x(t); y(t)) = 0 and x(t); y(t) are notboth 
onstant. Only irredu
ible 
urves, i.e. 
urves whose de�ning polyno-mial is absolutely irredu
ible, 
an have a rational parametrization. Almostany rational transformation of a rational parametrization is again a ratio-nal parametrization, so su
h parametrizations are not unique. An algebrai

urve having a rational parametrization is 
alled a rational 
urve. A ratio-nal parametrization is 
alled proper i� the 
orresponding rational map fromK to C is invertible, i.e. i� the the aÆne line and the 
urve C are bira-tionally equivalent. By L�uroth's theorem, every rational 
urve has a properparametrization.Impli
it representations (by de�ning polynomial) and parametri
 repre-sentations (by rational parametrization) both have their parti
ular advan-tages and disadvantages. Given an impli
it representation of a 
urve and apoint in the plane, it is easy to 
he
k whether the point is on the 
urve. Butit is hard to generate \good" points on the 
urve, i.e. for instan
e points with3



rational 
oordinates if the de�ning �eld is Q . On the other hand, generatinggood points is easy for a 
urve given parametri
ally, but de
iding whether apoint is on the 
urve requires the solution of a system of algebrai
 equations.So it is highly desirable to have eÆ
ient algorithms for 
hanging from impli
itto parametri
 representation, and vi
e versa.Example 2.1: The 
urve de�ned in the aÆne or proje
tive plane over C bythe de�ning equation f(x; y) = y2�x3�x2 = 0 is rationally parametrizable,and a
tually a parametrization is x(t) = t2 � 1, y(t) = t(t2 � 1).On the other hand, the ellipti
 
urve de�ned by f(x; y) = y2�x3+x = 0does not have a rational parametrization.The ta
node 
urve de�ned by f(x; y) = 2x4 � 3x2y + y4 � 2y3 + y2 = 0has the parametrizationx(t) = t3 � 6t2 + 9t� 22t4 � 16t3 + 40t2 � 32t+ 9 ; y(t) = t2 � 4t+ 42t4 � 16t3 + 40t2 � 32t+ 9 :The 
riterion for parametrizability of a 
urve is its genus. Only 
urves ofgenus 0, i.e. 
urves having as many singularities as their degree permits,have a rational parametrization. �A symboli
 algebrai
 algorithm for rational parametrization of 
urvesof genus 0 has been developed in [SeWi91℄, [SeWi97℄, [SeWi99℄. Let usdemonstrate the algorithm on a simple example.Example 2.2: Let C be the 
urve in the 
omplex plane de�ned byf(x; y) = (x2 + 4y + y2)2 � 16(x2 + y2) = 0:The 
urve C has the following rational parametrization:x(t) = �32 � �1024i+ 128t� 144it2 � 22t3 + it42304� 3072it� 736t2 � 192it3 + 9t4 ;y(t) = �40 � 1024� 256it� 80t2 + 16it3 + t42304� 3072it� 736t2 � 192it3 + 9t4 :C has in�nitely many real points. But generating any one of these real pointsfrom the above parametrization is not obvious. Does this real 
urve C alsohave a parametrization over R? Indeed it does, let's see how we 
an get one.In the proje
tive plane over C , C has 3 double points, namely (0 : 0 : 1)and (1 : �i : 0). Let ~H be the linear system of 
oni
s passing through allthese double points. ~H is 
alled the system of adjoint 
urves of degree 2.The system ~H has dimension 2 and is de�ned byh(x; y; z; s; t) = x2 + sxz + y2 + tyz = 0:4



I.e., for any parti
ular values of s and t we get a 
oni
 in ~H. 3 elements ofthis linear system de�ne a birational transformationT = (h(x; y; z; 0; 1) : h(x; y; z; 1; 0) : h(x; y; z; 1; 1))= (x2 + y2 + yz : x2 + xz + y2 : x2 + xz + y2 + yz)whi
h transforms C to the 
oni
 D de�ned by15x2 + 7y2 + 6xy � 38x� 14y + 23 = 0:For a 
oni
 de�ned over Q we 
an de
ide whether it has a point over Qor R. In parti
ular, we determine the point (1; 8=7) on D, whi
h, by T �1,
orresponds to the regular point P = (0;�8) on C. Now, by restri
ting ~Hto 
oni
s through P and interse
ting ~H with C (for details see [SeWi97℄), weget the parametrizationx(t) = �1024t3256t4 + 32t2 + 1 ; y(t) = �2048t4 + 128t2256t4 + 32t2 + 1 :over the reals. �An alternative parametrization approa
h 
an be found in [Hoeij94℄.In any 
ase, 
omputing su
h a parametrization essentially requires thesolution of two major problems:(1) a full analysis of singularities and determination of genus and adjoint
urves (either by su

essive blow-ups, or by Puiseux expansion) and(2) the determination of a regular point on the 
urve.The fastest known method for (1) has been presented in [Stad00℄. If f(x; y) 2Q [x; y℄ is the de�ning polynomial for the 
urve under 
onsideration, then theproblem 
an be solved in time O(d5), where d is the degree of f .Let us dis
uss the treatment of problem (2). We 
an 
ontrol the qualityof the resulting parametrization by 
ontrolling the �eld over whi
h we 
hoosethis regular point. Thus, �nding a regular 
urve point over a minimal �eldextension on a 
urve of genus 0 is one of the 
entral problems in rationalparametrization. The treatment of this problem goes ba
k to [HiHu90℄. Itsimportan
e for the parametrization problem has been des
ribed in [HiWi98℄.A rationally parametrizable 
urve always has in�nitely many regularpoints over the algebrai
 
losure K of the ground �eld K. Every one ofthese regular points is 
ontained in an algebrai
 extension �eld of K of 
er-tain �nite degree. The 
oordinates of the regular point determine dire
tlythe algebrai
 extension degree over K whi
h is required for determining aparametrization based on this regular point. So the 
entral issue is to �nd5
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Figure 2: determining points on the ta
node 
urvea regular point on the 
urve C of as low an algebrai
 extension degree aspossible.Example 2.3: Let us on
e more 
onsider the ta
node 
urve C of Example2.1, de�ned by f(x; y) = 2x4 � 3x2y + y4 � 2y3 + y2 = 0:A

ording to the approa
h des
ribed in Example 2.2 we need a regular pointon the 
urve. We might determine su
h a point by interse
ting C with a line.Su
h interse
ting lines are shown in Figure 2.Suppose we sele
t the line L1 de�ned by l1(x; y) = y+1. The 4 interse
tionpoints have the form P = (�;�1), where � is a root of the irredu
iblepolynomial 2�4+3�2+4 = 0. Using su
h a point leads to the parametrization(x(t); y(t)) = (n1(t)=d(t); n2(t)=d(t)), wheren1(t) = ��4 (36t4 + (60�+ 72�3)t3 � (18 + 108�2)t2 + (103�+ 42�3)t�20� 24�2);n2(t) = �9t4 � (3�+ 18�3)t3 + (2�2 � 33)t2 � (2� + 12�3)t� 4;d(t) = 9t4 + 24�t3 � (16�2 + 60)t2 � (20�+ 24�3)t+ 6 + 12�2:This parametrization of C has 
omplex 
oeÆ
ients of algebrai
 degree 4 overQ . Now suppose we sele
t the line L2 de�ned by l2(x; y) = y � 1. L2 in-terse
ts C in the double point (0; 1) and in the 2 interse
tion points hav-ing the form P = (� : 1), where � is a root of the irredu
ible polynomial6



2�2 � 3 = 0. Using su
h a point leads to the parametrization (x(t); y(t)) =(n1(t)=d(t); n2(t)=d(t)), wheren1(t) = 2�t4 + 9t3 � 27t� 18�;n2(t) = 2t4 + 12�t3 + 39t2 + 36�t+ 18;d(t) = 11t4 + 24�t3 + 12t2 + 18:This parametrization of C has real 
oeÆ
ients of algebrai
 degree 2 over Q .Next we sele
t the line L3 de�ned by l3(x; y) = y � 1792025687968 x = 0: L3interse
ts C in the double point (0; 0) and in 2 other rational points, one ofwhi
h has the 
oordinatesP = �12328881116501772841609267; 32113536006251772841609267� :Using this point P leads to the parametrization (x(t); y(t)) = (n1(t)=d(t); n2(t)=d(t)),wheren1(t) = �11095993004850t4 � 12890994573912t3 + 4296998191304t+1232888111650;n2(t) = 28902182405625t4 + 67155391392600t3 + 58277689547446t2+22385130464200t+ 3211353600625;d(t) = 15955574483403t4 + 44963405382900t3 + 54017766921682t2+29782459134100t+ 6069839800571:This parametrization of C has rational 
oeÆ
ients, but they are huge.Finally we sele
t the line L4 de�ned by l4(x; y) = x � 1. L4 interse
tsC in 2 
omplex points and 2 real points, one of whi
h has the 
oordinatesP = (1; 2). Using this point P leads to the parametrization (x(t); y(t)) =(n1(t)=d(t); n2(t)=d(t)), wheren1(t) = 2t4 + 7t3 � 21t� 18;n2(t) = 4t4 + 28t3 + 73t2 + 84t+ 36;d(t) = 9t4 + 40t3 + 64t2 + 48t+ 18:This parametrization of C has small rational 
oeÆ
ients. �In [SeWi97℄ we present an algorithm for determining the lowest alge-brai
 extension degree [Q(�) : Q ℄ of a �eld Q(�) whi
h admits a rationalparametrization of a 
urve de�ned over Q . In fa
t, this algorithm also de-termines a parametrization over this optimal extension �eld. In [SeWi99℄we des
ribe a de
ision pro
edure for determining whether an algebrai
 
urvewith de�ning polynomial in Q [x; y℄ has a parametrization over the real num-bers R. 7



On
e we are able to parametrize algebrai
 
urves over the optimal exten-sion �eld, we 
an also determine Diophantine solutions of the 
orrespondingpolynomial equations. We do not go into details here, but refer the readerto [PoVo00℄.3 Parametrization of algebrai
 surfa
esThe problem of rational parametrization 
an also be solved for algebrai
surfa
es. Also in this 
ase, the analysis of singularities plays an essential rôle.Many di�erent authors have been involved in the solution of this problem,we just mention [Hiro64℄ and [Vill91℄. Based on the algorithmi
 solutionof the singularity problem, S
hi
ho has developed a general algorithm fordetermining the rational parametrizability of an algebrai
 surfa
e, and, in thepositive 
ase, for a
tually 
omputing su
h a parametrization. See [S
hi98℄.But whereas for the 
ase of 
urves we know exa
tly the degrees of the rationalfun
tions and also the degree of the algebrai
 extension whi
h might appearin the parametrization, these bounds are not known for surfa
es, in general.General parametrization algorithms for surfa
es require 
onsiderable 
om-putation time. So it is natural to try to develop algorithms spe
i�
ally tay-lored for 
lasses of surfa
es of pra
ti
al importan
e. Su
h a 
lass is, forinstan
e, the one of pipe and 
anal surfa
es. A 
anal surfa
e S, generated bya parametrized spa
e 
urve C = (m1(t); m2(t); m3(t)) in R3 , is the envelope ofthe set of spheres with rational radius fun
tion r(t) 
entered at C. The 
urveC is 
alled the spine 
urve of S. In a pipe surfa
e r(t) is 
onstant. This 
on-
ept generalizes the 
lassi
al o�sets (for 
onstant r(t)) of plane 
urves. Pipesurfa
es have numerous appli
ations, su
h as shape re
onstru
tion or roboti
path planning. Canal surfa
es with variable radius arise in the 
ontext of
omputer aided geometri
 design mainly as transition surfa
es between pipes.Whereas for 
urves it is 
ru
ial to determine a regular point with real
oordinates, in the situation of pipe and 
anal surfa
es we determine a ra-tional 
urve with real 
oeÆ
ients on the surfa
e, in the same parameter asthe spine 
urve. On
e we have determined su
h a rational 
urve on the 
analsurfa
e S, we 
an rotate this 
urve around the spine 
urve and in su
h a way
ompute a parametrization of S.So, for instan
e, Viviani's temple is de�ned as the interse
tion of a sphereof radius 2a and a 
ir
ular 
ylinder of radius a:x2 + y2 + z2 = 4a2;(x� a)2 + y2 = a2;8



see Figure 1(b). The pipe around Viviani's temple 
an be rationally para-metrized.In [PePo97℄ it is shown that 
anal surfa
es with rational spine 
urveand rational radius fun
tion are in general rational. To be pre
ise, theyadmit rational parametrizations of their real 
omponents. Re
ently we havedeveloped a 
ompletely symboli
 algebrai
 algorithm for 
omputing rationalparametrizations of pipe and 
anal surfa
es over Q , see [LSWH00℄.4 Impli
itization of 
urves and surfa
esThe inverse problem to the problem of parametrization 
onsists in start-ing from a (rational) parametrization and determining the impli
it algebrai
equation of the 
urve or surfa
e. This is basi
ally an elimination problem.Let us demonstrate the pro
edure for 
urves. We write the parametri
 rep-resentation of the 
urve C,x(t) = p(t)=r(t); y(t) = q(t)=r(t);as h1(t; x) = x � r(t)� p(t) = 0; h2(t; y) = y � r(t)� q(t) = 0:The impli
it equation of the 
urve must be the generator of the idealI = hh1(t; x); h2(t; y)i \ K[x; y℄:We 
an use any method in elimination theory, su
h as resultants of Gr�obnerbases, for determining this generator. For instan
e,resultantt(h1(t; x); h2(t; y))will yield the polynomial de�ning the 
urve C. Compare [Wink96℄ and[SeWi01℄ for details. In [SeWi01℄ we introdu
e the notion of the tra
ingindex of a rational parametrization, i.e. the number of times a (possiblynon-proper) parametrization \winds around, or tra
es, an algebrai
 
urve".When we 
ompute the resultant of h1 and h2 as above for an non-properparametrization, then this tra
ing index will show up in the exponent of thegenerating polynomial.Example 3.1: Let us do this for the 
ardioid 
urve of Figure 1(a). We startfrom the parametrizationx(t) = 256t4 � 16t2256t4 + 32t2 + 1 ; y(t) = �128t3256t4 + 32t2 + 1 :9



So we have to eliminate the variable t from the equationsh1(t; x) = x � (256t4 + 32t2 + 1)� 256t4 + 16t2;h2(t; y) = y � (256t4 + 32t2 + 1) + 128t3:As the polynomial de�ning the 
ardioid 
urve we getresultantt(h1(t; x); h2(t; y)) = 17179869184�(4y4�y2+8x2y2�4xy2+4x4�4x3):Similarly we 
ould determine this de�ning polynomial by a Gr�obner basis
omputation. �5 Further topi
s in 
omputational algebrai
geometryWe have only des
ribed a few subproblems in 
omputational algebrai
 geom-etry. For the algorithmi
 treatment of problems in 
omputer aided geometri
design, su
h as blending and o�setting, we refer the reader to [Ho�89℄. Athorough analysis of the o�set 
urves, in parti
ular their genus, is given in[ASSe99℄. If we need to de
ide problems on algebrai
 geometri
 obje
ts in-volving not only equations but also inequalities, then the appropriate methodis Collins' algorithm for 
ylindri
al algebrai
 de
omposition, see [CaJo98℄.Further areas of investigation are desingularization of surfa
es, determin-ing rational points on ellipti
 
urves, and fast algorithms for visualizationof 
urves and surfa
es. In general, it will be more and more important tobridge the gap between symboli
 and numeri
al algorithms, 
ombining thebest features of both worlds.6 Open problemsInteger 
oeÆ
ients in 
urve parametrizationAs we have seen in Chapter 2, the quality of a rational parametrization ofan algebrai
 
urve 
ru
ially depends on the quality of a regular point whi
hwe 
an determine on this 
urve. For instan
e, starting from a de�ning poly-nomial f(x; y) of C over the rational numbers Q , we know that we will needan algebrai
 extension of degree 2, at most, for expressing su
h a point. Butif we 
an a
tually �nd a regular point with 
oordinates in Q , and thereforea parametrization with rational 
oeÆ
ients, the question is still how to �nda parametrization with \smallest" rational 
oeÆ
ients. To our knowledge,this problem is unsolved. 10



Optimality of surfa
e parametrizationFor rational algebrai
 surfa
es no algorithm is known, in general, for�nding a parametrization with lowest possible degree of rational fun
tions.The best we 
an 
urrently do is to 
ompute a parametrization having at mosttwi
e the optimal degree, see [S
hi99℄.Also the problem of determining the smallest algebrai
 �eld extension forexpressing a rational parametrization of a rational algebrai
 surfa
e is wideopen. In general, we 
annot de
ide whether there is a parametrization overthe given �eld of de�nition. We also do not know whether a bound for thedegree of the ne

essary extension exists.De
omposition of rational fun
tions over RIn the algorithm for rationally parametrizing pipe and 
anal surfa
es,[LSWH00℄, the problem is �nally redu
ed to �nding a representation of arational fun
tion as a sum of two squares. This is a spe
ial 
ase of Hilbert's17th problem. Over the real algebrai
 numbers there exists a simple algorithmfor solving this problem. Over R the problem is still open.Determining rational points on ellipti
 
urvesFor 
urves of genus 0 we 
an de
ide the existen
e of rational points. Ifa 
urve of genus 0 over a �eld of 
hara
teristi
 0 has one rational pointthen it must have in�nitely many. In fa
t, we 
an determine these rationalpoints. If the genus is greater or equal 2, then there are only �nitely manyrational points on the 
urve C. This was 
onje
tured by Mordell and provedby Faltings [Falt83℄. For 
urves of genus 1, i.e. so-
alled ellipti
 
urves, allpossiblities 
an arise: no, �nitely many, and in�nitely many rational points.Ellipti
 
urves play an important rôle in many areas of mathemati
s, andre
ently also in 
ryptography. Determining all, or at least one, rational pointon an ellipti
 
urve is an open problem. For a short introdu
tion see [Drm00℄.Symboli
-numeri
al plotting of surfa
esWhen we work with 
urves and surfa
es, we do not only 
onstru
t, trans-form, and analyze them, but sometimes we also want to visualize them on thes
reen. These geometri
al obje
ts might be quite 
ompli
ated, having sev-eral real 
omponents, perhaps isolated singularities, and 
ompli
ated bran
hpoints.There are basi
ally two approa
hes to the problem of plotting su
h 
urvesor surfa
es: numeri
al plotting and algebrai
 plotting. Whereas numeri
alplotting routines work well for simple obje
ts and require relatively little 
om-putation time, they qui
kly be
ome unreliable for more 
ompli
ated obje
ts:missing small 
omponents, getting the pi
ture wrong around singularities.On the other hand, algebrai
 plotting routines 
an over
ome these problems,11



but are notoriously slow.Re
ently we have developed a hybrid symboli
-numeri
al routine in theprogram system CASA, [HHWi03℄, for reliable but relatively fast visualiza-tion of plane algebrai
 
urves [MSWi00℄. These methods need to be under-stood better and extended to surfa
es.Referen
es[AbBa88℄ S.S. Abhyankar, C.L. Bajaj, \Automati
 Parametrization of Ra-tional Curves and Surfa
es III: Algebrai
 Plane Curves", Com-puter Aided Geometri
 Design 5, 309{321 (1988).[ASSe99℄ E. Arrondo, J. Sendra, J.R. Sendra, \Genus Formula for General-ized O�set Curves", J. Pure and Applied Algebra 136/3, 199{209(1999).[CaJo98℄ B.F. Caviness, J.R. Johnson, Quanti�er Elimination and Cylin-dri
al Algebrai
 De
omposition, Springer (1998).[Drm00℄ M. Drmota, \Sieben Millenniums-Probleme. I.", Internat. Math.Na
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