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Abstract

The Schelling model is one of a small number of “agent based” popula-
tion models, where individual members of the population (agents) interact
directly with other agents and move in space and time. In this note we
study one-dimensional Schelling population models as dynamical systems
and find formulas and precise asymptotics for the number of limit states.

1 Introduction

In this note we study the dynamics of one-dimensional Schelling population
models. The Schelling model [1, 2, 3] is one of a small number of “agent based”

∗Supported by the SFB-grant F1305 and the grant P16613-N12 of the Austrian FWF.
†This work was partially supported by NSF grants DMS-0355180 and INT-0104675
‡Supported by the SFB-grant F1301 of the Austrian FWF.

1



population models, where individual members of the population (agents) inter-
act directly with other agents and move in space and time. In the vast majority
of population models, e.g., all ordinary differential equation and partial differen-
tial equation models, sub-populations interact with other sub-populations with
strong mixing assumptions, and the individuals are only implicit in the model.
Agent based models such as the Schelling model are fundamentally different.

Some experts believe that agent-based models are ideally suited to model
many populations and the spread of some infectious diseases. A recent paper
[4] models the spread of smallpox in a city using an agent based model, and the
simulations lead to a new containment strategy. Since many flu viruses mutate
quickly, standard SIR epidemic models are not applicable, and some leading
mathematical biologists [5] speculate that agent based models may be useful to
study the flu.

The Schelling model is an agent-based model that serves as a paradigm for
modeling population movement via non-local aggregation. Devised nearly thirty
years ago, this model is still actively studied and heavily cited by demographers
trying to understand the relationship between residential choices of individuals
and aggregate patterns of neighborhood and city change. Schelling received
the 2006 Nobel Prize in Economics and this model was cited by the Nobel
committee. Besides the manuscript [6], we are not aware of any rigorous results
on this general family of models. In fact, there appear to be very few rigorous
results in the entire area of agent-based modeling.

In this manuscript we study this one-dimensional Schelling segregation model,
both on a line of L lattice sites and on a circle of L lattice sites. For each L
we obtain explicit formulas for the number of limit states. These formulas in-
volve sums of products of binomial coefficients and are hypergeometric series.
Although there seem to be no closed form expressions for the number of limit
states, in Section 6 we compute the precise asymptotics for the model on a
line. To do so, we calculate the generating function of the dominant part of the
number of limit states and analyse it with a standard complex analysis based
asymptotic method.

An analogous enumeration of the limit states for the two-dimensional models
on a L× L lattice seems extremely difficult.

2 Description of the one-dimension model

We consider natural one-dimensional versions of the Schelling model on an in-
terval and on a circle (i.e., with periodic boundary conditions). In the first
case the configuration space is ΛL = {1, 2, · · · , L} and in the second case the
configuration space is ZL = Z/LZ. In both cases each lattice site is inhabited
by an agent having one of two distinct labels, which we denote by A and B. We
assume that M sites are filled with A′s and N sites are filled with B′s, where
L = M +N . This describes a configuration or state of the system. For an exam-
ple of the model on ZM+N , one can consider M Democrats and N Republicans
seated around a poker table.
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Given a state, we say that a site is happy provided the label at that site is
not isolated, i.e., at least one of its two nearest neighbors has the same label.
For the model on an interval, an agent on the boundary is happy provided the
one nearest neighbor has the same label.

To describe the evolution of a state xn, one selects two sites having different
labels. This can be done following a deterministic algorithm or randomly. If
both chosen agents are unhappy, then we interchange the two labels, and this
defines state xn+1. The interchange makes both chosen agents happy. If at
least one of the chosen agents is already happy, we select again, until we have
selected two unhappy agents. We continue this procedure until we reach a state
for which it is impossible to choose two isolated agents. We call such a state
a limit state. Although different choices will lead to different limit sets, the
number of limit sets is independent of these selection choices. Since at each step
the chosen sites can be far apart and only two randomly chosen sites can update
at each step, this is quite different than the usual nearest neighbor models in
statistical physics or cellular automata (CA) models.

Some limit sets have no isolated agents while others have one or more isolated
agents with the same label. In the first case, limits sets correspond to alternating
groups of agents, where each group consists of at least two agents with the same
label. The latter case is similar, except that, in addition, there are some isolated
agents all with the same label. Thus some agents may be unhappy, but they
have nowhere to move

3 Brief remarks on the dynamics of the system

The Schelling model can be viewed as a dynamical system on configurations on
a finite lattice. With stochastic selection rules, we view the Scehlling model as
a random dynamical system. There exists a global Lyapunov function L on the
configurations, i.e., a function defined on configurations that strictly decreases in
time until a limit state is reached. For the circular lattice, each possible global
configuration of A’s and B’s is specified by a function x : ZM+N → {−1, 1},
where one associates label 1 for agent A and −1 for agent B. It is easy to show
that the function

L(x) = −
∑

v∈ΛN

∑
i={−1,1}

x(v) · x(v + i)

is strictly decreasing along the evolution of the system until it reaches a limit
state. See [6] for details, along with four interpretations of the function L. A
similar Lyapunov function can be constructed for the dynamics on ΛM+N . The
number of sites labeled A (or B) does not change during the evolution of the
system, so in this sense this dynamical system has a conserved quantity.

There is clearly no recurrence in this system. In fact, for random selection
rules this system can be described by a transient Markov chain. A natural way
to quantify the complexity of this dynamical system is through the growth in the
number of limit states as a function of lattice size. Theorem 5 and Proposition 3
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contain explicit formulas for the number of limit states, and Theorem 5 provides
precise asymptotics for the number of limit states on the line. This is achieved
by expressing the number of limit states through sums and differences of sums
of products of binomial coefficients, i.e., hypergeometric series, and then finding
the asymptotics of the hypergeometric series.

4 Schelling model on {1, 2, · · · , M + N}
We assume that the configuration space is ΛM+N = {1, 2, . . . ,M + N} and the
sequence of M A′s and N B′s begins with a group of A′s, ends with a group
of B′s, and consists of m1 A′s followed by n1 B′s followed by m2 A′s followed
by n2 B′s, . . . , followed by mk A′s followed by nk B′s, where each mi is at least
one and each ni is at least two. The following are two examples:

AAAA︸ ︷︷ ︸
m1

BB︸︷︷︸
n1

AAA︸ ︷︷ ︸
m2

BBBB︸ ︷︷ ︸
m2

. . . AAAA︸ ︷︷ ︸
mk

BBB︸ ︷︷ ︸
nk

A︸︷︷︸
m1

BBB︸ ︷︷ ︸
n1

AA︸︷︷︸
m2

BB︸︷︷︸
m2

. . . A︸︷︷︸
mk

BB︸︷︷︸
nk

.

Each such limit state corresponds to a multiset [m1n1m2n2 . . .mlnk] satisfying
the following conditions:

m1 + m2 + · · ·+ mk = M

n1 + n2 + · · ·+ nk = N

mi ≥ 1 i = 1, 2, . . . , k

ni ≥ 2 i = 1, 2, . . . , k

 . (1)

We denote M(L, k, r) to be the collection of multisets of the form [m1m2 . . .mk]
where m1 + m2 + · · · + mk = M and mi ≥ r, i = 1, 2, . . . , k. An elementary
counting argument shows that

#M(M,k, r) =
(

M + (1− r)k − 1
k − 1

)
,

and thus the total number of multisets of the form [m1n1m2n2 . . .mlnk] which
satisfy (1) is

#M(M,k, 1) #M(N, k, 2) =
(

M − 1
k − 1

)(
N − k − 1

k − 1

)
. (2)

Since the total number of these limit sets corresponds to the sum over k of
the number of multisets of the form [m1n1m2n2 . . .mlnk] which satisfy (1), we
obtain that the number of limit sets for the Schelling model on {1, 2, · · · ,M+N}
which begin with A, end with B, and can have isolated A′s is

M+N∑
k=1

(
M − 1
k − 1

)(
N − k − 1

k − 1

)
.
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The same formula holds for the number of limit states which begin with B,
end with A, and which can have isolated A′s. These sums do not seem to have
closed form expressions.

We now count those limit sets which begin and end with A and which can
have isolated A′s. From (2) it follows that the number of multisets [m1n1m2n2 . . .
mlnkmk+1] satisfying:

m1 + m2 + · · ·+ mk+1 = M

n1 + n2 + · · ·+ nk = N

mi ≥ 1 i = 1, 2, . . . , k + 1
ni ≥ 2 i = 1, 2, . . . , k.

 (3)

is (
M − 1

k

)(
N − k − 1

k − 1

)
.

To compute the total number of limit states one must count the following
twelve types of limit states:

Name Starting agent Ending agent May have isolated Total number
TA1 A B A

∑(
M−1
k−1

)(
N−K−1

k−1

)
TB1 A B B

∑(
M−k−1

k−1

)(
N−1
k−1

)
TA2 B A A

∑(
M−1
k−1

)(
N−K−1

k−1

)
TB2 B A B

∑(
M−k−1

k−1

)(
N−1
k−1

)
TA3 A A A

∑(
M−1
k−1

)(
N−k−1

k−1

)
TB3 A A B

∑(
M−1
k−1

)(
N−k−1

k−1

)
TA4 B B A

∑(
M−1
k−1

)(
N−k−1

k−1

)
TB4 B B B

∑(
M−1
k−1

)(
N−k−1

k−1

)
T1 A B No

∑(
M−1
k−1

)(
N−k−1

k−1

)
T2 B A No

∑(
M−1
k−1

)(
N−k−1

k−1

)
T3 A A No

∑(
M−1
k−1

)(
N−k−1

k−1

)
T4 B B No

∑(
M−1
k−1

)(
N−k−1

k−1

)
The total number of limit states on {1, 2, · · · ,M +N} with M number of A′s

and N number of B′s is |∪i (TAi∪TBi)|. Since the only nonempty intersections
are TAi ∩ TBi = Ti, we have | ∪i (TAi ∪ TBi)| =

∑
i

(|TAi|+ |TBi| − |Ti|). We

thus obtain the following theorem.

Theorem 1. The total number of limit states for the Schelling segregation model
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on {1, 2, · · · ,M + N} with M number of A′s and N number of B′s is

s(M,N) = 2
M+N∑
k=1

(
M − 1
k − 1

)(
N − k − 1

k − 1

)
+ 2

M+N∑
k=1

(
M − k − 1

k − 1

)(
N − 1
k − 1

)

+
M+N∑
k=1

(
M − 1

k

)(
N − k − 1

k − 1

)
+

M+N∑
k=1

(
M − k − 2

k

)(
N − 1
k − 1

)

+
M+N∑
k=1

(
M − 1
k − 1

)(
N − k − 2

k

)
+

M+N∑
k=1

(
M − k − 1

k − 1

)(
N − 1

k

)

−2
M+N∑
k=1

(
M − k − 1

k − 1

)(
N − k − 1

k − 1

)
−

M+N∑
k=1

(
M − k − 2

k

)(
N − k − 1

k − 1

)

−
M+N∑
k=1

(
M − k − 1

k − 1

)(
N − k − 2

k

)
.

Corollary 2. When there are equal numbers of agents with both labels, i.e.,
M = N , the formula in Theorem 1 reduces to

s(N,N) = 4
2N∑
k=1

(
N − 1
k − 1

)(
N − k − 1

k − 1

)
+ 2

2N∑
k=1

(
N − 1

k

)(
N − k − 1

k − 1

)

+2
2N∑
k=1

(
M − k − 2

k

)(
N − 1
k − 1

)
− 2

2N∑
k=1

(
N − k − 1

k − 1

)(
N − k − 1

k − 1

)

−2
2N∑
k=1

(
N − k − 2

k

)(
N − k − 1

k − 1

)
.

(4)

Each sum in the above expression for s(M,N) can be written as a hypergeo-
metric series. In Section 6 we study the asymptotics of s(N,N). We show that
the dominant part of s(N,N) consists of the first three sums in (4), derive a
recurrence for the dominant part, find its generating function, and deduce that
s(N,N) ∼ const · 3N/

√
N .

5 Schelling model on the circular lattice ZN

Suppose that all the Democrats and Republicans sitting around a round poker
table each advance k seats in a fixed direction. After this seating rearrangement,
nobody’s neighbors have changed, and thus we do not wish to consider the two
configurations as distinct. Hence to count the number of limit states for the
Schelling model on the circular lattice ZN we need to factor out rotational
symmetries.
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The cyclic group Zk acts on the following set of pairs of integers:

{((n1,m1), (n2,m2), ..., (nk,mk)) | ni,mi ≥ 2,
k∑

i=1

ni = N,
k∑

i=1

mi = M}

by cyclic shift of the indexes. We need to calculate the number of orbits of this
action and then sum it over k. Pólya’s method to count the number of orbits
of a finite group G acting on a set can be expressed by the following formula:

#Orbits =
1
|G|

∑
g∈G

#Fix(g), (5)

where Fix(g) denotes the fixed point set for g.
For our case r ∈ Zk = {1, 2, ..., k} (to avoid gcd(0, k), we take r = k instead

of r = 0). Let gcd(r, k) = c and d = k/c. Then

#Fix(r) =

{
0 if d - N or d - M(N−k

d −1
k
d−1

)(M−k
d −1
k
d−1

)
if d|N and d|M.

It is convenient to introduce the Euler totient function φ(n) = #{1 ≤ m ≤
n | gcd(n, m) = 1}. It is easy to check that φ(k/c) = #{1 ≤ r ≤ k | gcd(r, k) =
c}. Using this fact and (5) we obtain:

#Orbits =
1
k

∑
d| gcd(k,M,N)

φ(d)
(N−k

d − 1
k
d − 1

)(M−k
d − 1
k
d − 1

)
.

We sum this expression over k from 1 to min(M/2, N/2) and obtain

B(M,N) =
∑

k

∑
d| gcd(k,M,N)

1
k

φ(d)
(N−k

d − 1
k
d − 1

)(M−k
d − 1
k
d − 1

)
.

Substituting k = rd, we can rewrite this expression as

B(M,N) =
∑

r

∑
d| gcd(M,N)

φ(d)
rd

(N
d − r − 1

r − 1

)(M
d − r − 1

r − 1

)

=
∑

d| gcd(M,N)

φ(d)
d

∑
r

1
r

(N
d − r − 1

r − 1

)(M
d − r − 1

r − 1

)

=
∑

d| gcd(M,N)

φ(d)
d

A

(
M

d
,
N

d

)
,

where

A(M,N) =
∑

k

1
k

(
N − k − 1

k − 1

)(
M − k − 1

k − 1

)
.

Summarizing, we obtain the following result:
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Proposition 3. The total number of limit states for the Schelling model on
ZM+N with M number of A′s and N number of B′s is

∑
d| gcd(M,N)

φ(d)
d

∑
r

1
r

(N
d − r − 1

r − 1

)(M
d − r − 1

r − 1

)
.

Remarks

(i) B(M,N) and A(M,N) seem to have the same asymptotics, but A(M,N)
is not always an integer.

(ii) The totient function φ appears in combinatorics, see problem 27, chapter
1, Stanley ”Enumerative combinatorics”, v1.

Corollary 4. If (M,N) = 1, then the total number of limit states for the
Schelling model on ZN is

2N
N∑

k=1

(
M

k − 1

)(
N − k − 1

k − 1

)
.

6 The asymptotics of s(N, N)

In this section we obtain the precise asymptotic expression for s(N,N), the
number of limit states of the model on {1, 2, . . . , 2N} with an equal number
M = N of A′s and B′s. By Corollary 2, s(N,N) can be expressed by the sums

s1(N) :=
∑
k≥1

(
N − 1
k − 1

)(
N − k − 1

k − 1

)
,

s2(N) :=
∑
k≥1

(
N − 1

k

)(
N − k − 1

k − 1

)
,

s3(N) :=
∑
k≥1

(
N − 1
k − 1

)(
N − k − 2

k

)
,

s4(N) :=
∑
k≥1

(
N − k − 1

k − 1

)2

,

s5(N) :=
∑
k≥1

(
N − k − 2

k

)(
N − k − 1

k − 1

)
,

where binomial coefficients with negative upper entry are defined to be zero.

8



Theorem 5. The sequence

s(N,N) = 4s1(N) + 2 (s2(N) + s3(N)− s4(N)− s5(N))

satisfies

s(N,N) = 3N
(
CN−1/2 + O(N−1)

)
, where C = 3

4

√
3
π ≈ 0.7329. (6)

In order to prove this, we are going to analyze the generating functions
of si(N). The proof uses methods from symbolic summation and asymptotic
results. By the Cauchy-Schwarz inequality and the well known identities

N∑
k=0

(
N

k

)
= 2N and

N∑
k=0

(
N − k

k

)
= Fibonacci(N + 1),

the si(N) are all of at most exponential growth, and therefore their generating
functions Si(z) :=

∑
N≥0 si(N)zN are analytic at z = 0.

The functions Si(z) are obviously not entire. The growth of their coefficients
is intimately connected with the behaviour of the functions at their singularities,
to be elaborated in what follows. If z = zi denotes the singularity of Si(z) that is
closest to the origin, then it is a well-known fact from complex analysis that the
coefficient of zN in Si(z) satisfies si(N) = O((1/|z0|+ ε)N ), with ε an arbitrary
positive real.

We now estimate |zi| for i = 4, 5. Let us begin by computing1 the recurrence

(N + 2)s4(N + 4)− (2N + 3)s4(N + 3)− (N + 1)s4(N + 2)
− (2N + 1)s4(N + 1) + Ns4(N) = 0, N ≥ 3.

Here various summation packages are on the market that can do the job. e.g.,
one can take the Mathematica package Zb [8], an efficient implementation of
Zeilberger’s algorithm for hypergeometric summation [9]; in this article we used
the summation package Sigma [7]. From the recurrence one can produce an
LODE (Linear Ordinary Differential Equation)

24(−1 + 5z)S′
4(z) + 12(−1− 13z + 20z2)S′′

4 (z)

+ 4(−3− 7z − 33z2 + 30z3)S(3)
4 (z) + (2− 13z − 11z2 − 31z3 + 20z4)S(4)

4 (z)

+ (z − 2z2 − z3 − 2z4 + z5)S(5)
4 (z) = 0

for the generating function S4(z). To compute this LODE one can apply the
Maple package gfun [10] or, as in our case, one can use the Mathematica pack-
age GeneratingFunctions [11]. Note that the only required information is the
leading coefficient

z − 2z2 − z3 − 2z4 + z5 (7)
1Note that we not only can compute the recurrence, but also obtain a proof for its correct-

ness; these aspects will be considered in details for a similar but more sophisticated example
in Proposition 6.
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of the LODE. It is well-known that each singularity of S4(z) is a root of this
polynomial. The smallest non-zero root is α := 1

2

(
3−

√
5
)
. Thus, the singu-

larity of S4(z) that is closest to the origin has absolute value at least α. This
implies s4(N) = O((1/α + ε)N ), where 1/α ≈ 2.618.

The growth of s5(N) can be estimated analogously. We arrive at an LODE
of order seven, whose leading coefficient is in fact z2 times the polynomial (7).
Hence we obtain the same big-Oh estimate as for s4(N). As we will see below,
these coarse estimates are sufficient, because the contributions of s4(N) and
s5(N) to the growth of s(N,N) are negligible.

We could now try to find analogous estimates for si(N), i = 1, 2, 3 in the
same way. However, we need better asymptotics than what can be found by
the crude method we have applied so far. This requires finer knowledge of
the generating functions. Instead of analyzing the generating functions of the
three sums separately, we save some work by using the following “combined”
recurrence. It is also useful for rapid computation of the dominant part of
s(N,N).

Proposition 6. The sequence

u(N) := 4s1(N) + 2s2(N) + 2s3(N)

satisfies the recurrence

−3(N + 2)u(N)− 2(N + 1)u(N + 1) + (N + 2)u(N + 2) = 12 [N = 0] (8)

with initial values u(0) = u(1) = 0. (We use Iverson’s bracket notation: [true] =
1 and [false] = 0).

Proof. Subsequently, let fi(N, k) be the summand of si(N, k) for 1 ≤ i ≤ 3, i.e.,
si(N) =

∑N−2
k=1 fi(N, k). Note that for all N ≥ 1 and all 2 ≤ k ≤ N − 2 the

summands can be written in the form

f1(N, k) = −k(−2 + 2k −N)(−1 + 2k −N)
(−1 + k)(k −N)N

b(N, k),

f2(N, k) =
(−2 + 2k −N)(−1 + 2k −N)

(−1 + k)N
b(N, k),

f3(N, k) =
(−2 + 2k −N)(−1 + 2k −N)(2k −N)(1 + 2k −N)

(−1 + k)(k −N)(1 + k −N)N
b(N, k)

where b(N,K) =
(
N
k

)(
N−k
k−2

)
. For N ≥ 1 and 2 ≤ k ≤ N − 2 define f(N, k) :=

4f1(N, k) + 2f2(N, k) + 2f3(N, k), i.e.,

f(N, k) =
2(−2 + 2k −N)(−1 + 2k −N)(k + 3k2 − 2N − 4kN + 2N2)

(−1 + k)(k −N)(1 + k −N)N
b(N, k).

The main step of the proof is the certificate recurrence

g(N, k+1)−g(N, k) = c0(N)f(N, k)+c1(N)f(N +1, k)+c2(N)f(N +2, k) (9)
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given by

c0(N) := −3N(2 + N), c1(N) := −2N(1 + N), c2(N) := N(2 + N)

and

g(N, k) := 4k
(
6k3(2 + N)− k2(42 + 47N + 14N2)

+ k(42 + 77N + 50N2 + 12N3)− 2(6 + 15N + 16N2 + 9N3 + 2N4)
)
×

× b(N, k)
/(

(N − k)(N − k + 1)(N − k + 2)
)
,

which can be found with the package Sigma or Zb. Assuming the correctness of
equation (9), we now sum equation (9) over the summation range. Using the
fact that u(N) =

∑N−2
k=2 f(N, k)+4(N −1), we easily obtain the recurrence (8).

To establish (9), we first tried to express b(n, k+1), which occurs in g(N, k+
1), and b(N + i, k), which occurs in f(N + i, k), in terms of b(N, k) times a
rational function in N and k. But this approach failed due to pole problems
within the summation range 2 ≤ k ≤ N − 2; e.g., we have b(N + 1, k) =
(N + 2)/(N − 2k + 4)b(N, k). In order to avoid this, we express all quantities
in (9) in terms of b′(N, k) :=

(
N
k

)(
N−k
k−4

)
by

b(N, k) =
(N − 2k + 4)(N − 2k + 3)

(k − 3)(k − 2)
b′(N, k),

b(N + 1, k) =
(N − 2k + 4)(N + 1)

(k − 3)(k − 2)
b′(N, k),

b(N + 2, k) =
(N + 1)(N + 2)
(k − 3)(k − 2)

b′(N, k),

b(N, k + 1) =
(N − 2k + 4)(N − 2k + 3)(N − 2k + 2)(N − 2k + 1)

(k − 3)(k − 2)(k − 1)(k + 1)
b′(N, k).

With simple polynomial arithmetic one can verify that (9) holds for all N ≥ 6
and 4 ≤ k ≤ N − 2. Summing (9) over k from 4 to N − 2 and compensating
missing terms produces, together with a rigorous proof, our recurrence (8) for
N ≥ 4. The special cases N = 0, 1, 2, 3 can be verified by simple evaluation.

The recurrence (8) of the sequence u(N) translates into the differential equa-
tion

−6zU(z)−
(
3z2 + 2z − 1

)
U ′(z) = 12z, U(0) = 0,

for its generating function U(z), again calculated using the GeneratingFunctions
package. Since U(z) is analytic at zero, it equals the unique analytic solution of
this initial value problem. But the latter can be expressed in terms of radicals
(e.g., using Mathematica’s DSolve), yielding

U(z) =
9
8

√
1 + z√
1− 3z

+
3
8

√
1− 3z√
1 + z

+
1
2

√
1− 3z

(1 + z)3/2
− 2. (10)
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This explicit formula shows that z = 1/3 is the smallest singularity of U(z).
Thus, its coefficients have an exponential growth rate of 3N , so we are on the
right track in our quest to establish (6). Flajolet and Odlyzko’s method of
singularity analysis [12, 13] shows how to obtain finer information on the growth
of the coefficients from the behaviour of the function near the singularity. The
latter is given by

U( 1
3z) = 3

4

√
3 (1− z)−1/2 + O(1) as z → 1−. (11)

Theorem 7 (Standard function scale [12, 13]). Let α 6∈ {0,−1,−2, . . . }. Then
the coefficient of zN in

f(z) = (1− z)−α

satisfies

[zN ]f(z) =
Nα−1

Γ(α)
(
1 + O(N−1)

)
.

Theorem 8 (Big-Oh transfer [12, 13]). Assume that f(z) is analytic in a circle
with radius greater than 1, slit along the real half line [1,∞[, and satisfies

f(z) = O((1− z)−α), z → 1.

Then the coefficient of zN in f(z) satisfies

[zN ]f(z) = O(Nα−1).

Applying Theorem 7 and Theorem 8 to (11) yields

3−Nu(N) = 3
4

√
3

N−1/2

Γ(1/2)
(
1 + O(N−1)

)
+ O(N−1)

= 3
4

√
3
π N−1/2 + O(N−1),

whence the final result (Theorem 5); recall that we have established si(N) =
O((2.7)N ), i = 4, 5, above.

Note that an asymptotic expansion of the quantity in parentheses in (6),
up to arbitrary order, can be easily derived from (10) with Theorem 7 and
Theorem 8.
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