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Abstract

Context and sequence variables allow matching to explore term-trees both in depth and in breadth.
It makes context sequence matching a suitable computational mechanism for a rule-based language
to query and transform XML, or to specify and verify web sites. Such a language would have advan-
tages of both path-based and pattern-based languages. We develop a context sequence matching
algorithm and its extension for regular expression matching, and prove their soundness, termination
and completeness properties.
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1 Introduction

Context variables allow matching to descend in a term represented as a tree
to arbitrary depth. Sequence variables give terms a flexible arity and allow
matching to move to arbitrary breadth. The ability to explore these two
orthogonal directions makes context sequence matching a useful mechanism
for querying data available as a large term, like XML documents [26].

Context variables may be instantiated with a context—a term with a hole.
Sequence variables may be instantiated with a finite (maybe empty) sequence
of terms. Sequence variables are normally used with flexible arity function
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symbols. Besides context and sequence variables we have function and in-
dividual variables. Function variables may be instantiated with a function
symbol or with a function variable. Individual variables may be bound with
a single term. Like context and sequence variables, functional and individual
variables can be used to traverse terms in depth and breadth, respectively,
but only in one level.

In this paper we develop a matching algorithm for terms built using flexible
arity function symbols and involving context, sequence, function, and individ-
ual variables. We call it the context sequence matching algorithm underlying
the importance of the context and sequence variables. We prove soundness,
termination, and completeness of the algorithm. It generates a minimal com-
plete set of solutions for the input matching problem. For solvable problems
this set is finite, that indicates that context sequence matching is finitary.

Context matching and unification have been intensively investigated in the
recent past years, see e.g, [9,10,19,22,23,24]. Context matching is decidable.
Decidability of context unification is still an open question [25]. Schmidt-
Schauß and Stuber in [24] gave a context matching algorithm and noted that
it can be used similar to XPath [7] matching for XML documents. Sequence
matching and unification was addressed, for instance, in [2,12,13,16,17,18].
Both matching and unification with sequence variables are decidable. Se-
quence unification procedure described in [17,18] was implemented in the con-
straint logic programming language CLP(Flex) [8] and was used for XML
processing. However, to the best of our knowledge, so far there was no at-
tempt to combine these two kinds of variables in a single framework. The main
contribution of this paper is exactly to develop such a framework and show
its usefulness in XML querying, transformation, and web site verification. In-
corporating regular expressions into context sequence matching problems is
one of such useful features. We give regular expression matching rules that
extend those for context sequence matching and show soundness, termination,
and completeness of such an extension. Regular expressions constrain both
context and sequence variables, i.e., these expressions can be used both on
depth and on breadth in terms, which provides a high degree of flexibility and
expressiveness. Also, we can easily express incomplete and unordered queries.

Simulation unification [4] implemented in the Xcerpt language has a de-
scendant construct that is similar to context variables in the sense that it
allows to descend in terms to arbitrary depth, but it does not allow regular
expressions along it. Also, sequence variables are not present there. However,
it can process unordered and incomplete queries, and it is a full scale unifi-
cation, not a matching. Having sequence variables in a full scale unification
would make it infinitary (see e.g., [18]).
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In our opinion, context sequence matching can serve as a computational
mechanism for a declarative, rule-based language to query and transform
XML, or to specify and verify web sites. Such a query language can have
advantages from both path-based and pattern-based languages that form two
important classes of XML query languages. Path-based languages usually al-
low to access a single set of nodes of the graph or tree representing an XML
data. The access is based on relations with other nodes in the graph or tree
specified in the path expression. Pattern-based languages allow access to sev-
eral parts of the graph or tree at once specifying the relations among the
accessed nodes by tree or graph patterns. (For a recent survey over query and
transformation languages see [11].) Moreover, with context sequence matching
we can achieve improved control on rewriting that can be useful for rewriting-
based web site specification and verification techniques [1].

Another application area for context sequence matching is mathematical
knowledge management. For instance, it can retrieve algorithms or problems
from the schema library [5] of the Theorema system [6].

We made a prototype implementation of the context sequence matching
algorithm in the rule-based programming system ρLog [21].

The paper is organized as follows: In Section 2 we introduce preliminary
notions and fix the terminology. In Section 3 we design the context sequence
matching algorithm and prove its properties. In Section 4 we introduce rules
for regular expression matching for context and sequence variables. In Sec-
tion 5 we discuss usefulness of context sequence matching for languages to
query and transform XML and to verify web sites. Section 6 concludes.

2 Preliminaries

We assume fixed pairwise disjoint sets of symbols: individual variables VInd,
sequence variables VSeq, function variables VFun, context variables VCon, and
function symbols F . The sets VInd, VSeq, VFun, and VCon are countable. The
set F is finite or countable. All the symbols in F except a distinguished
constant ◦ (called a hole) have flexible arity. We will use x, y, z for individual
variables, x, y, z for sequence variables, F, G, H for function variables, C, D, E
for context variables, and a, b, c, f, g, h for function symbols. We may use these
meta-variables with indices as well.

Terms are constructed using the following grammar:

t ::= x | x | ◦ | f(t1, . . . , tn) | F (t1, . . . , tn) | C(t)

In C(t) the term t can not be a sequence variable. We will write a for the
term a() where a ∈ F . The meta-variables s, t, r, maybe with indices, will
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be used for terms. A ground term is a term without variables. A context is
a term with a single occurrence of the hole constant ◦. To emphasize that
a term t is a context we will write t[◦]. A context t[◦] may be applied to a
term s that is not a sequence variable, written t[s], and the result is the term
consisting of t with ◦ replaced by s. We will use C and D, with or without
indices, for contexts.

A substitution is a mapping from individual variables to those terms which
are not sequence variables and contain no holes, from sequence variables to fi-
nite, possibly empty sequences of terms without holes, from function variables
to function variables and symbols, and from context variables to contexts,
such that all but finitely many individual and function variables are mapped
to themselves, all but finitely many sequence variables are mapped to them-
selves considered as singleton sequences, and all but finitely many context
variables are mapped to themselves applied to the hole. For example, the
mapping {x �→ f(a, y), x �→ ��, y �→ �a, C(f(b)), x�, F �→ g, C �→ g(◦)} is a
substitution 3 . Note that we identify a singleton sequence with its sole mem-
ber. We will use lower case Greek letters σ, ϑ, ϕ, and ε for substitutions, where
ε will denote the empty substitution. As usual, indices may be used with the
meta-variables.

Substitutions are extended to terms as follows:

xσ = σ(x)

xσ = σ(x)

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)

F (t1, . . . , tn)σ = σ(F )(t1σ, . . . , tnσ)

C(t)σ = σ(C)[tσ].

A substitution σ is more general than ϑ, denoted σ ≤· ϑ, if there exists a ϕ such
that σϕ = ϑ. A substitution σ is more general than ϑ on a set of variables V,
denoted σ ≤·V ϑ, if there exists a ϕ such that vσϕ = vϑ for all v ∈ V. A
context sequence matching problem is a finite multiset of term pairs (matching
equations), written {s1 � t1, . . . , sn � tn}, where the s’s and the t’s contain
no holes, the s’s are not sequence variables, and the t’s are ground. We will
also call the s’s the query and the t’s the data. Substitutions are extended to
matching equations and matching problems in the usual way. A substitution
σ is called a matcher of the matching problem {s1 � t1, . . . , sn � tn} if
siσ = ti for all 1 ≤ i ≤ n. We will use Γ and Δ to denote matching problems.
A complete set of matchers of a matching problem Γ is a set of substitutions S
such that (i) each element of S is a matcher of Γ, and (ii) for each matcher ϑ

3 To improve readability we write sequences between the symbols � and �.
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of Γ there exist a substitution σ ∈ S such that σ ≤· ϑ. The set S is a minimal
complete set of matchers of Γ if it is a complete set and two distinct elements
of S are incomparable with respect to ≤·. For solvable problems this set is
finite, i.e. context sequence matching is finitary.

Example 2.1 The minimal complete set of matchers for the context sequence
matching problem {C(f(x)) � g(f(a, b), h(f(a), f))} consists of three ele-
ments: {C �→ g(◦, h(f(a), f)), x �→ �a, b�}, {C �→ g(f(a, b), h(◦, f)), x �→ a},
and {C �→ g(f(a, b), h(f(a), ◦)), x �→ ��}.

3 Matching Algorithm

We now present inference rules for deriving solutions for matching problems.
A system is either the symbol ⊥ (representing failure) or a pair Γ; σ, where Γ is
a matching problem and σ is a substitution. The inference system I consists
of the transformation rules on systems listed below. We assume that the
indices n and m are non-negative unless otherwise stated.

T: Trivial

{t � t} ∪ Γ′; σ =⇒ Γ′; σ.

IVE: Individual Variable Elimination

{x � t} ∪ Γ′; σ =⇒ Γ′ϑ; σϑ, where ϑ = {x �→ t}.

FVE: Function Variable Elimination

{F (s1, . . . , sn) � f(t1, . . . , tm)} ∪ Γ′; σ
=⇒ {f(s1ϑ, . . . , snϑ) � f(t1, . . . , tm)} ∪ Γ′ϑ; σϑ,

where ϑ = {F �→ f}.

TD: Total Decomposition

{f(s1, . . . , sn) � f(t1, . . . , tn)} ∪ Γ′; σ
=⇒ {s1 � t1, . . . , sn � tn} ∪ Γ′; σ,

if f(s1, . . . , sn) �= f(t1, . . . , tn) and si /∈ VSeq for all 1 ≤ i ≤ n.

PD: Partial Decomposition

{f(s1, . . . , sn) � f(t1, . . . , tm)} ∪ Γ′; σ
=⇒ {s1 � t1, . . . , sk−1 � tk−1, f(sk, . . . , sn) � f(tk, . . . , tm)} ∪ Γ′; σ,

if f(s1, . . . , sn) �= f(t1, . . . , tm), sk ∈ VSeq for some 1 < k ≤ min(n, m) + 1,
and si /∈ VSeq for all 1 ≤ i < k.
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SVD: Sequence Variable Deletion

{f(x, s1, . . . , sn) � t} ∪ Γ′; σ =⇒ {f(s1ϑ, . . . , snϑ) � t} ∪ Γ′ϑ; σϑ,

where ϑ = {x �→ ��}.

W: Widening

{f(x, s1, . . . , sn) � f(t, t1, . . . , tm)} ∪ Γ′; σ
=⇒ {f(x, s1ϑ, . . . , snϑ) � f(t1, . . . , tm)} ∪ Γ′ϑ; σϑ,

where ϑ = {x �→ �t, x�}.

CVD: Context Variable Deletion

{C(s) � t} ∪ Γ′; σ =⇒ {sϑ � t} ∪ Γ′ϑ; σϑ, where ϑ = {C �→ ◦}.

D: Deepening

{C(s) � f(t1, . . . , tm)} ∪ Γ′; σ =⇒ {C(sϑ) � tj} ∪ Γ′ϑ; σϑ,

where ϑ = {C �→ f(t1, . . . , tj−1, C(◦), tj+1, . . . , tm)} for some 1 ≤ j ≤ m,
and m > 0.

SC: Symbol Clash

{f(s1, . . . , sn) � g(t1, . . . , tm)} ∪ Γ′; σ =⇒ ⊥,

if f /∈ VCon ∪ VFun and f �= g.

AD: Arity Disagreement

{f(s1, . . . , sn) � f(t1, . . . , tm)} ∪ Γ′; σ =⇒ ⊥,

if m �= n and si /∈ VSeq for all 1 ≤ i ≤ n.

We may use the rule name abbreviations as subscripts, e.g., Γ1; σ1 =⇒T

Γ2; σ2 for the Trivial rule. SVD, W, CVD, and D are non-deterministic rules. A
derivation is a sequence Γ1; σ1 =⇒ Γ2; σ2 =⇒ · · · of system transformations.

Definition 3.1 A context sequence matching algorithm M is any program
that takes a system Γ; ε as an input and uses the rules in I to generate a
complete tree of derivations, called the matching tree for Γ, in the following
way:

(i) The root of the tree is labeled with Γ; ε.

(ii) Each branch of the tree is a derivation. The nodes in the tree are systems.

(iii) If several transformation rules, or different instances of the same trans-
formation rule are applicable to a node in the tree, they are applied
concurrently. No rules are applicable to the leaves.
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The leaves of a matching tree are labeled either with the systems of the
form ∅; σ or with ⊥. The branches that end with ∅; σ are successful branches ,
and those that end with ⊥ are failed branches. We denote by SolM(Γ) the
solution set of Γ generated by M, i.e., the set of all σ’s such that ∅; σ is a leaf
of the matching tree for Γ.

Theorem 3.2 (Soundness of M) Let Γ be a matching problem. Then every
substitution σ ∈ SolM(Γ) is a matcher of Γ.

Proof. (Sketch) Inspecting the rules in I one can conclude that for a deriva-
tion Γ; ε =⇒+ ∅; σ the problems Γσ and ∅ have the same set of matchers. It
implies that σ is a matcher of Γ. �

Theorem 3.3 (Termination of M) The algorithm M terminates on any
input.

Proof. With each matching problem Δ we associate a complexity measure
as a triple of non-negative integers 〈n1, n2, n3〉, where n1 is the number of
distinct variables in Δ, n2 is the number of symbols in the ground sides of
matching equations in Δ, and n3 is the number of subterms in Δ of the form
f(s1, . . . , sn), where s1 is not a sequence variable. Measures are compared
lexicographically. Every non-failing rule in I strictly decreases the measure.
Failing rules immediately lead to termination. Hence, M terminates on any
input. �

Theorem 3.4 (Completeness of M) Let Γ be a matching problem and let ϑ
be a matcher of Γ. Then there exists a derivation Γ; ε =⇒+ ∅; σ such that
σ ≤· ϑ.

Proof. We construct the derivation recursively. For the base case Γ1; σ1 = Γ; ε
we have ε ≤· ϑ. Now assume that the system Γn; σn, where n ≥ 1 and
Γn �= ∅, belongs to the derivation and find a system Γn+1; σn+1 such that
Γn; σn =⇒ Γn+1; σn+1 and σn+1 ≤· ϑ. We have σn ≤· ϑ. Therefore, there
exists ϕ such that σnϕ = ϑ and ϕ is a matcher of Γn. Without loss of generality,
we pick an arbitrary matching equation s � t from Γn and represent Γn as
{s � t} ∪ Γ′

n. Depending on the form of s � t, we have three cases:

Case 1. The terms s and t are the same. We extend the derivation with
the step Γn; σn =⇒T Γ′

n; σn. Therefore, σn+1 = σn ≤· ϑ.

Case 2. The term s is an individual variable x. Then xϕ = t. Therefore,
for ψ = {x �→ t} we have ψϕ = ϕ and, hence, σnψϕ = ϑ. We extend the
derivation with the step Γn; σn =⇒IVE Γ′

n; σn+1, where σn+1 = σnψ ≤· ϑ.

Case 3. The terms s and t are not the same and s is a compound term.
The only non-trivial cases are those when the first argument of s is a sequence
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variable, or when the head of s is a context variable. If the first argument
of s is a sequence variable x then ϕ must contain a binding x �→ �t1, . . . , tk�
for x, where k ≥ 0 and ti’s are ground terms. If k = 0 then we take ψ =
{x �→ ��} and extend the derivation with the step Γn; σn =⇒SVD Γ′

n; σn+1,
where σn+1 = σnψ. If k > 0 then we take ψ = {x �→ �t1, x�} and extend the
derivation with the step Γn; σn =⇒W Γ′

n; σn+1, where σn+1 = σnψ. In both
cases we have σn+1 = σnψ ≤· σnϕ = ϑ. If the head of s is a context variable
C then ϕ must contain a binding C �→ C for C, where C is a ground context.
If C = ◦ then we take ψ = {C �→ ◦} and extend the derivation with the step
Γn; σn =⇒CVD Γ′

n; σn+1, where σn+1 = σnψ. If C �= ◦ then C should have a
form f(t1, . . . , tj−1, D, tj+1, . . . , tm), where D is a context and f(t1, . . . , tm) = t.
Then we take ψ = {C �→ f(t1, . . . , tj−1, C(◦), tj+1, . . . , tm)} and extend the
derivation with the step Γn; σn =⇒W Γ′

n; σn+1, where σn+1 = σnψ. In both
cases σn+1 = σnψ ≤· σnϕ = ϑ. �

Theorem 3.5 (Minimality) Let Γ be a matching problem. Then SolM(Γ)
is a minimal set of matchers of Γ.

Proof. For any matching problem Δ the set

S(Δ) = {ϕ | Δ; ε =⇒ Φ; ϕ for some Φ}

is minimal. Moreover, every substitution ϑ in S(Δ) preserves minimality: If
{σ1, . . . , σn} is a minimal set of substitutions then so is the set {ϑσ1, . . . , ϑσn}.
It implies that SolM(Γ) is minimal. �

These results are summarized in the main theorem.

Theorem 3.6 (Main Theorem) The matching algorithm M terminates for
any input problem Γ and generates a minimal complete set of matchers of Γ.

Moreover, note that M never computes the same matcher twice.

If we are not interested in bindings for certain variables, we can replace
them with the anonymous variables: “ ” for any individual or function vari-
able, and “ ” for any sequence or context variable. It is straightforward to
adapt the rules in I to anonymous variables: If an anonymous variable occurs
in the rule IVE, FVE, SVD, W, CVD, or D then the substitution ϑ in the same
rule is the empty substitution ε. It is interesting to note that a context se-
quence matching equation s � t whose all variables are anonymous variables
can be considered as a problem of computing simulations of s in t that can be
efficiently solved by the algorithm described in [14].
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4 Regular Expressions

Regular expressions provide a powerful mechanism for restricting data values
in XML. Many languages have support for them. In [15] regular expression
pattern matching is proposed as a core feature of programming languages for
manipulating XML. The classical approach uses finite automata for regular
expression matching. In this section we show that regular expressions can be
easily incorporated into the rule-based framework of context sequence match-
ing.

Regular expressions on terms are defined by the following grammar:

R ::= t | �� | �R1, R2� | R1|R2 | R
∗,

where t is a term without holes, �� is the empty sequence, “,” is concatenation,
“|” is choice, and “∗” is repetition (Kleene star). The operators are right-
associative; “*” has the highest precedence, followed by “,” and “|”.

Substitutions are extended to regular expressions on terms in the usual
way: ��σ = ��, �R1, R2�σ = �R1σ, R2σ�, (R1|R2)σ = R1σ|R2σ, and R∗σ = (Rσ)∗.

Regular expressions on functions are defined as follows:

Q ::= f | F | C | �Q1, Q2� | Q1|Q2 | Q
∗.

Note that by this definition the hole ◦ is a regular expression on functions,
because it is a (constant) function symbol.

We introduce a new operation � as a special way of applying substitu-
tions on context variables: For any C and σ, C � σ = path(Cσ), where
path(C) is the sequence of symbols from the head of the context C to the hole
in C. For instance, path(f(a, f(g(a), H(b, D(h(c), ◦), b), c))) = �f, f, H, D�

and path(◦) = ��. We can extend � to regular expressions on functions:
f �σ = fσ, F �σ = Fσ, �Q1, Q2��σ = �Q1 �σ, Q2�σ�, (Q1|Q2)�σ = Q1 �σ|Q2�σ,
and Q∗ � σ = (Q � σ)∗.

We write L(E) for a regular language described by the regular expression E.
The only element of L(��) and L(◦) is the empty sequence ��.

Membership atoms are atoms of the form Ts in R or Fs in Q, where
Ts is a finite, possibly empty, sequence of terms and Fs is a finite, possibly
empty, sequence of function symbols, function variables, and context variables.
Membership-pairs are pairs (p, f) where p is a membership atom and f is a flag
that is a boolean expression (with the possible values 0 or 1). The intuition
behind the membership-pair (x in R, f) (resp. (C in Q, f)) is that if f = 0
then x (resp. C) is allowed to be replaced with �� (resp. with ◦) if R (resp. Q)
permits. If f = 1 then the replacement is impossible, even if the corresponding
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regular expression permits. It will be needed later to guarantee that the
context sequence regular matching algorithm terminates. Substitutions are
extended to membership-pairs as follows: (Ts in R, f)σ = (Tsσ in Rσ, fσ),
and (Fs in Q, g)σ = (Fs � σ in Q � σ, g � σ).

A context sequence regular matching problem is a multiset of matching
equations and membership-pairs of the form:

{s1 � t1, . . . , sn � tn, (x1 in R1, f1), . . . , (xm in Rm, fm),

(C1 in Q1, g1), . . . , (Ck in Qk, gk)},

where all x’s and all C’s are distinct and do not occur in R’s and Q’s. We will
assume that all x’s and C’s occur in the matching equations. A substitution σ
is called a regular matcher for such a problem if siσ = ti, xjσ ∈ L(Rjσ)fjσ,

and C l � σ ∈ L(Ql � σ)gl�σ for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ l ≤ k, where
L(P)0 = L(P) and L(P)1 = L(P) \ {��}.

We define the inference system IR to solve context sequence regular match-
ing problems. It operates on systems Γ; σ where Γ is a regular matching prob-
lem and σ is a substitution. The system IR includes all the rules from the
system I, but SVD, W, CVD, and D need an extra condition on applicability:
For the variables x and C in those rules there should be no membership-pair
(x in R, f) and (C in Q, g) in the matching problem. There are additional
rules in IR for the variables constrained by membership-pairs listed below.
The meta-functions NonEmpty and ⊕ used in these rules are defined as fol-
lows: NonEmpty() = 0 and NonEmpty(r1, . . . , rn) = 1 if ri /∈ VSeq ∪ VCon for
some 1 ≤ i ≤ n; 0 ⊕ 0 = 1 ⊕ 1 = 0 and 1 ⊕ 0 = 0 ⊕ 1 = 1.

ESRET: Empty Sequence in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in ��, f)} ∪ Γ′; σ

=⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{f(x, s1, . . . , sn)ϑ � t} ∪ Γ′ϑ; σϑ, if f = 0,

where ϑ = {x �→ ��}

⊥ if f = 1.

TRET: Term in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in s, f)} ∪ Γ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t} ∪ Γ′ϑ; σϑ,

where ϑ = {x �→ s} and s /∈ VSeq.
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SVRET: Sequence Variable in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in y, f)} ∪ Γ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t} ∪ Γ′ϑ; σϑ,

where ϑ = {x �→ y} if f = 0. If f = 1 then ϑ = {x �→ �y, y�, y �→ �y, y�}
where y is a fresh variable.

ChRET: Choice in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in R1|R2, f)} ∪ Γ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t, (yi in Ri, f)} ∪ Γ′ϑ; σϑ,

for i = 1, 2, where yi is a fresh variable and ϑ = {x �→ yi}.

CRET: Concatenation in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in �R1, R2�, f)} ∪ Γ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t, (y1 in R1, f1), (y2 in R2, f2)} ∪ Γ′ϑ; σϑ,

where y1 and y2 are fresh variables, ϑ = {x �→ �y1, y2�}, and f1 and f2

are computed as follows: If f = 0 then f1 = f2 = 0 else f1 = 0 and f2 =
NonEmpty(y1) ⊕ 1.

RRET1: Repetition in a Regular Expression for Terms 1

{f(x, s1, . . . , sn) � t, (x in R∗, f)} ∪ Γ′; σ

=⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{f(x, s1, . . . , sn)ϑ � t} ∪ Γ′ϑ; σϑ, if f = 0,

where ϑ = {x �→ ��}

⊥ if f = 1.

RRET2: Repetition in a Regular Expression for Terms 2

{f(x, s1, . . . , sn) � t, (x in R∗, f)} ∪ Γ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ � t, (y in R, 1), (x in R∗, 0)} ∪ Γ′ϑ; σϑ,

where y is a fresh variable and ϑ = {x �→ �y, x�}.

HREF: Hole in a Regular Expression for Functions

{C(s) � t, (C in ◦, g)} ∪ Γ′; σ

=⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{C(s)ϑ � t} ∪ Γ′ϑ; σϑ, if g = 0,

where ϑ = {C �→ ◦}

⊥ if g = 1.
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FREF: Function in a Regular Expression for Functions

{C(s) � t, (C in M, g)} ∪ Γ′; σ =⇒ {C(s)ϑ � t} ∪ Γ′ϑ; σϑ,

where M ∈ (F \ {◦}) ∪ VFun, and ϑ = {C �→ M(x, ◦, y)} with fresh
variables x and y.

CVREF: Context Variable in a Regular Expression for Functions

{C(s) � t, (C in D, g)} ∪ Γ′; σ =⇒ {C(s)ϑ � t} ∪ Γ′ϑ; σϑ,

where ϑ = {C �→ D(◦)} if g = 0. If g = 1 then ϑ = {C �→ F (x, D(◦), y), D �→
F (x, D(◦), y)} where F, x, and y are fresh variables.

ChREF: Choice in a Regular Expression for Functions

{C(s) � t, (C in Q1|Q2, g)} ∪ Γ′; σ
=⇒ {C(s)ϑ � t, (Di in Qi, g)} ∪ Γ′ϑ; σϑ,

for i = 1, 2, where Di is a fresh variable and ϑ = {C �→ Di(◦)}.

CREF: Concatenation in a Regular Expression for Functions

{C(s) � t, (C in �Q1, Q2�, g)} ∪ Γ′; σ
=⇒ {C(s)ϑ � t, (D1 in Q1, g1), (D2 in Q2, g2)} ∪ Γ′ϑ; σϑ,

where D1 and D2 are fresh variables and ϑ = {C �→ D1(D2(◦))}, and g1

and g2 are computed as follows: If g = 0 then g1 = g2 = 0 else g1 = 0 and
g2 = NonEmpty(D1) ⊕ 1.

RREF1: Repetition in a Regular Expression for Functions 1

{C(s) � t, (C in Q∗, g)} ∪ Γ′; σ

=⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{C(s)ϑ � t} ∪ Γ′ϑ; σϑ, if g = 0,

where ϑ = {C �→ ◦}

⊥ if g = 1.

RREF2: Repetition in a Regular Expression for Functions 2

{C(s) � t, (C in Q∗, g)} ∪ Γ′; σ
=⇒ {C(s)ϑ � t, (D in Q, 1), (C in Q∗, 0)} ∪ Γ′ϑ; σϑ,

where D is a fresh variable and ϑ = {C �→ D(C(◦))}.

A context sequence regular matching algorithm MR is defined in the similar
way as the algorithm M (Definition 3.1) with the only difference that the rules
of IR are used instead of the rules of I. ¿From the beginning, each flag in the
input problem is set either to 0 or 1. Note that the rules in IR work either
on a selected matching equation, or on a selected pair of a matching equation
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and a membership-pair. No rule selects a membership-pair alone. We denote
by SolMR

(Γ) the solution set of Γ generated by MR.

Theorem 4.1 (Soundness of MR) Let Γ be a regular matching problem.
Then every substitution σ ∈ SolMR

(Γ) is a regular matcher of Γ.

Proof. (Sketch) Inspecting the rules in IR one can conclude that for a deriva-
tion Γ; ε =⇒+ ∅; σ every regular matcher of ∅ is also a regular matcher of Γσ.
It implies that σ is a regular matcher of Γ. �

Theorem 4.2 (Termination of MR) The algorithm MR terminates on any
input.

Proof. The tricky part of the proof is related with membership-pairs con-
taining the star “*”. A derivation that contains an application of the RRET2

rule on a system with a selected matching equation and membership-pair
s0 � t0, (x in R∗0, f) either fails or eventually produces a system that contains
a matching equation s1 � t1 and a membership-pair (x in R∗1, 0) where R1 is
an instance of R0 and x is the first argument of s1:

{s0 � t0, (x in R∗0, f)} ∪ Γ; σ

=⇒RRET2 {s0ϑ � t0, (y in R0, 1), (x in R∗0, f)} ∪ Γϑ; σϑ

=⇒+ {s1 � t1, (x in R∗1, 0)} ∪ Δ; ϕ.

Hence, the rule RRET2 can apply again on {s1 � t1, (x in R∗1, 0)} ∪ Δ; ϕ.
The important point is that the total size of the ground sides of the match-
ing equations strictly decreases between these two applications of RRET2: In
{s1 � t1} ∪ Δ it is strictly smaller than in {s0 � t0} ∪ Γ. This is guaranteed
by the fact that (y in R0, 1) does not allow the variable y to be bound with
the empty sequence. The same argument applies to derivations that contain
an application of the RREF2 rule. Applications of the other rules also lead to
a strict decrease of the size of the ground sides after finitely many steps. Since
no rule increases the size of the ground sides, the algorithm MR terminates.�

Theorem 4.3 (Completeness of MR) Let Γ be a regular matching prob-
lem, ϑ be a regular matcher of Γ, and V be a variable set of Γ. Then there
exists a substitution σ ∈ SolMR

such that σ ≤·V ϑ.

Proof. Similar to the proof of Theorem 3.4. �

Note that we can extend the system IR with some more rules that facili-
tate an early detection of failure, e.g., {f(x, s1, . . . , sn) � f(), (x in R, 1)} ∪
Γ′; σ =⇒ ⊥ would be one of such rules.

T. Kutsia / Electronic Notes in Theoretical Computer Science 157 (2006) 47–65 59



5 Context Sequence Matching and XML

We assume the existence of a declarative, rule-based query and transformation
language for XML that uses the context sequence matching to answer queries.
Queries are expressed as (conditional) rules pattern → result if condition. We
do not go into the details, but just mention that membership-atoms x in R

and C in Q can be used as conditions. In such cases context sequence regular
matching can be used to match pattern to the data. Arithmetic formulae and
matchability tests are other instances of conditions. Note that conditions can
also be omitted (assumed to be true). The pattern matches the data in the
root position. One can choose between getting all the results or only one of
them.

To put more syntactic sugar on queries, we borrow some notation from [4].
We write f{s1, . . . , sn} if the order of arguments s1, . . . , sn does not matter.
The following (rather inefficient) rule relates a matching problem in which the
curly bracket construct occurs, to the standard matching problems:

Ord: Orderless

{f{s1, . . . , sn} � t} ∪ Γ′; σ =⇒ {f(sπ(1), . . . , sπ(n)) � t} ∪ Γ′; σ,

if f(s1, . . . , sn) �= t and π is a permutation of 1, . . . , n.

Moreover, we can use double curly bracket notation f{{s1, . . . , sn}} for
f{ , s1, , . . . , , sn, }. Similarly, we may use the notation with double
brackets and write f((s1, . . . , sn)) for f( , s1, , . . . , , sn, ). The match-
ing algorithm can be easily modified to work directly (and more efficiently)
on such representations.

Now we show how in this language the query operations given in [20] can be
expressed. (This benchmark was used to compare five XML query languages
in [3].) The case study is that of a car dealer office, with documents from
different auto dealers and brokers. The manufacturer documents list the
manufacturers name, year, and models with their names, front rating, side
rating, and rank; the vehicle documents list the vendor, make, year, color
and price. We consider XML data of the form:

<manufacturer>
<mn-name>Mercury</mn-name>
<year>1999</year>
<model>

<mo-name>Sable LT</mo-name>
<front-rating>3.84</front-rating>
<side-rating>2.14</side-rating>

T. Kutsia / Electronic Notes in Theoretical Computer Science 157 (2006) 47–6560



<rank>9</rank>
</model>
<model>...</model>
...

</manufacturer>

while the dealers and brokers publish information in the form

<vehicle>
<vendor>Scott Thomason</vendor>
<make>Mercury</make>
<model>Sable LT</model>
<year>1999</year>
<color>metallic blue</color>
<option opt="sunroof"/>
<option opt="A/C"/>
<option opt="lthr seats"/>
<price>26800</price>

</vehicle>.

Translating the data into our syntax is pretty straightforward. For in-
stance, the manufacturer element can be written as:

manufacturer(mn-name(Mercury), year(1999 ),

model(mo-name(SableLT ), front-rating(3 .84 ), side-rating(2 .14 ), rank(9 ))).

The query operations and their encoding in our syntax are given below.

Selection and Extraction: We want to select and extract <manufacturer>
elements where some <model> has <rank> less or equal to 10:

((manufacturer(x 1 ,model(y1 , rank(x ), y2 ), x 2 )))

→ manufacturer(x 1 ,model(y1 , rank(x ), y2 ), x 2 ) if x ≤ 10 .

Reduction: From the <manufacturer> elements, we want to drop those
<model> sub-elements whose <rank> is greater than 10. We also want to
elide the <front-rating> and <side-rating> elements from the remaining
models.

((manufacturer(x 1 ,

model(y1 , front-rating( ), side-rating( ), rank(x ), y2 ), x 2 )))

→ manufacturer(x 1 ,model(y1 , rank(x ), y2 ), x 2 ) if x ≤ 10 .

Joins: We want to generate pairs of <manufacturer> and <vehicle> el-
ements where <mn-name>=<make>, <mo-name>=<model>, and <year>=
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<year>.

{{manufacturer(x 1 ,mn-name(x1 ), x 2 , year(x2 ), x 3 ,C (mo-name(y1 )), x 4 ),

vehicle(z 1 ,make(x1 ), z 2 ,model(y1 ), z 3 , year(x2 ), z 4 )}}

→ pair(

manufacturer(x 1 ,mn-name(x1 ), x 2 , year(x2 ), x 3 ,C (mo-name(y1 )), x 4 ),

vehicle(z 1 ,make(x1 ), z 2 ,model(x2 ), z 3 , year(y1 ), z 4 )).

Restructuring: We want our query to collect <car> elements listing their
make, model, vendor, rank, and price, in this order:

{{vehicle((vendor(y1 ),make(y2 ),model(y3 ), year(y4 ), price(y5 ))),

manufacturer((C (rank(x1 ))))}}

→ car(make(y2 ),model(y3 ), vendor(y1 ), rank(x1 ), price(y5 )).

Hence, all these operations can be easily expressed in our framework.

At the end of this section we give an example how to extract elements from
an XML document that do not meet certain requirements (e.g., miss certain
information). Such problems arise in web site verification tasks discussed
in [1].

We use the data from [1]. Assume that a web site is given in the form of
the following term:

website(members(member(name(mario),surname(rossi),status(professor)),
member(name(franca),surname(bianchi),status(technician)),
member(name(anna),surname(gialli),status(professor)),
member(name(giulio),surname(verdi),status(student))),
hpage(name(mario),surname(rossi),phone(3333),status(professor),

hobbies(hobby(reading),hobby(gardening))),
hpage(name(franca),surname(bianchi),status(technician),phone(5555)),
hpage(name(anna),surname(gialli),status(professor),phone(4444),

teaching(course(algebra))),
pubs(pub(name(mario),surname(rossi),title(blahblah1),year(2003)),
pub(name(anna),surname(gialli),title(blahblah1),year(2002)))).

The task is to find those home pages of professors which miss the teaching
information. We formulate the question as the following query:

((hpage(x , status(professor), y))) → hpage(x , status(professor), y)

if (teaching( )) �� hpage(x , status(professor), y).

The condition in the query requires the term (teaching( )) not to
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match hpage(x , status(professor), y). In (teaching( )), the first anony-
mous variable is the anonymous context variable, and the second one is the
anonymous sequence variable. Since context sequence matching is decidable,
the condition can be effectively checked. The result of the query is

hpage(name(mario),surname(rossi),phone(3333),status(professor),
hobbies(hobby(reading),hobby(gardening))).

6 Conclusions

Context sequence matching is a matching for flexible arity terms that contain
context and sequence variables. These two kinds of variables allow match-
ing to explore terms (represented as trees) in two orthogonal directions: in
depth (context) and in breadth (sequence) and, thus, to get more freedom in
selecting subterms. Besides context and sequence variables, terms may con-
tain function and individual variables that allow matching to make a single
step in depth or in breadth. We developed a rule-based algorithm for context
sequence matching and proved its soundness, termination and completeness.
Moreover, we showed that regular restrictions can be easily incorporated in
the rule-based matching framework extending the algorithm with the rules
for matching regular expressions both for context and sequence variables. We
showed soundness, termination and completeness of such an extension.

In our opinion, context sequence matching can serve as a computational
mechanism for a declarative, rule-based language to query and transform
XML, or to specify and verify web sites. The ability of traversing trees both
in depth and in breadth would give such a language the advantages from both
path-based and pattern-based languages. It would easily support, for instance,
a wide range of queries (selection and extraction, reduction, negation, restruc-
turing, combination), parent-child and sibling relations and their closures,
access by position, unordered matching, order-preserving result, partial and
total queries, optionally, construction, multiple results, and other properties.
We expect such a language to have a clean declarative semantics (rule-based
paradigm) and to be visualizable.
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