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The Objective of Theorema

A system that supports (partially automates) the entire "mathematical theory exploration" process:

Starting from some given mathematical concepts and mathematical knowledge on these concepts within a 
uniform logical language (predicate logic),

- invent definitions (axioms) of new concepts

- invent and prove / disprove propositions on these concepts

- invent problems

- invent and verify algorithms for problems

- store the definitions, propositions, problems, algorithms in structured knowledge 
libraries 

The Theorema group: B. B. (leader), T. Jebelean, T. Kutsia, F. Piroi, M. Rosenkranz, W. Windsteiger, and  
PhD students.

� � � � 5� of �42
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Emphasis of this Talk

(Partially) automated invention of algorithms from problem specifications.

Main idea: invention from failing proofs.

� � � � 6� of �42

A Simple Example of the Theorema Proof Style

Def i ni t i on�" addi t i on" , any�m, n�,

m� 0 � m " �0: "

m� n� � �m� n�� " � . : "
�

Pr oposi t i on�" l ef t zer o" , any�m, n�,

0 � n � n " 0�" �

Pr ove�Pr oposi t i on�" l ef t zer o" �,

usi ng � �Def i ni t i on�" addi t i on" ��,

by � NNEqI ndPr over ,

Pr over Opt i ons � 	Ter mOr der � Lef t ToRi ght 
,

t r ansf or mBy � Pr oof Si mpl i f i er , Tr ansf or mer Opt i ons � 	br anches � 	Pr oved

�;

� � � � 7� of �42

Example: Failing Proof

Pr oposi t i on�" commut at i v i t y of addi t i on" , any�m, n�,

m� n � n � m " � � " �
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Pr ove�Pr oposi t i on�" commut at i v i t y of addi t i on" �,

usi ng � �Def i ni t i on�" addi t i on" ��,

by � NNEqI ndPr over ,

Pr over Opt i ons � 	Ter mOr der � Lef t ToRi ght 
, t r ansf or mBy � Pr oof Si mpl i f i er ,

Tr ansf or mer Opt i ons � 	br anches � 	Pr oved, Fai l ed

�;

� � � � 8� of �42

Example: (Automatic) Inventions from Failing Proofs

Theorema tool "Cascade":

Pr ove�Pr oposi t i on�" commut at i v i t y of addi t i on" �,

usi ng � Def i ni t i on�" addi t i on" �,

by � Cascade�NNEqI ndPr over , Conj ect ur eGener at or �,

Pr over Opt i ons � 	Ter mOr der � Lef t ToRi ght 
�;

This idea (in a slight generalization) is also an essential ingredient for algorithm synthesis in Theorema.

� � � � 9� of �42
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The Algorithm Invention ("Synthesis" ) Problem

Given a problem specification P (in predicate logic), find an algorithm A such that

�
x

P�x, A�x��.

Examples of specifications P:

P�x, y� � i s–gr eat er �x, y�
P�x, y� � i s–sor t ed–ver si on�x, y�
P�x, y� � has–der i vat i ve�x, y�
P�x, y� � ar e–f act or s–of �x, y�
P�x, y� � i s–Gr öbner –basi s�x, y�
. . . .

A general algorithm S for "all" P cannot exist but ...

There is a rich literature on algorithm synthesis methods.

� � � � 11� of �42

The "Lazy Thinking"  Method for Algorithm Synthesis (BB 2001): 

Sketch

Given a problem specification P

� consider various "algorithm schemes" for A, e.g.      
A���� � c
�
x

A��x�� � s��x��
�

x, y�
��A��x, y��� � i�x, A��y�����

� and try to prove (automatically) �
x

P�x, A�x��.

� This proof will normally fail because nothing is known on the unspecified 
sub-algorithms in the algorithm scheme.

� From the temporary assumptions and goals in the failing proof situation 
(automatically) generate such specifications for the unspecified sub-algorithms that 
would make the proof possible.
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Now, apply the method recursively to the auxiliary functions.

� � � � 12� of �42

Example: Synthesis of Merge-Sort [BB et al. 2003]

Problem: Synthesize "sorted" such that 

�
x

i s–sor t ed–ver si on�x, sor t ed�x��.

("Correctness Theorem")

Knowledge on Problem:

�
x, y

��i s–sor t ed–ver si on�x, y� �
i s–sor t ed�y�
i s–per mut ed–ver si on�x, y��

i s–sor t ed����

�
x

i s–sor t ed��x��

�
x, y, z�

��i s–sor t ed��x, y, z��� �
x � y

i s–sor t ed��y, z����

etc.

� � � � 13� of �42

An Algorithm Scheme: Divide and Conquer

�
x
�

�
��sor t ed�x� �

� special�x� 	 i s–t r i v i al –t upl e�x�
merge�sor t ed�left–split�x��, sor t ed�right–split�x��� 	 ot her wi se

�
�
��

We Now Start Proving the Correctness Theorem and Analyze the Failing Proof: see notebooks with failing 
proofs.

� � � � 14� of �42
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Automated Invention of Sufficient Specifications for the 

Subalgorithms

A simple (but amazingly powerful) rule:

Collect temporary assumptions  T[ x0, ... A [  ],  ...  ]

and temporary goals G[ x0, ...m  [  A [  ]  ]  ]

and produces specification

�
X, . . . , Y, . . .

� �T�X, . . . �Y, . . . � 
 G�Y, . . . �m �Y� � �.

Details: see papers [BB 2003] and example.

� � � � 15� of �42

The Result of Applying Lazy Thinking in the Sorting Example

Lazy Thinking, automatically (in approx. 2 minutes on a laptop using the Theorema system), finds the 
following specifications for the sub-algorithms that provenly guarantee the correctness of the above 
algorithm (scheme):

�
x
��i s–t r i v i al –t upl e�x� � special�x� � x�

�
y, z

�

�
�� i s–sor t ed�y�

i s–sor t ed�z� �
i s–sor t ed�merged�y, z��
merged�y, z� � �y � z�

�
�
��

�
x
��left–split�x� � right–split�x� � x�

Note: the specifications generated are not only sufficient but natural !

� � � � 16� of �42
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What Do We Have Now?

� Case A: We find algorithms special, merged, left–split, right–split in our knowledge base for 
which the properties specified above are already contained in the knowledge base or can be 
derived from the knowledge base.

In this case, we are done, i.e. we have synthesized a sorting algorithm.

� Case B: We do not find algorithms special, merged, left–split, right–split  in our knowledge base 
for which the properties specified can be proved.

In this case, we apply Lazy Thinking again in order to synthesize appropriate special, merged, 
left–split, right–split 

until we arrive at sub-sub-...-algorithms in our knowledge base (e.g. the basic operations 
of tuple theory like append, prepend etc.)

Case B can be avoided, if we proceed systematically bottom-up ("complete theory exploration" in layers).

� � � � 17� of �XXX

Example: Synthesis of Insertion-Sort

Synthesize A such that 

�
x

i s–sor t ed–ver si on�x, A�x��.

Algorithm Scheme: "simple recursion"

A���� � c
�
x

A��x�� � s��x��
�

x, y�
��A��x, y��� � i�x, A��y�����

Lazy Thinking, automatically (in approx. 2 minutes on a laptop using the Theorema system), finds the 
following specifications for the auxiliary functions

c � ��

�
x
��s��x�� � �x��

�
x, y�

�

�
��i s–sor t ed��y��� �

i s–sor t ed�i�x, �y����
i��x, y��� � �x ��y���

�
�
��

� � � � 18� of �42
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How Far Can We Go With the Method ?

Can we automatically synthesize algorithms for non-trivial problems?

Example of a non-trivial problem: construction of Gröbner bases. What is "non-trivial"?

Main algorithmic idea of Gröbner bases theory:  The "S-polynomials"  together with the S-polynomial 
theorem.

Hence, question: Can Lazy Thinking automatically invent the notion of S-polynomial and automatically 
deliver the S-polynomial theorem.

� � � � 19� of �42
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The Problem of Constructing Gröbner Bases

 

Find algorithm Gb such that

�
i s–f i ni t e�F�


�
�������

i s–f i ni t e� Gb�F� �
i s–Gr öbner –basi s� Gb�F��
i deal �F� � i deal � Gb�F��.

�
�
�������

Definitions [BB 1965, 1970]  (a definition, which is equivalent to the one I gave yesterday):

i s–Gr öbner –basi s�G� � i s–conf l uent � �G �.

 �G  ...  a division step (of yesterday).

� � � � 21� of �XXX

Confluence of Division �G

i s–conf l uent � � � : � �
f 1, f 2

�f 1 � f 2 � f 1�� f 2�

f1
f2

� � � � 22� of �42

12 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb



Knowledge on the Concepts Involved

h1 �G h2 � p . h1 �G p . h2

etc.

� � � � 23� of �42

Algorithm Scheme "Critical Pair / Completion"

A�F� � A�F, pai r s�F��
A�F, ��� � F

A�F, ��g1, g2�, p��� �

wher e�f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�, h2 � t r d�r d�f , g2�, F�,

������
�
����

A�F, �p��� 	 h1 � h2

A�F� df �h1, h2�, �p�� � ��Fk , df �h1, h2��� �
k�1, …, �F�

�� 	 ot her wi se
�

This scheme can be tried in any domain, in which we have a reduction operation rd that depends on sets F 
of objects and a Noetherian relation � which interacts with rd in the following natural way: 

�
f , g

�f � r d�f , g��.

� � � � 24� of �42

The Essential Problem

The problem of synthesizing a Gröbner bases algorithm can now be also stated by asking whether starting 
with the proof of

�
F


�
�������

i s–f i ni t e� A�F� �
i s–Gr öbner –basi s� A�F��
i deal �F� � i deal � A�F��.

�
�
�������

 we can automatically produce the idea that

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 13



l c�g1, g2� � l cm�l p�g1�, l p�g2��

and

df �h1, h2� � h1 � h2

and prove that the idea is correct.

� � � � 25� of �42

Now Start the (Automated) Correctness Proof

With current theorem proving technology, in the Theorema system, the proof attempt could be done 
automatically. (Not yet fully implemented.)

� � � � 26� of �42

Details

It should be clear that, if the algorithm terminates, the final result is a finite set (of polynomials) G that has 
the property

�
g1, g2�G

��wher e�f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�,

h2 � t r d�r d�f , g2�, F�, � h1 � h2
df �h1, h2� � G

��.

We now try to prove that, if G has this property, then 

i s–f i ni t e�G�,

i deal �F� � i deal �G�,

i s–Gr öbner –basi s�G�,

i . e. i s–Chur ch–Rosser � �G �.

Here, we only deal with the third, most important, property. 

� � � � 27� of �42
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Using Available Knowledge

Using Newman's lemma and some elementary properties it can be shown that it is sufficient to prove

i s–Chur ch–Rosser � �G � � �
p
� �
f 1, f 2

��� p � f 1
p � f 2

� � f 1�� f 2�.

� � � � 28� of �42

The (Automated) Proof Attempt

Let now the power product p and the polynomials f1, f2 be arbitary but fixed and assume

 p �G f 1
p �G f 2.

We have to find a polyonomial g such that

f 1 �G
� g,

f 2 �G
� g.

From the assumption we know that there exist polynomials g1 and g2 in G such that

l p�g1� � p,
f 1 � r d�p, g1�,

l p�g2� � p,
f 2 � r d�p, g2�.

From the final situation in the algorithm scheme we know that for these g1 and g2

� h1 � h2
df �h1, h2� � G,

where

h1 : � t r d�f 1 ' , G�, f 1 ' : � r d�l c�g1, g2�, g1�,
h2 : � t r d�f 2 ' , G�, f 2 ' : � r d�l c�g1, g2�, g2�.

� � � � 29� of �42
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Case h1=h2

l c�g1, g2� �g1 r d�l c�g1, g2�, g1� �G
� t r d�r d�l c�g1, g2�, g1�, G� �

t r d�r d�l c�g1, g2�, g2�, G� �G
� r d�l c�g1, g2�, g2� �g2 l c�g1, g2�.

(Note that here we used the requirements rd[lc[g1,g2],g1]�lc[g1,g2] and rd[lc[g1,g2],g2]�lc[g1,g2].)

Hence, by elementary properties of polynomial reduction,

�
a, q

� a q l c�g1, g2� �g1 a q r d�l c�g1, g2�, g1� �G
� a q t r d�r d�l c�g1, g2�, g1�, G� �

a q t r d�r d�l c�g1, g2�, g2�, G� �G
� a q r d�l c�g1, g2�, g2� �g2 a q l c�g1, g2� �.

Now we are stuck in the proof.

� � � � 30� of �42

Now Use the Specification Generation Algorithm

Using the above specification generation rule, we see that we could proceed successfully with the proof if 
lc[g1,g2] satisfied the following requirement

�
p, g1, g2

��� l p�g1� � p
l p�g2� � p

� � � �
a, q

��p � a q l c�g1, g2� ����, �l c r equi r ement �

With such an lc, we then would have 

p �g1 r d�p, g1� � a q r d�l c�g1, g2�, g1� �G
� a q t r d�r d�l c�g1, g2�, g1�, G� �

a q t r d�r d�l c�g1, g2�, g2�, G� �G
� a q r d�l c�g1, g2�, g2� � r d�p, g2� �g2 p

and, hence,

f 1 �G
� a q t r d�r d�l c�g1, g2�, g1�, G�,

f 2 �G
� a q t r d�r d�l c�g1, g2�, g1�, G�,

i.e. we would have found a suitable g.

� � � � 31� of �42
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Summarize the (Automatically Generated) Specifications of the 

Subalgorithm lc

(lc requirement), which also could be written in the form:

�
p, g1, g2

��� l p�g1� � p
l p�g2� � p

� � �l c�g1, g2� � p�� ,

and the requirements:

r d�l c�g1, g2�, g1� � l c�g1, g2�,

r d�l c�g1, g2�, g2� � l c�g1, g2�,

which, in the case of the domain of polynomials, are equivalent to

l p�g1� � l c�g1, g2�,

l p�g2� � l c�g1, g2�.

� � � � 32� of �42

A Suitable lc

l cp�g1, g2� � l cm�l p�g1�, l p�g2��

is a suitable function that satisfies the above requirements.

Heureka! The crucial function lc (the "critical pair" function) in the critical pair / completion algorithm scheme 
has been "automatically" synthesized! 

� � � � 33� of �42

Case h1�h2 

In this case, df[h1,h2]�G: 

In this part of the proof we are basically stuck right at the beginning.

We can try to reduce this case to the first case, which would generate the following requirement
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�
h1, h2

�h1 �	df �h1, h2�
�h2� �df r equi r ement �.

� � � � 34� of �42

Looking to the Knowledge Base for a Suitable df

(Looking to the knowledge base of elementary properties of polynomial reduction, it is now easy to find a 
function df  that satifies (df requirement), namely

df �h1, h2� � h1 � h2,

because, in fact,

�
f , g

�f �	f �g
� g�.

Heureka! The function df (the "completion" function) in the critical pair / completion algorithm scheme has 
been "automatically" synthesized!)

18 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb



Namely,

� � � � 35� of �42

The Theorema Project

An "Algorithm" for Algorithm Synthesis

Synthesis of a Gröbner Bases Algorithm 

Conclusion

� � � � 36� of �42
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A way of looking at it ("what would have happened if ..." ):

“Education” on 
1. how to prove
2. how to learn

from failure

Invention of
S-polys

Dickson Lemma
Newman Lemma

…

Supervisor G:
- the problem
- the completion 

scheme
…

Pairs idea?

A�F, ��g1, g2�, p��� �

wher e�f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�, h2 � t r d�r d�f , g2�, F�,

������
�
����

A�F, �p��� 	 h1 � h2

A�F� df �h1, h2�, �p�� � ��Fk , df �h1, h2��� �
k�1, …, �F�

�� 	 ot her wi se
�

� � � � 37� of �42
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Bad and Good for Me

GB
Algorithm

non-trivial
problems

solutions

                   Good for me !

� � � � 38� of �42

Bad and Good for Me

GB
Algorithm

non-trivial
problems

solutions

Algorith
Invention
Algorithm

GB
construction

problem

GB
Algorithm
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                   Good for me !                                           Good and bad for me !

� � � � 39� of �42

Research Topics

Problem
(Scheme)

Knowledge

Algorithm
Scheme

Algorithm

� Libraries of algorithm schemes.

        More generally, libraries of definition, theorem, problem, and algorithm schemes.

� Case studies of problem (schemes), knowledge, algorithm schemes and how they produce algorithms.

� Improved algorithms for generating problem specifications from failing proofs.

� � � � 40� of �42
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Special Semester on Gröbner Bases at RICAM and RISC

� � � � 41� of �42
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Softwarepark Hagenberg

� � � � 42� of �42
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