
� � � � 1� of �42

Algorithmic Algorithm Invention

in the Theorema Project

Bruno Buchberger

Talk at AIT (Algorithmic Information Theory)
Vaasa, Finland, May 16-18, 2005

RISC (Research Institute for Symbolic Computation)
Johannes Kepler University

RICAM (Radon Institute for Computational and Applied Mathematics)
Austrian Academy of Science

Linz, Austria

� � � � 2� of �42

2 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

The Theorema Project

An "Algorithm" for Algorithm Synthesis

Synthesis of a Gröbner Bases Algorithm

Conclusion

� � � � 3� of �42

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 3

The Theorema Project

An "Algorithm" for Algorithm Synthesis

Synthesis of a Gröbner Bases Algorithm

Conclusion

� � � � 4� of �42

The Objective of Theorema

A system that supports (partially automates) the entire "mathematical theory exploration" process:

Starting from some given mathematical concepts and mathematical knowledge on these concepts within a
uniform logical language (predicate logic),

- invent definitions (axioms) of new concepts

- invent and prove / disprove propositions on these concepts

- invent problems

- invent and verify algorithms for problems

- store the definitions, propositions, problems, algorithms in structured knowledge
libraries

The Theorema group: B. B. (leader), T. Jebelean, T. Kutsia, F. Piroi, M. Rosenkranz, W. Windsteiger, and
PhD students.

� � � � 5� of �42

4 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

Emphasis of this Talk

(Partially) automated invention of algorithms from problem specifications.

Main idea: invention from failing proofs.

� � � � 6� of �42

A Simple Example of the Theorema Proof Style

Def i ni t i on�" addi t i on" , any�m, n�,

m� 0 � m " �0: "

m� n� � �m� n�� " � . : "
�

Pr oposi t i on�" l ef t zer o" , any�m, n�,

0 � n � n " 0�" �

Pr ove�Pr oposi t i on�" l ef t zer o" �,

usi ng � �Def i ni t i on�" addi t i on" ��,

by � NNEqI ndPr over ,

Pr over Opt i ons � 	Ter mOr der � Lef t ToRi ght
,

t r ansf or mBy � Pr oof Si mpl i f i er , Tr ansf or mer Opt i ons � 	br anches � 	Pr oved

�;

� � � � 7� of �42

Example: Failing Proof

Pr oposi t i on�" commut at i v i t y of addi t i on" , any�m, n�,

m� n � n � m " � � " �

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 5

Pr ove�Pr oposi t i on�" commut at i v i t y of addi t i on" �,

usi ng � �Def i ni t i on�" addi t i on" ��,

by � NNEqI ndPr over ,

Pr over Opt i ons � 	Ter mOr der � Lef t ToRi ght
, t r ansf or mBy � Pr oof Si mpl i f i er ,

Tr ansf or mer Opt i ons � 	br anches � 	Pr oved, Fai l ed

�;

� � � � 8� of �42

Example: (Automatic) Inventions from Failing Proofs

Theorema tool "Cascade":

Pr ove�Pr oposi t i on�" commut at i v i t y of addi t i on" �,

usi ng � Def i ni t i on�" addi t i on" �,

by � Cascade�NNEqI ndPr over , Conj ect ur eGener at or �,

Pr over Opt i ons � 	Ter mOr der � Lef t ToRi ght
�;

This idea (in a slight generalization) is also an essential ingredient for algorithm synthesis in Theorema.

� � � � 9� of �42

The Theorema Project

An "Algorithm" for Algorithm Synthesis

Synthesis of a Gröbner Bases Algorithm

Conclusion

� � � � 10� of �42

6 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

The Algorithm Invention ("Synthesis") Problem

Given a problem specification P (in predicate logic), find an algorithm A such that

�
x

P�x, A�x��.

Examples of specifications P:

P�x, y� � i s–gr eat er �x, y�
P�x, y� � i s–sor t ed–ver si on�x, y�
P�x, y� � has–der i vat i ve�x, y�
P�x, y� � ar e–f act or s–of �x, y�
P�x, y� � i s–Gr öbner –basi s�x, y�
. . . .

A general algorithm S for "all" P cannot exist but ...

There is a rich literature on algorithm synthesis methods.

� � � � 11� of �42

The "Lazy Thinking" Method for Algorithm Synthesis (BB 2001):

Sketch

Given a problem specification P

� consider various "algorithm schemes" for A, e.g.
A���� � c
�
x

A��x�� � s��x��
�

x, y�
��A��x, y��� � i�x, A��y�����

� and try to prove (automatically) �
x

P�x, A�x��.

� This proof will normally fail because nothing is known on the unspecified
sub-algorithms in the algorithm scheme.

� From the temporary assumptions and goals in the failing proof situation
(automatically) generate such specifications for the unspecified sub-algorithms that
would make the proof possible.

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 7

Now, apply the method recursively to the auxiliary functions.

� � � � 12� of �42

Example: Synthesis of Merge-Sort [BB et al. 2003]

Problem: Synthesize "sorted" such that

�
x

i s–sor t ed–ver si on�x, sor t ed�x��.

("Correctness Theorem")

Knowledge on Problem:

�
x, y

��i s–sor t ed–ver si on�x, y� �
i s–sor t ed�y�
i s–per mut ed–ver si on�x, y��

i s–sor t ed����

�
x

i s–sor t ed��x��

�
x, y, z�

��i s–sor t ed��x, y, z��� �
x � y

i s–sor t ed��y, z����

etc.

� � � � 13� of �42

An Algorithm Scheme: Divide and Conquer

�
x
�

�
��sor t ed�x� �

� special�x� 	 i s–t r i v i al –t upl e�x�
merge�sor t ed�left–split�x��, sor t ed�right–split�x��� 	 ot her wi se

�
�
��

We Now Start Proving the Correctness Theorem and Analyze the Failing Proof: see notebooks with failing
proofs.

� � � � 14� of �42

8 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

Automated Invention of Sufficient Specifications for the

Subalgorithms

A simple (but amazingly powerful) rule:

Collect temporary assumptions T[x0, ... A [], ...]

and temporary goals G[x0, ...m [A []]]

and produces specification

�
X, . . . , Y, . . .

� �T�X, . . . �Y, . . . �
 G�Y, . . . �m �Y� � �.

Details: see papers [BB 2003] and example.

� � � � 15� of �42

The Result of Applying Lazy Thinking in the Sorting Example

Lazy Thinking, automatically (in approx. 2 minutes on a laptop using the Theorema system), finds the
following specifications for the sub-algorithms that provenly guarantee the correctness of the above
algorithm (scheme):

�
x
��i s–t r i v i al –t upl e�x� � special�x� � x�

�
y, z

�

�
�� i s–sor t ed�y�

i s–sor t ed�z� �
i s–sor t ed�merged�y, z��
merged�y, z� � �y � z�

�
�
��

�
x
��left–split�x� � right–split�x� � x�

Note: the specifications generated are not only sufficient but natural !

� � � � 16� of �42

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 9

What Do We Have Now?

� Case A: We find algorithms special, merged, left–split, right–split in our knowledge base for
which the properties specified above are already contained in the knowledge base or can be
derived from the knowledge base.

In this case, we are done, i.e. we have synthesized a sorting algorithm.

� Case B: We do not find algorithms special, merged, left–split, right–split in our knowledge base
for which the properties specified can be proved.

In this case, we apply Lazy Thinking again in order to synthesize appropriate special, merged,
left–split, right–split

until we arrive at sub-sub-...-algorithms in our knowledge base (e.g. the basic operations
of tuple theory like append, prepend etc.)

Case B can be avoided, if we proceed systematically bottom-up ("complete theory exploration" in layers).

� � � � 17� of �XXX

Example: Synthesis of Insertion-Sort

Synthesize A such that

�
x

i s–sor t ed–ver si on�x, A�x��.

Algorithm Scheme: "simple recursion"

A���� � c
�
x

A��x�� � s��x��
�

x, y�
��A��x, y��� � i�x, A��y�����

Lazy Thinking, automatically (in approx. 2 minutes on a laptop using the Theorema system), finds the
following specifications for the auxiliary functions

c � ��

�
x
��s��x�� � �x��

�
x, y�

�

�
��i s–sor t ed��y��� �

i s–sor t ed�i�x, �y����
i��x, y��� � �x ��y���

�
�
��

� � � � 18� of �42

10 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

How Far Can We Go With the Method ?

Can we automatically synthesize algorithms for non-trivial problems?

Example of a non-trivial problem: construction of Gröbner bases. What is "non-trivial"?

Main algorithmic idea of Gröbner bases theory: The "S-polynomials" together with the S-polynomial
theorem.

Hence, question: Can Lazy Thinking automatically invent the notion of S-polynomial and automatically
deliver the S-polynomial theorem.

� � � � 19� of �42

The Theorema Project

An "Algorithm" for Algorithm Synthesis

Synthesis of a Gröbner Bases Algorithm

Conclusion

� � � � 20� of �42

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 11

The Problem of Constructing Gröbner Bases

Find algorithm Gb such that

�
i s–f i ni t e�F�

�
�������

i s–f i ni t e� Gb�F� �
i s–Gr öbner –basi s� Gb�F��
i deal �F� � i deal � Gb�F��.

�
�
�������

Definitions [BB 1965, 1970] (a definition, which is equivalent to the one I gave yesterday):

i s–Gr öbner –basi s�G� � i s–conf l uent � �G �.

 �G ... a division step (of yesterday).

� � � � 21� of �XXX

Confluence of Division �G

i s–conf l uent � � � : � �
f 1, f 2

�f 1 � f 2 � f 1�� f 2�

f1
f2

� � � � 22� of �42

12 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

Knowledge on the Concepts Involved

h1 �G h2 � p . h1 �G p . h2

etc.

� � � � 23� of �42

Algorithm Scheme "Critical Pair / Completion"

A�F� � A�F, pai r s�F��
A�F, ��� � F

A�F, ��g1, g2�, p��� �

wher e�f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�, h2 � t r d�r d�f , g2�, F�,

������
�
����

A�F, �p��� 	 h1 � h2

A�F� df �h1, h2�, �p�� � ��Fk , df �h1, h2��� �
k�1, …, �F�

�� 	 ot her wi se
�

This scheme can be tried in any domain, in which we have a reduction operation rd that depends on sets F
of objects and a Noetherian relation � which interacts with rd in the following natural way:

�
f , g

�f � r d�f , g��.

� � � � 24� of �42

The Essential Problem

The problem of synthesizing a Gröbner bases algorithm can now be also stated by asking whether starting
with the proof of

�
F

�
�������

i s–f i ni t e� A�F� �
i s–Gr öbner –basi s� A�F��
i deal �F� � i deal � A�F��.

�
�
�������

 we can automatically produce the idea that

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 13

l c�g1, g2� � l cm�l p�g1�, l p�g2��

and

df �h1, h2� � h1 � h2

and prove that the idea is correct.

� � � � 25� of �42

Now Start the (Automated) Correctness Proof

With current theorem proving technology, in the Theorema system, the proof attempt could be done
automatically. (Not yet fully implemented.)

� � � � 26� of �42

Details

It should be clear that, if the algorithm terminates, the final result is a finite set (of polynomials) G that has
the property

�
g1, g2�G

��wher e�f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�,

h2 � t r d�r d�f , g2�, F�, � h1 � h2
df �h1, h2� � G

��.

We now try to prove that, if G has this property, then

i s–f i ni t e�G�,

i deal �F� � i deal �G�,

i s–Gr öbner –basi s�G�,

i . e. i s–Chur ch–Rosser � �G �.

Here, we only deal with the third, most important, property.

� � � � 27� of �42

14 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

Using Available Knowledge

Using Newman's lemma and some elementary properties it can be shown that it is sufficient to prove

i s–Chur ch–Rosser � �G � � �
p
� �
f 1, f 2

��� p � f 1
p � f 2

� � f 1�� f 2�.

� � � � 28� of �42

The (Automated) Proof Attempt

Let now the power product p and the polynomials f1, f2 be arbitary but fixed and assume

 p �G f 1
p �G f 2.

We have to find a polyonomial g such that

f 1 �G
� g,

f 2 �G
� g.

From the assumption we know that there exist polynomials g1 and g2 in G such that

l p�g1� � p,
f 1 � r d�p, g1�,

l p�g2� � p,
f 2 � r d�p, g2�.

From the final situation in the algorithm scheme we know that for these g1 and g2

� h1 � h2
df �h1, h2� � G,

where

h1 : � t r d�f 1 ' , G�, f 1 ' : � r d�l c�g1, g2�, g1�,
h2 : � t r d�f 2 ' , G�, f 2 ' : � r d�l c�g1, g2�, g2�.

� � � � 29� of �42

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 15

Case h1=h2

l c�g1, g2� �g1 r d�l c�g1, g2�, g1� �G
� t r d�r d�l c�g1, g2�, g1�, G� �

t r d�r d�l c�g1, g2�, g2�, G� �G
� r d�l c�g1, g2�, g2� �g2 l c�g1, g2�.

(Note that here we used the requirements rd[lc[g1,g2],g1]�lc[g1,g2] and rd[lc[g1,g2],g2]�lc[g1,g2].)

Hence, by elementary properties of polynomial reduction,

�
a, q

� a q l c�g1, g2� �g1 a q r d�l c�g1, g2�, g1� �G
� a q t r d�r d�l c�g1, g2�, g1�, G� �

a q t r d�r d�l c�g1, g2�, g2�, G� �G
� a q r d�l c�g1, g2�, g2� �g2 a q l c�g1, g2� �.

Now we are stuck in the proof.

� � � � 30� of �42

Now Use the Specification Generation Algorithm

Using the above specification generation rule, we see that we could proceed successfully with the proof if
lc[g1,g2] satisfied the following requirement

�
p, g1, g2

��� l p�g1� � p
l p�g2� � p

� � � �
a, q

��p � a q l c�g1, g2� ����, �l c r equi r ement �

With such an lc, we then would have

p �g1 r d�p, g1� � a q r d�l c�g1, g2�, g1� �G
� a q t r d�r d�l c�g1, g2�, g1�, G� �

a q t r d�r d�l c�g1, g2�, g2�, G� �G
� a q r d�l c�g1, g2�, g2� � r d�p, g2� �g2 p

and, hence,

f 1 �G
� a q t r d�r d�l c�g1, g2�, g1�, G�,

f 2 �G
� a q t r d�r d�l c�g1, g2�, g1�, G�,

i.e. we would have found a suitable g.

� � � � 31� of �42

16 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

Summarize the (Automatically Generated) Specifications of the

Subalgorithm lc

(lc requirement), which also could be written in the form:

�
p, g1, g2

��� l p�g1� � p
l p�g2� � p

� � �l c�g1, g2� � p�� ,

and the requirements:

r d�l c�g1, g2�, g1� � l c�g1, g2�,

r d�l c�g1, g2�, g2� � l c�g1, g2�,

which, in the case of the domain of polynomials, are equivalent to

l p�g1� � l c�g1, g2�,

l p�g2� � l c�g1, g2�.

� � � � 32� of �42

A Suitable lc

l cp�g1, g2� � l cm�l p�g1�, l p�g2��

is a suitable function that satisfies the above requirements.

Heureka! The crucial function lc (the "critical pair" function) in the critical pair / completion algorithm scheme
has been "automatically" synthesized!

� � � � 33� of �42

Case h1�h2

In this case, df[h1,h2]�G:

In this part of the proof we are basically stuck right at the beginning.

We can try to reduce this case to the first case, which would generate the following requirement

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 17

�
h1, h2

�h1 �	df �h1, h2�
�h2� �df r equi r ement �.

� � � � 34� of �42

Looking to the Knowledge Base for a Suitable df

(Looking to the knowledge base of elementary properties of polynomial reduction, it is now easy to find a
function df that satifies (df requirement), namely

df �h1, h2� � h1 � h2,

because, in fact,

�
f , g

�f �	f �g
� g�.

Heureka! The function df (the "completion" function) in the critical pair / completion algorithm scheme has
been "automatically" synthesized!)

18 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

Namely,

� � � � 35� of �42

The Theorema Project

An "Algorithm" for Algorithm Synthesis

Synthesis of a Gröbner Bases Algorithm

Conclusion

� � � � 36� of �42

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 19

A way of looking at it ("what would have happened if ..."):

“Education” on
1. how to prove
2. how to learn

from failure

Invention of
S-polys

Dickson Lemma
Newman Lemma

…

Supervisor G:
- the problem
- the completion

scheme
…

Pairs idea?

A�F, ��g1, g2�, p��� �

wher e�f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�, h2 � t r d�r d�f , g2�, F�,

������
�
����

A�F, �p��� 	 h1 � h2

A�F� df �h1, h2�, �p�� � ��Fk , df �h1, h2��� �
k�1, …, �F�

�� 	 ot her wi se
�

� � � � 37� of �42

20 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

Bad and Good for Me

GB
Algorithm

non-trivial
problems

solutions

 Good for me !

� � � � 38� of �42

Bad and Good for Me

GB
Algorithm

non-trivial
problems

solutions

Algorith
Invention
Algorithm

GB
construction

problem

GB
Algorithm

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 21

 Good for me ! Good and bad for me !

� � � � 39� of �42

Research Topics

Problem
(Scheme)

Knowledge

Algorithm
Scheme

Algorithm

� Libraries of algorithm schemes.

 More generally, libraries of definition, theorem, problem, and algorithm schemes.

� Case studies of problem (schemes), knowledge, algorithm schemes and how they produce algorithms.

� Improved algorithms for generating problem specifications from failing proofs.

� � � � 40� of �42

22 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

Special Semester on Gröbner Bases at RICAM and RISC

� � � � 41� of �42

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 23

Softwarepark Hagenberg

� � � � 42� of �42

References

� On Gröbner Bases

[Buchberger 1970]

B. Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems
(An Algorithmical Criterion for the Solvability of Algebraic Systems of Equations). Aequationes
mathematicae 4/3, 1970, pp. 374-383. (English translation in: [Buchberger, Winkler 1998], pp. 535 -545.)
Published version of the PhD Thesis of B. Buchberger, University of Innsbruck, Austria, 1965.

[Buchberger 1998]

B. Buchberger. Introduction to Gröbner Bases. In: [Buchberger, Winkler 1998], pp.3-31.

[Buchberger, Winkler, 1998]

B. Buchberger, F. Winkler (eds.). Gröbner Bases and Applications, Proceedings of the International
Conference "33 Years of Gröbner Bases", 1998, RISC, Austria, London Mathematical Society Lecture Note
Series, Vol. 251, Cambridge University Press, 1998.

24 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

[Becker, Weispfenning 1993]

T. Becker, V. Weispfenning. Gröbner Bases: A Computational Approach to Commutative Algebra, Springer,
New York, 1993.

� On Mathematical Knowledge Management

B. Buchberger, G. Gonnet, M. Hazewinkel (eds.)

Mathematical Knowledge Management.

Special Issue of Annals of Mathematics and Artificial Intelligence, Vol. 38, No. 1-3, May 2003, Kluwer
Academic Publisher, 232 pages.

A.Asperti, B. Buchberger, J.H.Davenport (eds.)

Mathematical Knowledge Management.

Proceedings of the Second International Conference on Mathematical Knowledge Management (MKM
2003), Bertinoro, Italy, Feb.16-18, 2003, Lecture Notes in Computer Science, Vol. 2594, Springer, Berlin-
Heidelberg-NewYork, 2003, 223 pages.

A.Asperti, G.Bancerek, A.Trybulec (eds.).

Proceedings of the Third International Conference on Mathematical Knowledge Management, MKM 2004,

Bialowieza, Poland, September 19-21, 2004, Lecture Notes in Computer Science, Vol. 3119, Springer,
Berlin-Heidelberg-NewYork, 2004

� On Theorema

[Buchberger et al. 2000]

B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, W. Windsteiger. The
Theorema Project: A Progress Report. In: M. Kerber and M. Kohlhase (eds.), Symbolic Computation and
Automated Reasoning (Proceedings of CALCULEMUS 2000, Symposium on the Integration of Symbolic
Computation and Mechanized Reasoning, August 6-7, 2000, St. Andrews, Scotland), A.K. Peters, Natick,
Massachusetts, ISBN 1-56881-145-4, pp. 98-113.

� On Theory Exploration and Algorithm Synthesis

[Buchberger 2000]

B. Buchberger. Theory Exploration with Theorema.

Analele Universitatii Din Timisoara, Ser. Matematica-Informatica, Vol. XXXVIII, Fasc.2, 2000, (Proceedings
of SYNASC 2000, 2nd International Workshop on Symbolic and Numeric Algorithms in Scientific
Computing, Oct. 4-6, 2000, Timisoara, Rumania, T. Jebelean, V. Negru, A. Popovici eds.), ISSN
1124-970X, pp. 9-32.

[Buchberger 2003]

B. Buchberger. Algorithm Invention and Verification by Lazy Thinking.

In: D. Petcu, V. Negru, D. Zaharie, T. Jebelean (eds), Proceedings of SYNASC 2003 (Symbolic and

AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb 25

Numeric Algorithms for Scientific Computing, Timisoara, Romania, October 1–4, 2003), Mirton Publishing,
ISBN 973–661–104–3, pp. 2–26.

[Buchberger, Craciun 2003]

B. Buchberger, A. Craciun. Algorithm Synthesis by Lazy Thinking: Examples and Implementation in
Theorema. in: Fairouz Kamareddine (ed.), Proc. of the Mathematical Knowledge Management Workshop,
Edinburgh, Nov. 25, 2003, Electronic Notes on Theoretical Computer Science, volume dedicated to the
MKM 03 Symposium, Elsevier, ISBN 044451290X, to appear.

[Buchberger 2004]

B. Buchberger.

Towards the Automated Synthesis of a Gröbner Bases Algorithm.

RACSAM (Review of the Royal Spanish Academy of Science), Vol. 98/1, to appear, 10 pages.

26 AIT-2005-Vaasa-2005-05-16-18-Alg-Synthesis.nb

