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Reduction of the Geo Proving Problem to Gröbner bases 

Computation

                Geo Theorem        �  ( by coordinatization )

               �
x,y, ...

( poly1(x,y,...)=0 � ... � poly(x,y,...)=0 )   �

               

               � �
x,y, ...

 (  poly1(x,y,...)=0 � ... � poly(x,y,...)�0 )  �

               

               � �
x,y, ...,a

(  poly1(x,y,...)=0 � ... �  a . poly(x,y,...) - 1 = 0 )  

The latter question can be decided by the Gröbner basis method!

The method is implemented, by J. Robu, in the Theorema System:

J. Robu. Algebraic Methods for Automated Theorem Proving in Geometry. PhD. Thesis, RISC, 
Johannes Kepler University, Linz, Austria, 2002.

B. B., C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, W. Windsteiger. The Theorema 
Project: A Progress Report. In: Symbolic Computation and Automated Reasoning (Proceedings of 
CALCULEMUS 2000, Symposium on the Integration of Symbolic Computation and Mechanized 
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Reasoning, August 6-7, 2000, St. Andrews, Scotland), M. Kerber and M. Kohlhase (eds.), A.K. 
Peters, Natick, Massachusetts, ISBN 1-56881-145-4, pp. 98-113.
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Very Easy Example: Proving a Property of an Origami Constructions 

(This is joint work with Tetsuo Ida, Tsukuba University)

Example of an Origami Construction Problem: Starting from a square A, B, C, D, find a sequence of 
origami steps such that, finally, we arrive at an equilateral triangle. 

A first solution (does not yield maximum edge length; other solution and more complicated examples see T. 
Ida, BB, J. Robu et al. 2003 and 2004): 

A B

CD E

FA B

CD E

F

1

Then we fix the point A and fold so that point D will lie on line EF. (This is a legal origami operation.)

A B

CE

FA B

CE

F

G

A

D

A

D

G

3

Now we can do the analogous step with corner C, fixing B and bringing C onto the current position of D.  
Thus, we obtain an equilateral triangle.
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An Example of a Proof Problem: Prove that, for all squares ABCD, GD
������

 = 2 ED
�����

.

� � � � 6� of �55

The Translation into a Prove Problem on Equalities:

First, note that AB
�����

 = BC
�����

 = CD
�����

 = DA
�����

, since we start from a square. Hence, whenever the length of one of 
these four edges occurs, we replace it by AB

�����
.

Now observe that

DF
�����2

� AD
�����2

� AF
�����2

� AB
�����2

� �AB
������ 2�2

� 3 � 4�AB
�����2 .

and

GD
�����2

� GE
�����2

� ED
�����2

� �DC
������ 2 � GD

������2
� �EF

�����
� DF
������2

� �AB
������ 2 � GD

������2
� �AB

�����
� DF
������2 .

We want to decide whether, under these assumptions, 

GD
�����

� 2�ED
�����

� 2��EF
����

� DF
����

� � 2��AB
�����

� DF
����

�.

For abbreviation, let's write

a � AB
�����

, b � GD
�����

, f � DF
�����

.

Then, what we want to prove is that

�
a�0, f , b

�
�
�
����
��	

�

f 2 � 3 � 4�a2

b2 � �a � 2 � b�2 � �a � f �2
� �b � 2��a � f ���

�
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The Transformation into a Gröbner Bases Construction Problem

The last formula is equivalent to

	 

a, f , b

�

�

�

�������������

�������	


������

a � 0

f 2 � 3 � 4�a2

b2 � �a � 2 � b�2 � �a � f �2

b � 2��a � f �

�

�















,
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which is equivalent to

	 

a, f , b, �, �

�

�

�

�������������

�������	


������

a � � 1

f 2 � 3 � 4�a2

b2 � �a � 2 � b�2 � �a � f �2

�b � 2��a � f ���� � 1

�

�















.

This question can be decided by computing the (reduced) Gröbner basis

Gr oebner Basi s�
�a � � 1, f 2 � 3 � 4�a2 , b2 � �a � 2 � b�2 � �a � f �2 , �b � 2��a � f ���� � 1�, ��, �, b, f , a��

�1�

and to check whether or not this Gröbner basis is equal to {1}. Since this is the case, we know that the 
restricted version of the theorem is true.

� � � � 8� of �55

The Automated Generation of the "Degeneration Conditions"

Observe what happens if we leave the condition a�0 out:

	 

a, f , b, �

�

�

�

�������������

�������	


������

a � � 1

f 2 � 3 � 4�a2

b2 � �a � 2 � b�2 � �a � f �2

�b � 2��a � f ���� � 1

�

�















.

Gr oebner Basi s��f 2 � 3 � 4�a2 , b2 � �a � 2 � b�2 � �a � f �2 , �b � 2��a � f ���� � 1�, ��, b, f , a��

�a, f2, �1 � b � � 2 f ��

The original theorem is not true iff this system has a solution, i.e. iff

             a = 0, f = 0, b � 0, 	 � 0, b = 1/ 	.

Thus, it is true if a � 0.

There is quite some literature on the automated generation of the non-degeneration conditions.

� � � � 9� of �55
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Example: Trisection an Angle by Origami (jointly with T. Ida)

� � � � 10� of �55

Automated Proof of Origami Trisection by the Gröbner Bases Method

� � � � 11� of �55

Example: Pappus Theorem

� What does the theorem say geometrically?

A

A1

B

B1

C

C1

P Q
S

� Textbook formulation:

Let A,B, C and A1,B1, C1 be on two lines and P = AB1 � A1B, Q = AC1 � A1C, S = BC1 � B1C. Then P, 
Q, and S are collinear.

� Input to the system:
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Pr oposi t i on�" Pappus" , any�A, B, A1, B1, C, C1, P, Q, S�,

poi nt �A, B, A1, B1� � pon�C, l i ne�A, B�� � pon�C1, l i ne�A1, B1�� �
i nt er �P, l i ne�A, B1�, l i ne�A1, B�� � i nt er �Q, l i ne�A, C1�, l i ne�A1, C�� �
i nt er �S, l i ne�B, C1�, l i ne�B1, C�� � col l i near �P, Q, S��

� Input to the system:

Pr ove�Pr oposi t i on�" Pappus" �, by 
 Geomet r yPr over ,

Pr over Opt i ons 
 �Met hod �� " Gr oebner Pr over " , Ref ut at i on 
 Tr ue��

� Notebook generated automatically by the proving algorithm based on Groebner basis algorithm:

Prove:

(Proposition (Pappus))
   

�
A,B,A1,B1,C,C1,P,Q,S

�point�A, B, A1, B1� � pon�C, line�A, B�� �
pon�C1, line�A1, B1�� � inter�P, line�A, B1�, line�A1, B�� �
inter�Q, line�A, C1�, line�A1, C�� �
inter�S, line�B, C1�, line�B1, C�� � collinear�P, Q, S��

 

with no assumptions.

To prove the above statement we shall use the Gröbner basis method. First we have to transform the 
problem into algebraic form. 

Algebraic Form:

To transform the geometric problem into algebraic form we have to chose first an orthogonal 
coordinate system.

Let's have the origin in point A, and points �B, C� on the two axes.

Using this coordinate system we have the following points:

��A, 0, 0�, �B, 0, u1�, �A1, u2, u3�, �B1, u4, u5�,
�C, 0, u6�, �C1, u7, x1�, �P, x2, x3�, �Q, x4, x5�, �S, x6, x7��

The algebraic form of the assertion is:

(1)
�

x1,x2,x3,x4,x5,x6,x7
�u3 u4 � �u2 u5 � �u3 u7 � u5 u7 � u2 x1 � �u4 x1 � 0 �

u5 x2 � �u4 x3 � 0 � �u1 u2 � u1 x2 � �u3 x2 � u2 x3 � 0 �
x1 x4 � �u7 x5 � 0 � �u2 u6 � �u3 x4 � u6 x4 � u2 x5 � 0 �
u1 u7 � �u1 x6 � x1 x6 � �u7 x7 � 0 � �u4 u6 � �u5 x6 � u6 x6 � u4 x7 � 0 �

x3 x4 � �x2 x5 � �x3 x6 � x5 x6 � x2 x7 � �x4 x7 � 0�
This problem is equivalent to:

(2)
� � �

x1,x2,x3,x4,x5,x6,x7
�u3 u4 � �u2 u5 � �u3 u7 � u5 u7 � u2 x1 � �u4 x1 � 0 �

u5 x2 � �u4 x3 � 0 � �u1 u2 � u1 x2 � �u3 x2 � u2 x3 � 0 �
x1 x4 � �u7 x5 � 0 � �u2 u6 � �u3 x4 � u6 x4 � u2 x5 � 0 �
u1 u7 � �u1 x6 � x1 x6 � �u7 x7 � 0 � �u4 u6 � �u5 x6 � u6 x6 � u4 x7 � 0 �
x3 x4 � �x2 x5 � �x3 x6 � x5 x6 � x2 x7 � �x4 x7 	 0�	
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To remove the last inequality, we use the Rabinowitsch trick: Let  v0 be a new variable. Then the 
problem becomes:

(3)
� � �

x1,x2,x3,x4,x5,x6,x7,v0
�u3 u4 � �u2 u5 � �u3 u7 � u5 u7 � u2 x1 � �u4 x1 � 0 �

u5 x2 � �u4 x3 � 0 � �u1 u2 � u1 x2 � �u3 x2 � u2 x3 � 0 �
x1 x4 � �u7 x5 � 0 � �u2 u6 � �u3 x4 � u6 x4 � u2 x5 � 0 �
u1 u7 � �u1 x6 � x1 x6 � �u7 x7 � 0 � �u4 u6 � �u5 x6 � u6 x6 � u4 x7 � 0 �
1 � �v0 �x3 x4 � �x2 x5 � �x3 x6 � x5 x6 � x2 x7 � �x4 x7� � 0�	

This statement is true iff the corresponding Gröbner basis is { 1} .

The Gröbner bases is �1�.
Hence,  the statement and the original assertion is  true.

Statistics:

Time needed to compute the Gröbner bases: 0.42 Seconds.

� � � � 12� of �55

Example: Butterfly Theorem

� Textbook formulation:

A, B, C and D are four points on circle (O). E is the intersection of AC and BD. Through E draw a line 
perpendicular to OE, meeting AD at F and BC at G. Show that FE

�����
 = GE

�����
.

� Remark:

Using the default coordinate system the algebraic methods are very slow.

� Input to the system:

Pr oposi t i on�" But t er f l y" , any�O, A, B, C, D, EE, F, G�, poi nt �O, A� �
pon�C, ci r c l e�O, A�� �
pon�B, ci r c l e�O, A�� �
pon�D, ci r c l e�O, A�� �
i nt er �EE, l i ne�A, C�, l i ne�B, D�� �
i nt er �F, l i ne�D, A�, t l i ne�EE, EE, O�� � i nt er �G, l i ne�B, C�, l i ne�EE, F��

� di st equal �EE, F, G, EE��

� Input to the system:

Si mpl i f y�Pr oposi t i on�" But t er f l y" �, by �� Gr aphi cSi mpl i f i er �

A, B, C and D are four points on circle (O). E is the intersection of AC and BD. Through E draw a line 
perpendicular to OE, meeting AD at F and BC at G. Show that FE

�����
 = GE

�����
.

� Output generated automatically by the system
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A

B

C

EE

F

G

D

O

|EEF | 
 |GEE| for this configuration of the points

� End of output

� Input to the system:

Knowl edgeBase�" But t er f l y_g" , any�O, A, B, C, D�,

��O, �100, 100��, �A, �0, 100��, �B, �55, 190��, �C, �171, 170��, �D, �60, 10����

� Input to the system:

Si mpl i f y�Pr oposi t i on�" But t er f l y" �,

by �� Gr aphi cSi mpl i f i er , usi ng 
 Knowl edgeBase�" But t er f l y_g" ��

� Output generated automatically by the system
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A

B

C

EE

F

G

D

O

|EEF | 
 |GEE| for this configuration of the points

� End of output

� Input to the system:

Pr ove�Pr oposi t i on�" But t er f l y" �, by 
 Geomet r yPr over ,

Pr over Opt i ons 
 �Met hod �� " Gr oebner Pr over " , Ref ut at i on 
 Fal se��

� Inserted notebook generated automatically by the system

Prove:

(Proposition (Butterfly))
   

�
O,A,B,C,D,EE,F,G

�point�O, A� �
pon�C, circle�O, A�� � pon�B, circle�O, A�� � pon�D, circle�O, A�� �
inter�EE, line�A, C�, line�B, D�� � inter�F, line�D, A�, tline�EE, EE, O�� �
inter�G, line�B, C�, line�EE, F�� � distequal�EE, F, G, EE��

 

with no assumptions.
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To prove the above statement we shall use the Gröbner bases method. First we have to transform the problem into 
algebraic form. 

Algebraic Form:

To transform the geometric problem into algebraic form we have to chose first an orthogonal coordinate system.

Let's have the origin in point EE, and points �O� and �F, G� on one axix.

Using this coordinate system we have the following points:

��EE, 0, 0�, �O, u1, 0�, �A, u2, u3�, �B, u4, x1�,
�F, 0, x2�, �G, 0, x3�, �C, x4, x5�, �D, x6, x7��

The algebraic form of the given construction is:

(1)
   

�
v1,v2,x1,x2,x3,x4,x5,x6,x7

���1� � u4 v2 � �v2 x6 � 0 

��1� � u2 v1 � �v1 x4 � 0 
 2 u1 u2 � �u22 � �u32 � �2 u1 x4 � x42 � x52 � 0 

2 u1 u2 � �u22 � �u32 � �2 u1 u4 � u42 � x12 � 0 

2 u1 u2 � �u22 � �u32 � �2 u1 x6 � x62 � x72 � 0 
 u3 x4 � �u2 x5 � 0 
 x1 x6 � �u4 x7 � 0 

�u2 x2 � �u3 x6 � x2 x6 � u2 x7 � 0 
 u4 x3 � x1 x4 � �x3 x4 � �u4 x5 � 0 � x22 � �x32 � 0�

We have to compute the Gröbner bases of the hypothesis polynomials (GB).

The polynomials of the Gröbner bases are: 
��u22 � �u32 � ��2 u1 u22 � 2 u23 � 2 u2 u32� v1,
�2 u1 u2 � u22 � u32 � 2 u1 u4 � �4 u1 u2 u4 � �2 u22 u4 � �2 u32 u4 � �2 u1 u42� v2,
�2 u1 u2 u3 u4 � u22 u3 u4 � u33 u4 � �2 u1 u22 � �u23 � �u2 u32� x1 �
�2 u1 u22 � �u23 � �u2 u32 � �u22 u4 � �u32 u4� x2, 2 u1 u2 u3 u4 � �u22 u3 u4 � �u33 u4 �
��2 u1 u22 � u23 � u2 u32� x1 � �2 u1 u22 � �u23 � �u2 u32 � �u22 u4 � �u32 u4� x3,

�2 u1 u22 � u23 � u2 u32 � �u22 � u32� x4, 2 u1 u2 u3 � �u22 u3 � �u33 � ��u22 � �u32� x5,
2 u1 u2 u4 � �u22 u4 � �u32 u4 � �2 u1 u2 � �u22 � �u32 � �2 u1 u4� x6,
��2 u1 u2 � u22 � u32� x1 � ��2 u1 u2 � u22 � u32 � 2 u1 u4� x7,
2 u1 u2 � �u22 � �u32 � �2 u1 u4 � u42 � x12�

We compute the normal form of the conclusion polynomial modulo GB. 

The normal form is: 0

As the obtained normal form equals to 0 the statement is generically true.

Statistics:

The length of the Gröbner bases is 9

Time needed to compute the Gröbner bases: 0.27 Seconds.

Time needed to compute the normal form of the conclusion polynomial modulo GB:  0.32 Seconds.

�
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� End of inserted notebook

� � � � 13� of �55

An Application of Gröbner Bases: Algorithmic Theorem Proving in 

Geometry

Systematic (Algorithmic) Invention of Algorithms

Systematic Invention of the Gröbner Basis Algorithm

� � � � 14� of �55

The Theorema System

Theorema aims at supporting the entire "mathematical theory exploration" process:

Starting from some given mathematical concepts and mathematical knowledge on these concepts within a 
uniform logical language (predicate logic),

- invent definitions (axioms) of new concepts

- invent and prove / disprove propositions on these concepts

- invent problems

- invent and verify algorithms for problems

- store the definitions, propositions, problems, algorithms in structured knowledge 
libraries 

The Theorema system is programmed in Mathematica.

The Theorema group: B. B. (leader), T. Jebelean, T. Kutsia, F. Piroi, M. Rosenkranz, W. Windsteiger, and  
PhD students.

� � � � 15� of �55
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Emphasis in these Lectures

(Partially) automated invention of algorithms from problem specifications.

� � � � 16� of �55

"Lazy Thinking"  Method for Algorithm Synthesis = 

My Advice to "Students"  (= "Computers" ) How to Invent Algorithms
Given: A problem P.

Find: An algorithm A for P.

� Completely understand the problem.  ("Specification" of the problem.)

� Learn how to prove.

� Collect (prove) "complete" knowledge on the auxiliary notion appearing in the problem. 

� Consider known fundamental ideas of how to structure algorithms in terms of subalgorithms ("algorithm schemes"). 

Try one scheme A after the other.

� Try to prove that A solves P: From the failing proof construct specifications of the subalgorithms.

� � � � 17� of �55

A Simple Example of an Automatically Generated Proof in Theorema

Def i ni t i on�" addi t i on" , any�m, n�,

m� 0 � m " �0: "

m� n� � �m� n�� " � . : "
�

Pr oposi t i on�" l ef t zer o" , any�m, n�,

0 � n � n " 0�" �
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Pr ove�Pr oposi t i on�" l ef t zer o" �,

usi ng 
 �Def i ni t i on�" addi t i on" ��,

by 
 NNEqI ndPr over ,

Pr over Opt i ons 
 �Ter mOr der 
 Lef t ToRi ght �,

t r ansf or mBy 
 Pr oof Si mpl i f i er , Tr ansf or mer Opt i ons 
 �br anches 
 �Pr oved���;

� � � � 18� of �55

A More Complicated Example of a Theorema Proof

Def i ni t i on�" l i mi t : " , any�f , a�,

l i mi t �f , a�� �
�

��0



N

�
n

n�N

�f �n� � a� � ��

Pr oposi t i on�" l i mi t of sum" , any�f , a, g, b�,

�l i mi t �f , a� � l i mi t �g, b�� � l i mi t �f � g, a � b��

Def i ni t i on�" �: " , any�f , g, x�,

�f � g��x� � f �x� � g�x��

Lemma�" ���" , any�x, y, a, b, �, ��,

���x � y� � �a � b�� � �� � ��� � ��x � a� � � � �y � b� � ���

Lemma�" max" , any�m, M1, M2�,

m� max�M1, M2� � �m� M1 � m� M2��

Theor y�" l i mi t " ,

Def i ni t i on�" l i mi t : " �
Def i ni t i on�" �: " �
Lemma�" ���" �
Lemma�" max" �

�

Pr ove�Pr oposi t i on�" l i mi t of sum" �, usi ng 
 Theor y�" l i mi t " �, by 
 PCS�


 ProofObject 


� � � � 19� of �55
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The Creative Power of Failing Proofs

Before 

� � � � 20� of �55

Example: Failing Proof

Pr oposi t i on�" commut at i v i t y of addi t i on" , any�m, n�,

m� n � n � m " � � " �

Pr ove�Pr oposi t i on�" commut at i v i t y of addi t i on" �,

usi ng 
 �Def i ni t i on�" addi t i on" ��,

by 
 NNEqI ndPr over ,

Pr over Opt i ons 
 �Ter mOr der 
 Lef t ToRi ght �, t r ansf or mBy 
 Pr oof Si mpl i f i er ,

Tr ansf or mer Opt i ons 
 �br anches 
 �Pr oved, Fai l ed���;

� � � � 21� of �55

Example: (Automatic) Inventions from Failing Proofs

Theorema tool "Cascade":

Pr ove�Pr oposi t i on�" commut at i v i t y of addi t i on" �,

usi ng 
 Def i ni t i on�" addi t i on" �,

by 
 Cascade�NNEqI ndPr over , Conj ect ur eGener at or �,

Pr over Opt i ons 
 �Ter mOr der 
 Lef t ToRi ght ��;

This idea (in a slight generalization) is also an essential ingredient for algorithm synthesis in Theorema.

� � � � 22� of �55
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Other Provers in Theorema

Predicate logic: natural deduction, S-decomposition

Elementary analysis: PCS (alternating quantifiers)

Set theory

Induction on natural numbers, on tuples

Functors

Equality, sequence variables

Combinatorial identities

Geometry (based on algebraic methods like Gröbner bases)

...

� � � � 23� of �55

The Algorithm Invention ("Synthesis" ) Problem

Given a problem specification P (in predicate logic), find an algorithm A such that

�
x

P�x, A�x��.

Examples of specifications P:

P�x, y� � i s–gr eat er �x, y�
P�x, y� � i s–sor t ed–ver si on�x, y�
P�x, y� � has–der i vat i ve�x, y�
P�x, y� � ar e–f act or s–of �x, y�
P�x, y� � i s–Gr öbner –basi s�x, y�
. . . .

A general algorithm S for "all" P cannot exist but ...

� � � � 24� of �55
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Literature

There is a rich literature on algorithm synthesis methods, see survey

[Basin et al. 2004] D. Basin, Y. Deville, P. Flener, A. Hamfelt, J. F. Nilsson.  Synthesis of Programs in 
Computational Logic. In: M. Bruynooghe, K. K. Lau (eds.), Program Development in Computational Logic, 
Lecture Notes in Computer Science, Vol. 3049, Springer, 2004, pp. 30-65.

My method is in the class of "scheme-based" methods. Closest (but essentially different):

[Lau et al. 1999] K. K. Lau, M. Ornaghi, S. Tärnlund. Steadfast logic programs. Journal of Logic 
Programming, 38/3, 1999, pp. 259-294.

And the work of A. Bundy and his group (U of Edinburgh) on the automated invention of induction 
schemes.

� � � � 25� of �55

The "Lazy Thinking"  Method for Algorithm Synthesis (BB 2001): 

Intuition

"Lazy": Delay invention until necessary.

First idea: Use available "algorithmic ideas":

An algorithmic idea: A way how to reduce the solution A of a problem to the solution B, ... of 
other problems.

The reduction can be expressed by an "algorithm scheme":   A[x] =  ....  A[ ...]  ... B[ ...] ...

Second idea: Learn from failing proof:

For the chosen scheme: Try to prove  �
X

P�x, A�x��. 

From the failing proof read off conditions on B, ....

Q property    for   B

� � � � 26� of �55

Some Comments on the Method

The lazy thinking method is simple and natural (but powerful).
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The lazy thinking method is both

an algorithm invention methodology  or a didactic principle for humans

and an approach for automated algorithm synthesis.

The lazy thinking method can be based on any automated reasoning system that satisfies certain (natural) 
conditions:

Access to proof objects, in particular to failing proof objects.

Proofs in "natural style".

We implemented the method in Theorema.

The "Lazy Thinking"  Method for Algorithm Synthesis: Sketch

Given a problem specification P

� consider various "algorithm schemes" for A, e.g.      
A���� � c
�
x

A��x�� � s��x��
�

x, y�
��A��x, y, z��� � i�x, y, A��y, z�����

� and try to prove (automatically) �
x

P�x, A�x��.

� This proof will normally fail because nothing is known on the unspecified 
sub-algorithms c, s, i, ... in the algorithm scheme.

� From the temporary assumptions and goals in the failing proof situation 
(automatically) generate such specifications for the unspecified sub-algorithms c, s, 
i, ... that would make the proof possible.

Now, apply the method recursively to the auxiliary functions.

� � � � 27� of �55

Example: Synthesis of Merge-Sort [BB et al. 2003]

Problem: Synthesize "sorted" such that 

�
x

i s–sor t ed–ver si on�x, sor t ed�x��.

("Correctness Theorem")
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Knowledge on Problem:

�
x, y

��i s–sor t ed–ver si on�x, y� �
i s–sor t ed�y�
i s–per mut ed–ver si on�x, y��

i s–sor t ed����

�
x

i s–sor t ed��x��

�
x, y, z�

��i s–sor t ed��x, y, z��� �
x � y

i s–sor t ed��y, z����

etc.

� � � � 28� of �55

An Algorithm Scheme: Divide and Conquer

�
x
�
�
�
��sor t ed�x� �

� special�x� � i s–t r i v i al –t upl e�x�
merge�sor t ed�left–split�x��, sor t ed�right–split�x��� � ot her wi se

�
�




special, merge, left–split, right–split  are unknowns. 

We Now Start Proving the Correctness Theorem and Analyze the Failing Proof: see notebooks with failing 
proofs.

� � � � 29� of �55

Automated Invention of Sufficient Specifications for the 

Subalgorithms

A simple (but amazingly powerful) rule    ( m  ... an unknown subalgorithm ):

Collect temporary assumptions  T[ x0, ... A [  ],  ...  ]

and temporary goals G[ x0, ...m  [  A [  ]  ]  ]

and produces specification
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�
X, . . . , Y, . . .

� �T�X, . . . �Y, . . . � � G�Y, . . . �m �Y� � �.

Details: see papers [BB 2003] and example.

� � � � 30� of �55

The Result of Applying Lazy Thinking in the Sorting Example

Lazy Thinking, automatically (in approx. 2 minutes on a laptop using the Theorema system), finds the 
following specifications for the sub-algorithms that provenly guarantee the correctness of the above 
algorithm (scheme):

�
x
��i s–t r i v i al –t upl e�x� � special�x� � x�

�
y, z

�
�
�
�� i s–sor t ed�y�

i s–sor t ed�z� �
i s–sor t ed�merged�y, z��
merged�y, z� � �y � z�

�
�




�
x
��left–split�x� � right–split�x� � x�

Note: the specifications generated are not only sufficient but natural !

� � � � 31� of �55

What Do We Have Now?

� Case A: We find algorithms S, M, L, R in our knowledge base for which the properties specified 
above for special, merged, left–split, right–split are already contained in the knowledge base or 
can be derived (proved) from the knowledge base.

In this case, we are done, i.e. we have synthesized a sorting algorithm.

� Case B: We do not find such algorithms S, M, L, R   in our knowledge base.

In this case, we apply Lazy Thinking again in order to synthesize appropriate special, merged, 
left–split, right–split 

until we arrive at sub-sub-...-algorithms in our knowledge base (e.g. the basic operations 
of tuple theory like append, prepend etc.)

Case B can be avoided, if we proceed systematically bottom-up ("complete theory exploration" in layers).

� � � � 32� of �XXX
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Example: Synthesis of Insertion-Sort

Synthesize A such that 

�
x

i s–sor t ed–ver si on�x, A�x��.

Algorithm Scheme: "simple recursion"

A���� � c
�
x

A��x�� � s��x��
�

x, y�
��A��x, y��� � i�x, A��y�����

Lazy Thinking, automatically (in approx. 2 minutes on a laptop using the Theorema system), finds the 
following specifications for the auxiliary functions

c � ��
�
x
��s��x�� � �x��

�
x, y�

�
�
�
��i s–sor t ed��y��� �

i s–sor t ed�i�x, �y����
i��x, y��� � �x ��y���

�
�




� � � � 33� of �55

How Far Can We Go With the Method ?

Can we automatically synthesize algorithms for non-trivial problems?  What is "non-trivial"?

Example of a non-trivial problem: construction of Gröbner bases. 

� � � � 34� of �55

The Problem of Constructing Gröbner Bases is Non-trivial 

Dozens of fundamental problems in algebraic geometry, invariant theory, optimization, graph theory, coding 
theory, cryptography, statistics, symbolic summation, symbolic solution of differential equations, ... can be 
reduced to the construction of Gröbner bases. (Approx. 500 papers on the application of the Gröbner bases 
method.)
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Some of these problems were open for decades. 

Main algorithmic idea of Gröbner bases theory:  The "S-polynomials"  together with the S-polynomial 
theorem.

(B.B. An Algorithmical Criterion for the Solvability of Algebraic Systems of Equations. Aequationes 
mathematicae 4/3, 1970.)

Hence, question: Can Lazy Thinking automatically invent the notion of S-polynomial and automatically 
deliver the S-polynomial theorem?

� � � � 35� of �55

An Application of Gröbner Bases: Algorithmic Theorem Proving in 

Geometry

Systematic (Algorithmic) Invention of Algorithms

Systematic Invention of the Gröbner Basis Algorithm

� � � � 36� of �55

The Problem of Constructing Gröbner Bases

 

Find algorithm Gb such that

�
i s–f i ni t e�F�

�
�
�������

i s–f i ni t e� Gb�F� �
i s–Gr öbner –basi s� Gb�F��
i deal �F� � i deal � Gb�F��.

�
�









Definitions [BB 1965]  :
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i s–Gr öbner –basi s�G� � i s–conf l uent � 
G �.

 
G  ...  a division step.

� � � � 37� of �XXX

Confluence of Division 
G

i s–conf l uent � 
 � : � �
f 1, f 2

�f 1 �� f 2 � f 1�� f 2�

f1
f2

� � � � 38� of �55

Knowledge on the Concepts Involved

h1 
G h2 � p . h1 
G p . h2

etc.

� � � � 39� of �55
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Algorithm Scheme "Critical Pair / Completion"

A�F� � A�F, pai r s�F��
A�F, ��� � F

A�F, ��g1, g2�, p��� �

wher e�f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�, h2 � t r d�r d�f , g2�, F�,

�����	


����

A�F, �p��� � h1 � h2

A�F� df �h1, h2�, �p�� � ��Fk , df �h1, h2��� �
k�1, …, �F�

 � � ot her wi se
�

This scheme can be tried in any domain, in which we have a reduction operation rd that depends on sets F 
of objects and a Noetherian relation � which interacts with rd in the following natural way: 

�
f , g

�f � r d�f , g��.

� � � � 40� of �55

The Essential Problem

The problem of synthesizing a Gröbner bases algorithm can now be also stated by asking whether starting 
with the proof of

�
F

�
�
�������

i s–f i ni t e� A�F� �
i s–Gr öbner –basi s� A�F��
i deal �F� � i deal � A�F��.

�
�









 we can automatically produce the idea that

l c�g1, g2� � l cm�l p�g1�, l p�g2��

and

df �h1, h2� � h1 � h2

and prove that the idea is correct.

� � � � 41� of �55
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Now Start the (Automated) Correctness Proof

With current theorem proving technology, in the Theorema system (and other provers), the proof attempt 
could be done automatically. (Not yet fully implemented.)

� � � � 42� of �55

Details

It should be clear that, if the algorithm terminates, the final result is a finite set (of polynomials) G that has 
the property

�
g1, g2�G

��wher e�f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�,

h2 � t r d�r d�f , g2�, F�, !" h1 � h2
df �h1, h2� � G

��.

We now try to prove that, if G has this property, then 

i s–f i ni t e�G�,

i deal �F� � i deal �G�,

i s–Gr öbner –basi s�G�,

i . e. i s–Chur ch–Rosser � 
G �.

Here, we only deal with the third, most important, property. 

� � � � 43� of �55

Using Available Knowledge

Using Newman's lemma and some elementary properties it can be shown that it is sufficient to prove

i s–Chur ch–Rosser � 
G � � �
p
� �
f 1, f 2

���" p 
 f 1
p 
 f 2

� � f 1�� f 2�.

Newman's lemma (1942):
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i s–Chur ch–Rosser � 
 � � �
f , f 1, f 2

���" f 
 f 1
f 
 f 2

� � f 1�� f 2�.

Definition of "f1 and f2 have a common successor":

f 1�� f 2 � 

g
��" f 1 
� g

f 2 
� g
�

� � � � 44� of �55

The (Automated) Proof Attempt

Let now the power product p and the polynomials f1, f2 be arbitary but fixed and assume

" p 
G f 1
p 
G f 2.

We have to find a polyonomial g such that

f 1 
G
� g,

f 2 
G
� g.

From the assumption we know that there exist polynomials g1 and g2 in G such that

l p�g1� � p,
f 1 � r d�p, g1�,

l p�g2� � p,

f 2 � r d�p, g2�.

From the final situation in the algorithm scheme we know that for these g1 and g2

!" h1 � h2
df �h1, h2� � G,

where

h1 : � t r d�f 1 ' , G�, f 1 ' : � r d�l c�g1, g2�, g1�,
h2 : � t r d�f 2 ' , G�, f 2 ' : � r d�l c�g1, g2�, g2�.

� � � � 45� of �55
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Case h1=h2

l c�g1, g2� 
g1 r d�l c�g1, g2�, g1� 
G
� t r d�r d�l c�g1, g2�, g1�, G� �

t r d�r d�l c�g1, g2�, g2�, G� �G
� r d�l c�g1, g2�, g2� �g2 l c�g1, g2�.

(Note that here we used the requirements rd[lc[g1,g2],g1]�lc[g1,g2] and rd[lc[g1,g2],g2]�lc[g1,g2].)

Hence, by elementary properties of polynomial reduction,

�
a, q

� a q l c�g1, g2� 
g1 a q r d�l c�g1, g2�, g1� 
G
� a q t r d�r d�l c�g1, g2�, g1�, G� �

a q t r d�r d�l c�g1, g2�, g2�, G� �G
� a q r d�l c�g1, g2�, g2� �g2 a q l c�g1, g2� �.

Now we are stuck in the proof.

� � � � 46� of �55

Now Use the Specification Generation Algorithm

Using the above specification generation rule, we see that we could proceed successfully with the proof if 
lc[g1,g2] satisfied the following requirement

�
p, g1, g2

���" l p�g1� � p
l p�g2� � p

� � � 

a, q

��p � a q l c�g1, g2� ����, �l c r equi r ement �

With such an lc, we then would have 

p 
g1 r d�p, g1� � a q r d�l c�g1, g2�, g1� 
G
� a q t r d�r d�l c�g1, g2�, g1�, G� �

a q t r d�r d�l c�g1, g2�, g2�, G� �G
� a q r d�l c�g1, g2�, g2� � r d�p, g2� �g2 p

and, hence,

f 1 
G
� a q t r d�r d�l c�g1, g2�, g1�, G�,

f 2 
G
� a q t r d�r d�l c�g1, g2�, g1�, G�,

i.e. we would have found a suitable g.

� � � � 47� of �55
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Summarize the (Automatically Generated) Specifications of the 

Subalgorithm lc

(lc requirement), which also could be written in the form:

�
p, g1, g2

���" l p�g1� � p
l p�g2� � p

� � �l c�g1, g2� � p�� ,

and the requirements:

r d�l c�g1, g2�, g1� � l c�g1, g2�,

r d�l c�g1, g2�, g2� � l c�g1, g2�,

which, in the case of the domain of polynomials, are equivalent to

l p�g1� � l c�g1, g2�,

l p�g2� � l c�g1, g2�.

� � � � 48� of �55

A Suitable lc

l cp�g1, g2� � l cm�l p�g1�, l p�g2��

is a suitable function that satisfies the above requirements.

Eureka! The crucial function lc (the "critical pair" function) in the critical pair / completion algorithm scheme 
has been synthesized automatically!

� � � � 49� of �55

Case h1�h2 

In this case, df[h1,h2]�G: 

In this part of the proof we are basically stuck right at the beginning.

We can try to reduce this case to the first case, which would generate the following requirement
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�
h1, h2

�h1 ��df �h1, h2���h2� �df r equi r ement �.

� � � � 50� of �55

Looking to the Knowledge Base for a Suitable df

(Looking to the knowledge base of elementary properties of polynomial reduction, it is now easy to find a 
function df  that satifies (df requirement), namely

df �h1, h2� � h1 � h2,

because, in fact,

�
f , g

�f ��f �g�� g�.

Eureka! The function df (the "completion" function) in the critical pair / completion algorithm scheme has 
been "automatically" synthesized!)

� � � � 51� of �55

A way of looking at it ("what would have happened if ..." ):

“Education” on 
1. how to prove
2. how to learn

from failure

Invention of
S-polys

Dickson Lemma
Newman Lemma

…

Supervisor G:
- the problem
- the completion 

scheme
…

30 2005-07-10-13-from-GB-to-ATP-and-back.nb



Pairs idea?

A�F, ��g1, g2�, p��� �

wher e�f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�, h2 � t r d�r d�f , g2�, F�,

�����	


����

A�F, �p��� � h1 � h2

A�F� df �h1, h2�, �p�� � ��Fk , df �h1, h2��� �
k�1, …, �F�

 � � ot her wi se
�

� � � � 52� of �55

Bad and Good for Me

GB
Algorithm

non-trivial
problems

solutions

                   Good for me !

� � � � 53� of �55
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Bad and Good for Me

GB
Algorithm

non-trivial
problems

solutions

Algorith
Invention
Algorithm

GB
construction

problem

GB
Algorithm

                   Good for me !                                           Good and bad for me !

� � � � 54� of �55

Research Topics

Problem
(Scheme)

Knowledge

Algorithm
Scheme

Algorithm

� Libraries of algorithm schemes.

        More generally, libraries of formulae schemes for definitions, propositions, problems, and algorithms.
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� Case studies of problem (schemes), knowledge, algorithm schemes and how they produce algorithms.

� How well are current reasoning systems suited for supporting this approach to algorithm synthesis?

� Improved algorithms for generating problem specifications from failing proofs.

� � � � 55� of �55
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