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Algebraic curves and surfaces have been studied intensively in algebraic ge-
ometry for centuries. Thus, there exists a huge amount of theoretical knowl-
edge about these geometric objects. Recently, algebraic curves and surfaces
play an important and ever increasing role in computer aided geometric de-
sign, computer vision, computer aided manufacturing, coding theory, and
cryptography, just to name a few application areas. Consequently, theoretical
results need to be adapted to practical needs. We need efficient algorithms for
generating, representing, manipulating, analyzing, rendering algebraic curves
and surfaces. Exact computer algebraic methods can be employed effectively
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Abstract

Algebraic curves and surfaces have been studied intensively in al-
gebraic geometry for centuries. Thus, there exists a huge amount of
theoretical knowledge about these geometric objects. Recently, al-
gebraic curves and surfaces play an important and ever increasing
role in computer aided geometric design, computer vision, computer
aided manufacturing, coding theory, and cryptography, just to name
a few application areas. Consequently, theoretical results need to be
adapted to practical needs. We need efficient algorithms for generat-
ing, representing, manipulating, analyzing, rendering algebraic curves
and surfaces. Exact computer algebraic methods can be employed
effectively for dealing with these geometric problems.
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Figure 1: (a) cardioid curve and offset (b) Viviani pipe surface

for dealing with these geometric problems. So, for instance, we need to be
able to factor over algebraically closed fields for determining whether a curve
or surface is irreducible, we need to solve systems of algebraic equations for
analyzing the singular locus of such objects, and we need to control algebraic
extensions in computing rational parametrizations.

We describe some of the algorithms for computations with algebraic
curves and surfaces which have been developed in the last few years. One
interesting subproblem is the rational parametrization of curves and surfaces.
Determining whether a curve or surface has a rational parametrization, and
if so, computing such a parametrizaton, is a non-trivial task. But in the last
few years there has been quite some progress in this area.

Implicit representations (by defining polynomial) and parametric repre-
sentations (by rational parametrization) both have their particular advan-
tages and disadvantages. Given an implicit representation of a curve and a
point in the plane, it is easy to check whether the point is on the curve. But
it is hard to generate “good” points on the curve, i.e. for instance points
with rational coordinates if the defining field is Q. This is easy for a curve
given parametrically. So it is highly desirable to have efficient algorithms for
changing from implicit to parametric representation, and vice versa. We have
described such parametrization algorithms for curves in [SeWi97], [SeWi99].
So, for instance, the cardioid curve and also its offset curve are both ratio-
nal curves; compare Figure 1(a). Recently, in [LSWHO00], we have developed
a completely algebraic algorithm for parametrizing pipe and canal surfaces,
such as the pipe around Viviani's temple, see Figure 1(b).

Sometimes algebraic curves and surfaces need to be visualized. Numeri-



cal approximation algorithms tend to have problems finding all the isolated
components of these objects and also tracing them through singularities. On
the other hand, symbolic algebraic algorithms might spend a lot of com-
putation time on non-critical parts of these objects. We describe a hybrid
symbolic-numerical algorithm for visualizing algebraic curves.

In the last section we mention some open problems in computational alge-
braic geometry. These open problems concern the “best” integer coefficients
of a parametrization, optimal parametrization of surfaces, determining ra-
tional points on elliptic curves, decomposition of rational functions over the
reals, and symbolic-numerical plotting of surfaces.

For a general background on computer algebra and on symbolic alge-
braic algorithms for algebraic curves and surfaces we refer to [Wink96] and
[HSWi97].

2 Parametrization of algebraic curves

One interesting problem in computational algebraic geometry is the rational
parametrization of curves and surfaces. Consider an affine plane algebraic
curve C in A?(K) defined by the bivariate polynomial f(x,y) € K[z, y] (here
we denote by K the algebraic closure of the ground field K). Le.

C = {(a,b) | (a,b) € A2(K) and f(a,b) = 0}.

Of course, we could also view this curve in the projective plane P?(K), defined
by F(zx,y,z), the homogenization of f(x,y).

A pair of rational functions (x(t),y(t)) € K(t)? is a rational parametriza-
tion of the curve C, if and only if f(z(¢),y(t)) = 0 and z(¢),y(t) are not
both constant. Only irreducible curves, i.e. curves whose defining polyno-
mial is absolutely irreducible, can have a rational parametrization. Almost
any rational transformation of a rational parametrization is again a ratio-
nal parametrization, so such parametrizations are not unique. An algebraic
curve having a rational parametrization is called a rational curve. A ratio-
nal parametrization is called proper iff the corresponding rational map from
K to C is invertible, i.e. iff the the affine line and the curve C are bira-
tionally equivalent. By Liiroth’s theorem, every rational curve has a proper
parametrization.

Implicit representations (by defining polynomial) and parametric repre-
sentations (by rational parametrization) both have their particular advan-
tages and disadvantages. Given an implicit representation of a curve and a
point in the plane, it is easy to check whether the point is on the curve. But
it is hard to generate “good” points on the curve, i.e. for instance points with




rational coordinates if the defining field is Q. On the other hand, generating
good points is easy for a curve given parametrically, but deciding whether a
point is on the curve requires the solution of a system of algebraic equations.
So it is highly desirable to have efficient algorithms for changing from implicit
to parametric representation, and vice versa.

Example 2.1: The curve defined in the affine or projective plane over C by
the defining equation f(z,y) = y>—2® —2? = 0 is rationally parametrizable,
and actually a parametrization is x(t) =t — 1, y(t) = t(t* — 1).

On the other hand, the elliptic curve defined by f(z,y) =y*>—2*+2 =0
does not have a rational parametrization.

The tacnode curve defined by f(z,y) = 2z — 32°y +y* — 2y3 + > = 0
has the parametrization

3 — 6t* + 9t — 2 2 — 4t +4
r(t) = = 3 5 coy(t) = o 3 2 '
2t — 1613 + 402 — 32t + 9 2t — 1613 + 40t? — 32t + 9
The criterion for parametrizability of a curve is its genus. Only curves of

genus 0, i.e. curves having as many singularities as their degree permits,
have a rational parametrization. O

A symbolic algebraic algorithm for rational parametrization of curves
of genus 0 has been developed in [SeWi91], [SeWi97], [SeWi99]. Let us
demonstrate the algorithm on a simple example.

Example 2.2: Let C be the curve in the complex plane defined by
fla,y) = (@ + 4y +y°)* = 16(2* +¢%) = 0.
The curve C has the following rational parametrization:

—1024i + 128 — 144¢t2 — 2243 + it
2304 — 3072it — 7362 — 192if3 + 9tt’
1024 — 2564t — 80t% + 1643 + t*
2304 — 30723t — 73612 — 19243 + 9t

x(t) = —32

y(t) = —40

C has infinitely many real points. But generating any one of these real points
from the above parametrization is not obvious. Does this real curve C also
have a parametrization over R? Indeed it does, let’s see how we can get one.

In the projective plane over C, C has 3 double points, namely (0: 0 : 1)
and (1 : +i:0). Let #H be the linear system of conics passing through all
these double points. H is called the system of adjoint curves of degree 2.
The system # has dimension 2 and is defined by

h(x,y,z,5,t) = 2+ ser+ oyt tyz = 0.
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Le., for any particular values of s and ¢ we get a conic in H. 3 elements of
this linear system define a birational transformation

T = (h(r,y,2,0,1): h(x,y,2,1,0): h(z,y,2,1,1))
= @4y H+yz 2 daz+yt it Faz 4yt 4 y2)

which transforms C to the conic D defined by
1522 + Ty* + 62y — 38z — 14y + 23 = 0.

For a conic defined over Q we can decide whether it has a point over Q
or R. In particular, we determine the point (1,8/7) on D, which, by T’1~,
corresponds to the regular point P = (0,—8) on C. Now, by restricting H

to conics through P and intersecting H with C (for details see [SeWi97]), we
get the parametrization

10248 (1) = —2048t* 4 128t
Tosetirez+r1 N T osei 32211

x(t)

over the reals. O
An alternative parametrization approach can be found in [Hoeij94].

In any case, computing such a parametrization essentially requires the
solution of two major problems:

(1) a full analysis of singularities and determination of genus and adjoint
curves (either by successive blow-ups, or by Puiseux expansion) and

(2) the determination of a regular point on the curve.

The fastest known method for (1) has been presented in [Stad00]. If f(z,y) €
Q|x, y] is the defining polynomial for the curve under consideration, then the
problem can be solved in time O(d’), where d is the degree of f.

Let us discuss the treatment of problem (2). We can control the quality
of the resulting parametrization by controlling the field over which we choose
this regular point. Thus, finding a regular curve point over a minimal field
extension on a curve of genus 0 is one of the central problems in rational
parametrization. The treatment of this problem goes back to [HiHu90]. Its
importance for the parametrization problem has been described in [HiWi98].

A rationally parametrizable curve always has infinitely many regular
points over the algebraic closure K of the ground field K. Every one of
these regular points is contained in an algebraic extension field of K of cer-
tain finite degree. The coordinates of the regular point determine directly
the algebraic extension degree over K which is required for determining a
parametrization based on this regular point. So the central issue is to find
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Figure 2:  determining points on the tacnode curve

a regular point on the curve C of as low an algebraic extension degree as
possible.

Example 2.3: Let us once more consider the tacnode curve C of Example
2.1, defined by

flz,y) = 22t — 322y + vt — 2P + 2 = 0.

According to the approach described in Example 2.2 we need a regular point
on the curve. We might determine such a point by intersecting C with a line.
Such intersecting lines are shown in Figure 2.

Suppose we select the line £; defined by {4 (z,y) = y+1. The 4 intersection
points have the form P = («a,—1), where a is a root of the irreducible
polynomial 2a?+3a?+4 = 0. Using such a point leads to the parametrization

(z(t), y(t)) = (n1(t)/d(t), na(t)/d(t)), where

ni(t) = —2(36t* 4+ (60a + 72a%)t* — (18 + 108a?)t? + (103cx + 42a°)t
—20 — 24a?),
no(t) = —9t* — (3a + 18a*)t? + (202 — 33)1? — (2a + 12a3)t — 4,

d(t) = 9t* + 24at® — (1602 + 60)t* — (20a + 240°)t + 6 + 12a2.

This parametrization of C has complex coefficients of algebraic degree 4 over
Q.

Now suppose we select the line £y defined by ly(x,y) = y — 1. Ly in-
tersects C in the double point (0,1) and in the 2 intersection points hav-
ing the form P = (5 : 1), where § is a root of the irreducible polynomial
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232 — 3 = 0. Using such a point leads to the parametrization (x(t),y(t)) =
(n1(t)/d(t), n2(t)/d(t)), where

ny(t) = 28" + 93 — 27t — 188,
no(t) = 2t* + 1283 + 39t? + 365t + 18,
d(t) = 11" + 24613 + 12¢* + 18.

This parametrization of C has real coefficients of algebraic degree 2 over Q.
Next we select the line L3 defined by I3(z,y) = y — E2800 = 0. L4
intersects C in the double point (0,0) and in 2 other rational points, one of

which has the coordinates

(1232888111650 3211353600625
— 1772841609267 1772841609267 )

Using this point P leads to the parametrization (x(t), y(t)) = (n1(t)/d(t), na(t)/d(t)),
where

ni(t) = —11095993004850¢* — 12890994573912t% + 4296998191304¢
+1232888111650,

no(t) = 28902182405625¢* + 67155391392600t° + 582776895474461>
+22385130464200¢ + 3211353600625,

d(t) = 15955574483403t" + 44963405382900¢> + 54017766921682¢>
+29782459134100¢ + 6069839800571.

This parametrization of C has rational coefficients, but they are huge.

Finally we select the line £, defined by l4(z,y) = x — 1. L4 intersects
C in 2 complex points and 2 real points, one of which has the coordinates
P = (1,2). Using this point P leads to the parametrization (x(t),y(t)) =
(ny(t)/d(t),na(t)/d(t)), where

ni(t) = 2t* 4+ 7% — 21t — 18,
no(t) = 4t* + 2813 + 73t% + 84t + 36,
d(t) = 9t* + 40t> + 64> + 48t + 18.
This parametrization of C has small rational coefficients. O

In [SeWi97] we present an algorithm for determining the lowest alge-
braic extension degree [Q(a) : Q] of a field Q(a) which admits a rational
parametrization of a curve defined over Q. In fact, this algorithm also de-
termines a parametrization over this optimal extension field. In [SeWi99]
we describe a decision procedure for determining whether an algebraic curve
with defining polynomial in Q[z, y] has a parametrization over the real num-
bers R.



Once we are able to parametrize algebraic curves over the optimal exten-
sion field, we can also determine Diophantine solutions of the corresponding
polynomial equations. We do not go into details here, but refer the reader
to [PoVo00].

3 Parametrization of algebraic surfaces

The problem of rational parametrization can also be solved for algebraic
surfaces. Also in this case, the analysis of singularities plays an essential role.
Many different authors have been involved in the solution of this problem,
we just mention [Hiro64] and [Vill91]. Based on the algorithmic solution
of the singularity problem, Schicho has developed a general algorithm for
determining the rational parametrizability of an algebraic surface, and, in the
positive case, for actually computing such a parametrization. See [Schi98].
But whereas for the case of curves we know exactly the degrees of the rational
functions and also the degree of the algebraic extension which might appear
in the parametrization, these bounds are not known for surfaces, in general.

General parametrization algorithms for surfaces require considerable com-
putation time. So it is natural to try to develop algorithms specifically tay-
lored for classes of surfaces of practical importance. Such a class is, for
instance, the one of pipe and canal surfaces. A canal surface S, generated by
a parametrized space curve C = (my(t), ma(t), ms(t)) in R?, is the envelope of
the set of spheres with rational radius function r(¢) centered at C. The curve
C is called the spine curve of S. In a pipe surface r(t) is constant. This con-
cept generalizes the classical offsets (for constant r(¢)) of plane curves. Pipe
surfaces have numerous applications, such as shape reconstruction or robotic
path planning. Canal surfaces with variable radius arise in the context of
computer aided geometric design mainly as transition surfaces between pipes.

Whereas for curves it is crucial to determine a regular point with real
coordinates, in the situation of pipe and canal surfaces we determine a ra-
tional curve with real coefficients on the surface, in the same parameter as
the spine curve. Once we have determined such a rational curve on the canal
surface §, we can rotate this curve around the spine curve and in such a way
compute a parametrization of S.

So, for instance, Viviani’s temple is defined as the intersection of a sphere
of radius 2a and a circular cylinder of radius a:

(x—a)?+y* = a



see Figure 1(b). The pipe around Viviani’s temple can be rationally para-
metrized.

In [PePo97] it is shown that canal surfaces with rational spine curve
and rational radius function are in general rational. To be precise, they
admit rational parametrizations of their real components. Recently we have
developed a completely symbolic algebraic algorithm for computing rational
parametrizations of pipe and canal surfaces over Q, see [LSWHO0].

4 Implicitization of curves and surfaces

The inverse problem to the problem of parametrization consists in start-
ing from a (rational) parametrization and determining the implicit algebraic
equation of the curve or surface. This is basically an elimination problem.
Let us demonstrate the procedure for curves. We write the parametric rep-
resentation of the curve C,

w(t) =p(t)/r(t),  yt) = q(t)/r(t),

hi(t,x) =x-r(t) =p(t) =0, ha(t,y) =y-r(t) = q(t) = 0.

The implicit equation of the curve must be the generator of the ideal
I= <h1(ta x)v h?(tv y>> N K[Iv y]

We can use any method in elimination theory, such as resultants of Grobner
bases, for determining this generator. For instance,

resultant,(hy (¢, x), ha(t, y))

will yield the polynomial defining the curve C. Compare [Wink96] and
[SeWi01] for details. In [SeWi01l] we introduce the notion of the tracing
index of a rational parametrization, i.e. the number of times a (possibly
non-proper) parametrization “winds around, or traces, an algebraic curve”.
When we compute the resultant of h; and h, as above for an non-proper
parametrization, then this tracing index will show up in the exponent of the
generating polynomial.

Example 3.1: Let us do this for the cardioid curve of Figure 1(a). We start

from the parametrization

256t — 1612 0 = 1984
T+l VYT e 132241

x(t)



So we have to eliminate the variable ¢ from the equations

hi(t,x) = w-(256t* + 32t* + 1) — 2561 + 16¢2,
ho(t,y) = y-(256t* + 32t% + 1) + 128¢3.

As the polynomial defining the cardioid curve we get
resultant,(hy (¢, z), ho(t, y)) = 17179869184-(4y* —y> + 827y — 4y’ +4x* —42°).

Similarly we could determine this defining polynomial by a Grobner basis
computation. 0

5 Further topics in computational algebraic
geometry

We have only described a few subproblems in computational algebraic geom-
etry. For the algorithmic treatment of problems in computer aided geometric
design, such as blending and offsetting, we refer the reader to [Hoff89]. A
thorough analysis of the offset curves, in particular their genus, is given in
[ASSe99]. If we need to decide problems on algebraic geometric objects in-
volving not only equations but also inequalities, then the appropriate method
is Collins’ algorithm for cylindrical algebraic decomposition, see [CaJo98].
Further areas of investigation are desingularization of surfaces, determin-
ing rational points on elliptic curves, and fast algorithms for visualization
of curves and surfaces. In general, it will be more and more important to
bridge the gap between symbolic and numerical algorithms, combining the
best features of both worlds.

6 Open problems

Integer coefficients in curve parametrization

As we have seen in Chapter 2, the quality of a rational parametrization of
an algebraic curve crucially depends on the quality of a regular point which
we can determine on this curve. For instance, starting from a defining poly-
nomial f(x,y) of C over the rational numbers Q, we know that we will need
an algebraic extension of degree 2, at most, for expressing such a point. But
if we can actually find a regular point with coordinates in @, and therefore
a parametrization with rational coefficients, the question is still how to find
a parametrization with “smallest” rational coefficients. To our knowledge,
this problem is unsolved.
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Optimality of surface parametrization

For rational algebraic surfaces no algorithm is known, in general, for
finding a parametrization with lowest possible degree of rational functions.
The best we can currently do is to compute a parametrization having at most
twice the optimal degree, see [Schi99].

Also the problem of determining the smallest algebraic field extension for
expressing a rational parametrization of a rational algebraic surface is wide
open. In general, we cannot decide whether there is a parametrization over
the given field of definition. We also do not know whether a bound for the
degree of the neccessary extension exists.

Decomposition of rational functions over R

In the algorithm for rationally parametrizing pipe and canal surfaces,
[LSWHO00], the problem is finally reduced to finding a representation of a
rational function as a sum of two squares. This is a special case of Hilbert’s
17" problem. Over the real algebraic numbers there exists a simple algorithm
for solving this problem. Over R the problem is still open.

Determining rational points on elliptic curves

For curves of genus 0 we can decide the existence of rational points. If
a curve of genus 0 over a field of characteristic 0 has one rational point
then it must have infinitely many. In fact, we can determine these rational
points. If the genus is greater or equal 2, then there are only finitely many
rational points on the curve C. This was conjectured by Mordell and proved
by Faltings [Falt83]. For curves of genus 1, i.e. so-called elliptic curves, all
possiblities can arise: no, finitely many, and infinitely many rational points.
Elliptic curves play an important role in many areas of mathematics, and
recently also in cryptography. Determining all, or at least one, rational point
on an elliptic curve is an open problem. For a short introduction see [Drm00].

Symbolic-numerical plotting of surfaces

When we work with curves and surfaces, we do not only construct, trans-
form, and analyze them, but sometimes we also want to visualize them on the
screen. These geometrical objects might be quite complicated, having sev-
eral real components, perhaps isolated singularities, and complicated branch
points.

There are basically two approaches to the problem of plotting such curves
or surfaces: numerical plotting and algebraic plotting. Whereas numerical
plotting routines work well for simple objects and require relatively little com-
putation time, they quickly become unreliable for more complicated objects:
missing small components, getting the picture wrong around singularities.
On the other hand, algebraic plotting routines can overcome these problems,
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but are notoriously slow.

Recently we have developed a hybrid symbolic-numerical routine in the
program system CASA, [HHWi03], for reliable but relatively fast visualiza-
tion of plane algebraic curves [MSWi00]. These methods need to be under-
stood better and extended to surfaces.
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