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� Current Mathematical Knowledge
� algorithm libraries,  e.g. Mathematica, Maple, etc.

� decision algorithms and proof generators for certain logical theories

� proof checkers and proof generators for predicate logic

� ....

� mathematical "knowledge" in paper form, LaTeX files etc. 

� � � � 5� of �XXX

� What "We"  Want

�  Integrated Systems

Integrated systems that support (partially automate) the entire "mathematical theory exploration" process:

� Invention and Verification

Starting from some given mathematical concepts and mathematical knowledge on these concepts within
a uniform logical language (predicate logic),
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� invent definitions (axioms) of new concepts

� invent and prove / disprove propositions on these concepts

� invent problems

� invent and verify algorithms for problems

� store the new knowledge (definitions, propositions, problems, algorithms) in structured
knowledge libraries so that they can be used easily in the next rounds of mathematical
theory exploration.

� For example:

start from: +, -, *, ..<  on reals (axioms, propositions, problems, algorithms)

new concepts: definitions of "sequence" and operations +, -,  ... on sequences
explore: propositions, problems, algorithms on sequences

new concepts: "limit", "continuity"
explore: propositions, problems, algorithms on sequences

� A benchmark example: 

Computer-supported development of the theory of Groebner bases and related theories.

� � � � 6� of �XXX

� The Theorema Project

The  Theorema  project  [BB  et  al.  1996  ...]   aims  at  being  a  frame for  supporting   mathematical  theory
exploration in the above sense.

The Theorema language is a version of predicate logic. 

A sublanguage of the Theorema language is a programming language.

The Theorema system is implemented in Mathematica. (This may change in the future.)

The  Theorema  group:  B.  B.  (leader),  T.  Jebelean,  T.  Kutsia,  F.  Piroi,  M.  Rosenkranz,  W.  Windsteiger,
and  PhD students.

� � � � 7� of �XXX

� Mathematical Knowledge Management: A Recent International Endeavor
The  Theorema  group  is  (an  initiator  and  member)  of  the  international  MKM  (Mathematical  Knowledge
Management) Network (NuPrl, Izabelle, MIZAR, ...)
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Numerical Mathematics

          Computer Algebra

                       Automated Theorem Proving

                                  Mathematical Knowledge Management  
                                  ("Symbolic Computation" in its widest sense)
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�  The Theorema Project

An "Algorithm" for Algorithm Synthesis

Algorithmic Synthesis of a Gröbner Bases Algorithm 

Conclusion
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� The Algorithm Invention ("Synthesis" ) Problem

Given a problem specification P (in predicate logic), find an algorithm A such that

�
x

P�x, A�x��.

Examples of specifications P:
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P�x, y� � i s–gr eat er �x, y�
P�x, y� � i s–sor t ed–ver si on�x, y�
P�x, y� � has–der i vat i ve�x, y�
P�x, y� � ar e–f act or s–of �x, y�
P�x, y� � i s–Gr öbner –basi s�x, y�
. . . .

A general algorithm S for "all" P cannot exist (cf. B. Caviness 1970, ...)   but ...

There is a rich literature on algorithm synthesis methods.

� � � � 10� of �10

� The "Lazy Thinking"  Method (BB 2001): A Very Rough Sketch

Given: a problem specification P.

For finding an algorithm A that satisfies �
x

P�x, A�x��,

     - we generate (automatically) a couple of (hopefully) simpler problems Q, R, ..., 

     - we synthesize algorithms B, C, ...  for Q, R, ...

     - from B, C, ... we compose (automatically) an algorithm A. 

When can we terminate? 
When we arrive at problems, for which algorithms are already known.

� � � � 11� of �XXX

� The "Lazy Thinking"  Method: More Details

Given a problem specification P

� consider various "algorithm schemes" for A

� and try to prove (automatically) �
x

P�x, A�x��.

� This  proof  will  normally  fail  because  nothing  is  known  on  the  unspecified
sub-algorithms in the algorithm scheme.

� From  the  temporary  assumptions  and  goals  in  the  failing  proof  situation
(automatically) generate such specifications for the unspecified sub-algorithms that
would make the proof possible.

Now, apply the method recursively to the auxiliary functions.
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� This is " lazy"  

� we use the condensed algorithmic experience of others (in the schemes)

� we start (routine) proving before we have an algorithm

� we just wait until we fail in order to get an idea from the failure.

� � � � 12� of �XXX

� Example: Synthesis of Merge-Sort [BB et al. 2003]

� Problem

Synthesize "sorted" such that 

�
x

i s–sor t ed–ver si on�x, sor t ed�x��.

("Correctness Theorem")

� Knowledge on Problem

�
x, y

��i s–sor t ed–ver si on�x, y� �
i s–sor t ed�y�
i s–per mut ed–ver si on�x, y��

�
x, y

��i s–sor t ed �
i s–sor t ed�y�
i s–per mut ed–ver si on�x, y��

i s–sor t ed����

�
x

i s–sor t ed��x��

�
x, y, z�

��i s–sor t ed��x, y, z��� �
x � y
i s–sor t ed��y, z����

etc.
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� An Algorithm Scheme

�
x
�
�
�		sor t ed�x� �


 special�x� � i s–t r i v i al –t upl e�x

merge�sor t ed�left–split�x��, sor t ed�right–split�x��� � ot her wi se

�
�




("divide and conquer")

� We Now Start Proving the Correctness Theorem and Analyze the Failing Proof

� The Result of Applying Lazy Thinking

Lazy Thinking,  automatically  (in  approx.  2  minutes  on  a  laptop  using  the  Theorema  system),  finds  the
following  specifications  for  the  sub-algorithms  that  provenly  guarantee  the  correctness  of  the  above
algorithm (scheme):

�
x
��i s–t r i v i al –t upl e�x� � special�x� � x�

�
y, z

�
�
�
		 i s–sor t ed�y�

i s–sor t ed�z� �
i s–sor t ed�merged�y, z��
merged�y, z� 	 �y � z�

�
�




�
x
��left–split�x� � right–split�x� 	 x�

� What Do We Have Now?

� Case  A:  We  find  algorithms  special,  merged,  left–split,  right–split  in  our  knowledge  base  for
which  the  properties  specified  above are  already contained in the knowledge base or  can be
derived from the knowledge base.
In this case, we are done, i.e. we have synthesized a sorting algorithm.

� Case  B:  We  do  not  find  algorithms  special,  merged,  left–split,  right–split   in  our  knowledge
base for which the properties specified can be proved.
In this case, we apply Lazy Thinking again in order to synthesize appropriate special, merged,
left–split, right–split 

until  we  arrive  at  sub-sub-...-algorithms  in  our  knowledge  base  (e.g.  the  basic
operations of tuple theory like append, prepend etc.)

Case B can be avoided, if we proceed systematically bottom-up ("complete theory exploration" in layers).

� � � � 13� of �XXX
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� How Can we Teach (= Automate) the Method
� Compile a library of  "algorithm design experience" (= algorithm schemes).

� Teach (automate) proving.

� Teach (automate) generation of useful specifications of sub-algorithms from failing correctness
proofs:

A simple (but amazingly powerful) rule:

Collect temporary assumptions  T[ x0, ... A [  ],  ...  ]
and temporary goals G[ x0, ...m  [  A [  ]  ]  ]

and produces specification

�
X, . . . , Y, . . .

� �T�X, . . . �Y, . . . � 
 G�Y, . . . �m �Y� � �.

Details: see papers [BB 2003] and example.

Research topic: other rules.

� � � � 14� of �XXX

� Parameters for Lazy Thinking

Problem
(Scheme)

Knowledge

Algorithm
Scheme

Algorithm

                                                   Lazy Thinking

� � � � 15� of �XXX

� Example: Synthesis of Insertion-Sort

� Problem

 Synthesize A such that 
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�
x

i s–sor t ed–ver si on�x, A�x��.

� Algorithm Scheme: "simple recursion"

A���� � c
�
x

A��x�� � s��x��
�

x, y�
��A��x, y��� � i�x, A��y�����

� Resulting Specification for Subalgorithms

Lazy Thinking,  automatically  (in  approx.  2  minutes  on  a  laptop  using  the  Theorema  system),  finds  the
following specifications for the auxiliary functions

c � ��

�
x
��s��x�� � �x��

�
x, y�

�
�
�
		i s–sor t ed��y��� �

i s–sor t ed�i�x, �y����
i��x, y��� 	 �x � �y���

�
�




� Details of an Automated Synthesis

See the notebooks automatically produced by Theorema for the insertion-sort example.

� � � � 16� of �XXX

� How far can we go with this method? 

Can we automatically synthesize algorithms for non-trivial problems?

Example of a non-trivial problem: construction of Gröbner bases.

What is "non-trivial"?

Main algorithmic  idea of  Gröbner  bases theory:  The "S-polynomials"  ("critical pairs")  together  with the
S-polynomial theorem.

Hence,  question:  Can  Lazy Thinking  automatically  invent  the  notion  of  S-polynomial  and  automatically
deliver the S-polynomial theorem.

� � � � 17� of �XXX
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�  What we Have, What we Want

�  An Algorithm for Algorithm Synthesis

Algorithmic Synthesis of a Gröbner Bases Algorithm 

Conclusion
� � � � 18� of �XXX

� The Problem of Constructing Gröbner Bases
 
Find algorithm Gb such that

�
F

�
�
							

i s–f i ni t e� Gb�F� �
i s–Gr öbner –basi s� Gb�F��
i deal �F� � i deal � Gb�F��.

�
�








Definitions [BB 1965, 1970]:

i s–Gr öbner –basi s�G� � i s–conf l uent � �G �.

� � � � 19� of �XXX

� Confluence of Division �G

�h1 �G h2� � �
g
G

��� l p�g� � l p�h1�
h2 � h1 � �l m�h1� � l m�g�� g

�,
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i s–conf l uent � � � : � �
f 1, f 2

�f 1 �
� f 2 � f 1�

� f 2�

f1
f2

� � � � 20� of �XXX

� Knowledge on the Concepts Involved

h1 �G h2 � p . h1 �G p . h2

etc.

� � � � 21� of �XXX

� Algorithm Scheme "Critical Pair / Completion"

A�F� � A�F, pai r s�F��
A�F, ��� � F

A�F, ��g1, g2�, p��� �

wher e�f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�, h2 � t r d�r d�f , g2�, F�,

�����
�
���

A�F, �p��� � h1 � h2

A�F� df �h1, h2�, �p�� � ��Fk , df �h1, h2��� �
k�1, …, �F�

�� � ot her wi se
�

This scheme can be tried in any domain, in which we have a reduction operation rd that depends on sets
F of objects and a Noetherian relation � which interacts with rd in the following natural way: 
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�
f , g

�f � r d�f , g��.

� � � � 22� of �XXX

� The Essential Problem
The  problem  of  synthesizing  a  Gröbner  bases  algorithm  can  now  be  also  stated  by  asking  whether
starting with the proof of

�
F

�
�
							

i s–f i ni t e� A�F� �
i s–Gr öbner –basi s� A�F��
i deal �F� � i deal � A�F��.

�
�








 we can automatically produce the idea that

l c�g1, g2� � l cm�l p�g1�, l p�g2��

and

df �h1, h2� � h1 � h2

and prove that the idea is correct.

� � � � 23� of �XXX

� Now Start the (Automated) Correctness Proof

With  current  theorem  proving  technology,  in  the  Theorema  system,  the  proof  attempt  could  be  done
automatically. (Not yet fully implemented.)

� � � � 24� of �XXX

� Details 

� Upon Termination

It  should be  clear  that,  if  the algorithm  terminates,  the final  result  is  a finite  set  (of  polynomials)  G that
has the property
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�
g1, g2
G

��wher e�f � l c�g1, g2�, h1 � t r d�r d�f , g1�, F�,

h2 � t r d�r d�f , g2�, F�, �� h1 � h2

df �h1, h2� 
 G
��.

� We Have to Prove

We now try to prove that, if G has this property, then 

i s–f i ni t e�G�,

i deal �F� � i deal �G�,

i s–Gr öbner –basi s�G�,

i . e. i s–Chur ch–Rosser � �G �.

Here, we only deal with the third, most important, property. 

� Using Available Knowledge

Using Newman's lemma and some elementary properties it can be shown that it is sufficient to prove

i s–Chur ch–Rosser � �G � � �
p
� �
f 1, f 2

���� p � f 1

p � f 2
� � f 1�

� f 2�.

� Assumption

Let now the power product p and the polynomials f1, f2 be arbitary but fixed and assume

� p �G f 1

p �G f 2.

We have to find a polyonomial g such that

f 1 �G
� g,

f 2 �G
� g.

� From the Assumption

From the assumption we know that there exist polynomials g1 and g2 in G such that

l p�g1� � p,
f 1 � r d�p, g1�,

l p�g2� � p,
f 2 � r d�p, g2�.
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From the final situation in the algorithm scheme we know that for these g1 and g2

�� h1 � h2
df �h1, h2� 
 G,

where

h1 : � t r d�f 1 ' , G�, f 1 ' : � r d�l c�g1, g2�, g1�,

h2 : � t r d�f 2 ' , G�, f 2 ' : � r d�l c�g1, g2�, g2�.

� Case h1=h2: In this case

l c�g1, g2� �g1 r d�l c�g1, g2�, g1� �G
� t r d�r d�l c�g1, g2�, g1�, G� �

t r d�r d�l c�g1, g2�, g2�, G� �G
� r d�l c�g1, g2�, g2� �g2 l c�g1, g2�.

(Note that here we used the requirements rd[lc[g1,g2],g1]�lc[g1,g2] and rd[lc[g1,g2],g2]�lc[g1,g2].)

Hence, by elementary properties of polynomial reduction,

�
a, q

� a q l c�g1, g2� �g1

a q r d�l c�g1, g2�, g1� �G
� a q t r d�r d�l c�g1, g2�, g1�, G� �

a q t r d�r d�l c�g1, g2�, g2�, G� �G
� a q r d�l c�g1, g2�, g2� �g2

a q l c�g1, g2� �.

Now we are stuck in the proof.

� Use Specification Generation Algorithm

However, using the above specification generation rule, we see that we could proceed successfully with
the proof if lc[g1,g2] satisfied the following requirement

�
p, g1, g2

���� l p�g1� � p

l p�g2� � p
� � � �

a, q
��p � a q l c�g1, g2� ����, �l c r equi r ement �

With such an lc, we then would have 

p �g1 r d�p, g1� � a q r d�l c�g1, g2�, g1� �G
� a q t r d�r d�l c�g1, g2�, g1�, G� �

a q t r d�r d�l c�g1, g2�, g2�, G� �G
� a q r d�l c�g1, g2�, g2� �

r d�p, g2� �g2 p

and, hence,
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f 1 �G
� a q t r d�r d�l c�g1, g2�, g1�, G�,

f 2 �G
� a q t r d�r d�l c�g1, g2�, g1�, G�,

i.e. we would have found a suitable g.

� Summarizing the Specifications of the Unknown Subalgorithm lc

(lc requirement), which also could be written in the form:

�
p, g1, g2

���� l p�g1� � p
l p�g2� � p

� � �l c�g1, g2� � p�� ,

and the requirements:

r d�l c�g1, g2�, g1� � l c�g1, g2�,

r d�l c�g1, g2�, g2� � l c�g1, g2�,

which, in the case of the domain of polynomials, are equivalent to

l p�g1� � l c�g1, g2�,
l p�g2� � l c�g1, g2�.

� A Suitable lc

l cp�g1, g2� � l cm�l p�g1�, l p�g2��

is a suitable function that satisfies the above requirements.

Heureka!  The  crucial  function  lc  (the  "critical  pair"  function)  in  the  critical  pair  /  completion  algorithm
scheme has been "automatically" synthesized! 

� Case h1�h2 and, hence, df[h1,h2]�G: 

In this part of the proof we are basically stuck right at the beginning.

We can try to reduce this case to the first case, which would generate the following requirement

�
h1, h2

�h1 ��df �h1, h2���h2� �df r equi r ement �.
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(Looking to the knowledge base of elementary properties of polynomial reduction, it is now easy to find a
function df  that satifies (df requirement), namely

df �h1, h2� � h1 � h2,

because, in fact,

�
f , g

�f ��f �g�� g�.

Heureka!  The  function  df  (the  "completion"  function)  in  the  critical  pair  /  completion  algorithm  scheme
has been "automatically" synthesized!)

Namely,

� � � � 25� of �XXX

� Summary of the Synthesizing Proof Attempt

� Failure Situation

The proof, of course, fails at the point where it would need knowledge about the unknown subalgorithms
lc and df.

� Beginning of the proof:

Let G be A[ F]. We have to prove that

i s–f i ni t e�G�,

i deal �F� � i deal �G�,

i s–Gr öbner –basi s�G�,

i . e. i s–conf l uent � �G �.

� Assumption

We only deal with the third, most important, property. For this, we assume

� p �G f 1

p �G f 2.

and have to find a polynomial g such that

f 1 �G
� g,

f 2 �G
� g.

� � � � 26� of �XXX
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� Generation of the Specification of lc
In  the  failing  proof  situation,  by the  (automated)  analysis  algorithm  sketched above,  we  detect  that  the

proof could be completed if the unknown lc satisfied the following property:

l p�g1� � l c�g1, g2�,
l p�g2� � l c�g1, g2�,

�
p, g1, g2

���� l p�g1� � p

l p�g2� � p
� � �l c�g1, g2� � p�� .

Eureka! It is clear that this specification is (only) met by

l c�g1, g2� � l cm�l p�g1�, l p�g2��.

� � � � 27� of �XXX

� Generation of the Specification of df

Similarly, it can be (automatically) detected that 

df �h1, h2� � h1 � h2.

� � � � 28� of �XXX
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�  What we Have, What we Want

�  An Algorithm for Algorithm Synthesis

�  Algorithmic Synthesis of a Gröbner Bases Algorithm 

Conclusion
� � � � 29� of �XXX

� Research Topics

Problem
(Scheme)

Knowledge

Algorithm
Scheme

Algorithm

� Libraries of algorithm schemes.

        More generally, libraries of definition, theorem, problem, and algorithm schemes.

� Case studies of problem (schemes), knowledge, algorithm schemes and how they produce algorithms.

� Improved algorithms for generating problem specifications from failing proofs.

� "Functor"  knowledge: each algorithm is a "functor"

          If s, m, l, r is a merge structure                                                then             A is a sort structure.
          and A results from s, m, l, r by divide and conquer 

� � � � 30� of �XXX

� � � � 31� of �XXX
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