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Formal Mathematics:
A Key to the Future

Bruno Buchberger
RISC, Austria

Talk at "Engineering and Life Sciences"
June 26-30, 2006, Avignon, France

Dedicated to the 60th Birthday of Gautam Dasgupta
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Purpose

� Give the flavor of a certain area in algorithmic mathematics: 

"formal math", "automated reasoning", "intellectics", "mathematical knowledge management", 
"computer-supported mathematical theory exploration", ...

� Does this have applications for life sciences?

� � � � 3� of �46

Application to Life Sciences

�  ????

� A recent project with "Genomica" company: imitate the process of how biologists guess the 
mapping between the presence of certain genes and biologic behavior.  (�  "Algorithm 
synthesis")



� Processes in life sciences cannot be simulated without simulating the "evolution" of the 
processes. 

Example: simulation of a cell.  (  �  "Self-reference" is an important issue.)

� � � � 4� of �46

Conference Announcement:  "Algebraic Biology 2007" ,  July 2-4, 2007

www.risc.uni-linz.ac.at/about/conferences/ab2007/ 

We need biologists who present problems !

Symbolic methods tutorial week before AB 2007 !

� � � � 5� of �46

Focus of This Talk

� Formal mathematics: Why a key? Answer: Increase the efficiency of the mathematical research 
process.

� Mathematical research process: invention and verification.

� In this talk only one example: automated invention of a (non-trivial) algorithm and automated 
proof, namely algorithm for constructing Groebner bases.
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All Current Algorithmics (Numerics, Symbolics,...) is Available in 

Systems 

� Systems like Mathematica, Maple, Derive, Mathlab, ... FORM, Singular, Cocoa, ...

� An enormous potential for science (physics, ...) and engineering.

� Help!  and additional Packages

� � The other math talks at this conference

� � � � 9� of �46

Remark:

There is lots of new and deep mathematics behind the (numeric, discrete, graphic, algebraic, and symbolic) 
algorithms of the current math systems.

In this talk only one example: Gröbner bases theory:
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� Why are Gröbner bases important? (Dozens of fundamental problems in pure and applied math 
can be reduced to Gröbner bases constructions! Examples: non-linear equation solving, 
diophantine equs with poly coefficients, presentations of polys as polys of polys, decomposition 
of varieties, canonical simplification modulo poly relations, ...)

� What are Gröbner bases?

� How can Gröbner bases be computed?

� � � � 10� of �46

Current Math Systems

Groebner Bases

Groebner Bases Applied for Automated Reasoning

Automated Reasoning About Groebner Bases
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Example of a Groebner Basis   (BB 1965, ...)

B.B. An Algorithmic Criterion for the Solvability of Systems of Algebraic Equations, aequationes 
mathematicae, 1970. (English translation in: B.B., F.Winkler. Gröbner Bases: Theory and Applications. 
Cambridge University Press, 1998, pp. 540-560. 

A system of polynomials (not a Groebner basis):
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f 1 � x y � 2�y z � z;

f 2 � y2 � x2 z � x z;

f 3 � z2 � y2 x � x;

F � �f 1 , f 2 , f 3�;

A ("the") corresponding Groebner basis:

G� Gr oebner Basi s�F�

��z � 4 z3 � 17 z4 � 3 z5 � 45 z6 � 60 z7 � 29 z8 � 124 z9 � 48 z10 � 64 z11 � 64 z12,

�22001 z � 14361 y z � 16681 z2 � 26380 z3 � 226657 z4 � 11085 z5 �

90346 z6 � 472018 z7 � 520424 z8 � 139296 z9 � 150784 z10 � 490368 z11,

43083 y2 � 11821 z � 267025 z2 � 583085 z3 � 663460 z4 � 2288350 z5 �

2466820 z6 � 3008257 z7 � 4611948 z8 � 2592304 z9 � 2672704 z10 � 1686848 z11,

43083 x � 118717 z � 69484 z2 � 402334 z3 � 409939 z4 � 1202033 z5 �

2475608 z6 � 354746 z7 � 6049080 z8 � 2269472 z9 � 3106688 z10 � 3442816 z11�

What important property of Groebner bases can we observe here?

zsol � NSol ve�G��1�� �� 0, z�

��z � �0.331304 � 0.586934 ��, �z � �0.331304 � 0.586934 ��,
�z � �0.296413 � 0.705329 ��, �z � �0.296413 � 0.705329 ��,
�z � �0.163124 � 0.37694 ��, �z � �0.163124 � 0.37694 ��,
�z � 0.�, �z � 0.0248919 � 0.89178 ��, �z � 0.0248919 � 0.89178 ��,
�z � 0.468852�, �z � 0.670231�, �z � 1.39282��

Gsubnum� G �. zsol ��1��

�1.11022 �10�15 � 5.55112� 10�16 �,

��523.519 � 4967.65 �� � �4757.86 � 8428.97 �� y,
��7846.9 � 8372.06 �� � 43083 y2, ��16311.7 � 16611. �� � 43083 x�

ysol � NSol ve� Gsubnum��2�� �� 0, y�

��y � �0.473535 � 0.205184 ���

Theorem (Roider, Kalkbrener et al. 1990): It suffices to consider the poly in y with lowest degree.

xsol � NSol ve� Gsubnum��4�� �� 0, x�

��x � 0.378611 � 0.385558 ���
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F �. zsol ��1�� �. ysol ��1�� �. xsol ��1��

��3.21965 � 10�15 � 3.45557� 10�15 �,

4.02456 �10�15 � 8.04912� 10�16 �, 5.07927� 10�15 � 1.83187� 10�15 ��

� � � � 12� of �46

Another Example of Application of Groebner Bases: Invariant Theory

A Question:  Can 

h � x1
7 �x2 � x1 x2

7

x1
7 x2 � x1 x2

7

be expressed as a polynomial in 

F � �x1
2 � x2

2 , x1
2 �x2

2 , x1
3 �x2 � x1 x2

3�

�x12 � x22, x1
2 x2

2, x1
3 x2 � x1 x2

3�

?

Note: These polynomials are fundamental invariants for the group �4.

� � � � 13� of �46

Reduction to Groebner Bases Computation

�t i me, GB� � Gr oebner Basi s�
��i 1 � x1

2 � x2
2 , �i 2 � x1

2 �x2
2 , � i 3 � x1

3 �x2 � x1 x2
3�, �x2 , x1 , i 3 , i 2 , i 1�� �� Ti mi ng

�0. Second,
��i12 i2 � 4 i22 � i32, i2 � i1 x1

2 � x1
4, �i1

2 i3 x1 � 2 i2 i3 x1 � i1 i3 x1
3 � i1

2 i2 x2 � 4 i2
2 x2,

i1
2 x1 � 2 i2 x1 � i1 x1

3 � i3 x2, �i1 i3 � 2 i3 x1
2 � i1

2 x1 x2 � 4 i2 x1 x2,

�i3 x1 � 2 i2 x2 � i1 x1
2 x2, �i3 � i1 x1 x2 � 2 x1

3 x2, �i1 � x1
2 � x2

2��

Pol ynomi al Reduce�x1
7 �x2 � x1 x2

7 , GB,

�x2 , x1 , i 3 , i 2 , i 1�, Monomi al Or der � Lexi cogr aphi c�

i 1
2 i 3 � i 2 i 3
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Theorem (Sweedler, Sturmfels et al. 1988): h can be represented in terms of I iff remainder of h w.r.t. 
"Groebner basis of I with slack variables" is a polynomial in the slack variables (which gives the 
representation).

i 1
2 i 3 � i 2 i 3 �. �i 1 � x1

2 � x2
2 , i 2 � x1

2 �x2
2 , i 3 � x1

3 �x2 � x1 x2
3� �� Expand

x1
7 x2 � x1 x2

7

R � Pol ynomi al Reduce�x1
6 �x2 � x1 x2

6 , GB,

�x2 , x1 , i 3 , i 2 , i 1�, Monomi al Or der � Lexi cogr aphi c�

�i 1
3 x1 � 2 i 1 i 2 x1 �

1
����
2

i 1 i 3 x1 � i 1
2 x1

3 � i 2 x1
3 �

1
����
2

i 3 x1
3 �

1
����
2

i 1 i 2 x2

x16�x2 � x1 x26 can not be expressed by the fundamental invariants in I. 

� � � � 14� of �46

Another Example of the Application of Groebner Bases: Computation 

on Differential Operators

See talk by M. Rosenkranz.

� � � � 15� of �46

More Applications

> 1000 papers and > 10 textbooks on Groebner bases.

Applications in: Algebraic Geometry, Cryptography, Coding Theory, Integer Optimization, Algebraic 
Combinatorics, Combinatorial and Special Function Identities, Symbolic Summation, Symbolic Analysis (in 
particular, Differential Equations), Geometry Theorema Proving, Control Theory, etc.

Gröbner Bases 2006 Special Semester at RICAM and RISC (Feb - June 2006): 10 Proceedings volumes 
will be issued.

� � � � 16� of �46
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The Problem of Constructing Gröbner Bases

Definition: F is a Gröbner basis iff

     polynomial reduction ("division") w.r.t. F is unique.

Problem: Given F,  find G   such that G is a Gröbner basis 

                                            and F and G generate the same set of linear combinations.

Why is this problem fundamental?

Many problems that are difficult for general F are easy for Gröbner bases G.

Hence, many difficult problems can be solved by (easy) reductions to the problem of constructing 
Gröbner bases, for wich these problems are easy.

� � � � 17� of �46

The "Main Theorem" of Gröbner Bases Theory (BB 1965):

F is a Gröbner basis  �   �
f1,f2�F

  reduction[ F, S–polynomial�f1, f2�] = 0.

S–pol ynomi al ��2�y � x y, �x2 � y2� � y ��2�y � x y� � x ��x2 � y2�

x3 � 2 y2

Main intuition: least common multiple of the leading power products play the important role.

Proof: Nontrivial. Combinatorial. 

The power of the Gröbner bases method is contained in the invention of the notion of S-polynomial and 
the theorem,  and the proof of this theorem.

� � � � 18� of �46
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An Algorithm for Constructing Gröbner Bases (BB 1965)

Recall the main theorem:

F is a Gröbner basis   �    �
f1,f2�F

  reduction[ F, S–polynomial�f1, f2�] = 0.

Based on the main theorem, the problem can be solved by the following algorithm:

Start with G:= F. 

For any pair of polynomials f1, f2 � G:

      h := remainder[ G, S–polynomial�f1, f2�] 

      

      If h = 0, consider the next pair.

      

      If h � 0, add h to G and iterate.          

� � � � 19� of �46

Termination of the Algorithm

Termination: by Dickson's Lemma (Dickson 1913, BB 1970).

� � � � 20� of �46
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Current Math Systems

Groebner Bases

Groebner Bases Applied for Automated Reasoning

Automated Reasoning About Groebner Bases

� � � � 21� of �46

Example: Pappus Theorem

� What does the theorem say geometrically?

A

A1

B

B1

C

C1

P Q
S
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� Textbook formulation:

Let A,B, C and A1,B1, C1 be on two lines and P = AB1 � A1B, Q = AC1 � A1C, S = BC1 � B1C. Then P, 
Q, and S are collinear.

� Input to the system:

Pr oposi t i on�" Pappus" , any�A, B, A1, B1, C, C1, P, Q, S�,

poi nt �A, B, A1, B1� � pon�C, l i ne�A, B�� � pon�C1, l i ne�A1, B1�� �
i nt er �P, l i ne�A, B1�, l i ne�A1, B�� � i nt er �Q, l i ne�A, C1�, l i ne�A1, C�� �
i nt er �S, l i ne�B, C1�, l i ne�B1, C�� � col l i near �P, Q, S��

� Input to the system:

Pr ove�Pr oposi t i on�" Pappus" �, by � Geomet r yPr over ,

Pr over Opt i ons � �Met hod �� " Gr oebner Pr over " , Ref ut at i on � Tr ue��

� ProofObject �

� Notebook generated automatically by the proving algorithm based on Groebner basis algorithm:

Prove:

(Proposition (Pappus))
   

�
A,B,A1,B1,C,C1,P,Q,S

�point�A, B, A1, B1� � pon�C, line�A, B�� �
pon�C1, line�A1, B1�� � inter�P, line�A, B1�, line�A1, B�� �
inter�Q, line�A, C1�, line�A1, C�� �
inter�S, line�B, C1�, line�B1, C�� 	 collinear�P, Q, S��

 

with no assumptions.

To prove the above statement we shall use the Gröbner basis method. First we have to transform the 
problem into algebraic form. 

Algebraic Form:

To transform the geometric problem into algebraic form we have to chose first an orthogonal 
coordinate system.

Let's have the origin in point A, and points �B, C� on the two axes.

Using this coordinate system we have the following points:

��A, 0, 0�, �B, 0, u1�, �A1, u2, u3�, �B1, u4, u5�,
�C, 0, u6�, �C1, u7, x1�, �P, x2, x3�, �Q, x4, x5�, �S, x6, x7��

The algebraic form of the assertion is:

(1)
�

x1,x2,x3,x4,x5,x6,x7
�u3 u4 � �u2 u5 � �u3 u7 � u5 u7 � u2 x1 � �u4 x1 
 0 �

u5 x2 � �u4 x3 
 0 � �u1 u2 � u1 x2 � �u3 x2 � u2 x3 
 0 �
x1 x4 � �u7 x5 
 0 � �u2 u6 � �u3 x4 � u6 x4 � u2 x5 
 0 �
u1 u7 � �u1 x6 � x1 x6 � �u7 x7 
 0 � �u4 u6 � �u5 x6 � u6 x6 � u4 x7 
 0 	

x3 x4 � �x2 x5 � �x3 x6 � x5 x6 � x2 x7 � �x4 x7 
 0�
This problem is equivalent to:
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(2)
� � �

x1,x2,x3,x4,x5,x6,x7
�u3 u4 � �u2 u5 � �u3 u7 � u5 u7 � u2 x1 � �u4 x1 
 0 �

u5 x2 � �u4 x3 
 0 � �u1 u2 � u1 x2 � �u3 x2 � u2 x3 
 0 �
x1 x4 � �u7 x5 
 0 � �u2 u6 � �u3 x4 � u6 x4 � u2 x5 
 0 �
u1 u7 � �u1 x6 � x1 x6 � �u7 x7 
 0 � �u4 u6 � �u5 x6 � u6 x6 � u4 x7 
 0 �
x3 x4 � �x2 x5 � �x3 x6 � x5 x6 � x2 x7 � �x4 x7 
 0�	

To remove the last inequality, we use the Rabinowitsch trick: Let  v0 be a new variable. Then the 
problem becomes:

(3)
� � �

x1,x2,x3,x4,x5,x6,x7,v0
�u3 u4 � �u2 u5 � �u3 u7 � u5 u7 � u2 x1 � �u4 x1 
 0 �

u5 x2 � �u4 x3 
 0 � �u1 u2 � u1 x2 � �u3 x2 � u2 x3 
 0 �
x1 x4 � �u7 x5 
 0 � �u2 u6 � �u3 x4 � u6 x4 � u2 x5 
 0 �
u1 u7 � �u1 x6 � x1 x6 � �u7 x7 
 0 � �u4 u6 � �u5 x6 � u6 x6 � u4 x7 
 0 �
1 � �v0 �x3 x4 � �x2 x5 � �x3 x6 � x5 x6 � x2 x7 � �x4 x7� 
 0�	

This statement is true iff the corresponding Gröbner basis is { 1} .

The Gröbner bases is �1�.
Hence,  the statement and the original assertion is  true.

Statistics:

Time needed to compute the Gröbner bases: 0.42 Seconds.

� � � � 22� of �46

Current Math Systems

Groebner Bases

Groebner Bases Applied for Automated Reasoning

Automated Reasoning About Groebner Bases

� � � � 23� of �46
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Predicate Logic Proving: Automated Proofs of Theorems in Analysis 

(The "PCS" Prover: BB 2001)

� Initialize Theorema

� Example

Def i ni t i on	" l i mi t : " , any�f , a�,

l i mi t �f , a�	 

�

��0

�
N



n

n
N


f �n� � a� � ��

Pr oposi t i on�" l i mi t of sum" , any�f , a, g, b�,

�l i mi t �f , a� � l i mi t �g, b�� � l i mi t �f � g, a � b��

Def i ni t i on�" �: " , any�f , g, x�,

�f � g��x� � f �x� � g�x��

Lemma�" 
�
" , any�x, y, a, b, �, ��,

�
�x � y� � �a � b�� � �� � ��� � �
x � a� � � � 
y � b� � ���

Lemma�" max" , any�m, M1, M2�,

m
 max�M1, M2� � �m
 M1 � m
 M2��

Theor y	" l i mi t " ,

Def i ni t i on�" l i mi t : " �
Def i ni t i on�" �: " �
Lemma�" 
�
" �
Lemma�" max" �

�

Pr ove�Pr oposi t i on�" l i mi t of sum" �, usi ng � Theor y�" l i mi t " �, by � PCS�

� ProofObject �

Proof contains interesting algorithmic and didactic information!

� � � � 24� of �46
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Induction Prover

Example: Inductive Proofs about Behavior of Turing Machines (in a Project with J. 

Hertel 2001)

Show–Rast er �Comput e�TM��TM0, i c,

0������ ��0������ � 0��������,

usi ng � �Def i ni t i on�" TM0: " �, Theor y�" �TM: " ���, 1, 33, 50�

��Graphics��

Prove:

(Proposition (TM0 left run)) �
k,n,l

�
�TM��TM0, 
2, 
��l��, 1, ����1, n � k����, k� �


2, 
��l�, ��0, k��, 1, ����1, n�����
,

under the assumptions:

(Definition (TM0:): 1) �
l,r

�rc�TM0, 
1, 
l, 0, r��� :� 
1, R, 2��,

(Definition (TM0:): 2) �
l,r

�rc�TM0, 
1, 
l, 1, r��� :� 
1, L, 3��,

(Definition (TM0:): 3) �
l,r

�rc�TM0, 
2, 
l, 0, r��� :� 
0, L, 1��,

(Definition (TM0:): 4) �
l,r

�rc�TM0, 
2, 
l, 1, r��� :� 
0, R, 2��,

(Definition (TM0:): 5) �
l,r

�rc�TM0, 
3, 
l, 0, r��� :� 
1, R, 1��,

(Definition (TM0:): 6) �
l,r

�rc�TM0, 
3, 
l, 1, r��� :� 
1, L, 4��,
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(Definition (TM0:): 7) �
l,r

�rc�TM0, 
4, 
l, 0, r��� :� 
1, L, 1��,

(Definition (tu�)) �
x,x�

�x � 
x�� :� 
x, x���,

(Proposition (nu�): 1) �
x
�x � 0 :� x�,

(Proposition (nu�): 2) �
x,y

�x � y� :� x� � y�,

(Proposition (nu�): 3) �
y
�0 � y :� y�,

(Definition (ta�): 1) �
s�,t�,u�

���s�, ��t��, u�� :� ��s�, t
�
, u���,

(Definition (ta�): 2) �
s�,t

�
,u�

���s�, ��t��, u�� :� ��s�, t
�
, u���,

(Definition (ta�): 3) �
a,m,n,s�,u�

���s�, ��a, m�, ��a, n�, u�� :� ��s�, ��a, m � n�, u���,

(Definition (ta�): 4) �
a,m,n,s�,u�

���s�, ��a, m�, ��a, n�, u�� :� ��s�, ��a, m � n�, u���,

(Definition (ta�): 5) �
a,s�,u�

���s�, ��a, 0�, u�� :� ��s�, u���,

(Definition (ta�): 6) �
a,s�,u�

���s�, ��a, 0�, u�� :� ��s�, u���,

(Definition (ta�): 7) �
n,u�

�����0, n�, u�� :� ��u���,

(Definition (ta�): 8) �
n,u�

���u�, ��0, n�� :� ��u���,

(Definition (ta�): 9) ic :� 
1, 
���, 0, �����,

(Definition (r�:): 1) �
u,v,z,l

�
,r�,s,t,n

�r��
u, L, s�, 
t, 
��l�, ��v, n���, z, ��r����� :�


s, 
��l�, ��v, n��, v, ����u, 0��, r�����
,

(Definition (r�:): 2)

�
u,z,r�,s,t

�r��
u, L, s�, 
t, 
���, z, ��r����� :� 
s, 
���, 0, ����u, 0��, r�����,

(Definition (r�:): 3) �
u,v,z,l

�
,r�,s,t,n

�r��
u, R, s�, 
t, 
��l��, z, ����v, n��, r����� :�


s, 
��l�, ��u, 0���, v, ����v, n�, r�����
,

(Definition (r�:): 4)

�
u,z,l

�
,s,t

�r��
u, R, s�, 
t, 
��l��, z, ������ :� 
s, 
��l�, ��u, 0���, 0, ������,

(Definition (TM�:): 1) �
P,c

�TM��P, c� :� r��rc�P, c�, c��,

(Definition (TM�:): 2) �
P,c

�TM��P, c, 0� :� c�,

(Definition (TM�:): 3) �
P,c,s

�TM��P, c, s�� :� TM��P, TM��P, c, s���,

(Definition (TM�:): 4) �
P,c

�TM��P, c, 0� :� 
c��,

(Definition (TM�:): 5) �
P,c,s

�TM��P, c, s�� :� c �TM��P, TM��P, c�, s��.

As there are several methods which can be applied, we have different choices to proceed with the proof.
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Alternative proof 1: failed

The proof of (Proposition (TM0 left run)) fails.(The Simplifier was unable to transform the proof situation.)

Alternative proof 2: proved

We prove (Proposition (TM0 left run))  by  induction on k.

Induction Base: 

(1)

�
n,l

�
�TM��TM0, 
2, 
��l��, 1, ����1, n � 0����, 0� � 
2, 
��l�, ��0, 0��, 1, ����1, n�����.

As there are several methods which can be applied, we have different choices to proceed with the proof.

Alternative proof 1: proved

We take in (1)  all variables arbitrary but fixed and prove:

(4) TM��TM0, 
2, 
��l1������, 1, ����1, n1 � 0����, 0� � 
2, 
��l1�����
, ��0, 0��, 1, ����1, n1����

.

A proof by simplification of (4)  works.

Simplification of the lhs term:

TM��TM0, 
2, 
��l1������, 1, ����1, n1 � 0����, 0� =by (Proposition (nu�): 1)

TM��TM0, 
2, 
��l1������, 1, ����1, n1����, 0� =by (Definition (TM�:): 2)


2, 
��l1������, 1, ����1, n1�����

Simplification of the rhs term:


2, 
��l1�����
, ��0, 0��, 1, ����1, n1���� =by (Definition (ta�): 5)


2, 
��l1������, 1, ����1, n1�����

Alternative proof 2: pending

Pending proof of (1) .

Induction Step:

Induction Hypothesis:

(2) �
n,l

�
�TM��TM0, 
2, 
��l��, 1, ����1, n � k1����, k1� �


2, 
��l�, ��0, k1��, 1, ����1, n�����
Induction Conclusion:

(3) �
n,l

�
�TM��TM0, 
2, 
��l��, 1, ����1, n � k1�����, k1�� �


2, 
��l�, ��0, k1���, 1, ����1, n�����
.

As there are several methods which can be applied, we have different choices to proceed with the proof.

Alternative proof 1: proved
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We take in (3)  all variables arbitrary but fixed and prove:

(5) TM��TM0, 
2, 
��l2������, 1, ����1, n2 � k1�����, k1�� �


2, 
��l2�����
, ��0, k1���, 1, ����1, n2����

.

A proof by simplification of (5)  works.

Simplification of the lhs term:

TM��TM0, 
2, 
��l2������, 1, ����1, n2 � k1�����, k1�� =by (Proposition (nu�): 2)

TM��TM0, 
2, 
��l2������, 1, ����1, n2� � k1����, k1�� =by (Definition (TM�:): 3)

TM��TM0, TM��TM0, 
2, 
��l2������, 1, ����1, n2� � k1����, k1�� =by (2)

TM��TM0, 
2, 
��l2�����
, ��0, k1��, 1, ����1, n2������ =by (Definition (TM�:): 1)

r��rc�TM0, 
2, 
��l2�����
, ��0, k1��, 1, ����1, n2������,


2, 
��l2�����
, ��0, k1��, 1, ����1, n2������

 =by (Definition (TM0:): 4)

r��
0, R, 2�, 
2, 
��l2�����
, ��0, k1��, 1, ����1, n2������ =by (Definition (r�:): 3)


2, 
��l2�����
, ��0, k1�, ��0, 0���, 1, ����1, n2���� =by (Definition (ta�): 3)


2, 
��l2�����
, ��0, k1 � 0���, 1, ����1, n2���� =by (Proposition (nu�): 2)


2, 
��l2�����
, ��0, k1� � 0��, 1, ����1, n2���� =by (Proposition (nu�): 1)


2, 
��l2�����
, ��0, k1���, 1, ����1, n2�����

Simplification of the rhs term:


2, 
��l2�����
, ��0, k1���, 1, ����1, n2�����

Alternative proof 2: pending

Pending proof of (3) .

� � � � 25� of �46

Automated Synthesis of the Gröbner Bases Algorithm by the "Lazy 

Thinking Method"  (BB 2002 ...)

Starting from a formal (predicate logic) specification of the problem, 



i s–f i ni t e�F�

�
�
�������

i s–f i ni t e� Gb�F� �
i s–Gr öbner –basi s� Gb�F��
i deal �F� � i deal � Gb�F��.

�
�
�������

and a list of possible "algorithm schemes", e.g.
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A�F� � A�F, pai r s�F��
A�F, ��� � F

A�F, ��g1, g2�, p��� �

wher e	f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�, h2 � t r d�r d�f , g2�, F�,

������
�
����

A�F, �p��� � h1 � h2

A	F� df �h1, h2�, �p�� � ��Fk , df �h1, h2��� 

k�1, …, 
F�

�� � ot her wi se
�

by this new algorithm synthesis method, the key idea of the main theorem (the notion of S-polynomial) is 
automatically generated and verified:

l c�g1, g2� � l cm�l p�g1�, l p�g2��,

df �h1, h2� � h1 � h2.

� � � � 26� of �46

The Algorithm Synthesis Method ("Lazy Thinking" ) is Based on 

� the use of "formula schemes" (re-use high-level mathematical knowledge),

� automated theorem proving,

� learning from failing proofs.

� � � � 27� of �46

The Essential Problem

The problem of synthesizing a Gröbner bases algorithm can now be also stated by asking whether, starting 
with the proof of



F
�

�
�
�������

i s–f i ni t e� A�F� �
i s–Gr öbner –basi s� A�F��
i deal �F� � i deal � A�F��

�
�
�������,

 we can automatically produce the idea that

l c�g1, g2� � l cm�l p�g1�, l p�g2��

and
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df �h1, h2� � h1 � h2

and prove that the idea is correct.

� � � � 28� of �46

Now Start the (Automated) Correctness Proof

With current theorem proving technology, in the Theorema system (and other provers), the proof attempt 
could be done automatically. (Ongoing PhD thesis of A. Craciun.)

� � � � 29� of �46

Details

It should be clear that, if the algorithm terminates, the final result is a finite set (of polynomials) G that has 
the property



g1, g2�G

��wher e	f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�,

h2 � t r d�r d�f , g2�, F�, �� h1 � h2

df �h1, h2� � G
��.

We now try to prove that, if G has this property, then 

i s–f i ni t e�G�,

i deal �F� � i deal �G�,

i s–Gr öbner –basi s�G�,

i . e. i s–Chur ch–Rosser � �G �.

Here, we only deal with the third, most important, property. 

� � � � 30� of �46

Using Available Knowledge

Using Newman's lemma and some elementary properties it can be shown that it is sufficient to prove
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i s–Chur ch–Rosser � �G � � 

p
� 

f 1, f 2

���� p � f 1
p � f 2

� � f 1�� f 2�.

� � � � 31� of �46

The (Automated) Proof Attempt

Let now the power product p and the polynomials f1, f2 be arbitary but fixed and assume

� p �G f 1
p �G f 2.

We have to find a polyonomial g such that

f 1 �G
� g,

f 2 �G
� g.

From the assumption we know that there exist polynomials g1 and g2 in G such that

l p�g1� 
 p,
f 1 � r d�p, g1�,

l p�g2� 
 p,
f 2 � r d�p, g2�.

From the final situation in the algorithm scheme we know that for these g1 and g2

�� h1 � h2
df �h1, h2� � G,

where

h1 : � t r d�f 1 ' , G�, f 1 ' : � r d�l c�g1, g2�, g1�,
h2 : � t r d�f 2 ' , G�, f 2 ' : � r d�l c�g1, g2�, g2�.

� � � � 32� of �46

Case h1=h2

l c�g1, g2� �g1 r d�l c�g1, g2�, g1� �G
� t r d�r d�l c�g1, g2�, g1�, G� �

t r d�r d�l c�g1, g2�, g2�, G� �G
� r d�l c�g1, g2�, g2� �g2 l c�g1, g2�.
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(Note that here we used the requirements rd[lc[g1,g2],g1]�lc[g1,g2] and rd[lc[g1,g2],g2]�lc[g1,g2].)

Hence, by elementary properties of polynomial reduction,



a, q

� a q l c�g1, g2� �g1 a q r d�l c�g1, g2�, g1� �G
� a q t r d�r d�l c�g1, g2�, g1�, G� �

a q t r d�r d�l c�g1, g2�, g2�, G� �G
� a q r d�l c�g1, g2�, g2� �g2 a q l c�g1, g2� �.

Now we are stuck in the proof.

� � � � 33� of �46

Now Use a Specification Generation Algorithm

Specification generation rule (rough sketch; the intelligence is in the details of this rule!):  Collect the 
temporary assumptions and temporary goals, write a "�" in between and generalize from constant terms 
to variables.   (The details are a little tricky.)

In the case of the proof at hand, we see that we could proceed successfully with the proof if lc[g1,g2] 
satisfied the following requirement



p, g1, g2

���� l p�g1� 
 p
l p�g2� 
 p

� � � �
a, q

��p � a q l c�g1, g2� ����, �l c r equi r ement �

With such an lc, we then would have 

p �g1 r d�p, g1� � a q r d�l c�g1, g2�, g1� �G
� a q t r d�r d�l c�g1, g2�, g1�, G� �

a q t r d�r d�l c�g1, g2�, g2�, G� �G
� a q r d�l c�g1, g2�, g2� � r d�p, g2� �g2 p

and, hence,

f 1 �G
� a q t r d�r d�l c�g1, g2�, g1�, G�,

f 2 �G
� a q t r d�r d�l c�g1, g2�, g1�, G�,

i.e. we would have found a suitable g.

� � � � 34� of �46
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Summarize the (Automatically Generated) Specifications of the 

Subalgorithm lc

(lc requirement), which also could be written in the form:



p, g1, g2

���� l p�g1� 
 p
l p�g2� 
 p

� � �l c�g1, g2� 
 p�� ,

and 

l p�g1� 
 l c�g1, g2�,
l p�g2� 
 l c�g1, g2�,

wich is a consequence of

r d�l c�g1, g2�, g1� � l c�g1, g2�,

r d�l c�g1, g2�, g2� � l c�g1, g2�.

Summarize Again

For synthesizing an algorithm for the Gröbner bases problem it suffices to find an lc satisfying



p, g1, g2

���� l p�g1� 
 p
l p�g2� 
 p

� � �l c�g1, g2� 
 p�� ,

and 

l p�g1� 
 l c�g1, g2�,
l p�g2� 
 l c�g1, g2�.

This problem can be solved by any high-school student (or university professor)! No knowledge on Gröbner 
bases theory necessary!

� � � � 35� of �46
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A Suitable lc

l cp�g1, g2� � l cm�l p�g1�, l p�g2��

is a suitable function that satisfies the above requirements.

Eureka! The crucial function lc (the "critical pair" function) in the critical pair / completion algorithm scheme 
has been synthesized automatically!

� � � � 36� of �46

Case h1�h2 

In this case, df[h1,h2]�G: 

In this part of the proof (wich is much easier) we are basically stuck right at the beginning. By the 
requirement generation algorithm we obtain the following requirement for df:



h1, h2

��h1 ��df �h1, h2��� h2� �df r equi r ement �.

� � � � 37� of �46

Looking to the Knowledge Base for a Suitable df

(Looking to the knowledge base of elementary properties of polynomial reduction, it is now easy to find a 
function df  that satifies (df requirement), namely

df �h1, h2� � h1 � h2,

because, in fact,



f , g

�f ��f �g�� g�.

Eureka! The function df (the "completion" function) in the critical pair / completion algorithm scheme has 
been "automatically" synthesized!)
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� � � � 38� of �46

Conclusion

We illustrated the automated synthesis of a non-trivial algorithm.

� Non trivial: ~ 1960 a conjecture was made that (Groebner bases) related problems are 
algorithmically unsolvable.

� An algorithm was found 1965 by human (young BB) mathematical exploration.

� A human (old BB) systematic algorithm invention method was able to synthesize, 2005, an 
algorithm automatically.

Implications for increase in efficiency of the mathematical exploration process (with implications on all 
sciences).

Possible implications on life sciences:  

� synthesizing "algorithms" between structure and behavior.

� understanding the phenomenon of self-reference in evolution.

� ...

� � � � 39� of �46

Appendix: More Details on Gröbner Bases and 
References

How Difficult is the Construction of Gröbner Bases?

Very Easy

The structure of the algorithm is easy. The operations needed in the algorithm are 
elementary. "Every high-school student can execute the algorithm." (See palm-top TI-98.)    

Very Difficult

The inherent complexity of the problems that can be solved by the GB method (e.g. graph 
colorings) is "exponential". Hence, the worst-case complexity of the GB algorithm must be 
high.   
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Sometimes Easy

Mathematically interesting examples often have a lot of "structure" and, in concrete 
examples, GB computations can be reasonably, even surprisingly, fast. 

Enormous Potential for Improvement

More mathematical theorems can lead to drastic speed-up:

The use of "criteria" for eliminating the consideration of certain S-polynomials.

p-adic approaches and floating point approaches.

The "Gröbner Walk" approach.

The "linear algebra" approach. (Generalized Sylvester matrices.)  

The "numerics" approach. 

Tuning of the algorithm:

Heuristics, strategies for choosing orderings, selecting S-polynomials etc.

Good implementation techniques.

 A huge literature.

� � � � 40� of �46

Why "Gröbner"  Bases?

Professor  Wolfgang Gröbner (1899-1980) was my PhD thesis supervisor.

He gave me the problem of finding "the uncovered points if the black points are given".

x
0 1 32

1

2

3

0

In my thesis (1965) and journal publication  (1970) I introduced:
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* the concept of Gröbner bases and reduced Gröbner bases

* the S-polynomials

* the main theorem with proof

* the algorithm with termination and correctness proof

* the uniqueness of Gröbner bases

* first applications (computing in residue rings, Hilbert function, algebraic systems)

* the technique of base-change w.r.t. to different orderings

* a complete computer implementation 

* first complexity considerations.

However, in the thesis, I did not use the name "Gröbner bases". I introduced this name only in 1976, for 
honoring Gröbner, when people started to become interested in my work.   

My later contributions:

* the technique of criteria for eliminating unnecessary reductions

* an abstract characterization of "Gröbner bases rings".

� � � � 41� of �46

Gröbner Bases on Your Desk and in Your Palm

GB implementations are contained in all the current math software systems like Mathematica (see demo), 
Maple, Magma, Macsyma, Axiom, Derive, Reduce, Mupad, ...

Software systems specialized on Gröbner bases: RISA-ASIR (M. Noro, K. Yokoyama), CoCoA, Macaulay, 
Singular, ...

Gröbner bases are now availabe on the TI-98 (implemented in Derive).

� � � � 42� of �46

Textbooks on Gröbner Bases

T. Kreuzer, L. Robbiano: Algorithmic Commutative Algebra I. Springer, Heidelber, 2000: Contains a list of all 
other, approx. 10, textbooks on GB.

W.W.Adams, P. Loustenau. Introduction to Gröbner Bases. Graduate Studies in Mathematics: Amer. Math. 
Soc., Providence, R.I., 1994.

T.Becker, V.Weispfenning. Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, 
New York, 1993.
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D.Cox, J.Little, D.O'Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic 
Geometry and Commutative Algebra. Springer, New York, 1992.

....

M. Maruyama. Gröbner Bases and Applications. 2002.

M. Noro, K. Yokoyama. Computational Fundamentals of Gröbner Bases. University of Tokyo Press, 2003.

� � � � 43� of �46

Gröbner Bases on the Web

Search. E.g. in the Research Index you obtain ~ 3000 citations.

� � � � 44� of �46

Original Publications on Gröbner Bases

Approximately 600 papers appeared meanwhile on Gröbner bases.

J of Symbolic Computation, in particular, special issues.

ISSAC Conferences.

Mega Conferences.

ACA Conferences.

...

The essential  additional original ideas in the literature:

� Gröbner bases can be constructed w.r.t. arbitrary "admissible" orderings (W. Trinks 1978)

� Gröbner bases w.r.t. to "lexical" orderings have the elimination property (W. Trinks 1978)

� Gröbner bases can be used for computing syzygies and the S-polys generate the module of 
syzygies (G. Zacharias 1978)

� A given F, w.r.t. the infinitely many admissible orderings, has only finitely many Gröbner 
bases and, hence, we can construct a "universal" Gröbner bases for F (L. Robbiano, V. 
Weispfenning, T. Schwarz 1988)

� Starting from a Gröbner bases for F for ordering O1 one can "walk", by changing the basis 
only slightly, to a basis for a "nearby" ordering O2  and so on ... until one arrives at a Gröbner 
bases for a desired ordering Ok  (Kalkbrener, Mall 1995, Nam 2000).
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� Use arbitrary linear algebra algorithms for the reduction (remaindering) process: (Faugère 
1997).

� ... numerours applications,

� � � � 45� of �46

Research Topics

� the inner structure of Groebner bases: generalized Sylvester matrices

� the numerics of GB computations

� axiomatic characterization of Groebner rings

� generalizations (e.g. non-commutative poly-rings)

� speeding up the computation

� Groebner bases for particular classes of ideals (avoid computation)

� the study of admissible orderings

� applications (problem reductions, e.g. functional analysis, BV problems, Rosenkranz 2003)

� � � � 46� of �46
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