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Abstract

Graph-theoretical approach is used to study cluster formation in mesocsopic systems. Appearance of these clusters is

due to discrete resonances which are presented in the form of a multigraph with labeled edges. This presentation allows to

construct all non-isomorphic clusters in a finite spectral domain and generate corresponding dynamical systems

automatically. Results of MATHEMATICA implementation are given and two possible mechanisms of cluster destroying

are discussed.
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1. Introduction

Mesoscopic regimes are at the frontier between classical (single waves/particles) and statistical (infinite
number of waves/particles) description of physical systems. Mesoscopic systems is a very popular topic in
various areas of modern physics and can be met in wave turbulence theory, condensed matter (quantum dots),
sociology (opinion formation), medicine (dynamics of cardiovascular system), etc. For instance, statistical
wave turbulence theory is based on Kolmogorov’s suggestion about spatial evenness of turbulence and does
not describe observed organized structures extending over many scales like boulders in a waterfall. Also many
laboratory experiments stay unexplained in terms of statistical approach as in Ref. [1] where the experimental
results have been presented for water turbulence excited by piston-like programmed wave-makers in water
flume with dimensions 6� 12� 1:5m. The main goal of this experiments was to establish a power-law scaling
for the energy spectrum, E�o�n, with some fixed n coming from statistical considerations and o being wave
dispersion function. It turned out that discrete effects are major and statistical predictions are never achieved:
with increasing wave intensity the nonlinearity becomes strong before the system loses sensitivity to the
discreteness of the spectral space.
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Our next example is taken from a quite different area of research—sociology. Finite-size effects in the
dynamics of opinion formation have been profoundly studied quite recently in Ref. [2] with essentially the
same conclusions made. Namely, some changes of a system can be observed only when ‘‘finite number of
agents in the model takes a finite value’’ and thermodynamic limit does not describe behavior of these systems.
It was shown that resonance by which a finite-size system is optimally amplified by a weak forcing signal
(identified as an advertising agent) is determined by the size of mesoscopic system and the largest peak of the
spectral density is observed at the driving frequency.

Another interesting example of a mesoscopic system can be found in Ref. [3] where the flow of blood
through the system of closed tubes—the blood vessels—is described by wave equations. A model of the
cardiovascular system as a system of coupled oscillators is proposed and conditions of their resonance are
studied.

Now the question is: what have boulders in waterfalls, advertisement and cardiovascular system in
common? From mathematical point of view the answer is very simple: dynamics of all these systems can be
interpreted as discrete resonances. Notice that resonance conditions have the same general form for wave and
quantum systems (see, for instance [4] for 4-photon processes) and have to be studied in integers. In this paper
we have chosen a wave turbulent system as our main example and therefore use wave terminology.

From now on we regard resonance conditions of the form

o1 � o2 � � � � � os ¼ 0; ~k1 �
~k2 � � � � �

~ks ¼ 0, (1)

where oi ¼ oð~kiÞ, so1, with ~k and oi ¼ oð~kiÞ being correspondingly wave vector and dispersion function.
Specific features of these systems described by Fourier harmonics with integer mode numbers were first
studied in Ref. [5] (we call them further discrete wave systems, DWS). It is well-known that fully statistical
description of a wave turbulent system yields wave kinetic equation [6] analogous to kinetic equation known in
quantum mechanics. A counter part to kinetic equation in DWS is a set of few independent dynamical systems
of ODEs on the amplitudes of interacting waves. The theory presented in Ref. [5] was based on a collection of
pure existence theorems [7] and has been developed with the understanding that discrete effects are only
important for small j~kj of order �10 while in larger spectral domains statistical regimes do occur. Numerous
results of the last few years ([8–14] just to mention a few of them) showed that the general conception—
discrete effects are only important in small spectral domains—should be revised because these effects are in
fact observed in systems where thousands of Fourier harmonics are taken into account, i.e. in a wide range of
mesoscopic wave systems. A model of laminated wave turbulence has been presented in Ref. [15] which
explains the appearance of coherent structures in arbitrarily big but finite spectral domains. This model put
forward a novel computational problem of solving (1) in integers of the order of 103 and more. Fast generic
algorithms for a big class of irrational and rational dispersion functions have been developed in Ref. [16]
which can be used for a wide range of dispersion functions; they were also implemented (for casess ¼ 3 and 4)
and computation time on a Pentium-3 is of order 5–15min in computation domain jmj; jnjp103, where
~k ¼ ðm; nÞ; m; n 2 Z. Straightforward computations for the same examples (without using our algorithms)
take few days with a similar computer and computation domains of the order of 102.

It is important to realize that the notion of ‘‘small’’ and ‘‘big’’ wave numbers depends drastically on the
physical system under consideration. For instance, when climate variability is studied in the frame of the
barotropic vorticity equation (BVE) on a sphere, planetary waves are regarded with lengths comparable to
the radius of the Earth, and this yields jmj; jnj of the order of 20–30. The study of the ocean planetary waves
leads to the spectral domains of the order of 100–200 while investigation of gravity water waves is normally
performed in the spectral domains of the order of 103, and the problems of superconductivity might lead to
substantially larger spectral domains. Knowing the wave lengths, a researcher can easily transform the
covering dimensioned equation into its normalized non-dimensioned form and find out the corresponding
spectral domain.

In this paper we study the structure of the solution set of (1) using graph-theoretical approach and develop a
special technique to construct all independent clusters and corresponding dynamical systems. We present the
whole solution set as a multigraph with labeled edges so that each connected component of this multigraph
correspond to a special dynamical system of ODEs on the wave amplitudes. The most important fact about is
this construction is the following: it provides simultaneous isomorphism of multigraph components and
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dynamical systems. Using algorithms [16] we have developed a MATHEMATICA program package
(at present only for s ¼ 3 and 2D-waves) capable to (1) construct all independent clusters of the solution set of
(1) in a given computation domain; (2) draw them as a multigraph on a plane; (3) write out explicitly all
dynamical systems appearing in a chosen spectral domain. Some results of our implementation are given,
possible directions for further research are briefly discussed.

2. Discrete 3-wave resonances

As our main example, 3-wave resonances covered by BVE [17] has been chosen. This equation, also known
as Obukhov–Charney or Hasegawa–Mima equation, is important in many physical applications—from
geophysics to astrophysics to plasma physics: the equation was again and again re-discovered by specialists in
very different branches of physics. In particular, this equation describes ocean planetary waves

qDc
qt
þ b

qc
qx
¼ ��Jðc;DcÞ (2)

with non-flow boundary conditions in a rectangular domain

c ¼ 0 for x 2 ½0;Lx�; y 2 ½0;Ly�,

where b is a constant called Rossby number, 0o�51 is a small parameter and Jacobean has the standard form

Jða; bÞ ¼
qa

qx

qb

qy
�

qa

qy

qb

qx
.

A linear wave has then the form [18]

A cos
b
2o

xþ ot

� �
sin

pm

Lx

x sin
pn

Ly

y; m; n 2 Z

and dispersion function can be written as

o ¼ 2=b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pm

Lx

� �2

þ
pn

Ly

� �2
s

.

After obvious re-normalization we write out resonance conditions for 3-wave interactions as follows:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ n2
1

q �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
2 þ n2

2

q ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
3 þ n2

3

q
n1 � n2 ¼ n3:

8>><>>: (3)

This system will be our main subject of study in this paper.
Just for completeness of presentation we present here a simple idea underlying our algorithm for computing

integer solutions of (3) (for more details see Ref. [16]). It was noticed that (3) has integer solutions only if all
three numbers

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ n2
i

p
; i ¼ 1; 2; 3, have the same irrationality, i.e. can be presented asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
i þ n2

i

q
¼ gi

ffiffiffi
q
p

(4)

with some integer gi called weight and the same square-free q called index. In this way, the set of all wave
vectors can be divided into non-intersecting classes Clq according to class index and solutions are to be looked
for in each class separately. It is important to realize that this is only a necessary condition for a solution to
exist and some classes can be empty.

As a first step, we compute the set of all possible indexes q. Due to the Lagrange theorem on presentation of
an integer as a sum of two squares we conclude that q should not be divisible by any prime of the form
p ¼ 4uþ 3 which reduces the full search substantially. Special algorithms for representing square-free
numbers as sums of two squares are known, and one of them [19] was used in numerical implementation of
our algorithm to compute the set of all possible numbers qg2i such that all gi satisfy weight equation (5). Special
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number-theoretical considerations allowed us to disregard a lot of classes from computations (about 74% of
all classes in the domain m; np1000) as being empty.

Next we have to find integer solutions of the weight equation

1

g1
þ

1

g2
¼

1

g3
. (5)

At this step the number of variables is reduced from 6 to 3 and of their individual degrees from 2 to 1, and we
got rid from irrationality in (5). Solutions are looked for only for indexes found at the previous step. At this
step all solutions of the first equation of (3) are already found. Finally, we check linear conditions on ni, that
is, we check whether the second equation of (3) is fulfilled.

In the MATHEMATICA implementation, standard functions for list operations and some number-
theoretical function, like SquareFreeQ and SumOfSquaresRepresentations, from the standard
package ‘‘NumberTheoryFunctions’’ are used (for details see Ref. [20]).

3. Naive graph presentation

The graphical way to present 2D-wave resonances suggested in Ref. [7] for 3-wave interactions is to regard
each 2D-vector as a node of integer lattice in the spectral space and connect those nodes which construct one
solution (triad, quartet, etc.) We demonstrate the result in Fig. 1 in the upper panel. Obviously, the
geometrical structure is too nebulous to be useful even in relatively small spectral domains. On the other hand,
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Fig. 1. Upper panel: Example of geometrical structure, spectral domain jkijp50. Lower panel: Example of topological structure, the same

spectral domain. The number in brackets shows how many times corresponding cluster appears in the chosen spectral domain.
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topological structure shown in Fig. 1 (lower panel) is quite clear and gives us immediate information about
dynamical equations covering behavior of each wave cluster.

Indeed, energy transport is covered by a standard dynamical system, written for simplicity for real-valued
amplitudes,

_A1 ¼ a1A2A3; _A2 ¼ a2A1A3; _A3 ¼ a3A1A2 (6)

in case of a ‘‘triangle’’ group called further a primary element: ðA1;A2;A3Þ; by

_A1 ¼ a1A2A3; _A2 ¼ a2A1A3; _A3 ¼
1
2
ða3A1A2 þ a4A5A6Þ; _A5 ¼ a5A3A6; _A6 ¼ a6A3A5 (7)

in the case of a ‘‘butterfly’’ group (two connected triangle groups): ðA1;A2;A3ÞðA3;A5;A6Þ, and so on. All
isomorphic graphs presented in Fig. 1 are covered by similar dynamical systems, only magnitudes of
interaction coefficients ai vary. However, in the general case graph structure thus defined does not present the
dynamical system unambiguously. Consider Fig. 2 where two objects are isomorphic as graphs. However, the
first object represents four connected primary elements with dynamical system

ðA1;A2;A3Þ; ðA1;A2;A5Þ; ðA1;A3;A4Þ; ðA2;A3;A6Þ (8)

while the second—three connected primary elements with dynamical system

ðA1;A2;A5Þ; ðA1;A3;A4Þ; ðA2;A3;A6Þ. (9)

To discern between these two cases we set a placeholder inside the triangle not representing a resonance, we
call it further an empty 3-cycle. This means that to determine isomorphism of dynamical systems we have to
regard graph G together with some parameter(s) x to identify corresponding dynamical system uniquely. We
call a pair ðG; xÞ an i-pair if it provides isomorphism of dynamical systems. The set of possible parameters x
(not exhaustive, of course) is: number of vertices, their multiplicities, number of edges, their multiplicities,
number of primary elements (non-empty 3-cycles) N, the list of non-empty 3-cycles Lc, etc. Some preliminary
study of the parameter set show that Lc and N is a good first choice, providing a balance between
informativeness and complexity of numerical implementation.

Consider a structure ðGt;LcÞ consisting of:

� a graph Gt each edge of which belongs to at least one 3-cycle;
� non-empty list Lc of some 3-cycles of length 3 of Gt such that each edge of Gt belongs to some cycle(s) of Lc.

Notice that Lc does not contain ‘‘wrong’’ triangles. Notation Gt has been chosen in order to point out that our
graphs are, so to say, ‘‘triangle’’ graphs.

Definition 1. The number of elements in Lc is called the order of Gt and denoted as NðGtÞ. Three-cycles of Gt

not belonging to Lc are called empty cycles. The number of occurrences of each vertex v 2 Gt in Lc is called
vertex multiplicity and denoted as mðvÞ. Number of different vertices in Lc is denoted as MðGtÞ.

Obviously, Gt-graphs consisting of 3-cycles only have a very special structure. Our idea is to construct a set
of all possible graphs of this type of order pN for some given N inductively, beginning with a single triangle.
As the next step we can choose all unisomorphic graphs from this set and compare the corresponding lists
Lc to find all different dynamical systems.
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Fig. 2. Example of isomorphic graphs and unisomorphic dynamical systems. The left graph corresponds to the dynamical system (8) and

the graph on the right—to the dynamical system (9).
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3.1. Triangle gluing

The possibilities of gluing a new triangle to a Gt-graph are not numerous and can be classified as follows.
Let the new Nth triangle be T ¼ fv1; v2; v3g.

� Vertex gluing. In this case, 1; 2 or 3 vertices of the new triangle are identified with (glued to) vertices of some
distinct triangles of the graph, constructed at previous inductive step, G

ðN1Þ
t .

� Edge gluing. In this case, 1; 2 or 3 edges and corresponding vertices of the new triangle glued to edges and
vertices of some distinct adjacent triangles of the graph. Notice that gluing of three edges is simply filling an
empty triangle of G

ðN�1Þ
t .

� Mixed gluing. In this case, one vertex vN1
of the new triangle is glued to a vertex of some triangle of the

graph and the edge vN2
vN3

is glued to an edge of another triangle.

The cases described above are illustrated by Figs. 3–5.

� By vertex gluing, the G
ðN�1Þ
t structure is enhanced by:

	 two vertices and three edges (one vertex glued);
	 one vertex and three edges (two vertices glued);
	 three edges (three vertices glued).
� By edge gluing, the G

ðN�1Þ
t structure is enhanced by:

	 one vertex and two edges (one edge glued);
	 one edge (two edges glued);
	 the graph structure stays unchanged (three edges glued)
� By mixed gluing, the G

ðN�1Þ
t structure is enhanced by two edges.

In each case, the list LðN�1Þc of graph G
ðN�1Þ
t is extended by the vN1

vN2
vN3

cycle of the new triangle
(or whatever these vertices will be called after the gluing).
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Fig. 3. Vertex gluing of a new triangle to G
ðN�1Þ
t . (a) Gluing by one vertex. (b) Gluing by two vertices. (c) Gluing by three vertices.
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3.2. Some estimations

Enhancing a given Gt with V vertices and E edges by a triangle, we encounter the following possibilities:

� a sole triangle not connected to the existing graph is added (1 possibility);
� vertex gluing (V possibilities);
� edge gluing (E possibilities);
� mixed gluing—approximately E=V ðE=V � 1Þ possibilities;
� filling an empty triangle (very rare).

Therefore at each inductive step the mean number of vertices is Vp1:5N and the number of arcs can be
roughly estimated as Ep2N. Therefore, the number of emerging unisomorphic graphs can be estimated from
above as some �4N and the overall number of graphs at step N is OðN2Þ.

4. Hypergraph presentation

To diminish computational time and complexity we construct a hypergraph presentation of i-pairs
introduced in the previous section. A hypergraph is a structure that consists of a set of vertices and a multiset
of edges, called hyperedges. A hyperedge is a set of vertices, all vertices in such a set are connected. The
collection of hyperedges is a multiset because it is possible that some hyperedges appear more times than once.
A traditional graph is a special case of a hypergraph, in which all edges are two-element sets and do not appear
more than once. For the representation of 3-wave resonances we consider the triangles as ‘‘the nodes’’ of the
corresponding hypergraph.
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Fig. 5. Mixed gluing of a new triangle to G
ðN�1Þ
t .
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Fig. 4. Edge gluing of a new triangle to G
ðN�1Þ
t . (a) Gluing by one edge. (b) Gluing by two edges. (c) Gluing by three edges.
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Definition 2. A hypergraph with 3-cycles of a triangle graph Gt as its vertices and nodes ðm; nÞ of Gt as its edges

is called a triangle hypergraph and is denoted as HGt. The sets of its vertices and edges are denoted as VHG and
EHG correspondingly, i.e. HGt ¼ ðVHG ;EHGÞ.

Notice that since a node ð ~m; ~nÞ of Gt can belong to several 3-cycles, the corresponding HGt has in fact
hyperedges instead of edges of a simple graph. A hypergraph HGt generated by Gt has two properties:

� Each vertex is a part of exactly three hyperedges.
� Each pair of vertices is a part of at most two hyperedges.

The first property follows from the fact, that each vertex of HGt represents a 3-cycle which consists of three
different nodes of Gt. If the second property is violated then the two associated 3-cycles of Gt have three nodes
in common, hence they are identical.

As an illustrative example, let us write out explicitly a hypergraph presentation of the dynamical systems (8)
and (9) presented in Fig. 2 at the left and right panel correspondingly:

ðV HG ¼ f1; 2; 3; 4g; EHG ¼ ff2g; f3g; f4g; f1; 2; 3g; f1; 2; 4g; f1; 3; 4ggÞ (10)

and

ðV HG ¼ f1; 2; 3g; EHG ¼ ff1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3ggÞ. (11)

4.1. Incidence matrix

For computation purposes it is convenient to represent a hypergraph HGt by its incidence matrix which is
constructed in the following way.

Definition 3. A rectangular matrix F ¼ ðf i;jÞ with MðGtÞ columns and NðGtÞ rows is called the incidence matrix

of Gt if

f i;j ¼
1 jth non-empty 3-cycle contains ith node;

0 otherwise:

�
(12)

Each column of the matrix F represents a triangle in the solution set of (3) while each row represents a node
(see Definition 1). Since we are not interested in nodes themselves but in their relation to each other we can
relabel the nodes of the triangle with ascending integers in an arbitrary way and use the labels of the nodes for
indexing elements in a matrix. Now we can construct the hyperedges of HGt: if the jth entry of a row is equal
to 1 then we add j to this hyperedge. The vertices of HGt are elements of Lc. The ordering of the hyperedges is
not important, because it is a multiset. However, it is better to have a ‘‘normal form’’, so we sort the
hyperedges by using some ordering. Since we are interested in an implementation in MATHEMATICA we
choose the ordering used by the command Sort. This is an ordering, which orders lists ascending by their
length, and lists of same length lexicographical by their elements. For dynamical systems there is no ordering
with practical advantages for the implementation, so we let them unsorted. The incidence matrices of the
dynamical systems (8) and (9) have the form

1 1 1 0

1 1 0 1

1 0 1 1

0 0 1 0

0 1 0 0

0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
(13)
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and

1 1 0

1 0 1

0 1 1

0 1 0

1 0 0

0 0 1

0BBBBBBBB@

1CCCCCCCCA
(14)

correspondingly. Analogously, incidence matrices of their hypergraphs, here we use the ordering of the
hyperedges described above

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0BBBBBBBB@

1CCCCCCCCA
(15)

and

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

0BBBBBBBB@

1CCCCCCCCA
(16)

are also different. The incidence matrices of a dynamical system and the corresponding hypergraph are not
identical. The reason is the use of different orderings for the vertices. Matrix (15) is just a permuted version of
matrix (13). Since we use a special ordering for the hyperedges, which are described by the rows of the
incidence matrix, we obtain permuted rows. For identifying isomorphic dynamical systems it is not necessary
to preserve an ordering, because dynamical systems with permuted elements are still isomorphic. Hence,
neither row permutations nor column permutations destroy the isomorphism of dynamical systems. In this
example only row permutations occur, permutations of columns are just another ordering of the elements of
Lc. This construction can be redone and the dynamical system can be reconstructed from its hypergraph: by
considering the columns of this matrix we know which nodes belong to a certain 3-cycle.

Obviously, if two hypergraphs (10) and (11) are not isomorphic, their incidence matrices (13) and (14) are
also different. But in general for the final decision it is necessary to have an algorithm to establish
isomorphism of hypergraphs. Since there are not so many general algorithms for hypergraphs one has to find a
representation where it would be possible to use standard algorithms for graph isomorphism. This leads us to
auxiliary multigraph construction presented in the next section.

4.2. Multigraph construction

A multigraph MGt is constructed in the following way. Its vertices coincide with the vertices of HGt and each
hyperedge is replaced by all the two-element subsets. To maintain the whole information we have to label the
created edges so that edges which belong to the same hyperedge of HGt are labeled identically. These labels allow
to reconstruct HGt and F which is a necessary step while generating dynamical systems. The hyperedges which
contain only one vertex can be omitted because they contain no further information about the cluster structure.
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Of course, some edges may occur in MGt twice—this is the case if two 3-cycles of Gt share two nodes. Fig. 6
shows two multigraphs corresponding to the dynamical systems shown in Fig. 2. For easier distinction weuse
triangle symbols for the vertices of the multigraphs, because a vertex represents a 3-cycle of Gt.

A multigraph MGt has the following properties:

� At most two edges connect a pair of vertices.
It follows from the fact that a pair of 3-cycles can share at most two nodes. If they would share also their third

node, they would be identical.
� At most three differently labeled edges can occur at a vertex.

A 3-cycle has three nodes therefore it can only share three different nodes with other 3-cycles.
� The number of vertices is equal to the number of non-empty 3-cycles in Gt.

By definition.
� The total number of edges with identical labels is ðp� 1Þp=2, where p is the number of elements in the

corresponding hyperedge.
Edges with identical labels belong to the same hyperedge, and the number of two-element subsets is ðp

2
Þ.

4.3. Hypergraph versus naive graph

Summarizing briefly the procedure described above, the following has been done:

� all integer solutions of (3) have been found;
� topological presentation of the solution set as an i-pair ðGt; LcÞ has been constructed which presents

corresponding dynamical system uniquely up to isomorphism;
� an i-pair ðGt; LcÞ has been transformed uniquely into a hypergraph HGt;
� for computational purposes, some auxiliary constructions have been introduced—incidence matrix FðGtÞ

and multigraph MGt; both maintain the isomorphism of dynamical systems.

The advantages of hypergraph representation compared with a more simple i-pair representation given in
Section 2 are the following: (1) no additional parameter to distinguish non-isomorphic dynamical systems are
needed; (2) a standard graph isomorphism algorithm can be used to establish the isomorphism of multigraphs;
(3) the size of constructed multigraphs is approximately one half of that for Gt. Some results of
MATHEMATICA implementation of this procedure are given in the next section.

5. MATHEMATICA implementation

Details of our MATHEMATICA implementation can be found in Ref. [20] (solutions of (1) and
geometrical structure) and in Ref. [21] (topological structure and dynamical systems). General computation
schema is the following. We implemented an algorithm sketched in Section 2, computed all solutions of
(1) and used the MATHEMATICA package ‘‘DiscreteMath ‘Combinatorica’ ’’ to plot the triangle graph Gt,
and to construct the incidence matrix F and the multigraph MGt. To establish multigraph isomorphism we
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Fig. 6. The left multigraph corresponds to the dynamical system (8) and the multigraph on the right—to the dynamical system (9).
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modified a standard algorithm provided by the ‘‘DiscreteMath ‘Combinatorica’ ’’ package, because it can only
be used for simple graphs and multigraphs with unlabeled edges. Some necessary conditions of multigraph
isomorphism are checked as a preliminary step, in order to make computations faster. As output, the list of all
resulting clusters is given, for each of them the corresponding incidence matrices, hypergraphs, and dynamical
systems are written out (in the real form, to spare the place), and graphs Gt and MGt are plotted. We also
compute how many isomorphic clusters of each form appear in the chosen computation domain. Results for
computation domain D ¼ 50 are given below.

1. 18 systems: ðVHG ¼ f1g;EHG ¼ ff1g; f1g; f1ggÞ

1

1

1

0B@
1CA

_A1 ¼ a1A2A3;
_A2 ¼ a2A1A3;
_A3 ¼ a3A1A2:

T1

2. 4 systems: ðVHG ¼ f1; 2g; EHG ¼ ff1g; f1g; f2g; f2g; f1; 2ggÞ

1 0

1 0

0 1

0 1

1 1

0BBBBBB@

1CCCCCCA

_A1 ¼ a1A2A5;
_A2 ¼ a2A1A5;
_A3 ¼ a4A4A5;
_A4 ¼ a5A3A5;
_A5 ¼

1
2
ða3A1A2 þ a6A3A4Þ:

1 T1 T21

3. 1 system: ðVHG ¼ f1; 2; 3g;EHG ¼ ff1g; f1g; f2g; f3g; f3g; f1; 2g; f2; 3ggÞ

1 0 0

1 0 0

0 1 0

0 0 1

0 0 1

1 1 0

0 1 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA

_A1 ¼ a1A2A6;
_A2 ¼ a2A1A6;
_A3 ¼ a4A6A7;
_A4 ¼ a7A5A7;
_A5 ¼ a8A4A7;
_A6 ¼

1
2ða3A1A2 þ a5A3A7Þ;

_A7 ¼
1
2
ða9A4A5 þ a6A3A6Þ:

1 2 T3T2T1 21
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4. 2 systems: ðV HG ¼ f1; 2; 3; 4g;EHG ¼ ff1g; f1g; f2g; f2g; f3g; f4g; f4g; f3; 4g; f1; 2; 3ggÞ

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 1 1

1 1 1 0

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

_A1 ¼ a1A2A9;
_A2 ¼ a2A1A9;
_A3 ¼ a4A4A9;
_A4 ¼ a5A3A9;
_A5 ¼ a7A8A9;
_A6 ¼ a10A7A8;
_A7 ¼ a11A6A8;
_A8 ¼

1
2
ða12A6A7 þ a8A5A9Þ;

_A9 ¼
1
3ða3A1A2 þ a6A3A4 þ a9A5A8Þ;

1 2

T1

T2

T3 T4

1

1

1

2

5. 1 system: ðVHG ¼ f1; 2; 3; 4g;EHG ¼ ff1g; f1g; f2g; f3g; f4g; f4g; f1; 2g; f2; 3g; f3; 4ggÞ

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

_A1 ¼ a1A2A7;
_A2 ¼ a2A1A7;
_A3 ¼ a4A7A8;
_A4 ¼ a7A8A9;
_A5 ¼ a10A6A9;
_A6 ¼ a11A5A9;
_A7 ¼

1
2
ða3A1A2 þ a5A3A8Þ;

_A8 ¼
1
2
ða6A3A7 þ a8A4A9Þ;

_A9 ¼
1
2
ða12A5A6 þ a9A4A8Þ:

1 2 3 T4T3T2T1 321

6. 1 system: ðVHG ¼ f1; 2; 3; 4; 5g;EHG ¼ ff1g; f1g; f2; 4g; f2; 5g; f3; 4g; f3; 5g; f4; 5g; f1; 2; 3ggÞ

1 0 0 0 0

1 0 0 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 1 0

0 0 1 0 1

0 0 0 1 1

1 1 1 0 0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

_A1 ¼ a1A2A8;
_A2 ¼ a2A1A8;
_A3 ¼

1
2
ða10A5A7 þ a4A4A8Þ;

_A4 ¼
1
2
ða13A6A7 þ a5A3A8Þ;

_A5 ¼
1
2
ða11A3A7 þ a7A6A8Þ;

_A6 ¼
1
2
ða14A4A7 þ a8A5A8Þ;

_A7 ¼
1
2
ða12A3A5 þ a15A4A6Þ;

_A8 ¼
1
3ða3A1A2 þ a6A3A4 þ a9A5A6Þ:
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1 2

3

4

5 6

T1

T2

T3

T4

T5

1

1

1

6

54

3

2

7. 1 system: ðVHGf1; 2; 3; 4; 5; 6; 7g;EHG ¼ ff2g; f3g; f4g; f7g; f7g; f1; 2g; f1; 3g; f2; 6g; f4; 5g; f5; 6g; f6; 7g; f1; 3; 4; 5ggÞ

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

1 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 0 0 1 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 0 0 0 1 1

1 0 1 1 1 0 0

0BBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCA

_A1 ¼ a4A6A8;
_A2 ¼ a7A7A12;
_A3 ¼ a10A9A12;
_A4 ¼ a19A5A11;
_A5 ¼ a20A4A11;
_A6 ¼

1
2
ða5A1A8 þ a1A7A12Þ;

_A7 ¼
1
2
ða8A2A12 þ a2A6A12Þ;

_A8 ¼
1
2
ða6A1A6 þ a16A10A11Þ;

_A9 ¼
1
2
ða11A3A12 þ a13A10A12Þ;

_A10 ¼
1
2
ða17A8A11 þ a14A9A12Þ;

_A11 ¼
1
2
ða21A4A5 þ a18A8A10Þ;

_A12 ¼
1
4
ða9A2A7 þ a3A6A7 þ a12A3A9 þ a15A9A10Þ:

7

6

1 5

4

3 2

T1 T2T3

T4 T5 T6 T7

716

11 511

14 3 2

These results show that in the spectral domain j~kjp50 which contains �2� 103 Fourier harmonics we
have only seven non-isomorphic dynamical systems (clusters of waves) for further analytical and
numerical study. Some of them, for instance (6), are known to be solved explicitly in Jacobean elliptic
functions (example of explicit expressions for the case of spherical planetary waves can be found in
Ref. [22]). Knowledge of the explicit form of a dynamical system allows sometimes to obtain a few
conservation laws as in the case (7) and simplify substantially further numerical investigations of these
systems. It is important to understand that though qualitative properties of all isomorphic clusters are the
same, their quantitative properties depend on the magnitudes of coupling coefficients ai; of course.
Computation of these coefficients is usually done by standard multi-scale method which is tedious but
completely algorithmic procedure and can also be programmed in MATHEMATICA (see Ref. [20] for its
implementation).
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6. Two mechanisms to destroy clusters

There are two mechanisms which can destroy clusters constructed above: (1) increasing of the spectral
domain D, and (2) taking into account quasi-resonances, i.e. integer solutions of

o1 � o2 � � � � � os ¼ O40; ~k1 �
~k2 � � � � �

~ks ¼ 0 (17)

with some non-zero resonance width O. Below we regard briefly both of them.

6.1. Increasing of spectral domain

Obviously, the structure of clusters becomes simpler with diminishing of the domain D—some solutions
(triads) disappear. On the other hand, increasing of D might lead to substantial changes of the structure. Thus
it is important to understand how solution structure depends on the chosen computation domain. With this
aim let us re-write first equation of (3) in the form

1

k1
þ

1

k2
¼

1

k3
(18)

and notice that k3ok1 and k3ok2. Introducing notations k�; k0; kþ for the minimal, intermediate and
maximal of the numbers k1; k2; k3 we see that k3 ¼ k�. This yields

1

k�
¼

1

kþ
þ

1

k0
p

2

k0
) k0p2k� and kþ ¼

k0k�

k0 � k�
p2k2

�.

We conclude that wave interactions are local in the following sense: the lengths of wave vectors constructing
a solution of (3) cannot be too far apart. In particular, if we are interested in the solution structure in the
domain, say, kipD ¼ 50, it is enough to investigate a larger domain eD ¼ 2� 502 ¼ 5000, in order to establish
which clusters stay unchanged and to find those which are enhanced via solutions with wave vectors lying
outside of the initial domain D ¼ 50.

6.2. Quasi-resonances

It was shown in Ref. [24] that for discrete quasi-resonances to be able to start some low boundary for
resonance width O can be written out explicitly. It is interesting that for many dispersion functions there
exist a global low boundary for most clusters which does not depend on the spectral domain under
consideration and also does not depend on the number of interacting waves s. For instance, in case
of o ¼ ðm2 þ n2Þ

1=4 (gravity water waves) the use of the generalized Thue–Siegel–Roth theorem [25] yields
O41. Obviously, for an arbitrary dispersion function a local low boundary exists which is defined by the
spectral domain T ¼ fðm; nÞ : 0ojmj; jnjpDo1g chosen for numerical simulations. Indeed, let us define
OD ¼ minpOp, where

Op ¼ joð~k
p

1Þ � oð~k
p

2Þ � � � � � oð~k
p

s Þj;
~k

p

j ¼ ðm
p
j ; n

p
j Þ 2 T ; 8j ¼ 1; 2; . . . ; s,

and

oð~k
p

1Þ � oð~k
p

2Þ � � � � � oð~k
p

s Þa0 8p,

and index p runs over all wave vectors in T , i.e. pp4D2. Obviously, the so defined Op is a non-zero number as
the minimum of a finite number of non-zero numbers and OD is minimal resonance width which allows
discrete quasi-resonances to start, for chosen D.

Physically important resonance width Ophys is defined by the accuracy of computations and precision of
measurements in numerical and laboratory experiments correspondingly. Quasi-resonances with OD 4Ophys

will not destroy the clusters.
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7. Discussion

In order to apply the theory of discrete resonances to a real physical problem, a profound study of
constructed dynamical systems is needed. It is well-known that dynamical system (6) demonstrates periodic
energy exchange between the modes of a triad. On the other hand, dynamical systems consisting of a few
connected triads have enough degrees of freedom N to behave chaotically. The question of major importance
therefore is to discern between two classes of situations: (1) resonance clusters with periodic energy exchange
within each cluster, and (2) those which can be described statistically, similar to the kinetic equation approach.
From this point of view, all our theoretical results and symbolical programming can be regarded as an
introductory step for further numerical simulations.

We are quite aware of the fact that there exist a multitude number of important questions to be answered in
order to understand a very complicated mutual relationship between discrete and statistical regimes of wave
system dynamics. For instance, is the corresponding statistical dynamics close to Gaussian? Is the probability
of attractor appearance in the subspace generated by integrals of motion uniformly distributed? What is the
minimal value of N allowing to ‘‘forget’’ topological details of the discrete, low-dimensional dynamical
system and describe the corresponding dynamical system statistically? How does energy exchange between
isolated and continuous subsystems look like? What is the role of nonlinearity in triggering energy flux toward
small scales? Is it possible to develop some analytical tools for description of low-dimensional systems (for
example, a generalized kinetic equation that accounts for the finite width of frequency resonances)? etc.

A first feeling of possible answers to some of these questions can be obtained by computer simulations with
a few well-chosen dynamical systems with degrees of freedom from N ¼ 4 to 10C20 which is on our agenda.
Notice that in the case of 3-wave resonances one has to construct dynamical systems as it was done above and
choose those which are not enhanced by increasing the computation domain. Choice of initial conditions for
numerical simulations would be another important subject to study for, as it was mentioned in Ref. [22], even
for one isolated resonant triad it is always possible to choose initial energy distribution among the modes in
such a way that the period of their energy exchange will tend to infinity.

In general, our graph-theoretical approach can be used, with appropriate refinements, also for s-wave
resonances, with sX4. In this last case, existence of different types of resonances, spectrum anisotropy, etc.
[24] have also to be taken into account in order to choose representative dynamical systems for numerical
simulations.

The same approach (algorithms from [16], graph construction, etc.) can also be used directly for any
mesoscopic system with resonances of a more general form

p1o1 � p2o2 � � � � � psos ¼ 0; p1
~k1 � p2

~k2 � � � � � ps
~ks ¼ 0 (19)

with integer pi.
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