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The Simple Message

-  To the automated reasoning community:

    Mathematics is the main target! ...

    

-  To my fellow mathematicians:  

    Mathematics is  (automated) reasoning. ...

� � � � 5� of �63

Automated Reasoning: Little Impact on Mathematics.

� "Mathematics" : mathematical theory exploration

for example, writing lecture notes on analysis,

for example, writing a research monograph on Groebner bases theory,

for example, doing research on the Poincare conjecture,

for example, writing a paper for a journal,

for example, re-organizing the knowledge in a journal for checking the originality of results,

...
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� I do not mean: automation of mathematical " intuition"

Mathematical exploration is an alternation between "hot" (intuitive) and "cool" (formal) phase.

It is good enough if we can give significant algorithm-support to the cool phases.

However:
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      -  formal theory exploration is one source of intuition,

      -  intuition often comes from consideration of examples;  formal reasoning (computation) supports this.

      -  intuition often comes from failing proof (algorithm ...) attempts;  formal reasoning can support this.

� � � � 7� of �63

Automated Reasoning: Little Impact on Mathematics.    Why?

� no algorithm libraries in automated reasoning systems (exceptions: ...)

� no mathematical knowledge bases (exceptions: ...)

� syntax, proof presentation, ... not attractive

� little attention to special theorem proving (vs. general theorem proving)

� little attention to "mathematical theory exploration"  (vs. isolated theorem proving)

� little attention to "proof generation"  (vs. "proof checking" )

� little attention to "migration through reasoning levels"  (vs. one-level reasoning)

� a social reasons: " the mathematicians"

� � � � 8� of �63
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Automated Mathematical Theory Exploration: Time is Ripe  

� software technology

� front-ends: ..., 2-dimensional syntax, "screen and keyboard"  instead of "paper and 

pencil" , ...

� hardware

� mathematical logic and automated reasoning

� structural build-up of "all of mathematics"   (Bourbakism)

� tremendous advances in algorithmic mathematics (discrete, algebraic, symbolic, ...)

� an international community on "automated mathematical theory exploration" : QED, 

Calculemus, MKM, ...

� � � � 9� of �63
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The Way to Go: Systems for Mathematical Theory Exploration

� predicate logic as the working language

          -  predicate logic is "practical"

          -  writing in logical syntax (as opposed to "pretty printing")

          -  algorithms and theorems expressed in one language 

          -  reasoners:  provers, solvers, simplifiers

          -  object level and meta-level expressed in one language: prove (special) reasoners correct

� � � � 10� of �63

The Way to Go: Systems for Mathematical Theory Exploration

� put effort also into special reasoners (as opposed to general reasoners)

"computer algebra and automated theorem proving": 

        - RISC PhD Curriculum 1982

        - JSC editorial 1985

        - Calculemus Group 1995

        - forthcoming book by J. Harrison.

� � � � 11� of �63
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The Way to Go: Systems for Mathematical Theory Exploration

� put effort also into automated proof generation (as opposed to automated proof 

checking)

� do not (always) look at " first principles" : there are four possibilities:

build-up    - from "first principles"                      -  by "first principles"

                 - from "intermediate principles"         - by "intermediate principles"

� create the logic frame for "proving reasoners correct" : 

build-up    - from "first principles"                      -  by "first principles"

                 - from "intermediate principles"         - by "intermediate principles"

� focus on the 99 % of "easy"  reasoning in theory exploration 

("easy" is a relative concept anway!)

� � � � 12� of �63
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The Way to Go: Systems for Mathematical Theory Exploration

� support also invention of mathematical knowledge: e.g. by schemes and learning form 

failure

� support structured build-up of mathematical knowledge:  

               - categories / functors 

               - "completion of knowledge"

               - "mathematical personalities"

               - algorithmic knowledge

               - "(anti)-Bourbakism of the 21st century"

� � � � 13� of �63

The Way to Go: Systems for Mathematical Theory Exploration

� the next generation of mathematicians: formally and algorithmically trained

� � � � 14� of �63
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The Way to Go: Systems for Mathematical Theory Exploration

� the future of the organization of mathematics: formal-reasoning based

               - build-up of globally accessible mathematical 

                 (non-algorithmic and algorithmic) knowledge bases

               - refereeing

               - knowledge retrieval

               - knowledge self-expansion

               - re-structuring (expression of "mathematical personalities")

An indicator: the NIST project on "Handbook of Special Functions" (Abramovitz, Stegun; chapter on 
"computer algebra" by F. Chizak and P. Paule).
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Examples are Taken from the Theorema Project

The Theorema project aims at prototyping features of a system for mathematical theory exploration.

The Theorema Group: B. B. (leader), T. Jebelean, W. Windsteiger, T. Kutsia, F. Piroi, M. Rosenkranz, M. 
Giese, and  PhD students.

Some Automated Reasoners in Theorema:

- Predicate logic: natural deduction, S-decomposition

- Elementary analysis: PCS (alternating quantifiers)

- Set theory

- Induction on natural numbers, on tuples

- Equational logic with sequence variables

- Combinatorial identities

- Geometry (based on algebraic methods like Gröbner bases)

- Algorithms for symbolic functional analysis (boundary value problems)

- "Lazy Thinking" method for lemma and algorithm invention

� � � � 17� of �63

Tools for structuring knowledge bases: functors, schemes, and others.

Computation within logic.

Two-dimensional user-definable syntax including "logicographic symbols".

Readable Proofs.

Meta-language: Mathematica.

Object language: higher-order predicate logic with sequence variables.

� � � � 18� of �63
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The Exploration Process:  A Spiral

Introduction formula I of new notion N

Complete Exploration:
Invent and prove
all properties P that 
describe interactions of N
with previous notions
using “difficult” proof 
methods appropriate to I.

Saturation
point:
From here on proving
becomes “easy”.

Optional:
“Lifting” of
knowledge
to reasoning.
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Examples of Rounds through the Spiral

 Difficult       Introduction      Properties    Easy        Lifted

 Proving                               up to           Proving    Proving

                                            saturation

 --------------------------------------------------------------------------------------

 induction     x+0=x              arithm.laws   rewriting   count '   

                    x+y'=(x+y)'                                           sort vars        

� � � � 20� of �63
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Examples of Rounds through the Spiral

 Difficult         Introduction      Properties    Easy        Lifted

 Proving                                 up to            Proving    Proving

                                              saturation

 --------------------------------------------------------------------------------------

 Equational     group              7 more         normal f.  simplification      

 logic              axioms             equalities     rewriting  to group nf.

                                              by mgu

                                              interaction                              
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Examples of Rounds through the Spiral

 Difficult         Introduction      Properties    Easy           Lifted

 Proving                                 up to            Proving       Proving

                                              saturation

 --------------------------------------------------------------------------------------

 pred. log.     def. of              S-poly          rewriting       ideal       

 set th.          Groebner          theorem       w.r.t.            membersh.

                     bases               ...                ideal props.  by Groebner

                                                                                    bases

                                                                            

� � � � 22� of �63
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Examples of Rounds through the Spiral

 Difficult         Introduction      Properties    Easy           Lifted

 Proving                                 up to            Proving       Proving

                                              saturation

 --------------------------------------------------------------------------------------

 simple          geo notions       propos.           ???          ???

 pred. log.     after                  about 

 plus             coordinat.          configurations

 Groebner b.                    

 algorithm                                                                                   
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Examples of Rounds through the Spiral

 Difficult         Introduction      Properties    Easy           Lifted

 Proving                                 up to            Proving       Proving

                                              saturation

 --------------------------------------------------------------------------------------

 pred. logic    definitions        boolean        rewriting      boolean

                     of �, �, ...       algebra                            algebra

                                             propert.                           simplifier

                                                                                  

                                                                            

� � � � 24� of �63
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Examples of Rounds through the Spiral

 Difficult         Introduction      Properties    Easy           Lifted

 Proving                                 up to            Proving       Proving

                                              saturation

 --------------------------------------------------------------------------------------

 pred. logic    axioms of         delineability  reduce         Collins'

                     real closed       theorem       quants.        cylindrical

                     fields                                    to                 alg. decomp. 

                                                                 finite 

                                                                 connectives     
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Examples of Rounds through the Spiral

 Difficult         Introduction      Properties    Easy           Lifted

 Proving                                 up to           Proving       Proving

 --------------------------------------------------------------------------------------
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 PCS              def. of             rewrite laws  rewriting      inference

 (pred. log.     limit                 for limit                            rules

 plus                                                                             for limit

 Collins'                                                                        quantifier

 algor.  )                                                                        
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More Details about Limit Exploration

Let's start from the situation:

-  we already have explored the theory of the reals with +, < ... "completely"

-  we already have explored the operations  �, ... on sequences of reals

� � � � 27� of �63

Introduction of Limit

Def i ni t i on�" l i mi t : " , any�f , a�,

l i mi t �f , a�� �
�

��0

�
N

�
n

n�N

�f �n� � a� � ��

(Please, don't torture me with questions on types!)

� � � � 28� of �63

A Typical Interaction of New Notion with Previous Notions

Pr oposi t i on�" l i mi t of sum" , any�f , a, g, b�,

�l i mi t �f , a� � l i mi t �g, b�	 	 l i mi t �f 
 g, a � b��

� � � � 29� of �63
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Such Properties can be Invented Automatically by Schemes

A typical scheme:

�
P, F, G


Monot ony�P, F, G��
�

a, b, f , g
��P�f , a� � P�g, b�	 	 P�F�f , g�, G�a, b���

Given a knowledge base in which 'Limit', '+', and '+' occurs, we can apply the above scheme for "inventing" 
(proposing, conjecturing) a proposition:

Monot ony�Li mi t , 
, ��

i.e.

�
a, b, f , g

�Li mi t �f , a� � Li mi t �g, b�	 	 Li mi t �f 
 g, a � b�

('Monotony' is a "relator" or (the description of) a "category".)

(I do not discuss the question here how the right substitutions for F and G can be automatically guessed. 
See, however, section 3 on algorithm synthesis: the creative power of analyzing failing proofs!)

� � � � 30� of �63

The Role of Formula Schemes for Invention

By setting up a library of formula schemes, most formulae in the completion process of exploring a new 
notion can be generated automatically:

- propositions

- problems

- algorithms.

(Even, many interesting notions can be generated automatically by applying formulae schemes.)

� � � � 31� of �63
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The PCS Method for Analysis Proving (BB 2001)

This method reduces proving in elementary analysis (formulae with "alternating quantifiers" on functions) 
systematically to the solution of inequalities over the real numbers.

Produces "natural" proofs that also contain algorithmic information.

Instead of a detailed explanation of the proof method, let's look to the proof generated for the above 
example of a proposition:

� Initialize Theorema

� � � � 32� of �63

The Corresponding Part of the Theorema Session

Def i ni t i on�" l i mi t : " , any�f , a�,

l i mi t �f , a�� �
�

��0

�
N

�
n

n�N

�f �n� � a� � ��

Pr oposi t i on�" l i mi t of sum" , any�f , a, g, b�,

�l i mi t �f , a� � l i mi t �g, b�	 	 l i mi t �f � g, a � b��

Formulae from the knowledge base  generated in the previous exploration rounds:

Lemma�" max" , any�m, M1, M2�,

m� max�M1, M2� 	 �m� M1 � m� M2	�

Lemma�" ���" , any�x, y, a, b, 
, ��,

���x � y	 � �a � b	� � �
 � �		 � ��x � a� � 
 � �y � b� � �	�

Def i ni t i on�" �: " , any�f , g, x�,

�f � g	�x� � f �x� � g�x��

Pack everything into one "theory":
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Theor y�" l i mi t " ,

Def i ni t i on�" l i mi t : " �
Def i ni t i on�" �: " �
Lemma�" ���" �
Lemma�" max" �

�

Now call the prover:

Pr ove�Pr oposi t i on�" l i mi t of sum" �, usi ng � Theor y�" l i mi t " �, by � PCS�

� ProofObject �

The following proof is generated fully automatically by the PCS prover:

Prove:

(Proposition (limit of sum)) �
f,a,g,b

�limit�f, a� � limit�g, b� � limit�f � g, a � b��,

under the assumptions:

(Definition (limit:)) �
f,a

�

�
������limit�f, a� � �

�
��0

�
N

�
n
n	N

�	f�n� 
 a
 � ��
�

�






,

(Definition (+:)) �
f,g,x

��f � g��x� � f�x� � g�x��,

(Lemma (|+|)) �
x,y,a,b,
,�

�	�x � y� 
 �a � b�
 � 
 � � � �	x 
 a
 � 
 � 	y 
 b
 � ���,

(Lemma (max)) �
m,M1,M2

�m 	 max�M1, M2� � m 	 M1 � m 	 M2�.

We assume

(1) limit�f0, a0� � limit�g0, b0�,

and show

(2) limit�f0 � g0, a0 � b0�.

Formula (1.1), by (Definition (limit:)), implies:

(3) �
�
��0

�
N

�
n
n	N

�	f0�n� 
 a0
 � ��.

By (3), we can take an appropriate Skolem function such that

(4) �
�
��0

�
n

n	N0���
�	f0�n� 
 a0
 � ��,

Formula (1.2), by (Definition (limit:)), implies:

(5) �
�
��0

�
N

�
n
n	N

�	g0�n� 
 b0
 � ��.

By (5), we can take an appropriate Skolem function such that

(6) �
�
��0

�
n

n	N1���
�	g0�n� 
 b0
 � ��,

Formula (2), using (Definition (limit:)), is implied by:
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(7) �
�
��0

�
N

�
n
n	N

�	�f0 � g0��n� 
 �a0 � b0�
 � ��.

We assume

(8) �0 � 0,

and show

(9) �
N

�
n
n	N

�	�f0 � g0��n� 
 �a0 � b0�
 � �0�.

We have to find  N2
� such that

(10) �
n
�n 	 N2

� � 	�f0 � g0��n� 
 �a0 � b0�
 � �0�.

Formula (10), using (Definition (+:)), is implied by:

(11) �
n
�n 	 N2

� � 	�f0�n� � g0�n�� 
 �a0 � b0�
 � �0�.

Formula (11), using (Lemma (|+|)), is implied by:

(12) �

,�


����0

�
n
�n 	 N2

� � 	f0�n� 
 a0
 � 
 � 	g0�n� 
 b0
 � ��.

We have to find  
0�, �1�, and N2� such that

(13) �
0� � �1
� � �0�� �

n
�n 	 N2

� � 	f0�n� 
 a0
 � 
0
� � 	g0�n� 
 b0
 � �1

��.

Formula (13), using (6), is implied by:

�
0� � �1
� � �0�� �

n
�n 	 N2

� � �1
� � 0 � n 	 N1��1�� � 	f0�n� 
 a0
 � 
0

��,

which, using (4), is implied by:

�
0� � �1
� � �0�� �

n
�n 	 N2

� � 
0
� � 0 � �1

� � 0 � n 	 N0�
0�� � n 	 N1��1���,

which, using (Lemma (max)), is implied by:

(14) �
0� � �1
� � �0�� �

n
�n 	 N2

� � 
0
� � 0 � �1

� � 0 � n 	 max�N0�
0��, N1��1����.

Formula (14) is implied by

(15) �
0� � �1
� � �0�� 
0

� � 0� �1
� � 0� �

n
�n 	 N2

� � n 	 max�N0�
0��, N1��1����.

Partially solving it, formula (15) is implied by

(16) �
0� � �1
� � �0� � 
0

� � 0 � �1
� � 0 � �N2� � max�N0�
0��, N1��1����.

Now,

�
0� � �1
� � �0� � 
0

� � 0 � �1
� � 0

can be solved for 
0
� and �1

� by a call to Collins cad–method yielding a sample solution


0
� �

�0������
2

,

�1
� �

�0������
2

.

Furthermore, we can immediately solve

N2
� � max�N0�
0��, N1��1���
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for N2� by taking

N2
� � max�N0� �0������

2
�, N1� �0������

2
��.

Hence formula (16) is solved, and we are done.

�

� � � � 33� of �63

At Saturation Point

We have a situation where inventing more propositions is uninteresting because more complicated 
propositions can be reduced to the already proved ones by "easy" proving, namely rewriting ("symbolic 
computation", "high school proving", "physicists proving", ...).

I.e. no point in proving:

l i mi t �f � g � h� � l i mi t �f � � l i mi t �g� � l i mi t �h�

� � � � 34� of �63

Now, Lifting Knowledge to Inferencing

After implementation of the proved knowledge on the predicate / function Limit on the meta-level as rules 

for the  quantifier lim, we can now compute (simplify) for example:

Comput e�l i m
n��

��5 � 1 
 n	��n 
�2�n � 5		��

5
����
2

Comput e�l i m
a��

��5 � 1 
 a	��a 
�3�a � 5		��

5
����
3

Comput e�l i m
n��

��1 � 1 
 n	n��

E

(The implementation is, however, not yet proved formally! An important goal for all theory exploration 
systems designed along these lines!)
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What do we have to prove?  The application of the lim reasoning rules, without knowledge on Limit, have 
the same effect as using rewriting with the proved knowledge on Limit.

� � � � 35� of �63

Goals, Obstacles, Chances

The Mathematcial Theory Exploration Cycle

Example: Groebner Bases Algorithm Synthesis

Conclusion
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What I want to illustrate with this example: 

Algorithm synthesis: one of the aspects of mathematical theory exploration.

A combination of 

      -  (automated)  theorem proving

      -  (automated)  application of formula schemes for invention

      -  (automated) analysis of failing proofs

yields a powerful algorithm synthesis method ("lazy thinking method",  BB 2002).

Powerful: able to synthesize algorithms for non-trivial problems.
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In particular, powerful enough to replace myself.

� � � � 37� of �63

"Non-trivial"

Construction of Groebner bases:

               - at the time of invention (1965, BB) was conjectured to be 

                 algorithmically unsolvable

               - dozens of applications in algebraic geometry, invariant theory, optimization, 

                 coding theory, cryptography, symbolic summation, geo theorem proving,

                 graph theory,   ...,  origami proving,  sudoku solving,  ...

               - > 1000 papers, > 10 textbooks, > 3000 citations

               - not yet synthesized by other synthesis methods.

� � � � 38� of �63

The Algorithm Invention ("Synthesis" ) Problem

Given a problem specification P (in predicate logic), find an algorithm A such that

�
x

P�x, A�x��.

A general synthesis algorithm cannot exist but ...

� � � � 39� of �63

Literature

There is a rich literature on algorithm synthesis methods, see survey

[Basin et al. 2004] D. Basin, Y. Deville, P. Flener, A. Hamfelt, J. F. Nilsson.  Synthesis of Programs in 
Computational Logic. In: M. Bruynooghe, K. K. Lau (eds.), Program Development in Computational Logic, 
Lecture Notes in Computer Science, Vol. 3049, Springer, 2004, pp. 30-65.

Our method is in the class of "scheme-based" methods. Closest (but essentially different):
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[Lau et al. 1999] K. K. Lau, M. Ornaghi, S. Tärnlund. Steadfast logic programs. Journal of Logic 
Programming, 38/3, 1999, pp. 259-294.

And the work of A. Bundy and his group (U of Edinburgh) on the automated invention of induction 
schemes.

� � � � 40� of �63

Algorithm Synthesis by "Lazy Thinking"  (BB 2002)

Given: A problem specification P.           Find: An algorithm A for P.

� We assume we have "complete" knowledge on the auxiliary notion appearing in P. 

� Consider known fundamental ideas ("algorithm schemes A") of how to structure algorithms A in 
terms of subalgorithms B, ... 

Try one scheme A after the other.

� For the chosen scheme A, try to prove   �
x

P[ x, A[x]]: From the failing proof construct 

specifications for the subalgorithms B, ... occurring in A.

� � � � 41� of �63

Automated Invention of Sufficient Specifications for the 

Subalgorithms

A simple (but amazingly powerful) rule    ( B  ... an unknown subalgorithm ):

Collect temporary assumptions  T[ x0, ... A [  ],  ...  ]

and temporary goals G[ x0, ...B  [ ...  A [  ] ... ]  ]

and produce specification

�
X, . . . , Y, . . .

� �T�X, . . . �Y, . . . � � G�Y, . . . �m �Y� � �.

Details: see papers [BB 2003] and example.

� � � � 42� of �63
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The method  works well on simple problems like sorting

See [Buchberger 2003]. 

For example, using the  divide-and-conquer scheme

�
N, S, M, L, R

�Di vi de–and–Conquer �A, S, M, L, R� �

�
x
�
�
�
��A�x� � � S�x� � i s–t r i v i al –t upl e�x�

M�sor t ed�L�x��, sor t ed�R�x��� � ot her wi se
�
�
��

the method finds (in approx. 2 minutes on a laptop) that all subalgorithms S, M, L, R satisfying the following 
specifications make A a correct sorting algorithm:

� � � � 43� of �63

�
x
��i s–t r i v i al –t upl e�x� 	 S�x� � x	

�
y, z

�
�
�
�� i s–sor t ed�y�

i s–sor t ed�z� 	
i s–sor t ed�M�y, z��
M�y, z� � �y � z	

�
�
��

�
x
��L�x� � R�x� � x	

Note: the specifications generated are not only sufficient but natural !

Now we can continue, recursively, with synthesizing - or retrieving - algorithms S, M, L, R satisfying the 
above specifications.

� � � � 44� of �63

How Far Can We Go With Lazy Thinking

Successful synthesis of Groebner bases algorithm. See:

B. Buchberger. Towards the Automated Synthesis of a Gröbner Bases Algorithm. RACSAM (Review of the 
Royal Spanish Academy of Science), Vol. 98/1, 2005, pp.  65-75.  

� � � � 45� of �63
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The Problem of Constructing Gröbner Bases

 

Find algorithm Gb such that

�
i s–f i ni t e�F�

�
�
�������

i s–f i ni t e� Gb�F� �
i s–Gr öbner –basi s� Gb�F��
i deal �F� � i deal � Gb�F��.

�
�
�������

i s–Gr öbner –basi s�G� � i s–conf l uent � �G �.

 �G  ...  a division step.

� � � � 46� of �XXX

Confluence of Division �G

i s–conf l uent � � � : � �
f 1, f 2

�f 1 �� f 2 	 f 1�� f 2	

f1
f2

� � � � 47� of �63
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The Essential Algorithmic Idea in Groebner Bases Theory (BB 1965)

It suffices to consider the reduction of 

l east –common–mul t i pl e�l p�g1�, l p�g2��

for all polynomials g1 and g2 in the basis F.

� � � � 48� of �63

Hence, the Essential Methodologic Question for the Power of 

Algorithm Synthesis

Can we automatically produce the idea (and can we automatically prove the idea correct) that

l east –common–mul t i pl e�l p�g1�, l p�g2��

are the essential objects we have to consider.

So let's start with the synthesis using the "lazy thinking" method.

� � � � 49� of �63

We Assume that we Have "Complete"  Knowledge on the Auxiliary 

Concepts Involved

h1 �G h2 	 p . h1 �G p . h2

etc.

� � � � 50� of �63

26 IJCAR-2006-08-17.nb



Use Algorithm Schemes

For example: a scheme for any domain, in which we have a reduction operation 

           rd[ f, g]   (result of "reducing f by g")  satisfying  rd[f,g] � f 

           w.r.t. some Noetherian ordering �.

�
A, l c, df

�pai r –compl et i on�A, l c, df � �

�
F
�A�F� � A�F, pai r s�F��

�
F
�A�F, ��� � F

�
F, g1, g2, p

�
�A�F, ��g1, g2�, p��� �

wher e�f � l c�g1, g2�,

h1 � t r d�r d�f , g1�, F�, h2 � t r d�r d�f , g2�, F�,

���������
�
�������

A�F, �p��� � h1 � h2

A�F� df �h1, h2�,

�p�� � ��Fk , df �h1, h2��� �
k�1, …, �F�

��
� ot her wi se �

(What would happen, if we started with another algorithm scheme, e.g. divide-and-conquer?)

� � � � 51� of �63

Now Start the (Automated) Correctness Proof

With current theorem proving technology, in the Theorema system (and other provers?), the proof attempt 
can be done automatically. (Ongoing PhD thesis by A. Craciun.)

� � � � 52� of �63

Details

First, it can be proved (independent of what lc and df are), that if the algorithm terminates, the final result is 
a finite set (of polynomials) G that has the property
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�
g1, g2�G

�
wher e�f � l c�g1, g2�, h1 � t r d�r d�f , g1�, G�,

h2 � t r d�r d�f , g2�, G�, � h1 � h2

df �h1, h2� � G
��.

We now try to prove that, if G has this property, then 

i s–f i ni t e�G�,

i deal �F� � i deal �G�,

i s–Gr öbner –basi s�G�,

i . e. i s–Chur ch–Rosser � �G �.

Here, we only deal with the third, most important, property. 

� � � � 53� of �63

Using Available Knowledge

Using Newman's lemma and some elementary properties it can be shown that it is sufficient to prove

i s–Chur ch–Rosser � �G � � �
p
� �
f 1, f 2

�

 p � f 1
p � f 2

� 	 f 1�� f 2�.

Newman's lemma (1942):

i s–Chur ch–Rosser � � � � �
f , f 1, f 2

�

 f � f 1
f � f 2

� 	 f 1�� f 2�.

� � � � 54� of �63

The (Automated) Proof Attempt

Let now the power product p and the polynomials f1, f2 be arbitary but fixed and assume

 p �G f 1
p �G f 2.

We have to find a polyonomial g such that

f 1 �G
� g,

f 2 �G
� g.

From the assumption we know that there exist polynomials g1 and g2 in G such that
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l p�g1� � p,
f 1 � r d�p, g1�,

l p�g2� � p,
f 2 � r d�p, g2�.

From the final situation in the algorithm scheme we know that for these g1 and g2

� h1 � h2
df �h1, h2� � G,

where

h1 : � t r d�f 1 ' , G�, f 1 ' : � r d�l c�g1, g2�, g1�,
h2 : � t r d�f 2 ' , G�, f 2 ' : � r d�l c�g1, g2�, g2�.

� � � � 55� of �63

Case h1=h2

l c�g1, g2� �g1 r d�l c�g1, g2�, g1� �G
� t r d�r d�l c�g1, g2�, g1�, G� �

t r d�r d�l c�g1, g2�, g2�, G� �G
� r d�l c�g1, g2�, g2� �g2 l c�g1, g2�.

(Note that here we used the requirements that lc[g1,g2] is reducible w.r.t. g1 and g2. The other cases are 
easy.)

Hence, by elementary properties of polynomial reduction,

�
a, q

� a q l c�g1, g2� �g1 a q r d�l c�g1, g2�, g1� �G
� a q t r d�r d�l c�g1, g2�, g1�, G� �

a q t r d�r d�l c�g1, g2�, g2�, G� �G
� a q r d�l c�g1, g2�, g2� �g2 a q l c�g1, g2� 	.

Now we are stuck in the proof.

� � � � 56� of �63

Now Use the Specification Generation Algorithm

Using the above specification generation rule, we see that we could proceed successfully with the proof if 
lc[g1,g2] satisfied the following requirement

�
p, g1, g2

�

 l p�g1� � p
l p�g2� � p

� 	 
 �
a, q

��p � a q l c�g1, g2� 	���, �l c r equi r ement 	
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With such an lc, we then would have 

p �g1 r d�p, g1� � a q r d�l c�g1, g2�, g1� �G
� a q t r d�r d�l c�g1, g2�, g1�, G� �

a q t r d�r d�l c�g1, g2�, g2�, G� �G
� a q r d�l c�g1, g2�, g2� � r d�p, g2� �g2 p

and, hence,

f 1 �G
� a q t r d�r d�l c�g1, g2�, g1�, G�,

f 2 �G
� a q t r d�r d�l c�g1, g2�, g1�, G�,

i.e. we would have found a suitable g.

� � � � 57� of �63

Summarize the (Automatically Generated) Specifications of the 

Subalgorithm lc

Using the above specification generation rule, we see that we could proceed successfully with the proof if 
lc[g1,g2] satisfied the following requirement

�
p, g1, g2

�

 l p�g1� � p
l p�g2� � p

� 	 �l c�g1, g2� � p	� ,

and the requirements:

l p�g1� � l c�g1, g2�,
l p�g2� � l c�g1, g2�.

Now this problem can be attacked independently of any Gröbner bases theory, ideal theory etc. In fact, it 
can be solved by high-school mathematics!

� � � � 58� of �63

A Suitable lc

l cp�g1, g2� � l cm�l p�g1�, l p�g2��

is a suitable function that satisfies the above requirements.
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Eureka! The crucial function lc (the "critical pair" function) in the critical pair / completion algorithm scheme 
has been synthesized automatically!

� � � � 59� of �63

Case h1�h2 

In this case, df[h1,h2]�G: 

In this part of the proof we are basically stuck right at the beginning.

We can try to reduce this case to the first case, which would generate the following requirement

�
h1, h2

�h1 �!df �h1, h2�"�h2	 �df r equi r ement 	.

� � � � 60� of �63

Looking to the Knowledge Base for a Suitable df

(Looking to the knowledge base of elementary properties of polynomial reduction, it is now easy to find a 
function df  that satifies (df requirement), namely

df �h1, h2� � h1 � h2,

because, in fact,

�
f , g

�f �!f �g"� g	.

Eureka! The function df (the "completion" function) in the critical pair / completion algorithm scheme has 
been "automatically" synthesized!)

� � � � 61� of �63
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Goals, Obstacles, Chances

The Mathematcial Theory Exploration Cycle

Example: Groebner Bases Algorithm Synthesis

Conclusion

� � � � 62� of �63

Automated Reasoning

Mathematics

Science

Technology

� � � � 63� of �63
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