
Quantifier Elimination for Approximate
Factorization of Linear Partial Differential

Operators

Elena Kartashova1 and Scott McCallum2

1 RISC, J.Kepler University, Linz, Austria
lena@risc.uni-linz.ac.at

2 Macquarie University, Sydney, Australia
scott@ics.mq.edu.au

Abstract. This paper looks at the feasibility of applying the quantifier
elimination program QEPCAD-B to obtain quantifier-free conditions for
the approximate factorization of a simple hyperbolic linear partial differ-
ential operator (LPDO) of order 2 over some given bounded rectangular
domain in the plane. A condition for approximate factorization of such
an operator to within some given tolerance over some given bounded
rectangular domain is first stated as a quantified formula of elementary
real algebra. Then QEPCAD-B is applied to try to eliminate the quan-
tifiers from the formula. While QEPCAD-B required too much space
and time to finish its task, it was able to find a partial solution to the
problem. That is, it was able to find a nontrivial quantifier-free sufficient
condition for the original quantified formula.

1 Introduction

Let Q denote the field of all rational numbers, and let R denote the polynomial
ring Q[x, y] in the variables x and y over Q. A linear partial differential operator
(LPDO) in x and y over Q is an element of the noncommutative ring R[∂x, ∂y],
where ∂x and ∂y denote the usual derivation operators on R. An LPDO is of
order n if the highest order derivations occurring in it are of the n-th order.

While factorization of linear ordinary differential operators is well studied
and has a well developed algorithmic theory, the theory of factorization of LP-
DOs is much more difficult. One constructive factorization method for LPDOs –
Beals-Kartashova (BK) factorization – was introduced in [1]. The method could
roughly be described as a straightforward search for first order factors of a given
LPDO from the left, so to speak. One simply expresses a given LPDO of order
n as a symbolic product of a first order factor on the left and an (n − 1)st order
factor on the right. One writes down a system of equations for the symbolic
coefficients of the factors. Then one tries to solve these equations. Usually one
or more factorization conditions are thereby derived, necessary and sufficient for
the existence of such factors. In case the factorization conditions are fulfilled,
the factors can be obtained, and the method applied recursively to the factor on

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNCS 4573, pp. 106–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Quantifier Elimination for Approximate Factorization 107

the right. A simple LPDO of order 2, together with its factorization condition,
and its factorization when the condition is satisfied, is presented in Section 2.

The idea to use BK-factorization for the approximate factorization of an
LPDO over some bounded domain is discussed in [2]. It is motivated by the
important application area of numerical simulations. The processing time for
such numerical simulations could be substantially reduced if instead of compu-
tation with one LPDO of order n we could proceed with n LPDOs all of order 1.
In numerical simulations the coefficients of the given operator are given within
some tolerance. It is thus not necessary to fulfil the factorization conditions ex-
actly, but instead within some given tolerance, and over some bounded domain.
This leads to the idea of approximate factorization conditions for an LPDO over
some bounded domain. Approximate factorization conditions would be expected
to be formulated using quantifiers over the real numbers.

The idea of the present paper is to look into the feasibility of obtaining
quantifier-free approximate factorization conditions using quantifier elimination
by cylindrical algebraic decomposition (QE by CAD) [3]. This idea was suggested
to us by Bruno Buchberger [4]. In Section 2 of this paper we formulate an ap-
proximate factorization condition for a so-called hyperbolic LPDO of order 2
with simple polynomial coefficients. We use the language of Tarski algebra to do
this. In Section 3 we provide a brief synopsis of QE by CAD. In Section 4 we
report the results of applying a computer program for carrying out QE by CAD
to the approximate factorization condition obtained in Section 2 in an attempt
to find a quantifier-free version of the condition. We find that, while our pro-
gram could not solve the problem given using a reasonable amount of time and
space, it was able to find a partial solution to the problem. More specifically,
it was able to find a nontrivial quantifier-free sufficient condition for the given
quantified formula.

2 Factorization Conditions for a Hyperbolic LPDO of
Order 2

Let us consider a hyperbolic LPDO of order 2 in canonical form:

H2 = ∂2
x − ∂2

y + p∂x + q∂y + r, (1)

where the coefficients p, q, r are arbitrary elements of R (that is, arbitrary poly-
nomials in x and y over Q). We say that H2 is factorizable if H2 can be expressed
in the form

H2 = (∂x ± ∂y + s)(∂x ∓ ∂y + t),

for some elements s and t of R. With ω = ±1, put

Rω = (∂x − ω∂y)
(

p − ωq

2

)
+

p2 − q2

4
.

It follows from equation system 2 in [1], specialised for H2, that H2 is factorizable
if and only if

[r = R−1] ∨ [r = R1]. (2)

108 E. Kartashova and S. McCallum

If the former disjunct is valid, then

H2 = (∂x + ∂y +
p − q

2
)(∂x − ∂y +

p + q

2
),

and if the latter disjunct is valid then

H2 = (∂x − ∂y +
p + q

2
)(∂x + ∂y +

p − q

2
).

The reader is reminded that multiplication of such LPDOs is in general non-
commutative. Hence the former factorization need not imply the latter, and vice
versa.

Suppose now that the polynomial coefficients of the operator H2 are of the
first degree: say p(x, y) = p3x + p2y + p1, q(x, y) = q3x + q2y + q1, r(x, y) =
r3x+r2y+r1. Then – by expanding the Rω in terms of x and y and equating the
coefficients of r and the Rω – the factorization condition (2) can be expressed
as a disjunction of two systems of equations in the nine variables pi, qj and rk.
The solution of this disjunction of equation systems yields all exactly factorizable
hyperbolic LPDOs of this type.

For the remainder of this paper we will address the problem of trying to
determine and simplify a condition for approximate factorization of hyperbolic
operators of this type. We use the standard formal language of elementary real
algebra, that is, Tarski algebra [3], to formulate a condition for approximate
factorization of hyperbolic operators of this type as a quantifier elimination (QE)
problem. In addition to the coefficients of the given operator H2, we assume that
we are also given:

(1) a constant ε;
(2) constants M and N , which define a bounded rectangular region in the

plane: −M < x < M , −N < y < N .
With all this given, and with ω = ±1, let us consider the quantified formula

of elementary real algebra φ∗ = φ∗(pi, qj , rk) which asserts that “for all x and y
in the bounded region −M < x < M , −N < y < N , we have −ε < r(x, y) −
Rω(x, y) < ε.” We wish to eliminate the quantifiers from φ∗(pi, qj , rk). More
precisely, we wish to find a formula of elementary real algebra φ′ = φ′(pi, qj , rk),
free of quantifiers, such that if φ′(pi, qj , rk) is true then φ∗(pi, qj , rk) is true. That
is, we wish to find conditions on the coefficients of the polynomials p(x, y), q(x, y)
and r(x, y) which imply that the function Rω(x, y) differs not too much from
one these polynomials, namely r(x, y), throughout the bounded region −M <
x < M , −N < y < N .

3 Synopsis of QE by CAD

Let A be a set of integral polynomials in x1, x2 . . . , xr , where r ≥ 1. An A-
invariant cylindrical algebraic decomposition (CAD) of Rr, r-dimensional real
space, is a decomposition D of Rr into nonempty connected subsets called cells
such that

Quantifier Elimination for Approximate Factorization 109

1. the cells of D are cylindrically arranged with respect to the variables
x1, x2, . . . , xr;

2. every cell of D is a semialgebraic set (that is, a set defined by means of
boolean combinations of polynomial equations and inequalities); and

3. every polynomial in A is sign-invariant throughout each cell of D.

The CAD algorithm as originally conceived [3,5] has inputs and outputs as
follows. Given such a set A of r-variate polynomials and a nonnegative integer f
with f < r, the algorithm produces as its output a description of an A-invariant
CAD D of Rr, in which explicit semialgebraic defining formulas are provided
only for the cells of the CAD Df of Rf induced (that is, implicitly determined)
by D. The description of D comprises lists of indices and sample points for the
cells of D. (Every cell is assigned an index which indicates its position within
the cylindrical structure of D.)

The working of the original CAD algorithm can be summarized as follows.
If r = 1, an A-invariant CAD of R1 is constructed directly, using polynomial
real root isolation. If r > 1, then the algorithm computes a projection set P of
(r − 1)-variate polynomials (in x1, . . . , xr−1) such that any P -invariant CAD D′

of Rr−1 can be extended to a CAD D of Rr. If f = r we set f ′ ← f − 1 and
otherwise set f ′ ← f . Then the algorithm calls itself recursively on P and f ′ to
get such a D′. Finally D′ is extended to D. In order to produce semialgebraic
defining formulas for the cells of Df the algorithm must be used in a mode called
augmented projection.

Thus for r > 1, if we trace the algorithm, we see that it computes a first
projection set P , eliminating xr, then computes the projection of P , eliminating
xr−1, and so on, until the (r − 1)-st projection set has been obtained, which is a
set of polynomials in the variable x1 only. This is called the projection phase of
the algorithm. The construction of a CAD of R1 invariant with respect to the
(r − 1)-st projection set is called the base phase. The successive extensions of
the CAD of R1 to a CAD of R2, the CAD of R2 to a CAD of R3, and so on,
until an A-invariant cad of Rr is obtained, constitute the extension phase of the
algorithm.

Now we consider the quantifier elimination (QE) problem for the elementary
theory of the reals: given a quantified formula (known as a QE problem instance)
of elementary real algebra

φ∗ = (Qf+1xf+1) . . . (Qrxr)φ(x1, . . . , xr)

where φ is a formula involving the variables x1, x2, . . . , xr which is free of quan-
tifiers, find a formula φ′(x1, . . . , xf), free of quantifiers, such that φ′ is equivalent
to φ∗. The QE problem can be solved by constructing a certain CAD of Rr. The
method is described as follows.

1. Extract from φ the list A of distinct non-zero r-variate polynomials occur-
ring in φ.

2. Construct lists S and I of sample points and cell indices, respectively, for
an A-invariant CAD D of Rr, together with a list F of semialgebraic defining
formulas for the cells of the CAD Df of Rf induced by D.

110 E. Kartashova and S. McCallum

3. Using S, evaluate the truth value of φ∗ in each cell of Df . (By construction
of D, the truth value of φ∗ is constant throughout each cell c of Df , hence can
be determined by evaluating φ∗ at the sample point of c.)

4. Construct φ′(x1, . . . , xf) as the disjunction of the semialgebraic defining
formulas of those cells of Df for which the value of φ∗ has been determined to
be true.

The above algorithm solves any given particular instance of the QE problem
in principle. However the computing time of the algorithm grows steeply as the
number r of variables occurring in the input formula φ increases.

Collins and Hong [8] introduced the method of partial CAD construction for
QE. This method, named with the acronym QEPCAD, is based upon the sim-
ple observation that we can often solve a QE problem by means of a partially
built CAD. The QEPCAD algorithm was originally implemented by Hong. A re-
cent implementation, denoted by QEPCAD-B, contains improvements by Brown,
Collins, McCallum, and others – see [6]. QEPCAD-B has solved a range of rea-
sonably interesting problems for which the original QE algorithm takes too much
time. Nevertheless the worst case computing time of QEPCAD-B remains large
(that is, it depends doubly-exponentially on r).

4 Application of QEPCAD to BK-Factorization

We consider only the first simple case of approximate factorization described in
Section 2. Using the notation of Section 2, we suppose that ε, M and N have
been given specific constant values, say ε = M = N = 1, and we put ω = −1.
We consider the formula φ∗(pi, qj , rk) which asserts that

(∀x)(∀y)[(|x| < 1 ∧ |y| < 1) ⇒ |r(x, y) − R−1(x, y)| < 1]. (3)

We wish to find a formula φ′(pi, qj , rk), free of quantifiers, such that φ′(pi, qj , rk)
implies φ∗(pi, qj , rk).

Remark 1. It would be of greatest interest to find the most general such
φ′(pi, qj , rk) – that is, to findquantifier-freeφ′(pi, qj , rk) equivalent toφ∗(pi, qj , rk).
But as we’ll see it seems that the time and space resources needed to do this are
prohibitive. We’ll also see that it is not as time consuming, yet hopefully still of
interest, to find quantifier-free conditions merely sufficient for φ∗ to be true.

As a first step we rewrote the quantified formula 3 so that the variables pi, qj , rk

appear explicitly, and the denominator 4 is cleared from the right hand side of
the implication. Expanding in terms of x and y formula 3 thus has the form:

(∀x)(∀y)[(|x| < 1 ∧ |y| < 1) ⇒ |ax2 + bxy + cy2 + dx + ey + f | < 4], (4)

where a, b, c, d, e, f are integral polynomials in the pi, qj , rk. (For example, a =
q2
3 − p2

3, b = 2q2q3 − 2p2p3, and c = q2
2 − p2

2.) In fact it is computationally advan-
tageous to use the general form of quantified formula 4, in which a, b, c, d, e, f

Quantifier Elimination for Approximate Factorization 111

occur as distinct indeterminates, rather than as polynomial expressions in the
pi, qj , rk, because then the total number of variables in the formula is reduced
from 11 to 8.

We attempted to find a solution to the above QE problem instance by running
the program QEPCAD-B with the quantified formula 4 (in its general form)
as its input. The variable ordering used was (a, b, c, d, e, f, x, y). The computer
used for this and subsequent experiments was a Sun server having a 292 MHz
ultraSPARC risc processor. Forty megabytes of memory were made available for
list processing. However the program ran out of memory after a few minutes. The
program was executing the projection phase of the algorithm when it stopped.
The first three projection steps – that is, successive elimination of y, x and f –
were almost complete.

Increasing the amount of memory to eighty megabytes did not help – the
program still ran out of memory during the fourth projection step (that is,
during elimination of e).

Of course a very special, but completely trivial, quantifier-free sufficient con-
dition for our QE problem instance is the formula

φ′(pi, qj , rk) := [all pi = 0 ∧ all qj = 0 ∧ all rk = 0].

It could be of some interest to look for partial solutions to (that is, quantifier-
free sufficient conditions for) our QE problem instance in which some but not
all of the variables pi, qj , rk are equal to zero. For example, suppose that we put
p2 = q2 = r2 = 0 in (4). We obtain:

(∀x)(∀y)[(|x| < 1 ∧ |y| < 1) ⇒ |a′x2 + d′x + f ′| < 4],

where a′, d′, f ′ are polynomials in p1, p3, q1, q3, r1, r3. (In fact we have a′ = a and
d′ = d.) Clearly this formula is equivalent to:

(∀x)[(|x| < 1) ⇒ |a′x2 + d′x + f ′| < 4], (5)

which we shall denote by ψ∗(pi, qj, rk).
The following theorem shows that a partial solution to the special QE problem

instance ψ∗(pi, qj , rk) (that is, a quantifier-free sufficient condition for ψ∗) leads
to a partial solution to the QE problem instance φ∗ (that is, a quantifier-free
sufficient condition for φ∗).

Theorem 1. Suppose that ψ′(pi, qj , rk) is a quantifier-free formula, involving
only p1, p3, q1, q3, r1, r3, which implies ψ∗(pi, qj , rk). Then the quantifier-free for-
mula ψ′(pi, qj , rk) ∧ p2 = 0 ∧ q2 = 0 ∧ r2 = 0 implies φ∗(pi, qj , rk).

� Let pi, qj , rk be real numbers and let (with slight abuse of notation) a, b, c, d, e, f
denote the values of the polynomials a, b, c, d, e, f at the particular pi, qj , rk. As-
sume ψ′(pi, qj , rk) ∧ p2 = 0 ∧ q2 = 0 ∧ r2 = 0. Then ψ∗(pi, qj , rk) ∧ p2 = 0 ∧ q2 =
0 ∧ r2 = 0 is true, by hypothesis. Take real numbers x and y, with |x| < 1 and
|y| < 1, and (with slight abuse of notation) let a′, d′, f ′ denote the values of the
polynomials a′, d′, f ′ at the particular pi, qj , rk. Then

|a′x2 + d′x + f ′| < 4,

112 E. Kartashova and S. McCallum

by virtue of (5) (since |x| < 1). Hence (4) is true (since a = a′, d = d′, f = f ′,
b = c = e = 0). �
The above discussion suggests that it would be worthwhile to try to find a
solution to the simplified, special QE problem instance ψ∗ using the program
QEPCAD-B. We use the more general form of (5), in which a′, d′, f ′ occur as
indeterminates, and hence reduce by 3 the number of variables in the formula.
For simplicity of the notation hereafter we use the variables a, b, c in place of
a′, d′, f ′, and thus treat the formula:

(∀x)[(|x| < 1) ⇒ |ax2 + bx + c| < 4]. (6)

We ran program QEPCAD-B with (6) as its input. Eighty megabytes of mem-
ory were made available for list processing. After 191 seconds the program pro-
duced the following quantifier-free formula equivalent to (6):

c - b + a + 4 >= 0 /\ c - b + a - 4 <= 0 /\
c + b + a + 4 >= 0 /\ c + b + a - 4 <= 0 /\
[4 a c - b^2 + 16 a > 0 \/ 4 a c - b^2 - 16 a > 0 \/
[b^2 - 16 a = 0 /\ b^2 + 16 a > 0] \/
[b^2 - 16 a < 0 /\ b - 2 a >= 0] \/
[b^2 - 16 a < 0 /\ b + 2 a <= 0] \/
[b^2 - 16 a > 0 /\ b + 2 a >= 0] \/
[b^2 - 16 a > 0 /\ b - 2 a <= 0] \/
[b^2 - 16 a = 0 /\ c - b + a + 4 > 0 /\ c - b + a - 4 < 0]].

We could transform this formula into a partial solution ψ′(pi, qj , rk) to ψ∗ by
setting a = q2

3 − p2
3, b = 4r3 − (p3 − q3)(p1 + q1) − (p1 − q1)(p3 + q3), and

c = 4r1 − 2(p3 + q3) − (p1 − q1)(p1 + q1).
It is possible to induce the program to produce an arguably even simpler

solution formula using less computing time by making three separate runs of
QEPCAD-B. The first run uses the command

assume [a < 0].

After just 1.9 seconds the program produced the following quantifier-free formula
equivalent to (6) under the assumption a < 0:

c - b + a + 4 >= 0 /\ c - b + a - 4 <= 0 /\
c + b + a + 4 >= 0 /\ c + b + a - 4 <= 0 /\
[b - 2 a <= 0 \/ b + 2 a >= 0 \/ 4 a c - b^2 - 16 a > 0]. (7)

The above formula is perhaps more elegant and understandable. For it is a
slight improvement of (that is, slightly more compact than) a formula seen to be
equivalent to it (under assumption a < 0) which is quite straightforward to derive
by hand from (6) using elementary properties of the parabola y = ax2 + bx + c
on the interval (−1, +1):

Quantifier Elimination for Approximate Factorization 113

[2 a - b >= 0 /\ a + b + c + 4 >= 0 /\ a - b + c - 4 <= 0] \/
[2 a + b >= 0 /\ a - b + c + 4 >= 0 /\ a + b + c -4 <= 0] \/
[2 a - b < 0 /\ 2 a + b < 0 /\ 4 a c - b^2 - 16 a > 0 /\
a - b + c + 4 >= 0 /\ a + b + c + 4 >= 0]. (8)

Remark 2. To derive by hand (8) from (6) under the assumption a < 0, one
has to notice that function f(x) = ax2 + bx + c has its maximum value for
f ′(x) = 2ax+b = 0, that is, for x = −b/(2a), and consider three cases separately:
(1) −b/(2a) ≤ −1, (2) −b/(2a) ≥ +1, and (3) −1 < −b/(2a) < +1. For each of
the above three cases one can then write down necessary and sufficient conditions
for (6) to be true. For example, in Case 1, (6) is clearly equivalent to −4 ≤
a + b + c ∧ a − b + c ≤ 4. After treating each of the above cases, we obtain (8)
by forming the disjunction of the formulas corresponding to the cases.

To obtain a complete solution to the QE problem instance (6) we need to run
QEPCAD two more times, for the cases a > 0 and a = 0, respectively. For the
second run we use the command

assume [a > 0].

and obtain after 1.9 seconds the following quantifier-free formula equivalent to
(6) under the assumption a > 0:

c - b + a + 4 >= 0 /\ c - b + a - 4 <= 0 /\
c + b + a + 4 >= 0 /\ c + b + a - 4 <= 0 /\
[b + 2 a <= 0 \/ b - 2 a >= 0 \/ 4 a c - b^2 + 16 a > 0]. (9)

For the third run we put a = 0 in (6) and use the command

assume [b /= 0].

After 60 milliseconds the program produced the following formula equivalent to
(6) with a = 0 under assumption b
= 0:

c - b + 4 >= 0 /\ c - b - 4 <= 0 /\
c + b + 4 >= 0 /\ c + b - 4 <= 0 (10)

This is immediately seen to be correct! Finally we could obtain a complete
solution to (6) by combining (7) for a < 0, (9) for a > 0, (10) for b
= a = 0
and the formula c - 4 < 0 /\ c + 4 > 0 (for a = b = 0). In fact a simple and
elegant way to achieve such a combination is as follows:

c - b + a + 4 >= 0 /\ c - b + a - 4 <= 0 /\
c + b + a + 4 >= 0 /\ c + b + a - 4 <= 0 /\
[b - 2 a <= 0 \/ b + 2 a >= 0 \/
4 a c - b^2 - 16 a > 0 \/ a >= 0] /\
[b + 2 a <= 0 \/ b - 2 a >= 0 \/
4 a c - b^2 + 16 a > 0 \/ a <= 0]. (11)

114 E. Kartashova and S. McCallum

5 Discussion

As we remarked in Section 3 the worst case computing time of QEPCAD-B grows
steeply as the number of variables in the given QE problem instance increases.
Indeed, as is suggested by the results reported in Section 4, a complete solution
of the QE problem instance (4) by QEPCAD-B using a reasonable amount of
time and space seems to be unlikely for the foreseeable future.

Nevertheless the results of Section 4 also suggest that QEPCAD-B could be
of help in searching for certain kinds of sufficient conditions for (3), especially
those which involve setting some of the variables to zero.

We briefly mention here another kind of approach which a person could use
to derive another kind of sufficient condition for (4) by hand. We simply notice
that a sufficient condition for (4) is:

|a| <
4
6

∧ |b| <
4
6

∧ |c| <
4
6

∧ |d| <
4
6

∧ |e| <
4
6

∧ |f | <
4
6
.

The above sufficient condition is unlikely to be obtained in a reasonable amount
of time and space using QEPCAD-B applied to (4), even if one issues assume
commands. The number of variables involved is probably too big. However a
version of QEPCAD-B which is planned for the future, which will have the
capability to determine adjacency relationships amongst the cells of the partial
CAD, could be of some use in analyzing certain topological properties of the
truth set in nine-dimensional space of the corresponding quantifier-free formula
in pi, qj , rk obtained from the above.

Acknowledgements

This paper has its origin in discussions between the authors at RISC-Linz during
the second of S.M. to RISC-Linz in 2005. S.M. would like to thank Professors
Franz Winkler and Bruno Buchberger, and all their colleagues and staff at RISC,
for their hospitality during his stay. S.M. would also like to acknowledge helpful
discussions and communications with Professors Daniel Lazard and Chris Brown.
E.K. acknowledges the support of the Austrian Science Foundation (FWF) under
projects SFB F013/F1304.

References

1. Beals, R., Kartashova, E.: Constructively factoring linear partial differential opera-
tors in two variables. TMPh 145(2), 1510–1523 (2005)

2. Kartashova, E., Rudenko, O.: Invariant Form of BK-factorization and its Applica-
tions. In: Calmet, J., Seiler, W.M., Tucker, R.W. (eds.) Proc. GIFT-2006, Univer-
sitätsverlag Karlsruhe, pp. 225–241 (2006)

3. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages.
LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

Quantifier Elimination for Approximate Factorization 115

4. Personal communication with Bruno Buchberger (2005)
5. Arnon, D., Collins, G., McCallum, S.: Cylindrical algebraic decomposition I: the

basic algorithm. JSC 13(4), 878–889 (1984)
6. Brown, C.: QEPCAD B: a program for computing with semi-algebraic sets using

CADs. ACM SIGSAM Bulletin 37(4), 97–108 (2003)
7. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Alge-

braic Decomposition. Springer, Berlin (1998)
8. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier

elimination. JSC 12(3), 299–328 (1991)

	Introduction
	Factorization Conditions for a Hyperbolic LPDO of Order 2
	Synopsis of QE by CAD
	Application of QEPCAD to BK-Factorization
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

